本資料のうち、枠囲みの内容は機密事項に属しますので公開できません。

柏崎刈羽原子力発	電所6号及び7号炉審査資料
資料番号	KK67-0033 改01
提出年月日	平成26年10月2日

柏崎刈羽原子力発電所 6号及び7号炉

事故シーケンスグループ及び 重要事故シーケンス等の選定について

平成26年10月 東京電力株式会社

目 次

はじめに

- 1 炉心損傷防止対策の有効性評価の事故シーケンスグループ抽出及び重要事 故シーケンス選定について
 - 1.1 事故シーケンスグループの分析について
 - 1.1.1 炉心損傷に至る事故シーケンスの抽出、整理
 - 1.1.2 抽出した事故シーケンスの整理
 - 1.1.2.1 必ず想定する事故シーケンスグループとの対応
 - 1.1.2.2 追加すべき事故シーケンスグループの検討
 - 1.1.2.3 炉心損傷後の原子炉格納容器の機能への期待可否に基づく整理
 - 1.2 有効性評価の対象となる事故シーケンスについて
 - 1.3 重要事故シーケンスの選定について
 - 1.3.1 重要事故シーケンス選定の考え方
 - 1.3.2 重要事故シーケンスの選定結果
- 2 格納容器破損防止対策の有効性評価における格納容器破損モード及び評価 事故シーケンスの選定について
 - 2.1 格納容器破損モードの分析について
 - 2.1.1 格納容器破損モードの抽出、整理
 - 2.1.2 レベル1.5PRAの定量化結果及び影響度を踏まえた格納容器破損モードの検討
 - 2.2 評価事故シーケンスの選定について
 - 2.2.1 評価対象とするプラント損傷状態(PDS)の選定
 - 2.2.2 評価事故シーケンスの選定の考え方及び選定結果
 - 2.2.3 炉心損傷防止が困難な事故シーケンス等に対する格納容器破損防止 対策の有効性
 - 2.2.4 直接的に炉心損傷に至る事故シーケンスに対する対策
- 3 運転停止中原子炉における燃料損傷防止対策の有効性評価の運転停止中事 故シーケンスグループ及び重要事故シーケンスの選定について
 - 3.1 運転停止中事故シーケンスグループの分析について
 - 3.1.1 炉心損傷に至る運転停止中事故シーケンスグループの検討・整理
 - 3.2 重要事故シーケンスの選定について
 - 3.2.1 重要事故シーケンスの選定の考え方
 - 3.2.2 重要事故シーケンスの選定結果

- 第1-1表 イベントツリーにより抽出した事故シーケンス
- 第1-2表 PRAの結果に基づく新たな事故シーケンスグループの検討
- 第 1-3 表 事故シーケンスグループの主要な炉心損傷防止対策と炉心損傷頻度
- 第1-4表 重要事故シーケンス等の選定
- 第2-1表 格納容器破損モード別格納容器破損頻度
- 第2-2表 プラント損傷状態(PDS)の定義
- 第2-3表 評価対象とするプラント損傷状態(PDS)の選定
- 第2-4表格納容器破損防止対策の評価事故シーケンスの選定
- 第3-1表 運転停止中事故シーケンスグループ別炉心損傷頻度
- 第3-2表 重要事故シーケンス(運転停止中)の選定について
- 第3-3表 炉心損傷までの余裕時間について

义

- 第1-1 図 事故シーケンスグループ抽出及び重要事故シーケンス選定の全体プ ロセス
- 第1-2図内部事象運転時レベル1PRAイベントツリー
- 第1-3図 地震レベル 1PRA 階層イベントツリー
- 第1-4 図 地震レベル 1PRA イベントツリー
- 第1-5 図 津波レベル 1PRA 津波高さ別イベントツリー
- 第1-6図 津波レベル 1PRA イベントツリー
- 第 1-7 図 プラント全体の CDF
- 第1-8図 各 PRA の結果と事故シーケンスグループ毎の寄与割合
- 第2-1図 格納容器破損モード抽出及び評価事故シーケンス選定の全体プロセス
- 第2-2図 シビアアクシデントで想定される事象進展と格納容器破損モード
- 第2-3 図 内部事象運転時レベル 1.5PRA イベントツリー
- 第2-4 図 内部事象運転時レベル 1.5PRA の定量化結果
- 第3-1 図 運転停止中の原子炉における事故シーケンスグループ抽出及び重要 事故シーケンス選定の全体プロセス

- 第3-2図 定期検査時のプラント状態と主要パラメータの推移
- 第 3-3 図 運転停止時における燃料損傷に至る事故シーケンスのグループ化(停 止時 PRA イベントツリー)
- 第3-4図事故シーケンスグループごとの寄与割合

別紙

- 1 有効性評価の事故シーケンスグループ等の選定に際しての外部事象の考慮
- 2 外部事象に特有の事故シーケンスについて
- 3 国内外の重大事故対策に関係する設備例
- 4 内部事象 PRA における主要なカットセット
- 5 地震 PRA、津波 PRA における主要な事故シーケンスの対策
- 6 「水素燃焼」及び「溶融物直接接触(シェルアタック)」を格納容器破損モー ドの評価対象から除外する理由
- 7 格納容器隔離失敗の想定について
- 8 炉内溶融燃料 冷却材相互作用(炉内 FCI)に関する知見の整理

別添

柏崎刈羽原子力発電所 6/7 号炉 確率論的リスク評価(PRA)について

はじめに

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する 規則の解釈」(平成25年6月19日)(以下、「解釈」という。)に基づき、重大事 故対策の有効性評価に係る事故シーケンスグループ等の選定に際しては、個別 プラントの確率論的リスク評価 (PRA) を活用している。

当社は従来から定期安全レビュー (PSR) 等の機会に内部事象レベル 1PRA (出力運転時、停止時)、レベル 1.5PRA(出力運転時)を実施してきており、これ らの PRA 手法を今回も適用した。また、外部事象としては、現段階で PRA 手 法を適用可能な事象として、日本原子力学会において実施基準が標準化され、 試評価等の実績を有する地震レベル 1PRA 及び津波レベル 1PRA を対象とし、 これらの外部事象 PRA から抽出される建屋・構築物及び大型機器等の大規模な 損傷から発生する事象についても事故シーケンスグループ等の選定に係る検討 対象範囲とした。

今回実施するPRAの目的が重大事故対策設備の有効性評価を行う事故シーケンスグループ等の選定への活用にあることを考慮し、これまで整備してきたアクシデントマネジメント策(以下、「AM 策」という。)や福島第一原子力発電所事故以降に実施した各種対策等を含めず、プラント運転開始時より備えている手段・設備に期待する仮想的なプラント状態を評価対象としてPRAモデルを構築した。

なお、今回の PRA の実施に際しては、原子力規制庁配布資料「PRA の説明 における参照事項(平成 25 年 9 月)」を参照した。

対象	許認可	モデル化採否
設計基準対象施設及びプラント 運転開始時より備えている手 段・設備	対象	期待する(「設計基準事故対処設備の機能 を作動させるための手動操作」、「給復水 系」、「外部電源復旧」等に期待する。)
AM 策(平成4年計画・整備)	対象外	期待しない
緊急安全対策	対象外	期待しない
重大事故等対処施設	現在申請中	期待しない

<今回の PRA 対象>

1 炉心損傷防止対策の有効性評価の事故シーケンスグループ抽出及び重要事 故シーケンス選定について

炉心損傷防止対策の有効性評価において想定する事故シーケンスグループ 抽出及び重要事故シーケンス選定の全体プロセスを第 1-1 図に示す。本プロ セスに従い、各検討ステップにおける実施内容を整理した。

【概要】

- ① 内部事象 PRA、外部事象 PRA(適用可能なものとして地震、津波を選定) 及び PRA を適用できない外部事象等についての定性的検討から事故シー ケンスグループの抽出を実施した。
- ② 抽出した事故シーケンスグループと必ず想定する事故シーケンスグループ との比較を行い、必ず想定する事故シーケンスグループ以外に抽出された 外部事象特有の事故シーケンスグループについて、頻度、影響等を確認し、 事故シーケンスグループとしての追加は不要とした。
- ③ 抽出した事故シーケンスグループ内の事故シーケンスについて、国内外の 先進的な対策を講じても炉心損傷防止が困難なものは、格納容器破損防止 対策の有効性評価にて取り扱うこととした。
- ④ 炉心損傷防止対策の有効性評価において想定する事故シーケンスグループ 毎に、審査ガイドに記載の観点(共通原因故障・系統間依存性、余裕時間、 設備容量、代表性)に基づき、有効性評価の対象とする重要事故シーケンス を選定した。

1.1 事故シーケンスグループの分析について

解釈には、炉心損傷防止対策の有効性評価に係わる事故シーケンスグループの、個別プラント評価による抽出に関して以下の通りに示されている。

1 - 1(a) 必ず想定する事故シーケンスグループ ① BWR 高圧・低圧注水機能喪失
 ・高圧注水・減圧機能喪失
 · 全交流動力電源喪失 崩壊熱除去機能喪失 原子炉停止機能喪失 ·LOCA 時注水機能喪失 ・格納容器バイパス(インターフェイスシステム LOCA) (b) 個別プラント評価により抽出した事故シーケンスグループ ① 個別プラントの内部事象に関する確率論的リスク評価(PRA)及び外部 事象に関するPRA(適用可能なもの)又はそれに代わる方法で評価を実 施すること。 ② その結果、上記1-1(a)の事故シーケンスグループに含まれない有意 な頻度又は影響をもたらす事故シーケンスグループが抽出された場 合には、想定する事故シーケンスグループとして追加すること。なお、 「有意な頻度又は影響をもたらす事故シーケンスグループ」について は、上記1-1(a)の事故シーケンスグループと炉心損傷頻度又は影響 度の観点から同程度であるか等から総合的に判断するものとする。

上記1-1(b)①に関して、PRAの適用可能な外部事象については日本原子力 学会における PRA 実施基準の標準化の状況、試評価実績の有無等を考慮し、地 震及び津波とした。したがって、内部事象レベル 1PRA、地震レベル 1PRA お よび津波レベル 1PRA を実施し、事故シーケンスグループを評価した。実施し た各 PRA の詳細は「柏崎刈羽原子力発電所 6 号炉及び 7 号炉 重大事故対策の 有効性評価に係る確率論的リスク評価(PRA)の結果について」に示す。

また、PRA の適用が困難と判断した地震、津波以外の外部事象については定性的な検討により発生する事故シーケンスの分析を行った。

実施した事故シーケンスグループに係る分析結果を以下に示す。

1.1.1 炉心損傷に至る事故シーケンスの抽出、整理

(1) PRA に基づく整理

内部事象レベル 1PRA では、各起因事象の発生後、炉心損傷を防止する ための緩和手段等の組み合わせを評価し、第 1-2 図のイベントツリーを用 いて分析することで炉心損傷に至る事故シーケンスを抽出している。

外部事象に関しては、PRA が適用可能な事象として地震レベル 1PRA 及 び津波レベル 1PRA を実施し、内部事象と同様にイベントツリー分析を行 い、炉心損傷に至る事故シーケンスを抽出した。第 1-3 図に地震 PRA の階 層イベントツリーを、第 1-4 図に地震 PRA のイベントツリーを、第 1-5 図 に津波 PRA の津波高さ別イベントツリーを、第 1-6 図に津波 PRA のイベ ントツリーを示す。

地震や津波の場合、各安全機能の喪失に至るプロセスは異なるものの、 起因事象が内部事象と同じであれば、炉心損傷を防止するための緩和手段 も同じであるため、事故シーケンスも内部事象と同様である。また、地震 レベル 1PRA および津波レベル 1PRA では、内部事象レベル 1PRA では想 定していない複数の安全機能や緩和機能を有する機器が同時に損傷する事 象や、建屋・構築物等の大規模な損傷の発生により直接的に炉心損傷に至 る事故シーケンスも扱っている。但し、津波 PRA のイベントツリーから抽 出される、津波発生後の SRV 開放失敗に伴う LOCA の発生については、内 部事象と同様、SRV 全弁のランダム故障に伴う開放失敗を想定しているた め、炉心損傷頻度が 10⁻²⁴/炉年と極めて小さいこと、及び、起因となる LOCA の発生原因がランダム故障であり、津波によらない事象であることから、 内部事象 PRA での SRV 開放失敗に伴う LOCA の扱いと同様、内部事象に よる大 LOCA のシーケンスに含まれるものと整理している。

各 PRA により抽出した事故シーケンスを第 1-1 表に、評価結果を第 1-7 図及び第 1-8 図に示す。

(2) PRA に代わる検討に基づく整理

PRA の適用が困難な地震、津波以外の外部事象(以下、「その他外部事象」 と言う。)については、その他外部事象により誘発される起因事象について 検討した。内部溢水及び内部火災では、小破断 LOCA や全給水喪失等の起 因事象の発生が想定される。また、洪水、風(台風)、竜巻、凍結、降水、積 雪、落雷、地滑り、火山の影響、生物学的事象、森林火災、人為事象等に おいて想定される事象は、いずれも内部事象レベル 1PRA で想定する起因 事象に包絡されるため、その他の外部事象を考慮しても新たな事故シーケ ンスグループは抽出されないと推定した。(別紙 1) 1.1.2 抽出した事故シーケンスの整理

今回実施したレベル1PRAにより抽出した各事故シーケンス(第1-1表参照) を、炉心損傷防止のための緩和機能の喪失状況、プラントの状態及び炉心損 傷に至る主要因の観点で分類した結果と、解釈の1-1(a)に示されている必 ず想定する事故シーケンスグループとの関係及び解釈の1-2に示されてい る要件との関係等を第1-2表に整理した。また、整理の内容を1.1.2.1~1.1.2.3 に示す。

1.1.2.1 必ず想定する事故シーケンスグループとの対応

今回実施したレベル1PRAにより抽出した各事故シーケンス(第1-1表参照) について、炉心損傷防止のための緩和機能の喪失状況、プラントの状態及び 炉心損傷に至る主要因の観点で分類した。具体的には次の(a)~(g)及びこれ以 外のシーケンスに分類した。緩和機能の喪失状況、プラントの状態の観点で、 (a)~(g)は、解釈1-1(a)の必ず想定する事故シーケンスグループに対応する ものとして整理した。

(a) 高圧・低圧注水機能喪失(TQUV)

運転時の異常な過渡変化等の発生後、高圧注水機能を喪失し、原子炉の減 圧には成功するが、低圧注水機能が喪失して、炉心の著しい損傷に至るシー ケンスを、事故シーケンスグループ「高圧・低圧注水機能喪失」に分類する。

(b) 高圧注水・減圧機能喪失(TQUX)

運転時の異常な過渡変化等の発生後、高圧注水機能及び原子炉減圧機能を 喪失し、炉心の著しい損傷に至るシーケンスを、事故シーケンスグループ「高 圧注水・減圧機能喪失」に分類する。

(c) 全交流動力電源喪失(長期TB, TBD, TBP, TBU)

外部電源喪失の発生時に非常用交流電源の電源の確保に失敗する等、全交 流動力電源喪失の発生後に、安全機能を有する系統及び機器が機能喪失する ことによって、炉心の著しい損傷に至るシーケンスを、事故シーケンスグル ープ「全交流動力電源喪失」に分類する。

なお、PRAでは電源喪失のシーケンスを長期TB、TBD、TBP及びTBUに 詳細化して抽出しているが、いずれも全交流動力電源喪失を伴う事故シーケ ンスグループであるため、解釈1-1(a)に記載の事故シーケンスグループ では「全交流動力電源喪失」に該当するものとして整理した。

(d) 崩壞熱除去機能喪失(TW)

運転時の異常な過渡変化等の発生後、原子炉の注水等の炉心の冷却に成功するものの、格納容器からの崩壊熱除去機能が喪失し、炉心損傷前に格納容

器が過圧により破損、その後、炉心の著しい損傷に至る恐れのあるシーケン スを、事故シーケンスグループ「崩壊熱除去機能喪失」として分類する。

(e) 原子炉停止機能喪失(TC)

運転時の異常な過渡変化の発生後、原子炉停止機能を喪失し、炉心の著し い損傷に至るシーケンスを、事故シーケンスグループ「原子炉停止機能喪失」 として分類する。

(f) LOCA時注水機能喪失(AE, S1E, S2E)

大破断LOCAの発生後の高圧注水機能及び低圧注水機能の喪失、又は、中 小破断LOCAの発生後の「高圧注水機能及び低圧注水機能」又は「高圧注水 機能及び原子炉減圧機能」の喪失により、炉心の著しい損傷に至るシーケン スを、事故シーケンスグループ「LOCA時注水機能喪失」として分類する。

なお、PRAではLOCA時の注水機能喪失シーケンスを、破断口の大きさに 応じてAE(大破断LOCA)、S1E(中破断LOCA)及びS2E(小破断LOCA)に詳細 化して抽出しているが、いずれもLOCA時の注水機能喪失を伴う事故シーケ ンスグループであるため、解釈1-1(a)に記載の事故シーケンスグループ では「LOCA時注水機能喪失」に該当するものとして整理した。

(g) 格納容器バイパス(インターフェイスシステムLOCA)(ISLOCA)

インターフェイスシステムLOCAの発生後、破断箇所の隔離に失敗し、 ECCSによる原子炉水位の確保に失敗することで炉心の著しい損傷に至る シーケンスを、事故シーケンスグループ「格納容器バイパス(インターフェ イスシステムLOCA)」に分類する。

1.1.2.2 追加すべき事故シーケンスグループの検討

今回実施したレベル1PRAにより抽出した各事故シーケンス(第1-1表参照) のうち、喪失する緩和機能及び発生する事象の観点で解釈1-1(a)の必ず想 定する事故シーケンスグループに対応しない事故シーケンスとしては、地震 に伴い発生する地震特有の事象として以下の事故シーケンスグループを抽出 した。

(1) Excessive LOCA

大規模な地震では、原子炉格納容器内の一次冷却材圧力バウンダリにおいて、大破断 LOCA を超える規模の損傷に伴う冷却材喪失(Excessive LOCA)が発生する可能性がある。具体的には、SRV の開放失敗による原子 炉圧力上昇または地震による直接的な荷重により、原子炉格納容器内の一次冷却材配管が損傷に至るシナリオを想定している。大規模な地震において LOCA が発生した場合であっても、破断の規模や使用可能な緩和設備の

状況によっては炉心損傷を防止できる可能性も考えられるが、原子炉冷却 材圧力バウンダリの損傷の規模や緩和系に応じた事象収束の評価が困難な ため、保守的に Excessive LOCA 相当の LOCA が発生するものとし、炉心 損傷に直結する事象として抽出した。

なお、後述するシーケンス選定の結果、大LOCA については国内外の先 進的な対策を考慮しても炉心損傷防止対策を講じることが困難なシーケン スとして格納容器の機能に期待している。破断の規模や使用可能な緩和設 備の状況によっては格納容器の機能に期待できる場合も考えられる。

(2) 計測・制御系喪失

大規模な地震の発生により、計測・制御機能が喪失することで、プラントの監視及び制御が不能に陥る可能性がある。この事象が発生した際のプラント挙動が明確でないことから、炉心損傷に直結する事象として抽出した。

(3) 格納容器バイパス

大規模な地震では、格納容器外で配管破断等が発生し、格納容器をバイ パスした冷却材の流出が発生する可能性がある。格納容器バイパス事象はイ ンターフェースシステム LOCA とバイパス破断に細分化され、バイパス破断は常 時開などの隔離弁に接続している配管が格納容器外で破損すると同時に隔離弁 が閉失敗することで冷却材が流出する事象である。配管破断の程度や破断箇所 の特定、影響緩和措置の成立性等に応じた網羅的な事象進展の評価が困難 なことから炉心損傷に直結する事象として抽出した。

(4) 格納容器·圧力容器損傷

大規模な地震では、原子炉圧力容器又は原子炉格納容器の損傷が発生す る可能性がある。この場合、損傷の規模や緩和系による事象収束可能性の 評価が困難なことから、炉心損傷に直結する事象として抽出した。

(5) 原子炉建屋損傷

大規模な地震では、原子炉建屋または、原子炉建屋を支持している基礎 地盤が損傷することで、建屋内の原子炉格納容器、原子炉圧力容器等の機 器及び構造物が大規模な損傷を受ける可能性がある。この場合、損傷の規 模や緩和系に期待できる可能性を詳細に考慮することが困難なことから、 炉心損傷に直結する事象として抽出した。

上記の事故シーケンスグループについて、解釈に従い、有効性評価におけ る想定の要否を頻度又は影響等の観点から分析した。

①炉心損傷頻度の観点

(1)~(5)の各事故シーケンスグループの炉心損傷頻度は、必ずしも炉心 損傷に直結する程の損傷に至らない場合も含んでいる。別紙 2 の通り、 評価方法にかなりの保守性を有しており、また、地震動に応じた詳細な 損傷の程度や影響を評価することは困難なことから、現状、炉心損傷直 結事象として整理しているものの、実際には損傷の程度に応じて使用可 能な重大事故等対処設備等を用いて対応することにより、炉心損傷を防 止できる可能性があるものと考える。その場合は、損傷した機能に応じ て内部事象運転時レベル 1PRA の結果から抽出された既存の事故シーケ ンスグループに包絡されるものと考える。このため、更に評価を詳細化 した場合には、解釈1-1(a)に記載の必ず想定する事故シーケンスグル ープよりも小さい炉心損傷頻度となると推定される。これらの事故シー ケンスグループは、炉心損傷頻度の観点では地震 PRA の精度を上げるこ とが望ましい事象と考える。

②影響の観点

(1)~(5)の各事故シーケンスグループが発生した際の影響について、建 屋や機器の損傷程度や組み合わせを特定することは困難であるため、こ れらを定量的に分析することは難しいが、地震と同時に炉心が損傷する 状況は考え難く、喪失した機能に応じて可搬型の機器等で炉心損傷防止 を試みる対応が発生するものと考える。この様に、評価の詳細化を進め ることで、高圧・低圧注水機能喪失や全交流電源喪失等と同等のシーケ ンスとなる可能性もあると考える。これらの事故シーケンスグループ 各々の影響について、定性的に分析した結果を別紙2に示す。

(1)~(5)の各事故シーケンスについては、建屋や機器の損傷の影響の大小に関する定量的な分析は困難なものの、影響が小さければ炉心損傷や 格納容器破損を回避出来る可能性があり、影響が大きい場合においても、 大規模損壊対策を含めて、使用可能な対策を活用して影響を緩和させる 手段を備えている。

③炉心損傷防止対策の観点

(1)~(5)の各事故シーケンスグループは、原子炉建屋やタービン建屋等 の建屋内に設置された緩和設備に期待できないシーケンスであり、建屋 以外に分散配置した設備や可搬型の機器を駆使することによって、炉心 損傷や格納容器破損を防止することになる。緩和設備である重大事故等 対処設備の有効性を評価するための事故シーケンスグループとしては適 切ではない。

外部事象に特有の事故シーケンスグループへの対応に際しては、炉心 損傷防止対策の有効性評価の事故シーケンスグループとして単独で定義 するのではなく、発生する事象の程度や組合せに応じて炉心損傷防止対 策や格納容器破損防止対策を柔軟に活用するとともに、建屋全体が崩壊 し内部の安全系機器・配管の全てが機能を喪失するような深刻な損傷の 場合には可搬型のポンプ、電源、放水設備等などを駆使した大規模損壊 対策による影響緩和を図ることで対応する。

以上の検討を踏まえ、(1)~(5)の各事故シーケンスグループは、一定の安全 系の機器の機能喪失に対する有効性を評価するシナリオとしては適当でない 事象であり、新たに追加するシーケンスとはしないことを確認した。頻度及 び影響の観点から総合的に判断した結果、解釈に基づき想定する事故シーケ ンスグループと比較して有意な頻度又は影響をもたらす事故シーケンスグル ープとして新たに追加するシーケンスは無いと判断した。

また、上記の検討及び別紙 2 の通り、大規模な地震を受けた場合であって も、炉心損傷に直結するほどの損傷が生じることは考えにくいが、仮に損傷 を受けたと想定した場合の事象収束対応については、参考としての評価実施 を検討している。

1.1.2.3 炉心損傷後の原子炉格納容器の機能への期待可否に基づく整理

内部事象レベル 1PRA、PRA が適用可能な外部事象として地震及び津波レ ベル 1PRA を実施し、地震、津波以外の外部事象については PRA に代わる方 法で概略評価を実施した結果、追加すべき新たな事故シーケンスグループは 無いことを確認した。

従って、柏崎刈羽6号炉及び7号炉の有効性評価で想定する事故シーケン スグループは、解釈1-1(a)の必ず想定する事故シーケンスグループのみと なる。これについて、以下に示す解釈1-2の要件に基づいて整理し、各事 故シーケンスグループの対策の有効性の確認における要件を整理した。

1 - 2	第1項に規定する「炉心の著しい損傷を防止するために必要な措置を
	講じたもの」とは,以下に掲げる要件を満たすものであること。

- (a) 想定する事故シーケンスグループのうち炉心の著しい損傷後の原子炉 格納容器の機能に期待できるものにあっては、炉心の著しい損傷を防 止するための十分な対策が計画されており、かつ、その対策が想定す る範囲内で有効性があることを確認する。
- (b) 想定する事故シーケンスグループのうち炉心の著しい損傷後の原子炉 格納容器の機能に期待することが困難なもの(格納容器先行破損シーケ ンス,格納容器バイパス等)にあっては、炉心の著しい損傷を防止する

対策に有効性があることを確認する。

1-4 上記1-2(a)の「十分な対策が計画されており」とは、国内外の先進 的な対策と同等のものが講じられていることをいう。

整理の結果は以下の通り。

○解釈1-2(a)に分類される事故シーケンスグループ

- ・高圧・低圧注水機能喪失
- ・高圧注水・減圧機能喪失
- · 全交流動力電源喪失
- ·LOCA 時注水機能喪失
- ○解釈1-2(b)に分類される事故シーケンスグループ
 - ·崩壞熱除去機能喪失
 - ·原子炉停止機能喪失
 - ・格納容器バイパス(インターフェイスシステム LOCA)

1.2 有効性評価の対象となる事故シーケンスについて

事故シーケンスグループ別に事故シーケンス、炉心損傷防止対策について整 理した結果を第1-3表に示す。

解釈1-2(a)の事故シーケンスグループに含まれる事故シーケンスに対して は、炉心の著しい損傷を防止するための対策として、国内外の先進的な対策と 同等のものを講じることが要求されている。

一方で、事故シーケンスの中には、国内外の先進的な対策を考慮しても、炉 心損傷防止対策を講じることが困難なシーケンスが存在する。具体的には以下 の3つの事故シーケンスが該当する。なお、国内外の先進的な対策と柏崎刈羽6 号炉及び7号炉の対策の比較を別紙3に示す。

・大LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗

・外部電源喪失+DG 失敗+SRV 再閉鎖失敗 (TBP)

・外部電源喪失+DG 失敗+最終ヒートシンク喪失+SRV 再閉鎖失敗 (TBP)

これらのシーケンスは、原子炉圧力容器から多量の冷却材が短時間で失われ ていく事象であり、大 LOCA では数分以内に多量の注水を開始しなければ炉心 損傷を防止することができない。今回の調査では、事象発生から極めて短時間 に多量の注入が可能な対策(インターロックの追設等)は確認できなかったこと から、これらのシーケンスを国内外の先進的な対策を考慮しても、炉心損傷防 止対策を講じることが困難なシーケンスとして整理した。

上記の炉心損傷防止対策が有効に機能しない事故シーケンスにおいても、炉 心損傷後の原子炉への注水や格納容器スプレイなどの実施により、事象の緩和 に期待できる。また、今回整備した格納容器破損防止対策により原子炉格納容 器の閉じ込め機能に期待できることを確認している(「2.2.3 炉心損傷防止が困 難な事故シーケンス等における格納容器破損防止対策の有効性」参照)。

なお、第 1-3 表に示すとおり、これらの事故シーケンスの全炉心損傷頻度への寄与割合は小さく、全炉心損傷頻度の約 98%を占める事故シーケンスが炉心損傷防止対策の有効性評価の対象範囲に含まれることを確認している。

以上から、上記の3つの事故シーケンスについては、格納容器破損防止対策 の有効性評価の対象とすることとし、炉心損傷防止対策の有効性評価の対象と する事故シーケンスから除外する(重要事故シーケンス選定の対象とする事故シ ーケンスから除外する)。

1.3 重要事故シーケンスの選定について

1.3.1 重要事故シーケンス選定の考え方

設置変更許可申請における炉心損傷防止対策の有効性評価の実施に際しては、 事故シーケンスグループ毎に重要事故シーケンスを選定している。重要事故シ ーケンスの選定にあたっては、「実用発電用原子炉に係る炉心損傷防止対策及び 格納容器破損防止対策の有効性評価に関する審査ガイド」(以下、「審査ガイド」 と言う。)に記載の4つの着眼点を考慮している。今回の重要事故シーケンスの 選定に係る具体的な考え方は以下のとおりである。また、シーケンスグループ 毎に、シーケンスと各着眼点との関係を整理し、関係が強いと考えられるもの から「高」、「中」、「低」と分類して整理した。

【審査ガイドに記載の着眼点】

- a. 共通原因故障又は系統間の機能の依存性によって複数の設備が機能喪失し、 炉心の著しい損傷に至る。
- b. 炉心損傷防止対策の実施に対する余裕時間が短い。
- c. 炉心損傷防止に必要な設備容量(流量又は逃がし弁容量等)が大きい。
- d. 事故シーケンスグループ内のシーケンスの特徴を代表している。

a.共通原因故障、系統間の機能依存性の観点

本 PRA では、多重化された機器の共通原因故障を考慮しており、システム 信頼性評価におけるフォールトツリーの中でモデル化している。このため、 原子炉建屋損傷等の炉心損傷直結事象を除き、緩和系の失敗によって炉心損 傷に至るシーケンスでは、共通原因故障が炉心損傷の原因の 1 つとして抽出 され得ることから、これらのシーケンスについては、炉心損傷頻度への寄与 が大きい場合、共通原因故障の影響ありと判断する。

系統間の機能依存性については、ある安全機能の機能喪失によって必然的 に別の系統も機能喪失に至る場合を系統間の機能依存性有りと判断する。例 えば、2つのフロントライン系に共通のサポート系が機能喪失し、それが炉心 損傷頻度に大きく寄与する場合は機能依存性有りと判断する。

b.余裕時間の観点

炉心損傷防止対策の対応操作に係る余裕時間を厳しくするため、事象が早 く進展し、炉心損傷に至る時間が短い事故シーケンスを選定する。

【例1:LOCA時注水機能喪失】

破断口径が大きい方が、原子炉冷却材の系外への流出量が多くなるため、 炉心損傷防止対策の対応操作のための余裕時間が短くなる。

【例 2:高圧·低圧注水機能喪失】

過渡事象(全給水喪失事象)は原子炉水位低(L3)が事象進展の起点となる ため、通常水位から原子炉停止に至る手動停止、サポート系喪失と比較し て事象進展が早い。手動停止、サポート系喪失は通常水位から原子炉停止 に至るため、水位の低下後に原子炉停止に至る過渡事象よりも事象進展が 遅い。このため過渡事象を起因とするシーケンスの余裕時間が短い。

c. 設備容量の観点

炉心損傷防止に際して炉心の冷却に必要となる注水量等、設備容量への要求が大きくなる事故シーケンスを選定する。

【例:LOCA時注水機能喪失(中小LOCA)】

中小 LOCA 後の緩和措置としては減圧及び低圧注水があるが、減圧に用いる SRV は十分な台数が備えられている一方、低圧注水の代替となる設備容量は低圧 ECCS より少ない。このため代替となる設備容量の観点で低圧 ECCS 失敗を含むシーケンスが厳しいと考える。

d.事故シーケンスグループ内の代表性の観点

当該事故シーケンスグループの代表的な事故シーケンスとして、炉心損傷 頻度が大きく、事故進展が事故シーケンスグループの特徴を有しているもの を選定する。

1.3.2 重要事故シーケンスの選定結果

1.3.1 項の選定の着眼点を踏まえ、同じ事故シーケンスグループに複数の事故 シーケンスが含まれる場合には、事故進展が早いものなど、より厳しいシーケ ンスを重要事故シーケンスとして以下の通りに選定している。選定理由及び選 定結果を第1-4表に示す。

- (1) 高圧·低圧注水機能喪失
 - ①重要事故シーケンス

「過渡事象+高圧注水失敗+低圧注水失敗」

- ②炉心損傷防止対策(有効性評価で主に考慮)
 - ・低圧代替注水系(常設)(復水補給水系)
- (2) 高圧注水·減圧機能喪失
 - ①重要事故シーケンス
 - 「過渡事象+高圧注水失敗+原子炉減圧失敗」
 - ②炉心損傷防止対策(有効性評価で主に考慮)
 - ・減圧自動化ロジック
- (3) 全交流動力電源喪失
 - ①重要事故シーケンス

「外部電源喪失+DG 失敗」

② 炉心損傷防止対策(有効性評価で主に考慮)

- ・原子炉隔離時冷却系(所内直流電源設備の24時間確保)
- ・格納容器圧力逃がし装置
- (4) 崩壞熱除去機能喪失
 - ①重要事故シーケンス

「過渡事象+崩壊熱除去失敗」(RHR 失敗については、RHR フロント系 故障またはサポート系故障を考慮)

- ②炉心損傷防止対策(有効性評価で主に考慮)
 - a. RHR フロント系故障の場合
 - ・格納容器圧力逃がし装置
 - b. RHR サポート系故障の場合
 - ・代替原子炉補機冷却系(熱交換ユニット+代替原子炉補機冷却海水ポンプ)
- (5) 原子炉停止機能喪失
 - ①重要事故シーケンス

「過渡事象+原子炉停止失敗」

- ② 炉心損傷防止対策(有効性評価で主に考慮)
 - ・代替冷却材再循環ポンプ・トリップ機能
 - ・ほう酸水注入系
- (6) LOCA 時注水機能喪失
 - ①重要事故シーケンス
 - 「中小 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗」
 - ② 炉心損傷防止対策(有効性評価で主に考慮)
 - ·低圧代替注水系(常設)(復水補給水系)
- (7) 格納容器バイパス(インターフェイスシステム LOCA)
 - ①重要事故シーケンス
 - 「ISLOCA」
 - ②炉心損傷防止対策(有効性評価で主に考慮)
 - 高圧炉心注水系

なお、各事故シーケンスグループに含まれる事故シーケンスについて、炉心 損傷に至る要因をカットセットレベルまで展開し、炉心損傷頻度の事故シーケ ンスに占める割合の観点で主要なカットセットに対する炉心損傷防止対策の整 備状況等を確認した。(別紙 4)

また、地震又は津波レベル 1PRA から抽出される事象シーケンスは、地震又 は津波によって起因事象が引き起こされるものの、起因事象の後のシーケンス は緩和系の成功・失敗(地震又は津波によって起因事象発生と同じタイミングで 機能喪失している場合を含む)の分岐によって決定されることから、整理される 事故シーケンスグループは内部事象 PRA で抽出される事故シーケンスグループ と同等となる。また、内部事象では喪失時の炉心損傷頻度への影響の大きな機 器・系統等の信頼性向上や系統機能を代替する設備の設置が対策となるが、外 部事象では内部事象の対策に加えて外部事象への対策(津波に対する止水対策 等)も挙げられる。外部事象自体による損傷(起因事象)の発生防止対策を実施す ることによっても当該事故シーケンスの発生頻度は低下すること、及び、地震 又は津波によって起因事象が発生した場合であってもその後の対応は内部事象 による事故シーケンスに対する有効性評価で代表できることから、地震または 津波レベル 1PRA から抽出された事故シーケンスを重要事故シーケンスとして 選定していない。(別紙 5)

第1-1表 イベントツリーにより抽出した事故シーケンス

起因事象	事故シーケンス	内部	地震	津波
過渡事象	高圧注水失敗+低圧注水失敗	0	0	_
	SRV 再閉失敗+高圧注水失敗+低圧注水失敗	0	0	_
	高圧注水失敗+原子炉減圧失敗	0	0	_
	SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	0	0	_
	崩壊埶除去失敗	0	0	_
	SRV 再閉失敗+崩壞熱除去失敗	0	0	_
	原子炉停止失敗	0	0	_
外部電源喪失	非常用交流電源喪失	0	0	_
	非常用交流電源喪失+最終ヒートシンク喪失	-	0	_
	非常用交流電源喪失+SRV 再閉失敗	0	0	_
	非常用交流電源喪失+最終ヒートシンク喪失+SRV 再閉失敗	-	0	_
	非常用交流電源喪失+RCIC 失敗	0	0	_
	非常用交流電源喪失+最終ヒートシンク喪失+RCIC 失敗	<u> </u>	0	_
	直流電源喪失	0	_	_
	非常用交流電源喪失+最終ヒートシンク喪失+直流電源喪失	1_	0	_
	高圧注水失敗+低圧注水失敗	0	_	_
	SRV 再閉失敗+高圧注水失敗+低圧注水失敗	0	_	_
	高圧注水失敗+原子炉減圧失敗	0	_	_
	SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	0	_	_
	崩壊熱除去失敗	0	_	_
	SRV 再閉失敗+崩壞熱除去失敗	0	_	_
サポート系喪失	高圧注水失敗+低圧注水失敗	0	_	_
	SRV 再閉失敗+高圧注水失敗+低圧注水失敗	0	_	_
	高圧注水失敗+原子炉減圧失敗	0	_	_
	SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	0	_	_
		0	_	_
	SRV 再閉失敗+崩壞熱除去失敗	0	_	_
大破断 LOCA	HPCF 失敗+低圧 ECCS 注水失敗	0	_	_
	RHR 失敗	0	_	_
	原子炉停止失敗	0	_	—
中破断 LOCA	HPCF 注水失敗+低圧 ECCS 注水失敗	0	_	_
	HPCF 注水失敗+原子炉減圧失敗	0	_	_
	RHR 失敗	0	_	_
	原子炉停止失敗	0	_	_
小破断 LOCA	高圧注水失敗+低圧注水失敗	0	—	_
	高圧注水失敗+原子炉減圧失敗	0	—	_
	崩壞熱除去失敗	0	—	_
	原子炉停止失敗	0	—	—
格納容器バイパス(ISLOCA)	ISLOCA	0	—	—
地震に伴う損傷	Excessive LOCA	—	0	—
	計測・制御系喪失	—	0	—
	格納容器バイパス	-	0	—
	格納容器・圧力容器損傷	_	0	
	原子炉建屋損傷	—	0	—
津波に伴う損傷	最終ヒートシンク喪失+RCIC 失敗	_	_	0
	最終ヒートシンク喪失+SRV 再閉失敗		_	0
	最終ヒートシンク喪失+全交流電源喪失+RCIC 失敗	_	_	0
	最終ヒートシンク喪失+全交流電源喪失+SRV 再閉失敗	_	_	0
	最終ヒートシンク喪失+全交流電源喪失+直流電源喪失	-	_	0

		事	おシーケンス	ス別 CDF(/炉	手)	全 CDF に		解釈 1-1(a)の		全 CDF に	株型 利日 1 0
	事故シーケンス	内部	地震	津波	合計	対する割合 (%)	PRA における 分類結果	事故シーケンス グループ	/////////////////////////////////////	対する割合 (%)	解釈 1-2 との対応
1	過渡事象+高圧注水失敗+低圧注水失敗	6.7×10^{-11}	8.5×10^{-9}	—	8.6×10^{-9}	< 0.1					
	過渡事象+SRV 再閉失敗+高圧注水失敗+低圧注水失敗	6.6×10^{-11}	4.0×10^{-9}	_	4.1×10 ⁻⁹	< 0.1					
	通常停止+高圧注水失敗+低圧注水失敗	2.3×10^{-10}	_	_	2.3×10^{-10}	< 0.1					
	通常停止+SRV 再閉失敗+高圧注水失敗+低圧注水失敗	2.9×10^{-10}	—	_	2.9×10^{-10}	< 0.1					
1	サポート系喪失+高圧注水失敗+低圧注水失敗	3.2×10^{-11}	—	_	3.2×10^{-11}	< 0.1	morna	高圧・低圧注水	1.0.10.4		()
1	サポート系喪失+SRV 再閉失敗+高圧注水失敗+低圧注水失敗	4.2×10^{-12}	—	—	4.2×10^{-12}	< 0.1	TQUV	機能喪失	1.9×10^{-4}	82.0	(a)
	最終ヒートシンク喪失+RCIC 失敗	_	_	8.7×10 ⁻⁵	8.7×10 ⁻⁵	37.6					
	最終ヒートシンク喪失+SRV 再閉失敗	_	—	4.6×10^{-7}	4.6×10^{-7}	0.2					
	最終ヒートシンク喪失+全交流電源喪失(電源盤浸水)+RCIC 失敗	_	—	1.0×10^{-4}	1.0×10^{-4}	43.9					
	最終ヒートシンク喪失+全交流電源喪失(電源盤浸水)+SRV 再閉失敗	—	—	5.3×10^{-7}	5.3×10^{-7}	0.2					
1	過渡事象+高圧注水失敗+原子炉減圧失敗	2.8×10^{-10}	8.7×10^{-9}	—	9.0×10^{-9}	< 0.1					
	過渡事象+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	8.7×10 ⁻¹²	7.6×10 ⁻¹⁰	_	7.6×10^{-10}	< 0.1					
	通常停止+高圧注水失敗+原子炉減圧失敗	3.2×10^{-10}	_	_	3.2×10^{-10}	< 0.1	morre	高圧注水・減圧			
2	通常停止+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	2.3×10^{-11}	—	_	2.2×10 ⁻¹¹	< 0.1	TQUX	機能喪失	1.0×10^{-8}	< 0.1	(a)
	サポート系喪失+高圧注水失敗+原子炉減圧失敗	4.6×10^{-11}	—	_	4.6×10^{-11}	< 0.1					
	サポート系喪失+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	6.4×10^{-12}	_	_	6.4×10^{-12}	< 0.1					
	全交流電源喪失(外部電源喪失+DG 喪失)	4.8×10^{-10}	2.4×10 ⁻⁷	—	2.4×10-7	0.1					
	全交流電源喪失(外部電源喪失+DG 喪失)+最終ヒートシンク喪失	—	3.3×10 ⁻⁶	_	3.3×10 ⁻⁶	1.4	長期 TB				
	全交流電源喪失(外部電源喪失+DG 喪失)+SRV 再閉失敗	1.2×10^{-10}	1.4×10^{-9}	_	1.5×10^{-9}	< 0.1					
	全交流電源喪失(外部電源喪失+DG 喪失)+最終ヒートシンク喪失+SRV 再閉失敗	—	1.9×10^{-8}	_	1.9×10 ⁻⁸	< 0.1	ТВР	全交流動力		10.5	(a)
3	全交流電源喪失(外部電源喪失+DG 喪失)+RCIC 失敗	5.3×10 ⁻¹⁰	2.3×10 ⁻⁸	_	2.3×10 ⁻⁸	< 0.1		電源喪失	2.9×10^{-5}	12.5	
	全交流電源喪失(外部電源喪失+DG 喪失)+最終ヒートシンク喪失+RCIC 失敗	—	3.4×10 ⁻⁷	_	3.4×10 ⁻⁷	0.1	TBU				
	外部電源喪失+直流電源喪失	8.1×10 ⁻¹¹	—	_	8.1×10 ⁻¹¹	< 0.1					
	全交流電源喪失+最終ヒートシンク喪失+直流電源喪失	_	6.0×10^{-8}	2.5×10^{-5}	2.5×10^{-5}	10.8	TBD				
	過渡事象+崩壊熱除去失敗	1.2×10^{-6}	3.3×10^{-6}	_	4.6×10^{-6}	2.0					
	過渡事象+SRV 再閉失敗+崩壞熱除去失敗	8.0×10 ⁻⁸	1.3×10^{-8}	_	9.2×10 ⁻⁸	< 0.1					
	通常停止+崩壞熱除去失敗	1.8×10^{-6}	—	—	1.7×10^{-6}	0.8					
	通常停止+SRV 再閉失敗+崩壞熱除去失敗	1.1×10^{-8}	—	—	1.1×10^{-8}	< 0.1		비로해자고			
4	サポート系喪失+崩壊熱除去失敗	2.1×10 ⁻⁷	_	_	2.1×10 ⁻⁷	0.1	TW	崩壞熱除去	6.6×10^{-6}	2.9	(b)
	サポート系喪失+SRV 再閉失敗+崩壊熱除去失敗	1.1×10^{-9}	—	—	1.1×10^{-9}	< 0.1		機肥喪失			
	小 LOCA+崩壞熱除去失敗	1.1×10^{-8}	—	_	1.1×10^{-8}	< 0.1					
	中 LOCA+RHR 失敗	3.3×10^{-9}	—	_	3.3×10^{-9}	< 0.1					
	大 LOCA+RHR 失敗	3.3×10^{-10}	—	_	3.3×10^{-10}	< 0.1					
	過渡事象+原子炉停止失敗	4.8×10^{-12}	3.6×10^{-7}	—	3.6×10^{-7}	0.2					
~	小 LOCA+原子炉停止失敗	$7.9 \times 10^{.14}$	—	_	$7.9 \times 10^{.14}$	< 0.1	- ma	原子炉停止	0.0.107	0.0	(1)
Э	中 LOCA+原子炉停止失敗	5.2×10^{-14}	—	_	5.2×10^{-14}	< 0.1		機能喪失	3.6×10^{-7}	0.2	(b)
	大 LOCA+原子炉停止失敗	5.2×10^{-15}	—	—	5.2×10^{-15}	< 0.1					
	小LOCA+高圧注水失敗+低圧注水失敗	8.0×10^{-13}	—	—	8.0×10^{-13}	< 0.1	Con				
	小 LOCA+高圧注水失敗+原子炉減圧失敗	5.3×10^{-13}	—	—	5.3×10^{-13}	< 0.1	S2E				
0	中 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗	3.9×10^{-9}	—	_	3.9×10^{-9}	< 0.1	CIT	LOCA 時 決去機会調告	0.0110-7	0.4	()
6	中 LOCA+HPCF 注水失敗+原子炉減圧失敗	1.1×10^{-11}	—	—	1.1×10^{-11}	< 0.1	SIE	汪 水機 能 喪 矢	8.2×10 ⁻⁷	0.4	(a)
	大 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗	5.0×10^{-10}	—	—	5.0×10^{-10}	< 0.1	AE				
	Excessive LOCA ^{**} 2	—	8.2×10 ⁻⁷	—	8.2×10 ⁻⁷	0.4	Excessive LOCA	該当なし			
7	インターフェイスシステム LOCA(ISLOCA)	9.5×10 ⁻¹¹	_	_	9.5×10 ⁻¹¹	< 0.1	ISLOCA	格納容器バイパス (ISLOCA)	9.5×10 ⁻¹¹	< 0.1	(b)
8	計装・制御系喪失 ^{※2}	-	6.9×10^{-8}	-	6.9×10^{-8}	< 0.1	計測 · 制御機能喪失				
9	格納容器バイパス*2	—	1.2×10^{-7}	—	1.2×10^{-7}	0.1	格納容器バイパス破断	該出た」	1.0×10-6	9.1	該当たり
10	格納容器・圧力容器損傷 ^{※2}	-	8.9×10^{-7}	—	8.9×10-7	0.4	圧力容器・格納容器損傷	以 ヨ ′よ し	4.3^10 *	2.1	
11	原子炉建屋損傷*2	-	3.8×10^{-6}	-	3.8×10^{-6}	1.6	原子炉建屋損傷				-
	合計	3.3×10^{-6}	1.3×10^{-5}	2.1×10^{-4}	2.3×10^{-4}	100	—	—	2.3×10^{-4}	100	

第1-2表 PRAの結果に基づく新たな事故シーケンスグループの検討*1

※1 各値は代表として 7 号炉の値を示した。 ※2 解釈 1 – 1 (a)の必ず想定する事故シーケンスグループに該当しないが、安全機能喪失時の対策の有効性を評価するためのシナリオとしては適当でないと判断し、新た に追加するシーケンスとはしないこととしたシーケンス。

第1-3表 事故シーケンスグループの主要な炉心損傷防止対策と炉心損傷頻度*1

解釈の事故	車坊シーケンフ	対応する主要な伝心場復防止対策		事故シーケンス	ケンス別 CDF(/炉年)		全 CDF に	ク゛ルーフ゜ 另门	全 CDF に	備孝
シーケンスグループ	争取シークシス	対応する主要なが心頂陽的正対東	内部	地震	津波	合計	対する割合(%)*2	CDF(/炉年)	対する割合(%)*2	加石
	過渡事象+高圧注水失敗+低圧注水失敗	・高圧代替注水系	6.7×10^{-11}	8.5×10^{-9}	-	8.6×10-9	< 0.1			
	過渡事象+SBV 再閉失敗+高圧注水失敗+低圧注水失敗	・手動減圧	6 6×10 ⁻¹¹	4 0×10-9	_	4 1×10-9	< 0.1			
		・低圧代替注水系(常設)(復水補給水系)	9.9×10·10	1.0*10		9.2×10-10	< 0.1			
		・代替格納谷器冷却スフレイ糸 ・ (株面スに対地)の加えていた。	2.5×10 10			2.3×10 10	< 0.1			
高圧・低圧注水	通常停止+SKV 再闭矢取+高圧注水矢取+低圧注水矢取	(後の)が補援市が示気を換エージー・「(省ぶ)が補 機冷却海水ポンプ)	2.9×10^{-10}	_	_	2.9×10 ⁻¹⁰	< 0.1			
機能喪失	サポート系喪失+高圧注水失敗+低圧注水失敗	・格納容器圧力逃がし装置	3.2×10^{-11}	—	_	3.2×10^{-11}	< 0.1	1.9×10^{-4}	82.0	
DAILED CY C	サポート系喪失+SRV 再閉失敗+高圧注水失敗+低圧注水失敗	・可搬型代替注水ポンプ(水源補給)	$4.2 \times 10^{.12}$	_	_	4.2×10^{-12}	< 0.1			
	最終ヒートシンク喪失+RCIC 失敗		-	-	8.7×10^{-5}	8.7×10 ⁻⁵	37.6			
	最終ヒートシンク喪失+SRV 再閉失敗	・津波によろ浸水防止	_	—	4.6×10 ⁻⁷	4.6×10 ⁻⁷	0.2			
	最終ヒートシンク喪失+全交流電源喪失(電源盤浸水)+RCIC失敗	FICE & FICKINE	_	—	1.0×10^{-4}	1.0×10^{-4}	43.9			
	最終ヒートシンク喪失+全交流電源喪失(電源盤浸水)+SRV 再閉失敗		—	-	5.3×10 ⁻⁷	5.3×10 ⁻⁷	0.2			
	過渡事象+高圧注水失敗+原子炉減圧失敗		2.8×10 ⁻¹⁰	8.7×10 ⁻⁹	-	9.0×10-9	< 0.1			
卓正 沙 水 ,)建正	過渡事象+SKV 再闭矢取+局上汪水矢取+原子炉减止矢取	・ 減圧目動化ロンツク(残留熱除去糸ホンフ吐出圧催立+ 原乙偏水位低(レベル1)」 COO 秒経過で SDV4 金間状)	8.7×10 ⁻¹²	7.6×10 ⁻¹⁰		7.6×10^{-10}	< 0.1			
同圧住小・阀圧 機能喪失	通常停止于高庄住小大取于原于炉阀庄大取 通营信止+SPV 再開生的+ 真正注水生的+ 原子后演正生的	。高圧代替注水系	3.2×10^{10}			3.2×10^{-10}	< 0.1	1.0×10^{-8}	< 0.1	
	世ポート系喪失+高圧注水失敗+原子炉減圧失敗	・残留熱除去系(低圧注水. 除熱)	4.6×10 ⁻¹¹			4.6×10 ⁻¹¹	< 0.1			
	サポート系喪失+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗		6.4×10 ⁻¹²	_	_	6.4×10 ⁻¹²	< 0.1			
	全交流電源喪失(外部電源喪失+DG 喪失)	 ・原子炉隔離時冷却系(所内直流電源設備の確保) ・高圧代替注水系 ・手動減圧 	4.8×10 ⁻¹⁰	2.4×10 ⁻⁷	_	2.4×10 ^{.7}	0.1			
		・低圧代替注水系(常設)(復水補給水系) ・代替格納容器冷却スプレイ系 ・代替原子炉補機冷却系(熱交換ユニット+代替原子炉補								
令云流動力	全交流電源喪失(外部電源喪失+DG 喪失)+最終ヒートシンク喪失	 · 磁行却海水ホンフ) · 格納容器圧力逃がし装置 · 常設代替交流電源設備 · 可搬型代替注水ポンプ(水源補給) 	_	3.3×10 ⁻⁶	_	3.3×10 ⁻⁶	1.4			
電源喪失	全交流電源喪失(外部電源喪失+DG 喪失)+SRV 再閉失敗 ^{※3}		1.2×10^{-10}	1.4×10 ⁻⁹	_	1.5×10^{-9}	< 0.1	2.9×10^{-5}	12.5	
	全交流電源喪失(外部電源喪失+DG 喪失)+最終ヒートシンク喪失+SRV 再閉失敗 ^{※3}	・上記の点線枠内の対策**4		1.9×10 ⁻⁸	-	1.9×10 ⁻⁸	< 0.1			
	全交流電源喪失(外部電源喪失+DG 喪失)+RCIC 失敗	・高圧代替注水系	5.3×10^{-10}	2.3×10 ⁻⁸	-	2.3×10 ⁻⁸	< 0.1			全炉心損傷頻
	全交流電源喪失(外部電源喪失+DG 喪失)+最終ヒートシンク喪失+RCIC 失敗	・上記の点線枠内の対策	_	3.4×10 ⁻⁷	_	3.4×10-7	0.1			度の約 98%
	外部電源喪失+直流電源喪失	 ・常設代替直流電源設備 ・原子炉隔離時冷却系(所内直流電源設備の確保) ・高圧代替注水系 	8.1×10 ⁻¹¹	_	-	8.1×10 ⁻¹¹	< 0.1			を炉心損傷防 止対策でカバ ー
	最終ヒートシンク喪失+全交流電源喪失+直流電源喪失	 ・上記の点線枠内の対策 ・津波による浸水防止(津波に伴ってシーケンスが発生した場合) 	_	6.0×10 ⁻⁸	2.5×10^{-5}	$2.5 \times 10^{.5}$	10.8			
	過渡事象+崩壞熱除去失敗	・代替格納容器冷却スプレイ系	1.2×10^{-6}	3.3×10 ⁻⁶		4.6×10 ⁻⁶	2.0			
	過渡事象+SRV 冉闭失敗+崩壊烈除去失敗	・代替原子炉補機冷却系(熱交換ユニット+代替原子炉補	8.0×10 ⁻⁸	1.3×10 ⁻⁸	—	9.2×10 ⁻⁸	< 0.1			
	通吊停止+用聚烈际去大联 通常信止+CDV 再開生時+島海熱除土生時	機冷却海水ポンプ)	1.8×10 ⁻⁶	_	_	1.7×10 ⁻⁶	0.8			
崩壊熱除去	世帯停止+SAV 丹闭大双+朋级怒际云大双 サポート系画生+崩壊執险主生的	・格納容器圧力逃がし装置	1.1×10°	_		1.1×10° 2.1×10°7	< 0.1	6 6×10-6	2.9	
機能喪失	サポート系喪失+SRV 再閉失敗+崩壊熱除去失敗	・可搬型代替注水ポンプ(水源補給)	1 1×10 ⁻⁹	_	_	1 1×10 ⁻⁹	< 0.1	0.0110	2.0	
	小LOCA+崩壞熱除去失敗	・ 手期	1.1×10 ⁻⁸	_	—	1.1×10 ⁻⁸	< 0.1			
	中 LOCA+RHR 失敗	・常設代替交流電源設備	3.3×10^{-9}	-	_	3.3×10 ⁻⁹	< 0.1			
	大 LOCA+RHR 失敗		3.3×10^{-10}	-	-	3.3×10^{-10}	< 0.1			
	過渡事象+原子炉停止失敗	 代替制御棒挿入機能 	4.8×10^{-12}	$3.6 \times 10^{.7}$	_	3.6×10 ⁻⁷	0.2			
原子炉停止	小 LOCA+原子炉停止失敗	 ・代替冷却材再循環ポンプ・トリップ機能 ・ほう酸水注入系 	7.9×10^{-14}	_	_	7.9×10 ⁻¹⁴	< 0.1			
機能喪失	中 LOCA+原子炉停止失敗	・高圧炉心注水系	5.2×10^{-14}	_	_	5.2×10^{-14}	< 0.1	3.6×10-7	0.2	
	大LOCA+原子炉停止失敗	 ・原子炉隔離時冷却系 ・ 確の執険土系 	5.2×10^{-15}	_	_	5.2×10^{-15}	< 0.1			
	$\wedge LOCA + \overline{A}EEEE + MEEE$	• 手動減圧	8.0×10·13	_	_	8 0×10·13	< 0.1			
		・低圧代替注水系(常設)(復水補給水系)	5.0.10			5.0×10 10	< 0.1			
LOCA 時	小LOCA+高圧注水矢取+原子炉减圧矢取	・代替協利谷都行却ヘノレイ系 ・代替原子炉補機冷却系(熱交換ユニット+代替原子炉補	5.3×10^{-13}	_		5.3×10 ⁻¹³	< 0.1	4 4×10-9	< 0.1	
注水機能喪失	中 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗	機冷却海水ポンプ) ・ 格納容器圧力逃が1 装置	3.9×10^{-9}	-	_	3.9×10-9	< 0.1	4.4×10 °	< 0.1	
	中 LOCA+HPCF 注水失敗+原子炉減圧失敗	1.1×10 ⁻¹¹	-	-	1.1×10 ⁻¹¹	< 0.1				
	大LOCA+HPCF失敗+低圧注水失敗 ^{※3}	5.0×10^{-10}	—	-	5.0×10^{-10}	< 0.1				
放劾宏聖バイパマ		・ISLOCA 発生箇所の隔離 ・								
(ISLOCA)	インターフェイスシステム LOCA(ISLOCA)	・手動減圧	9.5×10^{-11}	-	-	9.5×10^{-11}	< 0.1	9.5×10^{-11}	< 0.1	
		・低圧炉心注水系								
	合計		3.3×10-6	7.7×10-6	2.1×10-4	2.3×10-4	97.6	2.3×10 ⁻⁴	97.6	—

※1 各値は代表として 7 号炉の値を示した。 ※2 100%には第 1-2 表で除外した事故シーケンスの炉心損傷頻度も含む。 ※3 国内外の先進的な対策を考慮しても、炉心損傷防止対策を講じることが困難なシーケンス ※4 事象進展の時間余裕の観点から、炉心損傷防止には至らないが、影響緩和に期待できる設備

第1-4表 重要事故シーケンス等の選定(1/2)

解釈の事故 シーケンス グループ		主要な事故シーケンス*1	対応する主要な炉心損傷防止対策 (下線は有効性を確認する主な対策)	a	b c	c d	着眼点との関係と重要事故シーケンス選定の考え方 備考(a: 共通原因故障 ^{*2} 又は系統間機能依存性, b: 全裕時間 a: 設備容量 d: ((ま性))	選定した重要事故 シーケンスと選定理由	
910 9	0	①過渡事象+高圧注水失敗+低圧注水失敗 ②過渡事象+SRV 再閉失敗+高圧注水失敗	 ・高圧代替注水系 ・手動減圧 	中 中	高高	- 新 低 モ 任	a.主要な事故シーケンスのカットセットに共通原因故障が含まれている事故シ ーケンスを「中」とした。その上でサポート系喪失(1系統)は、起因事象の時	a.⑤,⑥ではサポート系1区分の喪失を起因とし ているが、他の区分は健全であるため、対応	
	_	③通常停止+高圧注水失敗+低圧注水失敗	・低圧代替注水系(常設)(復水補給水系)	中	低福	新低	点で系統間の機能の依存性によって同区分の複数の設備が機能喪失すること	手段が著しく制限される状態ではない。⑦~ ⑩の最終ヒートシンクの喪失の発生原因は津	
	_	④通常停止+SRV再閉失敗+高圧注水失敗+低圧注水失敗	・代替原子炉補機冷却系(熱交換ユニット+代替原	中	低低	玉低	_ から「高」とした。また、最終ビートシンク喪失に至るシーケンスでは、除熱 を必要とする多くの機能が喪失するため「高」とした。	波に伴う浸水によるものであり、対策として	
	_	⑤サポート系喪失+高圧注水失敗+低圧注水失敗	子炉補機冷却海水ポンプ) ・ 核納容器圧力逃がし装置	高	低福	新 低	b.過渡事象(全給水喪失事象)は原子炉水位低(L3)が事象進展の起点となるため、	は防潮堤の設直や運産内止水等の止水対東となるため、重大事故防止対策の有効性の確認	
高圧・低圧	_	⑥サポート系喪失+SRV再閉失敗+高圧注水失敗+低圧注水失敗	・可搬型代替注水ポンプ(水源補給)		低低	氐低	通常小位から原子炉停止に至る子動停止、リホート宗義天と比較して事家進展 が早い。このため過渡事象を起因とするシーケンスを「高」とした。手動停止、	には適さない。	
注水機能 喪失	_	⑦最終ヒートシンク喪失+RCIC 失敗		高	低	高高	サポート系喪失は通常水位から原子炉停止に至るため、また、津波によるシー ケンスでは津波襲来までに原子炉停止しているため、水位の低下後に原子炉停 ルに至る過渡事免上ります免疫展が遅いことから「低」とした	b, c.両有服点について「商」と考えたシーケン スとして①を抽出。 d.頻度の観点では⑦, ⑨が支配的であるが、起因	
	_	⑧最終ヒートシンク喪失+SRV 再閉失敗		高	低低	王 中	こに主な過渡事家よりも事家進展が遅いことから「低」とした。 c. SRV 再閉失敗を含む場合は SRV から一定程度減圧されるため、再閉成功の場合よりも速やかに低圧状態に移行でき、低圧系での代替注水を開始できること	となる最終ヒートシンクの喪失の発生原因は 津波に伴う浸水によるものであり、浸水防止	
	_	 ③最終ヒートシンク喪失+全交流電源喪失(電源盤浸水) +RCIC 失敗 	・津波による浸水防止	高	低禧	高高	から「低」とし、SRV 再閉失敗を含まない場合を「高」とした。 d.全 CDF に対して 10%以上又は事故シーケンスグループの中で最も CDF の高	がその対策となるため、重大事故防止対策の 有効性を確認するためのシーケンスには適さ ない。	
	_	⑩最終ヒートシンク喪失+全交流電源喪失(電源盤浸水) +SRV 再閉失敗		高	低低	王 中	いシーケンスを「高」とした。また、全 CDF に対して 0.1%未満のシーケンス 'を「低」とした。	ない。 以上より、①を重要事故シーケンスとして選定。	
	0	①過渡事象+高圧注水失敗+原子炉減圧失敗		中i	高福	高高	a.主要な事故シーケンスのカットセットに共通原因故障が含まれている事故シ ーケンスを「中」とした。その上でサポート系喪失(1系統)は、起因事象の時 点で系統間の機能の依存性によって同区分の複数の設備が機能喪失すること		
	_	②過渡事象+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗	中 中 ・ 減圧自動化ロジック(残留熱除去系ポンプ吐出 圧確立+原子炉水位低(レベル1)+600秒経過で SRV4 弁開放) 中 ・ 高圧代替注水系 ・ 残留熱除去系(低圧注水.除熱)		高低	氐低	から「高」とした。 b .過渡事象(全給水喪失事象)は原子炉水位低(L3)が事象進展の起点となるため、	a.⑤,⑥ではサポート系1区分の喪失を起因とし	
高圧注水 • 減圧	_	③通常停止+高圧注水失敗+原子炉減圧失敗			低高	寄 低	通常水位から原子炉停止に至る手動停止、サホート糸喪矢と比較して事家進展 が早い。このため過渡事象を起因とするシーケンスを「高」とした。手動停止、 サポート系喪失は通常水位から原子炉停止に至るため、水位の低下後に原子炉	手段が著しく制限される状態ではない。 b, c.両着眼点について「高」と考えたシーケン	
機能喪失	_	④通常停止+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗			低低	氐低	停止に至る過渡事象よりも事象進展が遅いことから「低」とした。 c. SRV 再閉失敗を含む場合は SRV から一定程度減圧されるため、バックアップ 手段による減圧を実施した場合、再閉成功の場合よりも速やかに低圧状能に移	スとして①を抽出。 d.頻度の観点では①が支配的となった。	
	_	⑤サポート系喪失+高圧注水失敗+原子炉減圧失敗			低福	寄 低	行でき、低圧系での注水を開始できることから「低」とし、SRV 再閉失敗を 含まない場合を「高」とした。	以上より、①を重要事故シーケンスとして選定。	
	_	⑥サポート系喪失+SRV 再閉失敗+高圧注水失敗 +原子炉減圧失敗		高亻		氐低	d.全 CDF に対して 10%以上又は事故シーケンスクルーフの中で最も CDF の高 いシーケンスを「高」とした。また、全 CDF に対して 0.1%未満のシーケンス を「低」とした。		
	0	①全交流電源喪失(外部電源喪失+DG 喪失)	 ・原子炉隔離時冷却系(所内直流電源設備の確保) ・高圧代替注水系 ・手動減圧 ・低圧代替注水系(常設)(復水補給水系) ・代替格納容器冷却スプレイ系 	高	低 -	- 中	a 主要な事故シーケンスのカットセットに共通原因故障が含まれていること及	 a.全シーケンスに共通であるため選定理由から 除外した。 b, c.シーケンスとしては事象発生後の余裕時間 の観点で③~⑥が厳しいが、③~⑥において 	
全交流動力	_	②全交流電源喪失(外部電源喪失+DG 喪失) +最終ヒートシンク喪失	 ・代替原子炉補機冷却系(熱交換ユニット+代替原子炉補機冷却海水ポンプ) ・格納容器圧力逃がし装置 ・常設代替交流電源設備 ・可搬型代替注水ポンプ(水源補給) 		低 -	- 中	び、全交流電源喪失や直流電源喪失に至るシーケンスでは、電源を必要とする 多くの機能が喪失することから「高」とした。 b.RCICによる注水に期待できないシーケンスを「高」とし、期待できるシーケ ンスを「低」とした。	代替高圧注水系による注水や、常設代替直流 電源設備によって RCIC を運転する場合、事 象発生直後から蒸気駆動の高圧注水系で対応 し、除熱を実施することから、①~⑥の事象	
電源喪失	_	③全交流電源喪失(外部電源喪失+DG 喪失)+RCIC 失敗	・高圧代替注水系	高	高 -	- 低	c.原子炉圧力容器内が高圧状態で推移する点は同等であり、電源喪失後、少なく とも蒸気駆動の高圧注水及び制御用直流電源を確保すれば必要な設備容量は	d.頻度の観点では⑥が支配的となったが、この 要因は津波に伴う浸水によるものであり、浸	
	_	 ④全交流電源喪失(外部電源喪失+DG 喪失) +最終ヒートシンク喪失+RCIC 失敗 	・上記の点線枠内の対策		高 -	- 中	 □ 同等であることから 「−」とした。 □ d.全 CDF に対して 10%以上又は事故シーケンスグループの中で最も CDF の高 □ いシーケンスを「高」とした。また、全 CDF に対して 0.1%未満のシーケンス 	安四は律波に伴う浸水によるものであり、浸 水防止がその対策となるため、重大事故防止 対策の有効性を確認するためのシーケンスに	
	_	⑤外部電源喪失+直流電源喪失	 ・常設代替直流電源設備 ・原子炉隔離時冷却系(所内直流電源設備の確保) ・高圧代替注水系 	高	高 -	- 低	を「低」とした。	は適さない。。 以上、①~⑥の事象進展に差異が表れないこと	
	_	⑥最終ヒートシンク喪失+全交流電源喪失+直流電源喪失	 ・上記の点線枠内の対策 ・津波による浸水防止(津波に伴ってシーケンス 高が発生した場合) 		高 -	- 高	i	等を踏まえた上で、ガイドの主要解析条件を参 照し、①を重要事故シーケンスとして選定。	

※1 ◎は選定した重要事故シーケンスを示す。 ※2 地震 PRA では多重化された機器を完全従属としていることから、多重化された機器の損傷が生じるカットセットでは共通原因故障が生じるものとした。

第1-4表 重要事故シーケンス等の選定(2/2)

解釈の事故	沢の事故 ーケンス 主要な事故シーケンス ^{*1}		対応する主要な炉心損傷防止対策			着眼点と重要事故シーケンス選定の考え方	選定した重要事故
グループ		「 「 (下線は有効性を確認する主な対策)		a b	c	d 備考(a:共通原因故障 ^{**2} 又は系統間機能依存性, b:余裕時間,c:設備容量,d:代表性)	シーケンスと選定理由
	0	①過渡事象+崩壊熱除去失敗		中中	低青	高 a.主要な事故シーケンスのカットセットに共通原因故障が含まれている事	a.⑤,⑥ではサポート系1区分の喪失を起因 としているが、他の区分け健全であるた
	_	②過渡事象+SRV 再閉失敗+崩壞熱除去失敗		中中	低亻	故シーケンスを「中」とした。その上でサポート系喪失(1系統)は、起因 事象の時点で系統間の機能の依存性によって同区分の複数の設備が機能	め、対応手段が著しく制限される状態で はない。
	-	③通常停止+崩壊熱除去失敗	・代替格納容器冷却スプレイ系	中 低	低「	 喪失することから「高」とした。 b.過渡事象(全給水喪失事象)は手動停止、サポート系喪失と比較して事象進 	b, c.⑦~⑨の両着眼点について LOCA を 「高」としたが、これらは LOCA から派
	_	④通常停止+SRV 再閉失敗+崩壞熱除去失敗	 ・代替原子炉補機冷却系(熱交換ユニット+代	中 低	低化	展か早いことから「甲」とした。また、LOCA は直接 D/W に蒸気か放 出されるため、格納容器圧力上昇の観点で厳しいと考え「高」とした。	生したシーケンスであって、崩壊熱除去 機能喪失に対する対策の有効性を確認す
崩壊熱除去 機能喪失	_	⑤サポート系喪失+崩壊熱除去失敗		高 低	低「	+ の低下後に原子炉停止に至る過渡事象よりも事象進展が遅いことから	・ るシーケンスとしては適切でないと考え る。LOCAを起因とするシーケンスにつ
	_	⑥サポート系喪失+SRV 再閉失敗+崩壊熱除去失敗		高 低	低亻	氏 C. LOCA は直接 D/W に蒸気が放出されるため、S/C での蒸気凝縮に十分に 期待できない分格納容器圧力上昇の観点で厳しいと考え「高」とした。	いては崩壊熱除去機能の代替手段も含め て他のシーケンスグループで評価する。
	_	⑦小 LOCA+崩壞熱除去失敗		中高	高化	低 他の起因事象については、崩壊熱除去に関する設備容量に差異は無いと 考え「低」とした。	よって、 b の事象対応の余裕時間の観点 で①②が厳しい。
	_	⑧中 LOCA+RHR 失敗	-		高化	低 d.全 CDF に対して 10%以上又は事故シーケンスグループの中で最も CDF の高いシーケンスを「高」とした。また、全 CDF に対して 0.1%未満の	d.頻度の観点では①が文配的となった。
	_	⑨大 LOCA+RHR 失敗			高化	シーケンスを「低」とした。	以上より、①を重要争ぬシークンスとして 選定。
	0	①過渡事象+原子炉停止失敗	r		中幕	 a.主要な事故シーケンスのカットセットに共通原因故障が含まれている事故シーケンスを「中」とした。 b.漫遊事免(主要気厚厳な閉)はLOCAと比較して反応度投入に伴う出力が 	 a.全シーケンスに共通であるため選定理由から除外した。 b, c.②~④はLOCAから派生したシーケンスであって、反応産制御が重要となる原
原子炉停止	_	②小 LOCA+原子炉停止失敗	 ・代替制御棒挿入機能 ・<u>代替冷却材再循環ポンプ・トリップ機能</u> ・<u>ほう酸水注入系</u> ・高圧炉心注水系 ・原子炉隔離時冷却系 ・残留熱除去系 	中中	中亻	制の観点で厳しく、大LOCAはLOCA後の水位低下の観点で厳しいと 考えられることから「高」とし、中小LOCAについては「中」とした。 c.停止機能の設備容量については事故シーケンス間に有意な差が無いと考	子炉停止機能喪失事象への対策の有効性 を確認するシーケンスとしては適切でな いと考える。LOCAに伴う水位低下の影響については他のシーケンスで
機能喪失	_	③中 LOCA+原子炉停止失敗		 高圧炉心注水系 原子炉隔離時冷却系 残留熱除去系 	中中	高化	能な系統が高圧に限定されることから、RCICの使用可能性も考慮し、 過渡事象及び小LOCAを「中」とし、中LOCAについては「高」、大 LOCAについては「低」とした。
	_	④大 LOCA+原子炉停止失敗		中高	低亻	の高いシーケンスを「高」とした。また、全 CDF に対して 0.1%未満の シーケンスを「低」とした。	以上より、①を重要事故シーケンスとして 選定。
	_	①小 LOCA+高圧注水失敗+低圧注水失敗	・手動減圧	中低	高 化	a.主要な事故シーケンスのカットセットに共通原因故障が含まれている事 故シーケンスを「中」とした。 b.中 LOCA の方が事象進展が早いことから「高」とし、小 LOCA を「低」	a.全シーケンスに共通であるため選定理由
LOCA 時		②小 LOCA+高圧注水失敗+原子炉減圧失敗	 ・<u>低圧代替注水系(常設)(復水補給水系)</u> ・代替格納容器冷却スプレイ系 ・代替原子炉補機冷却系(熱交換ユニット+代 	中 低	低亻	とした。 C 減圧に用いる SRV は十分な台数が備えられている一方、低圧注水の代替 となる設備容量は低圧 ECCS より少ない このため代替となる設備容量	から味外した。 b, c.両着眼点について「高」と考えたシー ケンスとして③を抽出。
注水機能喪失	0	③中 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗	・ 代替原子炉補機冷却海水ポンプ) ・ 格納容器圧力逃がし装置 ・ 可搬型代替注水ポンプ(水源補給)		高高	a の観点で低圧 ECCS 失敗を含むシーケンスが厳しいと考え、「高」とし、 原子炉減圧失敗を含むシーケンスを「低」とした。	d.頻度の観点では③が支配的となった。
	_	④中 LOCA+HPCF 注水失敗+原子炉減圧失敗			低化	a. ± CDF に対して10%以上又は事故シーケンスクルーフの中で最も CDF の高いシーケンスを「高」とした。また、全 CDF に対して 0.1%未満の シーケンスを「低」とした。	選定。
格納容器バイパ ス(ISLOCA)	0	① ①インターフェイスシステム LOCA(ISLOCA)	 ISLOCA 発生箇所の隔離 高圧炉心注水系 ・手動減圧 ・低圧炉心注水系 			抽出されたシーケンスが1つであることから着眼点に照らした整理は行わ ず、全ての着眼点について「-」とした。	①を重要事故シーケンスとして選定。

※1 ◎は選定した重要事故シーケンスを示す。 ※2 地震 PRA では多重化された機器を完全従属としていることから、多重化された機器の損傷が生じるカットセットでは共通原因故障が生じるものとした。

以上の理由により、新たなグループとしての追加は不要と判断

第1-1図 事故シーケンスグループ抽出及び重要事故シーケンス選定の全体プロセス

24

過渡事象	原子炉停止	ビ力 バウンダリ 健全性	高圧炉心 冷却	原子炉減圧	低圧炉心 冷却	崩壊熱除去	事故シーケンス	事故 シーケンス グループ
						l	炉心損傷なし	炉心損傷なし
						L	過渡事象+崩壞熱除去失敗	(d)
							炉心損傷なし	炉心損傷なし
							過渡事象+崩壊熱除去失敗	(d)
							過渡事象+高圧注水失敗+低圧注水失敗	(a)
							過渡事象+高圧注水失敗+原子炉減圧失敗	(b)
							炉心損傷なし	炉心損傷なし
						L	過渡事象+SRV再閉失敗+崩壞熱除去失敗	(d)
							炉心損傷なし	炉心損傷なし
	1						過渡事象+SRV再閉失敗+崩壞熱除去失敗	(d)
				ו ו			過渡事象+SRV再閉失敗+高圧注水失敗+低圧注水失敗	(a)
							過渡事象+SRV再閉失敗+高圧注水失敗+原子炉減圧失敗	(b)
							過渡事象+原子炉停止失敗	(e)

外部電源 喪失	直流電源	交流電源	ビ力 バウンダリ 健全性	高圧炉心 冷却	事故シーケンス	事故 シーケンス グループ
			-		過渡事象へ	過渡事象へ
					外部電源喪失+非常用交流電源喪失	(c)
					外部電源喪失+非常用交流電源喪失+RCIC失敗	(c)
					外部電源喪失+非常用交流電源喪失+SRV再閉失敗	(c)
					外部電源喪失+直流電源喪失	(c)

(a) 高圧・低圧注水機能喪失 (b) 高圧注水・減圧機能喪失 (c) 全交流動力電源喪失 (d) 崩壊熱除去機能喪失 (e) 原子炉停止機能喪失

第1-2図 内部事象運転時レベル 1PRA イベントツリー(1/3)

(a) 高圧·低圧注水機能喪失 (b) 高圧注水·減圧機能喪失 (d) 崩壊熱除去機能喪失

第1-2図 内部事象運転時レベル 1PRA イベントツリー(2/3)

26

冷却材 喪失事象	原子炉停止	高圧炉心 冷却	原子炉減圧	低圧炉心 冷却	崩壊熱除去	事故シーケンス	事故 シーケンス グループ
						炉心損傷なし	炉心損傷なし
						大破断LOCA+RHR失敗 中破断LOCA+RHR失敗 小破断LOCA+崩壞熱除去失敗	(d)
						炉心損傷なし	炉心損傷なし
						大破断LOCA+RHR失敗 中破断LOCA+RHR失敗 小破断LOCA+崩壞熱除去失敗	(d)
						大破断LOCA+HPCF失敗+低圧ECCS注水失敗 中破断LOCA+HPCF失敗+低圧ECCS注水失敗 小破断LOCA+高圧注水失敗+低圧注水失敗	(f)
						中破断LOCA+HPCF注水失敗+原子炉減圧失敗 小破断LOCA+高圧注水失敗+原子炉減圧失敗	(f)
						大破断LOCA+原子炉停止失敗 中破断LOCA+原子炉停止失敗 小破断LOCA+原子炉停止失敗	(e)

インターフェイスシステムLOCA	事故シーケンス	事故 シーケンス グループ
	ISLOCA	(g)

(d) 崩壊熱除去機能喪失 (e) 原子炉停止機能喪失 (f) LOCA 時注水機能喪失 (g) 格納容器バイパス(インターフェイスシステム LOCA)

第1-2図 内部事象運転時レベル 1PRA イベントツリー(3/3)

(a) 高圧・低圧注水機能喪失 (b) 高圧注水・減圧機能喪失 (c) 全交流動力電源喪失 (d) 崩壊熱除去機能喪失 (f) LOCA 時注水機能喪失

(h) 炉心損傷直結シーケンス E-LOCA: Excessive -LOCA

第1-3図 地震レベル 1PRA 階層イベントツリー

過渡事象/ 外部電源喪失 ^{**1}	原子炉停止	原子炉圧力制御 (逃がし安全弁開放)	原子炉圧力制御 (逃がし安全弁再閉 鎖)	高圧炉心 冷却	原子炉減圧	低圧炉心 冷却	崩壞熱除去	事故シーケンス	事故 シーケンス グループ
	-							炉心損傷なし	炉心損傷なし
								過渡事象+崩壊熱除去失敗	(d)
								炉心損傷なし	炉心損傷なし
								過渡事象+崩壊熱除去失敗	(d)
								過渡事象+高圧注水失敗+低圧注水失敗	(a)
								過渡事象+高圧注水失敗+原子炉減圧失敗	(b)
								炉心損傷なし	炉心損傷なし
								過渡事象+SRV再閉失敗+崩壞熱除去失敗	(d)
				4				炉心損傷なし	炉心損傷なし
					r			過渡事象+SRV再閉失敗+崩壞熱除去失敗	(d)
								過渡事象+SRV再閉失敗+高圧注水失敗+低圧注水失敗	(a)
								過渡事象+SRV再閉失敗+高圧注水失敗+原子炉減圧失敗	(b)
								Excessive LOCA	(f)
								過渡事象+原子炉停止失敗	(e)

※1 DG 全喪失を伴わない外部電源喪失は過渡事象として整理した。

(a) 高圧・低圧注水機能喪失 (b) 高圧注水・減圧機能喪失 (d) 崩壊熱除去機能喪失

(e) 原子炉停止機能喪失 (f) LOCA 時注水機能喪失

第1-4図 地震レベル 1PRA イベントツリー(1/2)

全交流電源喪失/ 全交流電源喪失+最終ヒートシンク喪失	原子炉停止	原子炉圧力制御 (逃がし安全弁開放)	原子炉圧力制御 (逃がし安全弁再閉鎖)	高圧炉心 冷却	事故シーケンス	事故 シーケンス グループ
					全交流電源喪失(外部電源喪失+DG喪失) 全交流電源喪失(外部電源喪失+DG喪失)+最終ヒートシンク喪失	(c)
					全交流電源喪失(外部電源喪失+DG喪失)+RCIC失敗 全交流電源喪失(外部電源喪失+DG喪失)+最終ヒートシンク喪失+RCIC失敗	(c)
					全交流電源喪失(外部電源喪失+DG喪失)+SRV再閉失敗 全交流電源喪失(外部電源喪失+DG喪失)+最終ヒートシンク喪失+SRV再閉失敗	(c)
					Excessive LOCA	(f)
					過渡事象+原子炉停止失敗※1	(e)

※1 過渡事象の事故シーケンスとして整理した。

(c) 全交流動力電源喪失 (e) 原子炉停止機能喪失 (f) LOCA 時注水機能喪失

第1-4図 地震レベル 1PRA イベントツリー(2/2)

津波高さ	12m	6.5m	4.8m	4.2m	3.5m	発生する起因事象	事故シーケンス	事故シーケンスグループ
						起因となる事象発生なし	炉心損傷なし	炉心損傷なし
以上↓						Ū	過渡事象へ ^{※1}	過渡事象へ ^{※1}
			1+2 1+2+3	▲ 津波高さ 4.2m~6.5mへ	津波高さ 4.2m~6.5mへ			
						()+2+3+4 ()+2+3+4+5	非常用交流電源喪失 → +最終ヒートシンク喪失 +直流電源喪失	直流電源喪失

※1 内部事象のイベントツリーに包絡されるものと整理した。

① 過渡事象 ② 最終ヒートシンク喪失(LUHS) ③ 全交流動力電源喪失(SBO) ④ 直流電源喪失 ⑤ 外部電源喪失

第1-5図 津波レベル 1PRA 津波高さ別イベントツリー

津波高さ 4.2m~6.5m	原子炉圧力制御 (逃がし安全弁 開放)	原子炉圧力制御 (逃がし安全弁 再閉鎖)	高圧炉心冷却	原子炉減圧	低圧炉心冷却	崩壞熱除去	事故シーケンス	事故シーケンス グループ
							炉心損傷なし	炉心損傷なし
							*1	(d)
							炉心損傷なし	炉心損傷なし
							*1	(d)
							最終ヒートシンク喪失+RCIC失敗 最終ヒートシンク喪失+全交流電源喪失+RCIC失敗	(a)
			l				*1	(b)
							炉心損傷なし	炉心損傷なし
							*1	(d)
							炉心損傷なし	炉心損傷なし
							*1	(d)
							最終ヒートシンク喪失+SRV再閉失敗 最終ヒートシンク喪失+全交流電源喪失+SRV再閉失敗	(a)
			l				*1	(b)
							LOCA	(f)

※1 イベントツリー上はシーケンスを抽出できるが、津波によって注水機能を全て喪失して炉心損傷に至るため、当該シーケンスは発生しない。 (a) 高圧・低圧注水機能喪失 (b) 高圧注水・減圧機能喪失 (d) 崩壊熱除去機能喪失 (f) LOCA 時注水機能喪失

第1-6図 津波レベル 1PRA イベントツリー

第1-8図 各 PRA の結果と事故シーケンスグループ毎の寄与割合

2 格納容器破損防止対策の有効性評価における格納容器破損モード及び評価事故シーケンスの選定について

格納容器破損防止対策の有効性評価の格納容器破損モード及び評価事故シ ーケンス選定の全体プロセスを第 2-1 図に示す。また、以下に各検討ステッ プにおける実施内容を整理した。

【概要】

- ① 内部事象レベル1.5PRA 及び PRA を適用できない外部事象に係る定性的 検討から格納容器破損モードを抽出し、解釈の記載との比較検討・分類 を実施した。
- ② 抽出された格納容器破損モードのうち、炉心損傷発生時点で格納容器機能に期待できない格納容器バイパス、格納容器先行破損に該当するものは、解釈 1-2(b)に基づき炉心損傷防止対策の有効性評価の対象とした。
- ③ 国内外で得られている知見や実プラントでの運用等も踏まえた検討を行い、新たに追加すべき格納容器破損モードはないものと判断した。
- ④ 格納容器破損モード毎に格納容器破損モード発生の観点で厳しいプラント損傷状態(PDS)を選定し、その中で厳しい事故シーケンスを検討し、格納容器破損防止対策の有効性評価の評価事故シーケンスとして選定した。

2.1 格納容器破損モードの分析について

解釈には、格納容器破損防止対策の有効性評価に係る格納容器破損モードの選定に係る個別プラント評価による抽出に関して以下の通りに示されている。

2-1
(a) 必ず想定する格納容器破損モード
・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)
・高圧溶融物放出/格納容器雰囲気直接加熱
・原子炉圧力容器外の溶融燃料ー冷却材相互作用
・水素燃焼
・格納容器直接接触(シェルアタック)
・溶融炉心・コンクリート相互作用
(b) 個別プラント評価により抽出した格納容器破損モード
① 個別プラントの内部事象に関する PRA 及び外部事象に関する PRA(適用可能なもの)又はそれに代わる方法で評価を実施すること。
② その結果、上記2-1(a)の格納容器破損モードが抽出された場合には、想度又は影響をもたらす格納容器破損モードが抽出された場合には、想定する格納容器破損モードとして追加すること。

上記2-1(b)①に基づき、内部事象レベル 1.5PRA を実施し、格納容器破損 モードを評価した。外部事象について、地震レベル 1.5PRA は建屋、格納容器 等の損傷から格納容器の閉じ込め機能喪失に至る過程の不確かさが大きく、定 量評価結果の活用に際しては損傷箇所、損傷モード等の精緻化検討が必要な段 階であるため、現段階では事故シーケンス選定の検討に適用しないこととした。

また、PRA の適用が困難と判断した外部事象については定性的な検討により 発生する事故シーケンスの分析を行った。

実施した内部事象レベル 1.5PRA の詳細は「柏崎刈羽原子力発電所 6 号炉及び 7 号炉 重大事故対策の有効性評価に係る確率論的リスク評価(PRA)の結果について」に示す。

実施した事故シーケンスグループに係る分析結果を以下に示す。

- 2.1.1 格納容器破損モードの抽出、整理
 - (1) PRA に基づく整理

内部事象レベル 1.5PRA を実施し、事故の進展に伴い生じる格納容器の 健全性に影響を与える負荷の分析から、以下の①~⑫に示す格納容器破損
モードの抽出を行った。

具体的には第 2-2 図の通り炉心損傷前、原子炉圧力容器破損前、原子炉 圧力容器破損直後、原子炉圧力容器破損以降の各プラント状態に分類し、 それぞれの状態で発生する負荷を抽出している。また、事故進展中に実施 される緩和手段等を考慮し、第 2-3 図に示す格納容器イベントツリーを作 成し、格納容器破損に至る格納容器破損モードを整理している。内部事象 レベル1.5PRAから抽出された格納容器破損モード及び定量化結果を第2-1 表に示す。また、格納容器破損モード毎の格納容器破損頻度(以下、「CFF」 と言う。) への寄与割合を第2-4 図に示す。

①原子炉未臨界確保失敗時の過圧破損

原子炉停止失敗時に、炉心で発生した大量の水蒸気が格納容器へ放出 され、格納容器圧力が早期に上昇して、格納容器が過圧破損に至る事象 として分類する。

②過圧破損(炉心損傷前)

炉心の冷却が達成される中で、水蒸気の蓄積による準静的加圧で格納 容器が炉心損傷前に破損する事象として分類する。

③インターフェイスシステム LOCA

インターフェイスシステム LOCA の発生により、格納容器をバイパス して冷却材が原子炉建屋内に放出される事象として分類する。

④格納容器隔離失敗

炉心が損傷した時点で、格納容器の隔離に失敗しており、格納容器の 閉じ込め機能を喪失している事象として分類する。

⑤水蒸気爆発(原子炉圧力容器内での水蒸気爆発)

高温の溶融物が下部プレナムの冷却水中に落下して水蒸気爆発が発生 し、その際の発生エネルギーによって原子炉圧力容器の蓋がミサイルと なって格納容器に衝突し、格納容器破損に至る事象として分類する。

⑥格納容器雰囲気直接加熱

高圧状態で原子炉圧力容器が破損した場合に、溶融物が格納容器雰囲 気中を飛散する過程で微粒子化し、雰囲気ガスとの直接的な熱伝達等に よる急激な加熱・加圧の結果、格納容器内圧力が上昇し格納容器破損に 至る事象として分類する。

⑦水蒸気爆発(格納容器内での水蒸気爆発)

高温の溶融物が下部ドライウェル(ペデスタル部分)の冷却水中に落下 し、水蒸気爆発または水蒸気による圧力スパイクが発生する可能性があ る。このときに格納容器に付加される機械的エネルギーによって格納容 器破損に至る事象として分類する。

⑧格納容器直接接触

原子炉圧力容器破損後にペデスタルへ落下した溶融物がペデスタル床 からドライウェル床に広がり、高温の溶融物がドライウェル壁に接触し てドライウェル壁の一部が溶融貫通し、格納容器破損に至る事象として 分類する。

⑨過圧破損(炉心損傷後)

炉心損傷後に溶融物の冷却が達成される中で、崩壊熱によって発生す る水蒸気によって格納容器が過圧され、破損に至る事象、又は、デブリ が冷却されない場合に、溶融炉心・コンクリート相互作用による非凝縮 性ガスの発生が継続し、格納容器内が過圧されて格納容器の破損に至る 事象として分類する。

⑩過温破損

原子炉圧力容器破損後、格納容器内で溶融物への注水がない場合に、 溶融物からの輻射及び対流によって格納容器雰囲気が加熱され、格納容 器貫通部等が熱的に損傷し、格納容器の破損に至る事象として分類する。 ①コア・コンクリート反応継続

原子炉圧力容器の破損後、格納容器内に放出された溶融物が冷却でき ない場合に、下部ドライウェル側壁のコンクリートが浸食され、原子炉 圧力容器支持機能が喪失する事象又は格納容器のベースマットが溶融貫 通し、格納容器破損に至る事象として分類する。

12水素燃焼

格納容器内に酸素等の反応性のガスが混在していた場合に水-ジルコ ニウム反応等によって発生した水素と反応して激しい燃焼が生じ、原子 炉格納容器破損に至る事象として分類する。

(2) PRA に代わる検討に基づく整理

地震、津波及びその他の外部事象等に対する格納容器破損モードについ て、内部事象運転時レベル 1.5PRA の知見等を活用して検討した結果、地 震、津波及びその他の外部事象等についても、炉心損傷後の格納容器内の 事象進展は内部事象と同等であると考えられることから、格納容器破損モ ードは内部事象と同等であり、今回、内部事象 PRA から選定した格納容器 破損モードに追加すべきものはないものと判断した。(別紙 1)

2.1.2 レベル 1.5PRA の定量化結果及び影響度を踏まえた格納容器破損モードの 検討 第2-1 表に示す格納容器破損モードについて、2.1.1 項に示すレベル 1.5PRA から抽出された格納容器破損モードと解釈に基づき必ず想定する以下の格納容 器破損モードとの対応について検討を行った。

2-1
(a) 必ず想定する格納容器破損モード
・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)
・高圧溶融物放出/格納容器雰囲気直接加熱
・原子炉圧力容器外の溶融燃料-冷却材相互作用
・水素燃焼
・格納容器直接接触(シェルアタック)
・溶融炉心・コンクリート相互作用

確認の結果、上記の必ず想定する格納容器破損モードに分類されない以下(1) ~(5)の破損モードが抽出されたため、これを新たな格納容器破損モードとして 追加することの要否について検討を実施した。

なお、必ず想定する格納容器破損モードのうち、格納容器直接接触(シェルア タック)は、ペデスタル床とドライウェル床とが同一レベルに構成されている BWR MARK-I型の格納容器に特有の破損モードであり、柏崎刈羽原子力発電所 6,7 号炉の RCCV 型格納容器では、デブリが原子炉格納容器バウンダリに直接 接触することはない構造であることから、格納容器破損モードとして考慮しな い。(別紙 6)

また、柏崎刈羽原子力発電所 6,7 号炉では、運転中、格納容器内を窒素で置換 し、酸素濃度を低く管理しているため、水素及び酸素が可燃限界に至る可能性 が十分小さい。このため、本破損モードはレベル 1.5PRA の定量化において想 定する格納容器破損モードからは除外した。一方、格納容器内の窒素置換が水 素燃焼の発生防止対策であることを踏まえ、窒素置換対策の有効性として炉心 の著しい損傷が起こるような重大事故時においても格納容器内雰囲気が水素の 可燃限界以下(水素濃度がドライ条件に換算して 4%以下又は酸素濃度 5%以下) に維持できることを確認する必要があると考える。よって、水素燃焼について は、有効性評価の評価対象とする格納容器破損モードとした。(別紙 6)

(1) 原子炉未臨界確保失敗時の過圧破損

本破損モードはレベル1.5PRA上の破損モードとして抽出されたが、解釈 の要求事項に「炉心の著しい損傷後の原子炉格納容器の機能に期待するこ とが困難なもの(格納容器先行破損シーケンス、格納容器バイパス等)にあっ ては、炉心の著しい損傷を防止する対策に有効性があることを確認する。」 と記載されており、炉心損傷防止対策の事故シーケンスグループ「原子炉 停止機能喪失」にて有効性評価の対象としている。なお、当該破損モード のCFF(4.9×10⁻¹²/炉年)の全CFFに対する寄与割合は0.1%未満である。

従って、当該破損モードを個別プラント評価により抽出された格納容器 破損モードとして評価事故シーケンスに追加する必要はないと判断した。

(2) 過圧破損(炉心損傷前)

本破損モードはレベル1.5PRA上の破損モードとして抽出されたが、解釈 の要求事項に「炉心の著しい損傷後の原子炉格納容器の機能に期待するこ とが困難なもの(格納容器先行破損シーケンス、格納容器バイパス等)にあっ ては、炉心の著しい損傷を防止する対策に有効性があることを確認する。」 と記載されており、炉心損傷防止対策の事故シーケンスグループ「崩壊熱 除去機能喪失」にて有効性評価の対象としている。なお、当該破損モード のCFF(3.3×10⁻⁶/炉年)の全CFFに対する寄与割合は約100%である。

従って、当該破損モードを個別プラント評価により抽出された格納容器 破損モードとして評価事故シーケンスに追加する必要はないと判断した。

(3) 格納容器隔離失敗及びインターフェイスシステム LOCA

これらの破損モードは、事象の発生と同時に格納容器の隔離機能を喪失 している事象であり、解釈の要求事項における「炉心の著しい損傷後の原 子炉格納容器の機能に期待することが困難なもの(格納容器先行破損シーケ ンス、格納容器バイパス等)にあっては、炉心の著しい損傷を防止する対策 に有効性があることを確認する。」に該当する事故シーケンスグループであ る。

このため、講じるべき対策は炉心損傷防止であり、これらの破損モード を個別プラント評価により抽出された格納容器破損モードとして評価事故 シーケンスに追加する必要はないと判断した。

以下に、格納容器隔離失敗及びインターフェイスシステム LOCA で想定 した事象及び評価事故シーケンスに追加する必要はないと判断した理由を 示す。

(3)-1 格納容器隔離失敗

本破損モードは炉心が損傷した時点で格納容器の隔離に失敗している事 象を想定したものである。

格納容器隔離失敗は炉心損傷の発生に伴う物理的な現象に由来するもの ではなく、炉心損傷時点で格納容器が隔離機能を喪失している事象を示し ている。隔離機能喪失の原因として、ランダム要因による貫通部の機器の 破損や人的過誤を考慮している。

現状の運転管理として格納容器内の圧力を日常的に監視しているほか、 格納容器圧力について1日1回記録を採取していることから、格納容器隔 離失敗に伴う大規模な漏えいが生じた場合、速やかに検知できる可能性が 高いと考える。(別紙7)

今回実施したレベル 1.5PRA では、国内 BWR プラントの格納容器隔離失 敗の実績が無いことから、NUREG/CR-4220 で評価された隔離失敗確率を 固定分岐確率として設定し当該破損モードの CFF(3.5×10⁻¹¹/炉年、全 CFF に対する寄与割合 0.1%未満)を定量化した。国内の運転管理実績を考慮すれ ば、当該破損モードの CFF はさらに小さくなると推定される。(別紙7)

以上、本事象は発生と同時に格納容器が隔離機能を喪失している事象で あり、格納容器内で発生する物理化学現象を重大事故等防止対策を用いて 抑制し、格納容器の機能喪失を防止する対策とはならない。通常の運転管 理において格納容器の状態を確認する運用とすることが対策であり、本事 象の分岐に至る前の事故シーケンスによる炉心損傷を防止することが重要 な事象と考えることから、格納容器隔離失敗を個別プラント評価により抽 出された格納容器破損モードとして評価事故シーケンスに追加する必要は ないと判断した。

また、格納容器隔離失敗については地震レベル 1PRA においても抽出さ れており、地震レベル 1PRA では、地震によって格納容器を貫通する高圧 及び低圧設計の配管が格納容器外で破断する事象を想定している。

破断箇所や破断の程度の組み合わせを特定することは困難であるため、 定量的に分析することは難しいが、破断箇所及び喪失した機能に応じて炉 心損傷防止を試みる対応が発生するものと考える。

炉心損傷の後に格納容器の破損に至る事象ではなく、地震により格納容器の隔離機能が先行して喪失する事象であるため、その対応は炉心損傷防止が重要となる。この観点から、地震レベル 1PRA で抽出された格納容器隔離失敗についても、評価事故シーケンスに追加する必要はないと判断した。

(4) インターフェイスシステム LOCA

本破損モードは、発生と同時に格納容器の隔離機能は喪失しているもの の、炉心損傷までには時間余裕のある事象である。対策としては炉心損傷 の防止又は炉心損傷までに格納容器の隔離機能を復旧することが挙げられ る。炉心損傷防止の観点では内部事象運転時レベル 1PRA の結果から重要 事故シーケンスとして抽出し、有効性評価の対象としている。

格納容器の隔離機能を復旧したものの、炉心損傷を防止できなかった場 合、その後の事象進展は原子炉圧力容器内の状況に応じて、評価対象とし た評価事故シーケンスに包絡されるものと考える。

従って、当該破損モードを個別プラント評価により抽出された格納容器 破損モードとして評価事故シーケンスに追加する必要はないと判断した。 なお、当該破損モードの CFF(9.5×10⁻¹¹ /炉年)の全 CFF に対する寄与割合 は 0.1%未満である。

(5) 水蒸気爆発(原子炉圧力容器内での水蒸気爆発)

本破損モードについては各種研究により得られた知見から格納容器破損 に至る可能性は極めて低いと評価されており、国内においてもリスクの観点 からは大きな影響がないものと認識されている。(別紙8)

従って、当該破損モードを個別プラント評価により抽出された格納容器 破損モードとして評価事故シーケンスに追加する必要はないと判断した。

以上から、PRA の知見等を踏まえて、格納容器破損防止対策の有効性評価に おいて、追加すべき新たな格納容器破損モードはないことを確認した。 2.2 評価事故シーケンスの選定について

設置変更許可申請における格納容器破損防止対策の有効性評価の実施に際しては、格納容器破損モード毎に評価事故シーケンスを選定している。

評価事故シーケンス選定にあたっては、審査ガイド「3.2.3 格納容器破損モードの主要解析条件等」の各破損モードの主要解析条件に示されている、当該破損モードの観点で厳しいシーケンスの選定を考慮している。

(1) 雰囲気圧力・温度による静的負荷

PRA に基づく格納容器破損シーケンスの中から、過圧及び過温の観点で 厳しいシーケンスを選定する。また、炉心損傷防止対策における「想定す る事故シーケンスグループのうち炉心の著しい損傷後の原子炉格納容器の 機能に期待できるもの」を包絡するものとする。

- (2) 高圧溶融物放出/格納容器雰囲気直接加熱 PRA に基づく格納容器破損シーケンスの中から、原子炉圧力が高く維持 され、減圧の観点で厳しいシーケンスを選定する。
- (3) 原子炉圧力容器外の溶融燃料 冷却材相互作用

PRA に基づく格納容器破損シーケンスの中から、原子炉圧力容器外の溶融燃料-冷却材相互作用の観点で厳しいシーケンスを選定する。

(4) 水素燃焼

水素燃焼の観点で厳しいシーケンスを選定する。柏崎刈羽原子力発電所 6,7 号炉では、運転中、格納容器内を窒素で置換し、酸素濃度を低く管理し ているため、水素が可燃限界に至る可能性が十分小さいことから、本破損 モードはレベル 1.5PRA の定量化において想定する格納容器破損モードか ら除外しているが、評価事故シーケンスとしては炉心損傷後の格納容器内 の酸素濃度上昇の観点で厳しいシーケンスを選定する。

(5) 溶融炉心・コンクリート相互作用

PRA に基づく格納容器破損シーケンスの中から、溶融炉心・コンクリート相互作用(MCCI)の観点から厳しいシーケンスを選定する。

上記に基づき、レベル 1.5PRA の知見を活用した格納容器破損防止対策に係 る評価事故シーケンスの選定では、先ず格納容器破損モード毎に格納容器破損 の際の結果が厳しくなると判断されるプラント損傷状態(PDS)を選定し、その後、 選定した PDS を含むシーケンスの中から結果が厳しくなると判断されるシーケ ンスを評価事故シーケンスとして選定することとした。この選定プロセスによ り、有効性評価に適した、厳しいシーケンスが選定されるものと考える。 2.2.1 評価対象とするプラント損傷状態(PDS)の選定

レベル 1.5PRA では、レベル 1PRA で炉心損傷に至る可能性があるものとし て抽出された事故シーケンスから、さらに事象が進展して格納容器破損に至る 事故シーケンスを定量化している。その際、格納容器内の事故進展の特徴を把 握するために「格納容器破損時期」、「原子炉圧力容器圧力」、「炉心損傷時期」 及び「電源確保」の4つの属性に着目してレベル 1PRA から抽出された事故シ ーケンスグループを分類し、PDS として定義している。PDS の分類結果を第 2・2 表に示す。

ここで、AE、S1E、S2E は LOCA として 1 つのプラント損傷状態とした。 これは事故進展解析の結果、冷却材の流出口の大きさが炉心損傷後の事象の進 展速度に大きな影響を及ぼすものではないと考えたためである。

この PDS の定義に従い、格納容器破損モード毎に格納容器破損頻度、当該破 損モードに至る可能性のある全ての PDS を整理した。また、各格納容器破損モ ードの発生の観点で事象進展が最も厳しくなると考えられる PDS を検討し、評 価対象とする PDS を選定した。選定結果を第 2-3 表に示す。

なお、第 2-2 表において、格納容器破損時期が炉心損傷前と分類されている TW、TC、ISLOCA については、格納容器先行破損の事故シーケンスであるこ とから、解釈の要求事項を踏まえ、事故シーケンスグループ「崩壊熱除去機能 喪失」、「原子炉停止機能喪失」、「格納容器バイパス(インターフェイスシステム LOCA)」にて炉心損傷防止対策の有効性評価の対象としている。したがって、 これらの PDS は、第 2-3 表に示す評価対象とする PDS の選定では考慮してい ない。

2.2.2 評価事故シーケンスの選定の考え方及び選定結果

2.2.1 項で格納容器破損モード毎に選定した PDS に属する事故シーケンスを 比較し、格納容器破損モードの発生の観点で事象進展が最も厳しくなると考え られる事故シーケンスを検討し、評価事故シーケンスを選定した。選定結果を 第 2-4 表に示す。

なお、重大事故対処設備により、「雰囲気圧力・温度による静的負荷」のシー ケンスを除いた評価事故シーケンスに至るシナリオは全て防止できるため、有 効性評価においては重大事故対処設備に期待せず、「雰囲気圧力・温度による静 的負荷」のシーケンスを除いた評価事故シーケンス炉心損傷に至る状況を仮定 している。

また、各格納容器破損モードについて、格納容器破損頻度が支配的となる PDS と主要なカットセットの整理を実施し、格納容器破損頻度の観点で支配的とな るカットセットに対して今回整備した格納容器破損防止対策が有効であること を確認した。(別紙4)

2.2.3 炉心損傷防止が困難な事故シーンス等に対する格納容器破損防止対策の 有効性

国内外の先進的な対策を考慮しても炉心損傷防止対策を講ずることが困難な 事故シーケンスグループのうち、格納容器破損防止対策に期待できるものにつ いては、今回整備した格納容器破損防止対策により格納容器の閉じ込め機能に 期待できることを確認している。

国内外の先進的な対策を考慮しても炉心損傷防止対策を講ずることが困難な 事故シーケンス及び該当する PDS は以下の通り。以下の事故シーケンスは、「炉 心の著しい損傷後の原子炉格納容器の機能に期待できる」事故シーケンスであ る。(1.2 項参照)

・大LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗 (AE)

・外部電源喪失+DG 失敗+SRV 再閉鎖失敗 (TBP)

・外部電源喪失+DG 失敗+最終ヒートシンク喪失+SRV 再閉鎖失敗 (TBP)

2.2.1 項の PDS 選定では、上記の PDS を含めて格納容器破損モード毎に厳し い PDS を選定している。従って、炉心損傷防止が困難な事故シーケンス等につ いても、今回整備した格納容器破損防止対策により、格納容器の閉じ込め機能 に期待できることを確認している。

2.2.4 直接的に炉心損傷に至る事故シーケンスに対する対策

1.1.3 項において、炉心損傷防止に係る有効性評価において想定する事故シー ケンスグループとして新たに追加する必要がないと判断した事故シーケンスグ ループについては、炉心損傷後の格納容器の閉じ込め機能に期待することが困 難な場合が考えられる。一方で、プラントの損傷規模によっては、設計基準事 故対処設備や今回整備した重大事故等防止対策により格納容器破損の防止が可 能な場合も考えられる。

格納容器の閉じ込め機能が喪失するような大規模損傷が生じた場合は、可搬 型設備(消防車、電源車等)による対応や放射性物質の拡散を防止する対策(放水 設備、シルトフェンス等)により敷地外への放射性物質の拡散抑制等を行い、事 故の影響緩和を図る。

第2-1表 格納容器破損モード別格納容器破損頻度

		Г		
PRA から抽出された 物始空間確認	CFF (小气年)	全CFFに占め	解釈 2-1(a)で	備考
格納谷畚陂損七一下	い沪平リ	る 割 合 (%)	想走する破損モート	
原子炉未臨界確保失敗時 の過圧破損	4.9×10 ⁻¹²	0.0%	(素田気圧力・泪度に)	解釈 1-2(b)に基づき、「炉心の著しい損傷を防止する対策に有効性があることを確認」 →事故シーケンスグループ「原子炉未臨界確保失敗」
過圧破損(炉心損傷前)	3.3×10^{-6}	99.8%	る静的負荷(格納容器	解釈 1-2(b)に基づき、「炉心の著しい損傷を防止する対策に有効性があることを確認」 →事故シーケンスグループ「崩壊熱除去機能喪失」
過圧破損(炉心損傷後)	2.0×10^{-10}	0.0%	迴江。迴徑和(1)[]	_
過温破損	6.1×10^{-9}	0.2%		_
格納容器雰囲気直接加熱	1.1×10^{-12}	0.0%	高圧溶融物放出/格納 容器雰囲気直接加熱	_
水蒸気爆発(原子炉圧力 容器内での水蒸気爆発)	Ι	_	なし	各種研究により得られた知見から、原子炉圧力容器内で水蒸気爆発が発生し、格納容器破 損に至る可能性は極めて低いと評価。(別紙8)
水蒸気爆発(格納容器内 での水蒸気爆発)	2.7×10 ⁻¹³	0.0%	原子炉圧力容器外で の溶融燃料 – 冷却材 相互作用	
コア・コンクリート反応 継続	4.5×10^{-12}	0.0%	溶融炉心・コンクリー ト相互作用	_
インターフェイスシステ ム LOCA	9.5×10 ⁻¹¹	0.0%	なし	解釈 1-2(b)に基づき「炉心の著しい損傷を防止する対策に有効性があることを確認」 →事故シーケンスグループ「格納容器バイパス(インターフェイスシステム LOCA)」
格納容器隔離失敗	3.5×10 ⁻¹¹	0.0%	なし	通常の運転管理において格納容器の状態を確認する運用としていること、本破損モードの CFF および全 CFF に対する寄与割合が極めて小さいこと、格納容器隔離失敗を考慮すべ き PDS の多くについて炉心損傷防止対策の有効性を確認しており、格納容器外への放射性 物質の大規模な放出防止が可能と考えられることから、格納容器隔離失敗を個別プラント 評価により抽出された格納容器破損モードとして追加する必要はないと判断。
水素燃焼	_	_	水素燃焼	柏崎刈羽原子力発電所6号炉及び7号炉では、運転中、格納容器内を窒素で置換しており、 酸素濃度を低く管理しているため、水素及び酸素が可燃限界に至る可能性が十分小さいと 評価し、PRAで定量化する格納容器破損モードから除外しているが、有効性評価において は窒素置換の有効性を確認する観点で有効性評価の対象とする。
格納容器直接接触(シェ ルアタック)	_	_	格納容器直接接触(シ ェルアタック)	RCCV型の格納容器である柏崎刈羽原子力発電所6号炉及び7号炉では構造的に発生する 可能性は無い格納容器破損モードであることから、有効性評価における評価対象から除外 した。
合計	3.3×10^{-6}	100%		

注:灰色の箇所は、格納容器破損防止対策の有効性評価で考慮しないことを意味する。

PDS	PCV 破損時期	RPV 圧力	PV 圧力 炉心損傷時期			
TQUV	炉心損傷後	低圧	早期	AC/DC 電源有		
TQUX	炉心損傷後	高圧	早期	AC/DC 電源有		
長期 TB	炉心損傷後	高圧	高圧後期			
TBU	炉心損傷後 高圧 早期					
TBP	炉心損傷後	低圧	早期	DC 電源有 AC 電源無		
TBD	炉心損傷後	高圧	早期	DC 電源無		
LOCA ・AE(大 LOCA) ・S1E(中 LOCA) ・S2E(小 LOCA)	炉心損傷後	低圧*	早期	AC/DC 電源有		
TW	炉心損傷前	-	後期	_		
TC	炉心損傷前	_	早期	—		
格納容器バイパス (ISLOCA)	炉心損傷前	-	早期	-		

第 2-2 表 プラント損傷状態(PDS)の定義

※ S1E や S2E では、高圧状態で炉心損傷に至る場合が考えられるが、LOCA は速やかな 冷却材流出の影響を確認する PDS として、大 LOCA をその代表として扱うこととし、 高圧状態かつ早期に炉心損傷に至る事象は TQUX で代表させることとした。

注:網掛けは格納容器先行破損に至る事故シーケンスであることから、解釈 1-2(b)に基づき、「炉心の著しい損傷を防止する対策に有効性があることを確認」する。このため、 格納容器破損防止対策の有効性評価の対象外とする PDS を示す。

第2-3表 評価対象とするプラント損傷状態(PDS)の選定

解釈で想定する	破損モード別	該当する	破損モードの CFF	最も厳しい PDS の考え方	選定した
格納容器破損モード	CFF(/炉年)	PDS	に占める割合(%)		PDS
		TQUV	< 0.1		
		TQUX	9.1		
芬囲気圧力・温度に		LOCA	< 0.1	【事象進展(過圧・過温)緩和の余裕時間及び設備容量の厳しさ】	
よる静的負荷(格納	2.0×10^{-10}	長期TB	55.0	・TQUX、TQUV、TBの各シナリオと比較し、LOCAは一次冷却材の流出を伴うことから水位低下が早く、事象進展が早い。	
谷 希 過 上 破 損)		TBU	30.0	・過圧破損については長期 TB や TBU が支配的であることから、全交流動力電源喪失の寄与が高い。	
			7.1	・ 適圧	LOCA
1			11 1	・週価做損についてはLOOAの奇子が高い。 ・週週破場については対策レーズ故如宏思(増復病心)。の注水が改画したる	+
			5.6	・週週報頃については対象として指袖谷織頃のが心がつなったる。 ・LOCAに FCCS 注水機能転生及び全応流動力電循転生を加えることで、電循の復旧、注水機能の確保笑必要とたる裏故対処設備が多く、核納容哭破損防止対策	SBO
雰囲気圧力・温度に		LOCA	72.1	を講じるための対応時間が厳しいシナリオとなる。また、格納容器への注水・除熱対策の有効性を網羅的に確認可能なシナリオとなる。	
よる静的負荷(格納	6.1×10 ⁻⁹	長期 TB	4.4		
容器调温破指)	0.1 10	TBU	4.1	以上より、LOCA に全交流動力電源喪失事象(SBO)を加え、過圧及び過温への対策の有効性を総合的に評価するための PDS とする。	
		TBP	0.9		
		TBD	1.3		
		TQUV	—		
		TQUX	0.3	【事象進展緩和(減圧)の余裕時間の厳しさ】	
高圧溶融物放出/格		LOCA	—	・長期 TB は事象初期において RCIC による冷却が有効なシーケンスであり、減圧までの時間余裕の観点では TQUX、TBD、TBU の方が厳しい。	
2 納容器雰囲気直接	1.1×10^{-12}	長期 TB	100.0	・高圧状態で炉心損傷に至る点では TQUX、TBD、TBU に PDS 選定上の有意な違いは無い。	TQUX
加熱		TBU	0.3		
		TBP	-	以上より、	
		TBD	0.3	【市在(EQI)たいよびひょうれど、の上たと\の労した】	
		TQUV	< 0.1	【事家(FUIにわける先生エイルキーの人ささ)の厳しさ】 ・ ※融信心変下時の発生エラルギーは、故如宏思下如の水中に変下する※融信心の畳が多く、 ※融信心の保有エラルギーが土きいほど土きくわる。 この組占から	
		ΤΘUΧ	8.5	・谷融炉心格上時の光生エイルイーは、俗利谷福上師の小中に洛上りる谷融炉心の重が多く、谷融炉心の床有エイルイーが入さいなど入さくなる。この観点がら、 真正の比能が維持される TOUX 及びTRD TRU 長期 TR け選定対象から降处した	
		TOCA		・LOCA は、炉内での蒸気の発生状況の差異から、酸化ジルコニウムの質量割合が他の低圧破損シーケンス(TQUV、TBP)より小さくなり [※] 、デブリの内部エネル	
原子炉圧力容器外		LOCA	77.8	ギーが小さくなると考えられる。また、LOCAでは破断口から高温の冷却材が流出し、ペデスタル部に滞留する。FCI は低温の水に落下する場合の方が厳しい	
3 の溶融燃料・冷却材	2.7×10^{-13}	長期 TB	3.6	事象であることから、LOCA を選定対象から除外した。	TQUV
相互作用		TBU	6.3	・過渡事象のうち、原子炉の水位低下が早い事象を選定することで対応が厳しいシーケンスとなる。	
		TBP	1.5	」 以上より、TQUV が最も厳しい PDS となる。	
		TBD	_	 ※IOCA 事象け一次冷却材の流出を伴い 発生蒸気に上ろジルコニウム酸化割合が他の低圧破損シーケンス上りも少たいため	
		TOUV	< 0.1	「国象(MCCLに零点する液融恒心のエネルギーの大きさ)の厳しさ	
		TQUX	28.9	・MCCLの観点からは、格納容器下部に落下する溶融炉心の割合が多くなる原子炉圧力容器が低圧で破損に至るシーケンスが厳しい。この観点で、高圧の状態が	
波動店 シーマン クリ		LOCA	< 0.1	維持される TQUX 及び TBD、TBU、長期 TB を選定対象から除外した。	
	4.5×10^{-12}	長期 TB	33.1	・LOCA はペデスタルへの冷却材の流入の可能性があり、MCCI の観点で厳しい事象ではないと考えられるため、選定対象から除外した。	TQUV
一下相互作用		TBU	31.9	・過渡事象のうち、原子炉の水位低下が早い事象を選定することで対応が厳しいシーケンスとなる。	
		TBP	7.1		
		TBD	_	以上より、TQUV が最も厳しい PDS となる。	
		TQUV	_	【有効性評価に関する審査ガイドの選定基準等との整合】 ・審査ガイド 3.2.3(4)b.(a)では「PRA に基づく格納容器破損シーケンスの中から水素燃焼の観点から厳しいシーケンスを選定する。」と記載されているが、柏崎	
		TOIN		刈羽原子力発電所6号炉及び7号炉では格納容器内を窒素で置換しているため、水素燃焼による格納容器破損シーケンスは抽出されない。このため、最も可燃	
		TQUX	—		
		LOCA		▲事家の敵して低系張度の工弁の平で) ・格納容器内が窒素置換され、初期酸素濃度が低く保たれていることから、水素燃焼防止の観点からは酸素濃度が重要にたる	
		LUCA		・酸素濃度を厳しく見積もる観点では、過剰に水素を発生させることなく、かつ、酸素が体積の小さな領域に集中する場合が厳しい事故シナリオとなる。	
5 水素燃焼	_	長期 TB	_	 この観点で、炉心損傷には至るが原子炉圧力容器は破損せず、ドライウェルに比べて体積が小さく濃度が上昇しやすいサプレッションチェンバにおいて水素・ 	TBU
		TBU	—	「か心損傷割合を小さく死損もる小位は「事家という観点から、成年でか心損傷に至る場合よりも小位は「の座い、向圧でか心損傷に至るシーケンスを選定する。 また、過剰な水素の発生を抑える観点から、炉心損傷後に炉内への注水を実施する。注水のタイミングを炉心損傷後とする観点から、全交流動力電源喪失を事	
				象に加え、代替電源及び代替注水系によって炉内に注水し、過剰な水素の発生を抑制するシナリオとした。	
		TBP	—	【その他の考慮事項】 ・S/Cの圧力が上見すると、直空破壊金にとって D/W/ 側に S/C 内の圧力(気体)が移行するが、これな考慮しても読表の濃度上見の知らでけ S/C 側の去が厳しい、	
		///IDD		- いしッエバル・エオリヨヒ、 云土阪家方によっ く Divi pine DIO F10/エバス(平/ハ*7971) ヨル、 こ4いとろ思しくも敗糸の仮皮上升の戦点 くは DIO 1100万が取しい。	
		IBD	_	以上より、TBU が最も厳しい PDS となる。	

格納容器破損モード	評価対象と した PDS	該当する事故シーケンス*1	格納容器破損防止対策	評価事故シーケンス選定の考え方		
		大 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗+損傷炉心冷却失敗+(デブリ冷却成功)+RHR 失敗				
雰囲気圧力・温度によ	LOCA	中 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗+損傷炉心冷却失敗+(デブリ冷却成功)+RHR 失敗				
る静的負荷(格納容器	+	中 LOCA+HPCF 注水失敗+原子炉減圧失敗+損傷炉心冷却失敗+(デブリ冷却成功)+RHR 失敗	・低圧代替注水系(常設)によろ原子(事象進展が早く、格納容器内の圧力、温度上昇		
過圧破損)	SBO	小 LOCA+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(デブリ冷却成功)+RHR 失敗	注水	の観点で厳しい大 LOCA を選定した。これに合		
		小 LOCA+高圧注水失敗+原子炉減圧失敗+損傷炉心冷却失敗+(デブリ冷却成功)+RHR 失敗	 ・代替格納容器冷却スプレイ系に。 	、わせて全交流動力電源喪失を想定し、電源の復		
		大 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗+損傷炉心冷却失敗+下部 D/W 注水失敗	る格納容器の圧力制御	旧、注水機能の確保等必要となる事故対処設備		
雰囲気圧力・温度によ	LOCA	中 LOCA+HPCF 注水失敗+低圧 ECCS 注水失敗+損傷炉心冷却失敗+下部 D/W 注水失敗	・格納容器圧力逃がし装置による	お多く、格納容器破損防止対策を講じるための		
る静的負荷(格納容器	+	中 LOCA+HPCF 注水失敗+原子炉減圧失敗+損傷炉心冷却失敗+下部 D/W 注水失敗	熱	対応時間が厳しいシナリオとした。		
過温破損)	SBO	小LOCA+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+下部D/W注水失敗				
		小LOCA+高圧注水失敗+原子炉減圧失敗+損傷炉心冷却失敗+下部D/W注水失敗				
		過渡事象+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧・損傷炉心冷却失敗+DCH 発生				
		過渡事象+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧・損傷炉心冷却失敗	t+DCH 発生	事象進展が早く、炉心溶融までの時間の観点で		
高圧溶融物放出/格納	TOUN	通常停止+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧・損傷炉心冷却失敗+DCH 発生	 ・原子炉圧力容器破損までに手動 	厳しい過渡事家を起因とするシーケンスを選定 」たた 原乙原国力容器が真国で維持され		
容器雰囲気直接加熱	IQUA	通常停止+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧・損傷炉心冷却失敗	(+DCH 発生 作により原子炉を減圧	ここ。また、原丁炉圧力谷奋が向圧で維持され スSRV 再閉失敗を今またいシーケンスを選定		
		サポート系喪失+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧・損傷炉心冷却失敗+DCH	ě生	U.L.		
		サポート系喪失+SRV 再閉失敗+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧・損傷炉心器	∂却失敗+DCH 発生			
		過渡事象+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+FCI発生	・なし。			
		過渡事象+SRV 再閉失敗+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+FCI 発生	(原子炉圧力容器外の溶融燃料・ 却材相互作用が発生してまた4000	↓ 事象進展が早く、炉心溶融までの時間の観点で ↓ 厳しい過渡事象を起因とするシーケンスを選定 ↓ した。SRV 再閉の成否の影響は小さいと考えら		
原子炉圧力容器外の		通常停止+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+FCI発生				
浴融燃料-冷却材相互 作田	TQUV	通常停止+SRV 再閉失敗+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+FCI 発生	至らない。なお、本事象では、多	れることから、発生頻度の観点で大きいと考え		
1 1 1 1				サポート系喪失+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+FCI発生	生時の厳しさの観点からペデスクレーション	▼ られる SRV 再閉失敗を含まないシーケンスを ■ 選定した
		サポート系喪失+SRV 再閉失敗+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+FCI 発生	価を実施している。)			
		過渡事象+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(下部 D/W 注水成功)+デブリ冷却失敗		事象進展が早く、炉心溶融までの時間の観点で		
		過渡事象+SRV 再閉失敗+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(下部 D/W 注水成功)+デ	ブリ冷却失敗 おみに、本下たてにわせたの明。 ディ	厳しい過渡事象を起因とするシーケンスを選定		
溶融炉心・コンクリー	TOIN	通常停止+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(下部 D/W 注水成功)+デブリ冷却失敗	· 浴離炉心洛下よぐに格納谷畚ヘディ タルへの水毛り及び蒸下後の崩壊	した。SRV 再閉の成否の影響は小さいと考えら		
卜相互作用	IQUV	通常停止+SRV 再閉失敗+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(下部 D/W 注水成功)+デ	ブリ冷却失敗 除去に必要な流量での注水	* れることから、発生頻度の観点で大きいと考え		
		サポート系喪失+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(下部 D/W 注水成功)+デブリ冷却失	敗	られる SRV 再閉失敗を含まないシーケンスを		
		サポート系喪失+SRV 再閉失敗+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗+(下部 D/W 注水成功)+デブリ冷却失敗	選定した。		
水素燃焼	WDU	全交流動力電源喪失(外部電源喪失+DG 喪失)+RCIC 失敗+格納容器破損回避(圧力容器破損なし)→可燃	限界到達まで維持 ・窒素置換による格納容器雰囲気の ²	酸素濃度を厳しく見積もる観点では、酸素が体 積の小さな領域に集中する場合が厳しい事故シ ナリオとなる。この観点で、炉心損傷には至る		
	TBU	全交流動力電源喪失(外部電源喪失+DG 喪失)+RCIC 失敗+格納容器破損回避(圧力容器破損あり)→可燃	限界到達まで維持	か原ナが圧力谷盗は破損せす、トライワエルに 比べて体積が小さく濃度が上昇しやすいサプレ ッションチェンバにおいて水素・酸素の蓄積量 が多くなるシーケンスを選定した。		

※1 ◎は選定した重要事故シーケンスを示す。

第2-1図 格納容器破損モード抽出及び評価事故シーケンス選定の全体プロセス

49

第2-2図 シビアアクシデントで想定される事象進展と格納容器破損モード

	标研究		原子炉圧力容 破損前	\$器	原子炉E 破損	E力容器 直後		
フフント 損傷状態	格納谷器隔離	原子炉 減圧	原子炉 圧力容器 注水	原子炉 圧力容器 酸損	F C I	DCH	格	.納容器破損モード
			N-1	無			後続事象	(原子炉圧力容器健全)へ
		क्त म	成功	右	無		後続事象	(原子炉圧力容器破損)へ
	成功	<u>□又-2</u> 」	- '	有	有			(c)
			失敗		無		後続事象	(原子炉圧力容器破損)へ
					有			(c)
					無	無	後続事象	(原子炉圧力容器破損)へ
		失敗				有		(b)
					有			(c)
	失敗							各納容器隔離失敗
				<u>بند «</u>				
	法主任		争议饭	:期	T		格	ふか容器破損チード
で) (原子炉日	統爭家 E力容器(健全)	格納容	器注水	長期	冷却		
			成功		成功		原子炉	圧力容器内で事故収束
		ĺ	1,5,5,1		· 失敗			(a)
					成功		原子炉	i圧力容器内で事故収束
			失敗		失敗			(a)

(a) 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)

(b) 高圧溶融物放出/格納容器雰囲気直接過加熱(DCH)

(c) 原子炉圧力容器外の溶融燃料ー冷却材相互作用(FCI)

第2-3図 内部事象運転時レベル 1.5PRA イベントツリー(1/2)

(a) 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)

(c) 原子炉圧力容器外の溶融燃料ー冷却材相互作用(FCI)

(f) 溶融炉心・コンクリート相互作用

第2-3図 内部事象運転時レベル 1.5PRA イベントツリー(2/2)

第2-4図 内部事象運転時レベル 1.5PRA の定量化結果

3 運転停止中原子炉における燃料損傷防止対策の有効性評価の運転停止中事 故シーケンスグループ及び重要事故シーケンスの選定について

運転停止中原子炉における燃料損傷防止対策の有効性評価の事故シーケンス グループ及び重要事故シーケンス選定の全体プロセスは第 3-1 図に示すとおり であり、本プロセスにより各検討ステップにおける実施内容を整理した。

3.1 運転停止中事故シーケンスグループの分析について

解釈において、運転停止中原子炉における燃料破損防止対策の有効性評価に 係る運転停止中事故シーケンスグループの個別プラント評価による抽出に関 し、以下の通り記載されている。

4 - 1

(a)必ず想定する運転停止中事故シーケンスグループ

・崩壊熱除去機能喪失(RHR の故障による停止時冷却機能喪失)

- · 全交流動力電源喪失
- ・原子炉冷却材の流出
- ・反応度の誤投入
- (b)個別プラント評価により抽出した運転停止中事故シーケンスグループ
 ①個別プラントの停止時に関する PRA(適用可能なもの)又はそれに代わる 方法で評価を実施すること。
 ②その結果、上記4-1(a)の運転停止中事故シーケンスグループに含まれ ない有意な頻度又は影響をもたらす運転停止中事故シーケンスグループ

が抽出された場合には、想定する運転停止中事故シーケンスグループとし て追加すること。

上記4-1(b)を踏まえて、柏崎刈羽6号炉及び7号炉を対象とした内部事 象停止時レベル 1PRA 評価を実施し、事故シーケンスグループの検討を行っ た。

なお、事故シーケンスグループの選定は、炉心損傷防止対策に係る事故シ ーケンスグループの分析と同様、従来の設置許可取得時の設計で考慮してい た設備のみ期待できる条件*で評価した停止時PRAの結果を用いた。

- *従来から整備してきたアクシデントマネジメント策や福島第一原子力発電 所事故以降に実施した各種対策、新規制基準に基づき配備する重大事故対 策設備などを含めない条件
- 3.1.1 炉心損傷に至る運転停止中事故シーケンスグループの検討・整理 定期検査期間中はプラントの状態が大きく変化することから、停止時レベ

ル 1PRA においては、定期検査における評価対象期間を設定し、原子炉の水 位、温度、圧力などのプラントパラメータの類似性、保守点検状況などに応 じた緩和設備の使用可能性、起因事象、成功基準に関する類似性によって、 評価対象期間を幾つかのプラント状態(以下 POS という)に分類し評価を行う。 分類したプラント状態を、状態ごとのプラントの主要なパラメータとともに 第 3-2 図に示す。

停止時 PRA においては、原子炉停止後の運転停止中の各プラント状態にお いて炉心損傷へ波及する可能性のある起因事象について、マスターロジック ダイヤグラム、過去の国内プラントのトラブル事例等から選定し、ここから 炉心損傷に至ることを防止するための緩和手段の組み合わせ等を第 3-3 図の イベントツリーで分析し、炉心損傷に至る各事故シーケンスを抽出している。

抽出された事故シーケンス別の炉心損傷頻度を整理し、審査ガイドの「必ず想定する運転停止中事故シーケンスグループ」に含まれるか、それ以外の 事故シーケンスグループであるかを確認すると共に、炉心損傷状態を分類し た。事故シーケンスグループ別の炉心損傷頻度を第 3-1 表に示す。事故シー ケンスグループ別の炉心損傷頻度への寄与割合を第 3-4 図に示す。

<選定した起因事象>

- a. 崩壊熱除去機能喪失(RHR 機能喪失[フロントライン]、代替除熱機能喪失[フ ロントライン]、補機冷却系機能喪失) 運転中の除熱・代替除熱設備が弁やポンプの故障により機能喪失する事象。
- b. 外部電源喪失 送電系統のトラブル等により外部電源が喪失する事象。発生した場合には、 非常用所内電源(非常用ディーゼル発電機)が起動して交流電源を供給するが、 非常用ディーゼル発電機の起動に失敗した場合に注水又は崩壊熱除去機能 が喪失する可能性がある。
- c. 一次冷却材バウンダリ機能喪失(RIP・CRD・LPRM 点検時及び CUW ブロ ー時における作業・操作誤りによる冷却材流出) 配管破断や運転員の弁の誤操作、点検時の人的過誤などにより原子炉冷却材 が系外へ流出する事象。停止時には配管破断による原子炉冷却材の流出の可 能性は低いため、弁の誤操作などによる原子炉冷却材流出を対象とする。
- 3.2 重要事故シーケンスの選定について

設置変更許可申請における運転停止中原子炉における燃料破損防止対策設備の有効性評価の実施に際しては、3.1で抽出した3つの運転停止中事故 シーケンスグループに、必ず想定する運転停止中事故シーケンスグループで ある「反応度の誤投入」*を追加した4つのグループについて重要事故シーケンスの選定を実施した。

*プラント停止時には原則として全制御棒が挿入されており、複数の人的過誤 や機器故障が重畳しない限り反応度事故に至る可能性はない。また万一、反応 度事故が起こり臨界に至った場合でも、局所的な事象で収束し、燃料の著しい 破損又は大規模な炉心損傷に至ることは考え難いことから停止時PRAの起因 事象から除外した(報告書 添付資料 3.1.2.b-1)。

3.2.1 重要事故シーケンスの選定の考え方

重要事故シーケンスの選定にあたっては、以下に示す審査ガイドに記載の 着眼点に沿って実施しており、具体的な検討内容を以下に示す(第 3-2 表)。

【審査ガイドに記載の着眼点】

a. 燃料損傷防止対策の実施に対する余裕時間が短い。

- b. 燃料損傷回避に必要な設備容量(流量等)が大きい。
- c. 運転停止中事故シーケンスグループ内のシーケンスの特徴を代表している。
- a. 余裕時間

プラントの状態や起因事象等によって炉心損傷までの余裕時間(第3-3表) は異なるものの、いずれも緩和措置の実施までに掛かる時間に比べて十分 時間がある。

反応度の誤投入については、事象発生後も崩壊熱除去や注水機能は喪失 しないため、それらの緩和措置実施までの余裕時間の考慮は不要である。

b. 設備容量

プラントの状態や起因事象等によって必要となる注水量は異なるものの、 いずれも緩和措置の設備容量に比べて十分ある。

反応度の誤投入については、事象発生後も崩壊熱除去や注水機能は喪失しないため、それらの緩和措置実施までの余裕時間の考慮は不要である。

c. 代表シーケンス

第 3-1 表の主要シーケンス毎の燃料損傷頻度を比較し、事故シーケンス グループ内での寄与割合が支配的なものを「高」、支配的ではないが 1%以 上のものを「中」、1%に満たないものを「低」と3つに分類した。

3.2.2 重要事故シーケンスの選定結果

(1) 崩壊熱除去機能喪失

重要事故シーケンス:崩壊熱除去機能喪失(RHR 機能喪失[フロントライン])+崩壊熱除去・注水系失敗

選定理由:代表性の観点から、RHR 機能喪失[フロントライン]を起因事象

とする事故シーケンスを選定した。

有効性評価では外部電源喪失との重畳を考慮しており、外部電源 喪失時に原子炉補機冷却系(海水ポンプを含む)が故障した場合に ついては事象進展が全交流動力電源喪失と同様となるため、「補 機冷却系機能喪失」及び「外部電源喪失」を起因事象とする事故 シーケンスの対策の有効性については全交流動力電源喪失の事 故シーケンスにて確認する。

燃料損傷防止対策(有効性評価で主に考慮)

・待機中の RHR[LPFL モード]

(2)全交流動力電源喪失

重要事故シーケンス:外部電源喪失+交流電源喪失+崩壊熱除去・注水系 失敗

選定理由:代表性の観点から外部電源喪失とともに非常用ディーゼル発電機 が機能喪失し、全交流電源喪失に至る事故シーケンスを選定する。 「外部電源喪失+直流電源喪失」は炉心損傷頻度が低く、多くの 場合は消防車等で注水することで炉心損傷を防止できることか ら選定しない。

燃料損傷防止対策(有効性評価で主に考慮)

- ·常設代替交流電源設備
- ·低圧代替注水系(常設)
- ·代替原子炉補機冷却系

(3)原子炉冷却材の流出:原子炉冷却材流出(RHR 切り替え時のミニフロー弁 操作誤り)+崩壊熱除去・注水系失敗

選定理由:「RHR 切り替え時のミニフロー弁操作誤り」は、発生しても燃料の露出に至らないために PRA で起因事象の選定の際に除外した事象であるが審査ガイドにおける有効性評価の評価項目である「放射線の遮蔽が維持される水位を確保すること」を考慮し、改めて重大事故シーケンスの選定対象として追加した。

「RIP 点検時の作業誤り」等の点検作業に伴う冷却材流出事象 は、運転操作に伴う冷却材流出事象と異なり、作業・操作場所と 漏洩発生箇所が同一であるため、認知が容易であること、また

「RHR 切り替え時のミニフロー弁操作誤り」は流出流量が 87m³/h と他の漏洩事象より大きいことから、事故シーケンスを 重大事故シーケンスとして選定した。 燃料損傷防止対策(有効性評価で主に考慮)

・待機中の RHR[LPFL モード]

(4)反応度の誤投入

重要事故シーケンス:反応度の誤投入

選定理由:代表性の観点から停止余裕検査や停止時冷温臨界試験などの制御 棒が2本以上引き抜ける試験時に、制御棒1本が全引き抜きされ ている状態から、他の1本の制御棒が操作量の制限を超える誤っ た操作によって引き抜かれ、臨界近接を認知出来ずに臨界に至る 事象を想定する。

なお、各事故シーケンスグループに分類される事故シーケンスについて、 炉心損傷に至る要因をカットセットレベルまで展開し、燃料損傷頻度の事故 シーケンスに占める割合の観点で主要なカットセットに対する重大事故防止 対策の整備状況等を確認している。(別紙4)

	主要シーケンス	燃料損傷頻度(/定期検査)	全炉心損傷頻 度に対する寄与 割合(%)	事故シーケンスグループ	事故シーケンス グループに対す る寄与割合(%)	燃料損傷頻度(/定期 検査)	全炉心損傷 頻度に対する 寄与割合(%)	対応する主要な燃料損傷 防止対策	備考
	崩壊熱除去機能喪失(RHR機能喪失[フロントラ イン]) +崩壊熱除去・注水系失敗	1.0E-10	1.0E-10 1%		1%	-		・ ・ 待機中のECCS ・ 低圧代替注水系(常設)	
1	崩壊熱除去機能喪失(代替除熱機能喪失[フロ ントライン])+崩壊熱除去・注水系失敗	ま機能喪失(代替除熱機能喪失[フロ])+崩壊熱除去・注水系失敗 1.5E-12 <0.1%		品使教际土楼杂声生	<0.1%		00%	•MUWP、SPCU、FP、消防 車	
1	崩壞熱除去機能喪失(補機冷却系機能喪失)+ 崩壞熟除去•注水系失敗	1.0E-08	97%	<i>刑承刑怀 4</i> 700 尼 区 人	98%	1.01 08	-08 99%	 ・代替原子炉補機冷却系 ・上記の破線内の注水対策 	
	外部電源喪失+崩壞熱除去·注水系失敗	1.1E-10	1%		1%			 ・常設代替交流電源設備 ・上記の破線内の注水対策 	
0	外部電源喪失+直流電源喪失	1.8E-11 <0.5% 22%	0.05, 11	10/	・常設代替直流電源設備 ・消防車	仝乍心指復			
2	外部電源喪失+交流電源喪失	6.4E-11	1%	至父流動力電源喪失	78%	0.22 11	1%	 ・常設代替交流電源設備 ・低圧代替注水系(常設) ・代替原子炉補機冷却系 ・消防車 	生衆に損傷 頻度の100%を 燃料損傷防 止対策にてカ
	原子炉冷却材流出(CRD点検(交換)時の作業誤 9)+崩壊熱除去・注水系失敗	3.5E-15	<0.1%		<0.1%				
3	原子炉冷却材流出(LPRM点検(交換)時の作業 誤り)+崩壊熟除去・注水系失敗	2.3E-14	<0.1%	盾子伝染却材の重生	<0.5%	8 2E-12	<0.1%	・待機中のECCS ・低圧代替注水系(常設)	
5	原子炉冷却材流出(RIP点検時の作業誤り)+崩 壊熱除去・注水系失敗	(子炉冷却材流出(RIP点検時の作業誤り)+崩 7.2E-12 <0.1%		がすが日本的の民人	89%	0.21 12	NO.170	・MUWP、SPCU、FP、消防 車	
	原子炉冷却材流出(CUWブロー時の操作誤り)+ 崩壊熟除去・注水系失敗	9.0E-13	<0.1%		11%				
	 合計	1.0E-08	100%	_	_	1.0E-08	100%	_	

第3-2表 重要事故シーケンス(運転停止中)の選定について

事故 シーケンス	事故 ーケンス		主要事故シーケンス ^{*1}		着眼点 (a. 余裕時間、b. 設備容量、 c. 代表シーケンス)		着眼点と選定理由	対応する主要な燃料損傷防止対 策 (下線部は有効性評価で用いる 重土事故等対処設備等を示す)	
	0		 ①崩壊熱除去機能喪失(RHR機能喪失[フロントライン])+ 崩壊熱除去・注水系失敗 	a. 低	b. 低	c. 中	a、b 余裕時間や必要な注水量は、緩和措置の実施に必要な時間や緩和設備の容量に比べ、いず れの事故シーケンスでも十分低い	① (PHR [LPFL モード]) ③ ① ① ① ① ① ① ① ① ① ① ① ① ①	
崩壊熱除去	_	崩壊熱除去機能喪失+ 崩壊熱除去・注水系失敗	 ②崩壊熱除去機能喪失(代替除熱機能喪失[フロントライン])+ 崩壊熱除去・注水系失敗 	低	低	低	c 事故シーケンスグループに対する寄与割合が98%と支配的である③の事故シーケンスを 「高」とし、寄与割合が1%である①と④の事故シーケンスを「中」とした	・低圧代替注水系(常設) ・MUWP、SPCU、FP、消防車 ^{*3}	
機能喪失	*2		③崩壞熱除去機能喪失(補機冷却系機能喪失)+ 崩壞熱除去・注水系失敗	低	低	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	・有効性評価では外部電源喪失の重畳を考慮しており、外部電源喪失時に原子炉補機冷却系の機能を喪失すると、事象進展が全交流動力電源喪失と同様となるため、③及び④の事故シーケンス	 ・代替原子炉補機冷却系 ・上記の破線内の注水対策 	
	_*2	外部電源喪失+ 崩壊熱除去・注水系失敗	部電源喪失+ 壊熱除去・注水系失敗 崩壊熱除去・注水系失敗		低	中	の対策の有効性は他の事故シーケンスにて確認する ・代表性の観点から、①のRHR機能喪失[フロントライン]を起因事象とする事故シーケンスを選定	 ・常設代替交流電源設備 ・上記の破線内の注水対策 	
全交流動力	_	外部電源喪失+ 直流電源喪失+ 崩壊熱除去・注水系失敗	⑤外部電源喪失+ 直流電源喪失+ 崩壊熱除去・注水系失敗	低	低	中	 a、b 余裕時間や必要な注水量は、緩和措置の実施に必要な時間や緩和設備の容量に比べ、いずれの事故シーケンスでも十分低い r r	 ・常設代替直流電源設備 ・消防車^{*3} 	
電源喪失	0	外部電源喪失+ 交流電源喪失+ 崩壊熱除去・注水系失敗	⑥外部電源喪失+ 交流電源喪失+ 崩壊熱除去・注水系失敗	低	低	高	・⑤の「外部電源喪失+直流電源喪失」は炉心損傷頻度が低く、また多くの場合**は常設代替直流電源による電源供給や消防車による注水により炉心損傷が防止できる ・以上を踏まえた上で、ガイドの主要解析条件も参照し、外部電源喪失時に原子炉補機冷却系の 機能が喪失して全交流動力電源喪失に至るシーケンス(⑥の事故シーケンス)を重要事故シーケ ンスとして選定	 ・常設代替交流電源設備 ・低圧代替注水系(常設) ・代替原子炉補機冷却系 ・消防車*3 	
	-		 ⑦原子炉冷却材流出(CRD点検(交換)時の作業誤り)+ 崩壊熱除去・注水系失敗 	低	低	低	a、b 余裕時間や必要な注水量は、緩和措置の実施に必要な時間や緩和設備の容量に比べ、いず れの事故シーケンスでも十分低い		
	_		 ⑧原子炉冷却材流出(LPRM点検(交換)時の作業誤り)+ 崩壊熱除去・注水系失敗 	低	低	低	c 事故シーケンスグループに対する寄与割合が89%と支配的である⑨の事故シーケンスを 「高」とし、寄与割合が11%である⑩の事故シーケンスを「中」とした	, 结揽中央2005	
原子炉冷却 材の流出	_	原子炉冷却材流出+ 崩壊熱除去・注水系失敗	原子炉冷却材流出+ 崩壊熱除去・注水系失敗	⑨原子炉冷却材流出(RIP点検時の作業誤り)+ 崩壊熱除去・注水系失敗	低	低	高	・「RHR切り替え時のミニフロー弁操作誤り」は、燃料の露出に至らないためにPRAで起因事象 の選定の際に除外した事象であるが審査ガイドにおける有効性評価の評価項目である「放射線の	 ・付機中のEUCS (RHR[LPFLモード]) ・低圧代替注水系(常設) ・WUTD CPCUL FD 逆吐声*3
	_		⑩原子炉冷却材流出(CUWブロー時の操作誤り)+ 崩壊熱除去・注水系失敗	低	低	中	□ 感飲が維持される水位を確保すること」を考慮し、以めて重人事故シークシスの選定対象として 追加した ・「RIP点検時の作業誤り」等の点検作業に伴う冷却材流出事象は、運転操作に伴う冷却材流出 車魚レ思たり 作業・操作提可と遅速発生策可が同一であるため、認知が容易であること。また	・MUWP、SPCU、FP、相切単	
	0		 ①原子炉冷却材流出(RHR切り替え時のミニフロー 弁操作誤り)+ 崩壊熱除去・注水系失敗 	低	低	-	「RHR切り替え時のミニフロー弁操作誤り」は流出流量が87m ³ /hと他の漏洩事象より大きいこと から、⑪の事故シーケンスを重大事故シーケンスとして選定した		
反応度誤投 入事象	O	反応度の誤投入	⑩反応度の誤投入 ^{*5}	-	-	-	 a、b 事象発生後も崩壊熱除去や注水機能は喪失しないため、それらの緩和設備実施までの余裕時間の考慮は不要 c PRA評価において選定していない起因事象*による事故シーケンスであるため、「-」とした ・代表性の観点から停止中に実施される試験等により、最大反応度価値を有する制御棒1本が全引き抜きされている状態から、他の1本の制御棒が操作量の制限を超える誤った操作によって引き抜かれ、臨界近傍を認知できずに臨界に至る事象を想定 	・安全保護系	

*1 ◎は選定した重要事故シーケンスを示す。

*2 ⑥の全交流動力電源喪失に至る事故シーケンスにて、対策の有効性を確認

*3 使用する注水ラインや設備によっては必ずしも重大事故等対処設備ではないが、シーケンスによって使用できる可能性のある緩和設備

*4 POS Sのように比較的余裕時間が短く、RCIC等の直流電源喪失後の注水手段が使用出来ないという限定的な条件を除いた場合

*5 発生の可能性が低く、発生を仮定してもその影響が限定的であるため、リスク評価上重要性が低いと判断し、PRAの評価対象から除外したもの

第3-3表 炉心損傷までの余裕時間について

(a) 崩壊熱除去機能喪失及び外部電源喪失を起因事象

(b) 一次冷却材バウンダリ機能喪失を起因事象とする場合

とする場合

POS	炉心損傷までの余裕時間(h)
S	3.9
А	5.6
B-1	130
B - 2	202
В-3	142
В-4	278
C-1	27
C-2	28
D	31

冷却材流出事象	CRD点検	CUWブロー		
POS		B2		C1
炉心損傷に至る流 出量(m ³)		173		
冷却材流出量 (m ³ /h)	22 ^{*1}	12 ^{*1}	78 ^{*1}	77
炉心損傷までの余 裕時間(h)	35	約2時間15分		

*1 シール確保失敗等による漏えい

第3-1図 運転停止中の原子炉における事故シーケンスグループ抽出及び重要事故シーケンス選定の全体プロセス

62

発電機出力										
原子炉圧力	約7MPa	(大気)	王)				約7MF	⊃a		, 約7MPa
冷却材温度	約287°C			約50°C					/	約287°C
主復水器真空度	約-95kPa g									約−95kPa g
原子炉内 インベントリー	通常水位			原子炉ウェル満水			水			通常水位
主要操作	 発電 御 御 構 解 子 電 機 解 全 重 振 テ テ	主 て そ R P V 開 次 器 真 空			R P ∨閉鎖	試験 ♥ V漏洩	起動準備	上昇水器真空度	制御棒引抜開始	発 電 機 併 列
プラント状態	出力運転時	S A		В		С		D		出力運転時

第3-2図 定期検査時のプラント状態と主要パラメータの推移

外部電源喪失	直流電源	交流電源 *1	崩壞熱除去• 炉心冷却 ^{*2,3}	事故シーケンス グループ
				炉心損傷なし
			1	(a)
				炉心損傷なし
			1	(b)
				炉心損傷なし
			1	(b)

崩壊熱除去機能喪失 *4	崩壞熱除去·炉心冷却 *2	事故シーケンス グループ
		炉心損傷なし
		(a)

原子炉冷却材の流出 *5	崩壊熱除去・炉心冷却 *6	事故シーケンス グループ
		炉心損傷なし
		(c)

(a) 崩壊熱除去機能喪失(b) 全交流動力電源喪失(c) 原子炉冷却材の流出

- *1 D/G 全台が機能喪失し、かつ外部電源復旧等に失敗するかどうかを示すへディング
- *2 除熱機能(RHR、CUW)及び注水機能(HPCF、LPFL、MUWC、FP)の確保に失敗するかどうかを示す ヘディング
- *3 直流電源喪失時または全交流電源喪失時において、HPCF、LPFL、MUWの注水機能は期待できない が、原子炉開放中(POS B)における FP のディーゼル駆動ポンプによる原子炉ウェル・燃料プールへの 注水についてのみ、エンジン駆動用蓄電池により制御電源が供給されるため、その機能を期待する
- *4 RHR・代替除熱設備(CUW)機能喪失(フロントライン系故障)及びRHR機能喪失(サポート系故障)
- *5 RIP・CRD・LPRM 点検時、CUW ブロー時における作業・操作誤りにより冷却材流出
- *6 事象を認知し、注水に成功するかどうかを示すヘディング(除熱機能(RHR、CUW)には期待しない) 漏洩箇所隔離の成功・失敗により注水機能の成功基準が異なる

第3·3図 運転停止時における燃料損傷に至る事故シーケンスの グループ化(停止時PRAイベントツリー)

有効性評価の事故シーケンスグループ選定における 外部事象の考慮について

重大事故の有効性評価に係る個別プラントの事故シーケンスグループ選定に 際しては、実用発電用原子炉及びその附属施設の位置、構造及び設備の基準を 定める規則の解釈(以下、「解釈」という。)に「個別プラントの内部事象に関 する確率論的リスク評価(PRA)及び外部事象に関する PRA(適用可能なもの) 又はそれに代わる方法で評価すること。」と記載されている。

今回の申請書作成にあたって、外部事象に関しては PRA 手法が適用可能な段階にあると判断した地震、津波を対象に出力運転時レベル 1PRA を実施した。

内部溢水、内部火災及びその他の外部事象については、PRA 手法の確立に向 けた検討が進められている段階であったり、現実的な定量評価の実施に向けて 必要なデータ整備を進めていく段階であることから、現段階では「適用可能な もの」に含まれないと判断し、「それに代わる方法」として、これらの外部事 象に誘発される起因事象について検討することで、これらの外部事象の影響を 考慮した場合の事故シーケンスグループ選定への影響について以下の通り、整 理した。

1. 炉心損傷防止対策の事故シーケンスグループの選定に係る検討

1.1 内部溢水、内部火災の影響

今回は PRA の適用を見合わせたが、内部溢水、内部火災についてはレベル 1PRA の手法確立・個別プラントへの展開に係わる検討作業がある程度進んで いる。このことを踏まえ、PRA を念頭にして、内部溢水、内部火災の発生に よって誘発される可能性がある起因事象を、定性的な分析によって抽出した。 抽出結果を表1に示す。

表1に示す起因事象が発生した場合、屋内に設置されている安全機器の機 能喪失を経て炉心損傷に至る可能性があるが、これらを起因とする事故シー ケンスは、同機器のランダム故障・誤操作を想定する内部事象レベル 1PRA に用いた起因事象に含まれている。

また、設計基準対象施設によって、溢水、火災の影響拡大防止対策が図ら れることで、異なる区画等、広範囲における重畳的な安全機器の同時機能喪 失発生を防止できると考える。

従って、溢水・火災を起因とした炉心損傷頻度の定量化には上記の課題が 残るものの、定性的な起因事象の抽出結果から想定される事故シーケンスは、 内部事象レベル 1PRA の検討から得られる事故シーケンスの一部として分類 出来るため、新たに追加が必要となる事故シーケンスグループが発生する可 能性は低いと考える。

起因事象	起因事象を誘発する要因の例
外部電源喪失	 ・内部溢水/火災による常用母線などの機能喪失 等
非隔離事象	 ・内部溢水/火災による原子炉冷却材流量制御系の誤動作 ・内部溢水/火災による工学的安全施設制御系の誤動作 等
隔離事象	・内部溢水/火災による主蒸気隔離弁の誤閉止 等
全給水喪失	・ 内部溢水/火災による給水ポンプの機能喪失 等
大LOCA	・火災による ADS 作動回路の誤動作 等
RPS 誤動作	・ 内部溢水/火災による原子炉保護系の故障 等
原子炉補機冷却系故障	・ 内部溢水/火災による原子炉補機冷却系ポンプの機能喪失 等
手動停止	 内部溢水/火災の発生による安全機能への影響の可能性に伴う 計画外停止

表1 内部溢水/火災により誘発される起因事象の例

1.2 その他の外部事象の影響

その他の外部事象としては、設置許可基準の解釈第六条第2項に具体的な自 然現象として以下が記載されている。

敷地の自然環境を基に、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、 地滑り、火山の影響、生物学的事象又は森林火災等から適用されるもの

また、設置許可基準の解釈第六条第8項に具体的な人為事象として以下が記載されている。

敷地及び敷地周辺の状況をもとに選択されるものであり、飛来物(航空機落下 等)、ダムの崩壊、爆発、近隣工場等の火災、有毒ガス、船舶の衝突又は電磁 的障害等。

これらの地震、津波を除く各種自然現象及び人為事象がプラントに与え得る 影響について、設計基準及びそれを超える場合、現象等の重畳も含めて定性的 に分析した結果を別紙1(補足1)に示す。

地震、津波以外の自然現象及び人為事象について、事故シーケンスの発生可 能性を検討した結果、内部事象、地震及び津波レベル 1PRA にて抽出した事故 シーケンスグループ以外に新たに追加が必要となる事故シーケンスグループは ないものと判断した。

2. 格納容器破損モード選定に係る検討

外部事象レベル 1.5PRA については、地震 PRA のみ学会標準に一部関連する 記載があるものの、その他の事象については標準的な PRA 手法が確立されてお らず、定量評価を実施できる状況ではないことから、以下のとおり定性的な検 討を実施した。

2.1 地震の影響

地震がプラントに与え得る特有の影響について、新たに有効性評価の対象と して追加すべき格納容器破損モードの観点で定性的に分析した結果を別紙 1(補 足 2)に示す。

また、地震時レベル 1PRA の結果からは、地震特有の炉心損傷モードとして 原子炉建屋損傷や格納容器損傷等の炉心損傷直結事象が抽出されている。これ らの事象では格納容器も破損に至るが、この場合の格納容器破損は事象進展に よって格納容器に負荷が加えられて破損に至るものではなく、地震による直接 的な格納容器の閉じ込め機能喪失である。これらについて格納容器破損防止の 観点での対策は、緩和系による収束ではなく耐震補強等による発生防止によっ て達成されるものであり、有効性評価における評価事故シーケンスとしては適 切でないと考える。

従って、有効性評価の対象とすべき格納容器破損モードとして、内部事象レベル 1.5PRA にて抽出した事故シーケンスグループ以外に新たに追加が必要となる事故シーケンスグループはないものと判断した。

2.2 津波の影響

津波がプラントに与え得る特有の影響について、建屋外部の設備が機能喪失 することは想定されるものの、格納容器が津波による物理的負荷(波力・漂流物 の衝撃力)によって直接損傷することは想定し難い。また、炉心損傷後の格納容 器内の物理化学現象についても内部事象レベル 1.5PRA で想定するものと同等 と考えられる。

従って、有効性評価の対象とすべき格納容器破損モードとして、内部事象レベル 1.5PRA にて抽出した事故シーケンスグループ以外に新たに追加が必要となる事故シーケンスグループはないものと判断した。

2.3 溢水・火災の影響

1.1 に示したレベル 1PRA の観点での起因事象の検討からも、炉心損傷に至る 事故シーケンスグループとしては内部事象レベル 1PRA で用いた事象以外に追 加すべきものは発生しないものと推定しており、格納容器が直接破損すること も想定し難い。また、炉心損傷後の格納容器内の物理化学現象についても内部 事象レベル 1.5PRA で想定するものと同等と考えられる。 従って、有効性評価の対象とすべき格納容器破損モードとして、内部事象レベル 1.5PRA にて抽出した事故シーケンスグループ以外に新たに追加が必要となる事故シーケンスグループはないものと判断した。

2.4 その他外部事象の影響

1.2 に示したプラントに与える影響の検討からは、屋外施設の損傷によるサポート系の機能喪失が想定されるものの、炉心損傷に至る事故シーケンスグループとしては内部事象レベル1 PRA の結果抽出されたシーケンスグループに追加すべきものは発生しないものと推定している。また、炉心損傷後の格納容器内の物理化学現象についても内部事象レベル 1.5PRA で想定するものと同等と考えられる。

従って、有効性評価の対象とすべき格納容器破損モードとして、内部事象レベル 1.5PRA にて抽出した事故シーケンスグループ以外に新たに追加が必要となる事故シーケンスグループはないものと判断した。

3. まとめ

今回の事故シーケンスグループ等の選定に際して、現段階で PRA を適用可能 と判断した地震レベル 1PRA、津波レベル 1PRA 以外の外部事象について、定 性的な分析・推定から新たに追加すべき事故シーケンスグループ等は発生しな いものと評価した。

なお、今回定性的な分析とした各 PRA や地震発生時に想定される地震随伴津 波、地震随伴火災および地震随伴溢水を対象とした PRA については、手法整備 の研究及び実機プラントへの適用の検討を順次進めていく予定である。

以 上

有効性評価の事故シーケンスグループの選定に際しての地震・津波以外の外部事象の 考慮について

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の 解釈(原規技発第1306193 号(平成25年6月19日原子力規制委員会決定))第37 条第1-1項では,運転時の異常な過渡変化及び設計基準事故に対して原子炉の安全性 を損なうことがないよう設計することを求められる構築物,系統及び機器がその安全 機能を喪失した場合であって,炉心の著しい損傷に至る可能性があると想定する事故 シーケンスグループを抽出するため,個別プラントのPRA又はそれに代わる方法で評 価を実施することが求められている。

外部事象の内,日本原子力学会標準として実施基準が定められておりPRAの適用実 績がある地震及び津波については、それぞれPRAを実施し事故シーケンスグループの 抽出を実施している。(ただし、地震随伴火災や津波随伴火災など、随伴事象の評価 はまだ未成熟であり、今回、評価はできていない。)

また、地震、津波以外の自然現象については現段階でのPRA評価は実施困難である ため、「それに代わる方法」として以下に示す方法にて定性的に事故シーケンスグル ープの抽出を行い、重大事故の有効性評価において新たに追加が必要となる事故シー ケンスグループの有無について確認を行った。

更に人為事象についても定性的に事故シーケンスグループの抽出を行い,重大事故 の有効性評価において新たに追加が必要となる事故シーケンスグループの有無につ いて確認を行った。

- 1. 前提条件
 - (1) 評価対象事象

設計基準を設定する自然現象の選定は、一般的な事象に加え、国内外の規格基 準から収集した様々な自然現象に対し、そもそも柏崎刈羽原子力発電所において 発生する可能性があるか、非常に苛酷な状況を想定した場合、プラントの安全性 が損なわれる可能性があるか、影響度の大きさから代表事象による評価が可能か といった観点でスクリーニングを実施している。

従って,設計基準の設定を行っていないものについては,そもそもプラントの 安全性が損なわれる可能性が無いか(もしくは有意な頻度では発生しないか), 影響度の大きさが他の自然現象に包絡されるものであるため,事故シーケンスの 有無の確認は,設計基準を設定している以下の6事象を対象に実施するものとする。 <設計基準設定事象>

- 風(台風)
- ・ 竜巻
- 積雪

- 低温
- ・

 茶雷
- 火山

なお、設計基準設定事象以外については、上述の通り、基本的には事故シーケンスに至ることはない(もしくは、有意な頻度では発生しない)と判断しているものの、各自然現象により想定される発電所への影響(損傷・機能喪失モード)を踏まえ、考え得る起因事象について整理しており、その結果からも上記6事象に加え詳細評価が必要な事象は無いことを確認している。(添付資料1-1)

また,各人為事象により想定される発電所への影響(損傷・機能喪失モード) を踏まえ,考え得る起因事象についても整理しており,その結果から新たな起因 事象が無いこと,事象の影響として設計基準設定自然現象に包絡されることを確 認している。(添付資料1-2)

(2) 想定範囲

上記自然現象については、それぞれ考慮すべき最も苛酷と考えられる条件を設計基準として設定している。具体的には、既往最大や年超過確率10⁻⁴/年~10⁻⁵/年を目安としていることから、それよりも低頻度(10⁻⁷/年)で発生する規模を仮定する。

- 2. 評価方法
- 2.1 起因事象の特定
 - (1)構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 1.にて示した風,積雪等の自然現象が既往最大や年超過確率10⁻⁴/年~10⁻⁵/年といった設計基準よりも低頻度(10⁻⁷/年)となる規模で発生した場合に,発電所に与える影響は地震,津波ほど十分な知見がない。そこで,ここでは国外の評価事例,国内のトラブル事例及び規格・基準にて示されている発電所の影響を収集し,対象とする自然現象が発生した場合に設備等へどのような影響を与えるか(設備等への損傷・機能喪失モード)の抽出を行う。
 - (2) 評価対象設備の選定

(1)項で抽出した損傷・機能喪失モードに対し,影響を受ける可能性がある設備 等の内,プラントの運転継続や安全性に影響を及ぼす可能性のある設備等を評価 対象設備として選定する。

(3) 起因事象になりうるシナリオの選定

(1)項で抽出した損傷・機能喪失モードに対して,(2)項で選定した評価対象設備への影響を検討の上,発生可能性のあるシナリオを選定する。

シナリオの選定にあたっては、事故シーケンスグループ抽出にあたって考慮す
べき起因事象となりうるシナリオを選定する。

なお,起因事象の選定は,日本原子力学会標準「原子力発電所の出力運転状態 を対象とした確率論的安全評価に関する実施基準:2008(レベル1PSA編)」(以 下,学会標準)等に示される考え方などを参考に行う。

(4) 起因事象の特定

(3)項で選定した各シナリオについて発生可能性を評価し,事故シーケンスグループ抽出にあたって考慮すべき起因事象の特定を行う。

なお、過去の観測実績や統計的な評価結果等をもとに発生可能性を評価可能な ものについては、有意な頻度(10⁻⁷/年)又は影響のある事故シーケンスの要因と なる可能性について考察を行う。

2.2 事故シーケンスの特定

2.1(4)項にて特定した起因事象について,内部事象レベル1PRAや地震,津波レベル1PRAにて考慮しておらず,重大事故の有効性評価において追加すべき新たな事故シーケンスにつながる可能性のあるものの有無について確認を行う。

また,新たな事故シーケンスにつながる可能性のある起因事象が確認された場合, 事故シーケンスに至る可能性について評価の上,有意な影響のある事故シーケンス となりうるかについて確認を行う。

事故シーケンスに至る可能性の評価については,旧原子力安全・保安院指示に基 づき実施したストレステストでの評価方法などを参考に実施するものとする。

個別事象評価のまとめ

1. に示した各評価対象事象について,事故シーケンスに至る可能性について検討 を実施した結果(添付資料参照),内部事象や地震,津波レベル1PRAにて抽出した 事故シーケンスグループに対して新たに追加が必要となる事故シーケンスグルー プは発生しないものと判断した。

- 4. 設計基準を超える自然現象の重畳の考慮について
 - (1) 自然現象の重畳影響

自然現象の重畳評価においては,損傷・機能喪失モードの相違に応じて,以下 に示す影響を考慮する必要がある。また,事象の想定範囲は,自然現象の重ね合 わせが設計基準より低頻度(10⁻⁷/年)で発生する規模を仮定する。

- I. 各自然現象から同じ影響がそれぞれ作用し、重ね合わさって増長するケース。(例:積雪と火山灰による堆積荷重の重ね合わせ)
- Ⅱ. ある自然現象の防護施設が他の自然現象によって機能喪失することにより、影響が増長するケース。(例:地震により止水機能が喪失して浸水量が増加)
- Ⅲ-1. 他の自然現象の作用により前提条件が変化し,影響が増長するケース。

(例:降水による火山灰密度の増加(降水時は,火山灰自体が発電所へ 届きにくくなると考えられるため,堆積後の降水を想定))

- Ⅲ-2. 他の自然現象の作用により影響が及ぶようになるケース。(例:斜面 に火山灰が堆積した後に大量の降水により滑り、プラント周辺まで火山 灰を含んだ水が押し寄せる状態。単独事象としては想定していない。)
- (2) 自然現象の重畳によるシナリオの選定
 - 基本的には設計基準を設定する自然現象の選定において収集した自然現象について、(1)項Ⅰ~Ⅲ-2に示した重畳影響の確認を実施した。

ただし、以下の観点から明らかに事故シーケンスにはつながらないと考えられ るものについては重畳影響考慮不要と判断し確認対象から除外した。

○柏崎刈羽原子力発電所及びその周辺では発生しない(もしくは,発生が極 めて稀)と判断した事象。

No.8:結氷板,海氷,氷壁,No.11:砂嵐,No.22:外部洪水,No.23:池・ 河川の水位低下,No.24:河川の迂回,No.25:干ばつ,No.39:隕石,衛星 の落下

○単独事象での評価において設備等への影響が無い(もしくは,非常に小さい)と判断した事象で,他の事象との重畳を考慮しても明らかに設備等への影響が無い判断した事象。

No.7:霜,霜柱,No.12:霧,靄,No.16:低温水(海水温低)

確認した結果としては、重畳影響 I ~Ⅲ-1については、以下に示す理由から、 単独事象での評価において抽出されたシナリオが生じることはなく、重畳影響Ⅲ -2についても、他事象にて抽出したシナリオであり、新たなものは確認されなか った。個別自然現象の重畳影響確認結果を添付資料3に示す。また、外部人為事象 の重畳影響については、添付資料4に示すとおり自然現象の重畳影響に包絡される と判断した。

I. 各自然現象から同じ影響がそれぞれ作用し, 重ね合わさって増長するケース

重畳により影響度合いが大きくなるのみであり,元もと,単独事象で設 計基準を超える事象に対してシナリオの抽出を行っていることを踏まえる と,新たなシナリオは生じない。

Ⅱ. ある自然現象の防護施設が他の自然現象によって機能喪失することにより、影響が増長するケース

単独の自然現象に対するシナリオの選定において,設計基準を越える事 象を評価対象としているということは,つまり設備耐力や防護対策に期待 していないということであり,単独事象の評価において抽出された以外の 新たなシナリオは生じない。

Ⅲ-1. 他の自然現象の作用により前提条件が変化し、影響が増長するケース

一方の自然現象の前提条件が,他方の自然現象により変化し,元の自然 現象の影響度が大きくなったとしても,I.と同様,単独事象で設計基準を 超える事象に対してシナリオ抽出を行っているため,新たなシナリオは生 じない。

- Ⅲ-2. 他の自然現象の作用により影響が及ぶようになるケース
- 単独事象では影響が及ばない評価であったのに対し,事象が重畳するこ とにより影響が及ぶようになるものは,火山灰と降水の組み合わせのみで あったが,屋外設備(変圧器,軽油タンク等)の損傷を想定しても,起因 事象としては外部電源喪失,全交流電源喪失であり,新しいシナリオが生 じるものではない。
- (3) 重畳事象評価のまとめ

事故シーケンスの抽出という観点においては、上述のとおり、自然現象が重 畳することにより、単独事象の評価で選定されたシナリオに対し新たなものが 生じることはなく、自然現象重畳により追加すべき新たな事故シーケンスはな いと判断した。

5. 全体まとめ

地震,津波以外の自然現象,人為事象について,事故シーケンスに至る可能性を 検討した結果,内部事象や地震,津波レベル1PRAにて抽出した事故シーケンスグル ープに対して新たに追加が必要となる事故シーケンスグループはないと判断した。

また,地震,津波を含む,各自然現象の重畳影響についても確認を実施した結果, 単独事象での評価と同様に,内部事象や地震,津波レベル1PRAにて抽出した事故シ ーケンスグループに対して新たに追加が必要となる事故シーケンスグループはな いと判断した。

(添付資料)

- 添付資料1-1 各自然現象について考え得る起因事象の抽出
- 添付資料1-2 各人為事象について考え得る起因事象の抽出
- 添付資料2-1 設計基準を超える積雪事象に対する事故シーケンス抽出
- 添付資料2-2 設計基準を超える低温事象に対する事故シーケンス抽出
- 添付資料2-3 設計基準を超える落雷事象に対する事故シーケンス抽出
- 添付資料2-4 設計基準を超える火山事象に対する事故シーケンス抽出
- 添付資料2-5 設計基準を超える風(台風)事象に対する事故シーケンス抽出
- 添付資料2-6 設計基準を超える竜巻事象に対する事故シーケンス抽出
- 添付資料3 自然現象重畳影響確認結果
- 添付資料4 外部人為事象に関わる重畳の影響について

以上

<各自然現象について考え得る起因事象の抽出>

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
	降水	 ①浸水 建屋内浸水による機器浸水 	津波の影響に包絡される。津波の事故シーケンスは、津波のレベル1PRA に示すとおり。
1		 ②荷重(堆積荷重) 建屋屋上での雨水排水不可(排水能力超 過)による滞留 	建屋屋上への荷重については,排水設計がなされており,設計想定を超え る降水に対しても十分な強度を有していると考えられるため,本事象から 事故シーケンスの抽出にあたって考慮すべき起因事象の発生は無いと判 断。
2	積雪 ※別途,詳細評価	 ①荷重(堆積荷重) 建屋及び屋外機器への堆積 	 ・原子炉建屋が天井崩落した場合に、原子炉補機冷却系が機能喪失し、 最終ヒートシンク喪失に至るシナリオ。 ・タービン建屋が天井崩落した場合にタービン建屋や発電機に影響が及 びタービントリップに至るシナリオ。 ・コントロール建屋が天井崩落した場合に、建屋最上階に設置している 中央制御室が物理的又は積雪(雪融け水含む)により機能喪失し、計 測制御系機能喪失に至るシナリオ。さらには中央制御室の下階に位置 している直流電源設備が溢水により機能喪失に至るシナリオ。 ・軽油タンク天井が積雪荷重により崩落した場合には、軽油タンク機能 喪失に至り、以下②に示す外部電源喪失が発生している状況下におい ては、非常用ディーゼル発電設備(ディタンク)の燃料枯渇により、 全交流電源喪失に至るシナリオ。
		②相間短絡送電・変電設備の屋外設備への着氷	 ・ 送電線や碍子へ雪が着氷(着氷雪)することによって、相間短絡を起こし外部電源が喪失するシナリオ。
		 ③閉塞(空調) 給排気口の閉塞(堆積又は付着による給気 口閉塞) 	 D/G 室空調給気口の閉塞により、非常用ディーゼル発電設備が機能喪失に至るような場合において、上記②の外部電源喪失が同時発生した場合に、全交流電源喪失に至るシナリオ。
3	雪崩	 ①荷重(衝突) 雪崩による建屋及び屋外機器への荷重 	建屋周辺に急峻な斜面が無いことから,プラントの安全性に影響を与える ような雪崩は発生せず,本事象から事故シーケンスの抽出にあたって考慮 すべき起因事象の発生は無いと判断。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
4	ひょう,あられ	 ①荷重(衝突) 建屋及び屋外機器へのひょう(又はあられ)の衝突 	竜巻の影響に包絡される。(No.10 参照)
г	* 崮 /雨* /みぞわ	 ①荷重(堆積) 建屋及び屋外機器への雨氷等の着氷 	火山及び積雪の影響に包絡される。(火山は No. 26,積雪は No. 2 参照)
0		②閉塞(空調)建屋や屋外機器への雨氷等の着氷	積雪の影響に包絡される。(No.2参照)
6	米昂	①荷重(堆積)建屋及び屋外機器への付着	火山及び積雪の影響に包絡される。(火山は No. 26,積雪は No. 2 参照)
0	/1/1日	②閉塞(空調)建屋及び屋外機器への付着	積雪の影響に包絡される。(No.2参照)
7	霜, 霜柱	 ①- 建屋および屋外機器への霜の付着,敷地での霜柱生成 	建物や屋外設備への霜付着による影響はなく,霜柱についても発生範囲は 土露出範囲であるため,プラントの安全性が損なわれるような影響は発生 せず,本事象から事故シーケンスの抽出にあたって考慮すべき起因事象の 発生は無いと判断。
8	結氷板, 流氷, 氷壁	 ①閉塞(取水) 流氷などによる取水口閉塞 	柏崎刈羽原子力発電所及びその周辺においては発生せず,本事象から事故 シーケンスの抽出にあたって考慮すべき起因事象の発生は無いと判断。
9	風(台風含む) ※別途,詳細評価	①荷重(風圧,衝突) 風圧(又は飛来物衝突)による建屋,設備 の損傷	 ・風荷重によりタービン建屋が損傷し、タービン、発電機に影響が及んで タービントリップに至るシナリオ。 ・風荷重による送変電設備の損傷により外部電源喪失に至るシナリオ。 ・風荷重にて軽油タンク等が損傷し、かつ同時に外部電源喪失が発生し、 全交流電源喪失に至るシナリオ。 ※飛来物衝突影響については竜巻の影響に包絡される。
		②閉塞(取水) 台風による漂流物による取水口閉塞	台風による漂流物により取水口が閉塞した場合,原子炉補機冷却海水ポン プによる取水ができなくなり,最終ヒートシンク喪失に至るシナリオ。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
10	竜巻 ※別途,詳細評価	 ①荷重(風圧,気圧差,及び衝突) 風圧,気圧差または飛来物損傷による建 屋設備損傷 	 ・風荷重及び気圧差荷重によるタービン建屋損傷または、飛来物が建屋外 壁を貫通し、タービンや発電機に衝突することに伴いタービントリップ に至るシナリオ。 ・送変電設備損傷に伴い外部電源喪失に至るシナリオ。 ・軽油タンク等が損傷、かつ外部電源喪失している状況下において、非常 用ディーゼル発電設備の燃料枯渇により、全交流電源喪失に至るシナリ オ。 ・循環水ポンプが飛来物の衝突により損傷し、復水器の真空度が低下する ことに伴い出力低下または手動停止に至るシナリオ。
		②閉塞(取水) 竜巻により取水口周辺の海に飛散した資機 材等による取水口閉塞	 ・竜巻により資機材、車両等が飛散して取水口周辺の海に入り取水口を閉 塞させた場合、原子炉補機冷却海水ポンプによる取水ができなくなり、 最終ヒートシンク喪失に至るシナリオ。
11	砂嵐	①閉塞(空調)空調フィルタの閉塞	柏崎刈羽原子力発電所及びその周辺においては発生せず,本事象から事故 シーケンスの抽出にあたって考慮すべき起因事象の発生は無いと判断。
12	霧,靄	 ①- 発電所敷地内での霧,靄(もや)の発生に よる設備等への影響無し 	安全施設の機能が損なわれることはなく、本事象から事故シーケンスの抽 出にあたって考慮すべき起因事象の発生は無いと判断。
13	高温	 ①外気温度高 外気温度高による機器等の冷却能力低下 	空調設計条件を超過する可能性はあるものの,1日の中でも気温の変動が あり高温状態が長時間にわたり継続しないこと,空調設備が余裕をもって 設計されていること,また,外気温度高により即安全性が損なわれること はないことから,安全施設の機能が損なわれることはない。よって,本事 象から事故シーケンスの抽出にあたって考慮すべき起因事象の発生は無い と判断。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
14	低温 ※別途,詳細評価	 ①外気温度低(凍結) 屋外配管・タンクの内部流体凍結 	軽油タンク等内の軽油の凍結と着氷による相間短絡によって外部電源喪失 が同時発生し,非常用ディーゼル発電設備(ディタンク)の燃料枯渇とな り全交流電源喪失に至るシナリオ。
15	高温水 (海水温高)	 ①海水温度高(冷却機能低下:海水系) 取水温度高に伴う冷却性能への影響 	海水温度高に伴う復水器真空度低下により,タービントリップに至るシナ リオ。
16	低温水 (海水温低)	 ①- 取水温度低に伴う海水系機器への影響無し 	取水温度低について冷却性能の劣化につながらず,影響無いため,本事象 から事故シーケンスの抽出にあたって考慮すべき起因事象の発生は無いと 判断。
17	極限的な圧力 (気圧高/低)	 ①荷重(気圧差) 気圧差による空調設備等への影響 	竜巻の影響に包絡される。(No. 10 参照)
18	落雷 ※別途,詳細評価	① 雷サージ及び誘導電流 過電圧による設備損傷	 ・落雷により計測制御機器に発生するノイズの影響により、プラントスクラムに至るシナリオ。 ・屋外設備への雷サージの影響により、外部電源喪失及びその他過渡事象に至るシナリオ。 ・屋外設置のタンク類(軽油タンク、液化窒素貯槽)の内、軽油タンクと屋内非常用ディーゼル発電設備制御盤を融通するケーブルへの雷サージによる非常用ディーゼル発電設備機能喪失が外部電源喪失と同時に発生し、全交流電源喪失に至るシナリオ。 ・建屋内外への雷による誘導電流の影響により、各種設備が機能喪失となり、その他過渡事象に至るシナリオ。なお、その他過渡事象については、内部事象レベル1PRA等にて考慮されている。
19	高潮	 ①浸水 高潮による建屋や機器への浸水影響 	津波の影響に包絡される。津波の事故シーケンスは、津波のレベル1PRA に示すとおり。
20	波浪	 ①浸水 波浪による建屋や機器への浸水影響 	津波の影響に包絡される。津波の事故シーケンスは、津波のレベル1PRA に示すとおり。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
21	風津波	 ①浸水 風津波による建屋や機器への浸水影響 	津波の影響に包絡される。津波の事故シーケンスは、津波のレベル1PRA に示すとおり。
22	外部洪水	 ①浸水 発電所敷地の浸水による建屋や機器への影響(津波を除く) 	津波以外の外部洪水としては、ダムの決壊や河川の氾濫など考えられるが、 柏崎刈羽原子力発電所へ影響を及ぼす範囲にダムや河川はない。従って、 本事象によるプラントへの影響は無いことから、本事象から事故シーケン スの抽出にあたって考慮すべき起因事象の発生は無いと判断。
23	池・河川の 水位低下	①- 河川等の水位低下による設備等への影響無 し	柏崎刈羽原子力発電所は海水を冷却源としていることから,河川等からの 取水不可によるプラントへの影響は無く,本事象から事故シーケンスの抽 出にあたって考慮すべき起因事象の発生は無いと判断。
24	河川の迂回	①- 河川の迂回による設備等への影響無し	柏崎刈羽原子力発電所は海水を冷却源としていることから,河川等からの 取水不可によるプラントへの影響は無く,本事象から事故シーケンスの抽 出にあたって考慮すべき起因事象の発生は無いと判断。
25	干ばつ	 ①- 干ばつに伴う河川等からの取水不可による 設備等への影響無し 	柏崎刈羽原子力発電所は海水を冷却源としていることから,河川等からの 取水不可によるプラントへの影響は無く,本事象から事故シーケンスの抽 出にあたって考慮すべき起因事象の発生は無いと判断。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
26	火山 ※別途,詳細評価	 ①荷重(堆積) 建築物やタンク等上部への降下火山灰の堆 積による天井崩落 	 ・原子炉建屋屋上が火山灰堆積荷重により崩落し、建屋最上階に設置している原子炉補機冷却系のサージタンクが物理的に損傷、機能喪失し、最終ヒートシンク喪失に至るシナリオ。 ・タービン建屋屋上が火山灰堆積荷重により崩落し、建屋最上階に設置しているタービン、発電機に影響が及びタービントリップに至るシナリオ。 ・コントロール建屋屋上が火山灰堆積荷重により崩落し、建屋最上階に設置している中央制御室内設備が損傷し、計測制御系機能喪失に至るシナリオ。 ・軽油タンクが火山灰堆積荷重により天井崩落、破損に至り、以下⑤に示す外部電源喪失が発生している状況下においては、非常用ディーゼル発電設備(ディタンク)の燃料枯渇により、全交流電源喪失に至るシナリオ。
		②閉塞(取水) 降下火山灰の取水口及び海水系への取込み による閉塞	海水中の火山灰が高濃度な場合に,熱交換器の伝熱管,海水ポンプ軸受の 閉塞による異常磨耗や海水ストレーナの自動洗浄能力を上回ることによる 閉塞により,海水系設備の機能喪失,最終ヒートシンク喪失に至るシナリ オ。
		 ③閉塞(空調) 降下火山灰の換気空調系への取込みによる 閉塞 	D/G 室空調給気口閉塞により,非常用ディーゼル発電設備の機能喪失に至る場合において,以下⑤の外部電源喪失が発生している状況下では,全交流電源喪失に至るシナリオ。
		 ④腐食 火山灰に付着している腐食成分による化学 的影響 	腐食の進行は時間スケールの長い事象であり,発電所の運転に支障をきた す程度の短時間で事象が進展することはなく,適切な運転管理や保守管理 により対処可能と判断。よって,本事象から事故シーケンスの抽出にあた って考慮すべき起因事象の発生は無いと判断。
		⑤相間短絡 火山灰の送電網又は変圧器への付着による 相間短絡	火山灰が送電網の碍子や変圧器へ付着し,霧や降雨の水分を吸収すること によって,相間短絡を起こし外部電源喪失に至るシナリオ。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
27	地滑り	 ①荷重(衝突) 地滑りに伴う土砂等の建屋・屋外設備への 衝突 	 ・送電設備については、斜面に設置されているものもあり、地滑りにより 送電設備が倒壊することで、外部電源喪失に至るシナリオ。 ・一方、周辺斜面と原子炉建屋等の基幹となる原子炉施設は十分な離隔距 離を有しており、プラントの安全性に影響が及ぶことはないと判断。
28	海水中の地滑り	 ①閉塞(取水) 海水中の地滑りに伴う取水口閉塞 	 ・港湾内については、海底に地滑りの発生しうる起伏がないため、発生可能性がない。 ・港湾外の地滑りに伴い発生可能性のある津波については、津波事象として考慮。津波の事故シーケンスは、津波のレベル1 PRA に示すとおり。
29	地面隆起/低潮位	①地盤安定性 地盤の隆起に伴う建屋や屋外設備の傾斜等 による損壊	地面隆起は、地震の随伴事象である。原子炉建屋等の基幹となる原子炉施 設は岩着や杭基礎で施工されており、地震時は一体となって震動すること から、プラントの安全性に影響が及ぶような部分的な地面隆起は発生せず、 本事象から事故シーケンスの抽出にあたって考慮すべき起因事象の発生は 無いと判断。
30	土地の浸食, カルスト	 ①地盤安定性 土壌の流出による荒廃,地盤沈下に伴う建 屋や屋外設備の周辺地面の浸食による設備等の損壊 	土地の浸食は、時間スケールの長い事象であり、発電所の運転に支障をき たす程度の短時間で事象が進展することはなく、適切な運転管理や保守管 理により対処可能と判断。よって、本事象から事故シーケンスの抽出にあ たって考慮すべき起因事象の発生は無いと判断。
31	土の伸縮	 ①地盤安定性 建屋・屋外設備の周辺地面の変状による設備等の損壊 	原子炉建屋等の基幹となる原子炉施設は,岩着や杭基礎等の工法にて施工 されており,土の伸縮による影響を受けにくい。また,土の伸縮は,時間 スケールの長い事象であり,発電所の運転に支障をきたす程度の短時間で 事象が進展することはなく,適切な運転管理や保守管理により対処可能。 よって,本事象から事故シーケンスの抽出にあたって考慮すべき起因事象 の発生は無いと判断。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
32	海岸浸食	 ①冷却機能低下:海水系 海岸線の後退,海底勾配の変化による取水 設備性能への影響 	海岸浸食は,時間スケールの長い事象であり,発電所の運転に支障をきた す程度の短時間で事象が進展することはなく,適切な運転管理や保守管理 により対処可能。本事象から事故シーケンスの抽出にあたって考慮すべき 起因事象の発生は無いと判断。
33	地下水 (多量/枯渇)	 ①浸水 地下水の建屋地下階への流入による設備等の浸水 	多量の地下水流入については,時間スケールの長い事象であり,発電所の 運転に支障をきたす程度の短時間で事象が進展することはなく,適切な運 転管理や保守管理により対処可能。本事象から事故シーケンスの抽出にあ たって考慮すべき起因事象の発生は無いと判断。
		②-地下水の枯渇	地下水は活用しておらず,安全施設の機能が損なわれることはないと判断。 従って,本事象によるプラントへの影響は無く,本事象から事故シーケン スの抽出にあたって考慮すべき起因事象の発生は無いと判断。
34	地下水による浸食	①地盤安定性 建屋・屋外構築物の地下部(地下階,基礎 部)土壌浸食	安全上重要な建屋や屋外設備は,岩着や杭基礎等の工法にて施工されており,発電所の運転に支障をきたす程度の短時間で事象が進展することはなく,適切な運転管理や保守管理により対処可能。本事象から事故シーケンスの抽出にあたって考慮すべき起因事象の発生は無いと判断。
		②浸水 建屋地下部の浸食による建屋内への地下水 の流入	基本的に設備等の機能に影響を及ぼすほどの地下水が建屋内へ流入する可 能性は稀である。また,仮に浸食があっても,時間スケールの長い事象で あり,発電所の運転に支障をきたす程度の短時間で事象が進展することは なく,適切な運転管理や保守管理により対処可能。本事象から事故シーケ ンスの抽出にあたって考慮すべき起因事象の発生は無いと判断。

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
35	森林火災	 ①熱影響 輻射熱による建屋・屋外設備への熱影響 	森林火災が送電設備に延焼し,外部電源喪失に至るシナリオ。 発電所周辺監視区域の境界に沿って森林を伐採しており,構外から延焼す る状況に対して一定の効果があると考えられること,敷地境界から出火し た場合であっても,防火帯を設定しておりプラントまでの離隔距離が十分 あること,防火帯内側への延焼を仮定した場合でも街路樹等が燃えるだけ で火災の規模は限定的なため,消火が可能であると考えられること,プラ ント近傍は非植生であり,仮に危険物(軽油タンク)に延焼した場合であ っても原子炉建屋外壁面が 200℃未満であることを評価で確認しているこ とから,原子炉建屋等の基幹となる原子炉施設への影響は無く,本事象か ら事故シーケンスの抽出にあたって考慮すべき起因事象の発生は無いと判 断。
		②外気取入機器及び人への影響 ばい煙などによる閉塞(空調)影響および 人への影響	ばい煙の換気空調系への取込みは、火山の影響に包絡される。(No. 26 参照) ばい煙を取り込むことによる人への影響については、発電所敷地内の林縁 とプラント間に十分な離隔距離があることから、影響はないと判断。ばい 煙が中央制御室空調外気取入口まで達する仮定した場合でも、再循環運転 を行うことで影響を抑えられるため、本事象から事故シーケンスの抽出に あたって考慮すべき起因事象の発生は無いと判断。
	生物学的事象	 ①閉塞(取水) 海生生物(くらげ等)の襲来による取水口 閉塞 	大量発生したくらげ等の海生生物により,取水口が閉塞した場合に,原子 炉補機冷却海水ポンプによる取水ができなくなり,最終ヒートシンク喪失 に至るシナリオ。
36		②個別設備の機能喪失 齧歯類(ネズミ等)によるケーブル類の損 傷,電気機器接触による地絡など	ネズミ等齧歯類によるケーブル類の損傷, 電気機器接触による地絡などは, 個別機器の不具合というランダム事象に整理される。このようなランダム 事象は,内部事象レベル1PRA 等にて,その他過渡事象として考慮されて いる。
37	静振	 ①浸水 港湾内での潮位振動による取水への影響 ②冷却機能低下:海水系 港湾内での潮位振動による取水への影響 	津波の影響に包絡される。津波の事故シーケンスは、津波のレベル1PRA に示すとおり。(浸水影響の最も大きい津波の評価においては、数値シミ ュレーションを実施しており、その中で静振の影響も考慮されている。)

No	自然現象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
38	塩害,塩雲	①塩害による屋外構築物・設備の腐食	腐食は,発電所の運転に支障をきたす時間スケールで事象進展しないこと から,安全施設の機能が損なわれる恐れはなく,本事象から事故シーケン スの抽出にあたって考慮すべき起因事象の発生は無いと判断。
39	隕石/衛星の落下	 ①荷重(衝突) 隕石衝突に伴う建屋・屋外設備の損傷 	安全施設の機能に影響が及ぶ規模の隕石等の衝突については、有意な発生
		②荷重(衝突)発電所敷地への隕石落下に伴う衝撃波	頻度とはならない。 従って、本事象から事故シーケンスの抽出にあたって考慮すべき起因事象
		③浸水 隕石の発電所近海への落下に伴う津波	の発生は無いと判断。
40	太陽フレア 磁気嵐	 ①誘導電流 太陽フレアの地磁気誘導電流による変圧器 の損傷 	磁気嵐により誘導電流が発生し,変圧器等の送電・変電設備の損傷により, 外部電源喪失に至るシナリオ。 ただし,磁気嵐の影響を受けるのは,こう長の長い送電線であり,D/G及 び非常用電源母線への影響はなく,プラントの安全性への影響はないと判 断。

<各人為事象について考え得る起因事象の抽出>

No	人為事象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
1	航空機落下(偶発)	①荷重(衝突) 航空機が建屋等へ衝突	偶発的な事故による原子炉施設への落下については,設計上の考慮の要 否を「実用発電用原子炉施設への航空機落下確率に対する評価基準につ いて」(総合資源エネルギー調査会 原子力安全・保安部会 原子炉安 全小委員会、平成14年7月22日、平成21年6月30日一部改正)に 従い落下確率を求めて判断している。 その結果,落下確率は約3.4×10 ⁻⁸ (回/炉・年)となり,設計上の考 慮が必要な1.0×10 ⁻⁷ (回/炉・年)を下回っていることから,原子炉 施設への落下の可能性は十分低く,本事象から事故シーケンスの抽出に あたって考慮すべき起因事象は無いと判断。
		②熱影響 輻射熱による建屋・屋外設備への熱影響	原子炉施設から一定の距離離れた場所(落下確率が1.0×10 ⁻⁷ (回/炉・ 年)となる位置)に大型航空機が落下した場合であっても,原子炉建屋外 壁や屋外設備の温度上昇が許容値以下であることを確認済みである。仮に 想定を超える大型の航空機が落下した場合であっても,現状有する余裕に て包絡可能と考えられるため,本事象から事故シーケンスの抽出にあたっ て考慮すべき起因事象は無いと判断。
2	ダムの崩壊	①浸水 ダムの崩壊に伴う洪水による建屋や機器へ の浸水影響	発電所周辺にダムの崩壊により洪水となる河川は無いため,本事象から事 故シーケンスの抽出にあたって考慮すべき起因事象は無いと判断。
3	火災・爆発	 ①熱影響,爆風圧 発電所内に保管されている危険物の火災や 爆発による影響 	非常用ディーゼル発電設備の軽油タンクで火災が発生した場合であっても 原子炉建屋の温度が許容値以上に上昇しないことを確認。 非常用ディーゼル発電設備の軽油タンク全数が焼損した場合は、ディタン クの枯渇により非常用ディーゼル発電設備が機能喪失に至るが、外部電源 と同時に機能喪失することは無いため、本事象から事故シーケンスの抽出 にあたって考慮すべき起因事象は無いと判断。

枠囲みの内容は核物質防護上の機密事項に属しますので公開できません。

No	人為事象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等
4	有毒ガス	①中央制御室居住性の低下 有毒ガスが中央制御室内に取り込まれるこ とによる運転操作への影響	発電所周辺には有毒ガスの発生源となる危険物を貯蔵している石油コンビ ナートは無い。発電所構内で貯蔵している物質(塩素,窒素)が漏えいし た場合であっても、中央制御室の空調系を再循環モード運転へ移行するこ とにより、有毒ガスの影響を遮断できるため、本事象から事故シーケンス の抽出にあたって考慮すべき起因事象は無いと判断。
5	船舶の衝突	①冷却機能低下:海水系 漂流船舶が取水設備を損傷させることによ る冷却機能への影響	漂流船舶が発電所港湾内に侵入した場合であっても,カーテンウォールに より直接取水設備を損傷させることは無いが,仮に更に内部へ侵入し,取 水設備を損傷させた場合は,最終ヒートシンクが喪失に至るシナリオとな る。
6	電磁的障害	①電磁波によるノイズ 電磁波を放出する機器による計測制御系へ のノイズ発生で安全機能の誤動作, 誤不動作	中央制御室や現場にある操作盤については,電波障害試験により耐性を確認しているが,想定を上回る影響が生じた場合は,計測制御系への外乱が 想定される。事象影響としては落雷の影響に包絡される。
7	パイプライン事故	①熱影響,爆風圧 パイプラインの損傷・破裂による火災,爆 風	パイプラインは道路下に埋設されており,埋設深度も法令で定められてい る。また,緊急時にはガスの遮断が行われるため,爆発が発生したとして も外部に対する影響は限定的である。仮に飛来物が発電所へ届く場合があ ったとしても,事象影響としては竜巻の影響に包絡される。
8	第三者の不法な 接近	 ①- 原子炉施設内に悪意を持った第三者が侵入 	原子炉施設内への侵入だけでは起因事象の発生は無い。(原子炉施設への影響は No. 10 妨害破壊行為に包絡。)
9	航空機衝突(意図)	①荷重(衝突) 航空機が建屋等へ衝突	
		②熱影響 輻射熱による建屋・屋外設備への熱影響	

枠囲みの内容は核物質防護上の機密事項に属しますので公開できません。

No	人為事象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等		
10	妨害破壊行為	 ①衝撃力 爆発物等による衝撃力 	安全機能を有する複数機器の破壊,無力化,悪意操作による外乱の発生が 想定される。事象影響としては,内部事象レベル1PRAに包絡される。		
		②中央制御室の占拠等 悪意操作,サボタージュ			
11	サイバーテロ	①制御システムのハッキング 制御システムのハッキングによる悪意操作	外部回線と制御システムは接続されていないため、制御機能がハッキング されることは無い。仮に発電所内部への侵入等により、直接制御システム がハッキングされた場合は悪意操作等による影響が考えられるが、事象影 響としては、内部事象レベル1 PRA に包絡される。		
12	 企業施設の事故 ①熱影響,爆風圧 発電所外の産業施設の事故による火災,爆発 		発電所敷地周辺に石油コンビナート施設は無いため,本事象から事故シー ケンスの抽出にあたって考慮すべき起因事象は無いと判断。		
13	 ①熱影響,爆風圧 危険物輸送車両や船舶の発電所敷地周辺における事故による火災,爆風 		危険物輸送車両や船舶にて火災,爆発が発生した場合でも危険限界距離以 上離れている。爆風により飛来物を想定した場合であっても竜巻の影響に 包絡される。		
14	軍事活動によるミ	 ①荷重(衝突) ミサイルが建屋等へ衝突 			
14	サイルの飛来	②熱影響 輻射熱による建屋・屋外設備への熱影響			

No	人為事象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等	
15	サイト内外での 掘削	 ①物理的損傷 発電所内外において地面の掘削工事を行い、設備の一部を損傷 	地面の掘削工事を行う場合は、埋設物の管理図面により事前調査を行い、 予め埋設物の位置を確認する。仮に埋設物を損傷させた場合の影響として、 埋設ケーブル切断による外部電源喪失に至るシナリオとなる。 また、発電所内外の送電鉄塔を掘削工事により倒壊させた場合も外部電源 喪失に至るシナリオとなる。 いずれも事象影響としては、内部事象レベル 1PRA に包絡される。	
16	内部溢水	①浸水 原子炉施設内の配管等の破損による保有水 の漏えいの影響	別紙1表1のとおり。 (外部電源喪失,非隔離事象,隔離事象,全給水喪失,RPS 誤動作,原子 炉補機冷却系故障,手動停止)	
17	タービンミサイル	①荷重(衝突) タービンの一部が飛来物となって衝突	「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」第十二条(安全施設)5の要求に従い,飛散物としてタービンミサイルの評価を行っている。「タービンミサイル評価について」(昭和52年7月20日原子力委員会原子炉安全専門審査会)に基づき評価した結果、6号炉は8.49×10 ⁻⁸ /年、7号炉は8.52×10 ⁻⁸ /年であり、基準である10 ⁻⁷ /年を下回っているため、発生の可能性は十分低く、本事象から事故シーケンスの抽出にあたって考慮すべき起因事象は無いと判断。	

No	人為事象	設備等の損傷・機能喪失モードの抽出	考えうる起因事象等		
18	重量物輸送	 ①荷重(落下) 輸送中の燃料集合体の落下による破損 	燃料取替機は燃料取替作業中の燃料集合体落下防止対策(フェイル・セイ フ設計など)がとられているため,燃料集合体の落下事故の発生確率は非 常に小さく,さらにその発生を仮定した場合でも破損した燃料からの放射 性物質の放出量は僅かであり,外部への影響は小さいことが評価されてい る。従って,本事象から事故シーケンスの抽出にあたって考慮すべき起因 事象は無いと判断。		
		②荷重(衝突) 重量物輸送車両やクレーン等の重機の転倒 による屋外設備の損壊	作業に重機を使用する場合は、転倒防止対策を行うため発生することは考 えにくいが、仮に重機が転倒した場合は変圧器や軽油タンクの損壊が想定 される。これにより、外部電源喪失とディタンク枯渇による非常用ディー ゼル発電設備の機能喪失により全交流電源喪失に至るシナリオが考えられ るが、重機転倒による損傷範囲は重機の大きさに限定されるため、起因事 象として考慮する必要は無いと判断。(考慮した場合であっても追加の起因 事象ではない。)		
19	化学物質の放出に よる水質悪化	①冷却機能低下:海水系 発電所内で保管されている化学物質が港湾 内へ放出され,または船舶事故により化学物 質が流出し,海水系の冷却機能へ影響	発電所内で保管している化学物質については,堰の設置や建屋内保管によ り漏えい拡大防止対策をしており,港湾内への流出は考えにくい。船舶事 故にて流出する可能性は否定できないが,海水系に取水される段階では十 分希釈されていると想定できる。従って,本事象による影響を考慮する必 要は無いと考えるが,仮に影響が生じた場合は最終ヒートシンク喪失に至 るシナリオとなる。		
20	油流出	①冷却機能低下:海水系 船舶等から流出した油が海水系の冷却機能 へ影響	海水の取水については,カーテンウォールを設置して深層取水を行っており,油が直接海水系に流入することは考えにくいが,仮に影響が生じた場合は最終ヒートシンク喪失に至るシナリオとなる。		

設計基準を超える積雪事象に対する事故シーケンス抽出

- 1. 起因事象の特定
- (1)構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 積雪事象により設備等に発生する可能性のある影響について,国外の評価事例や 国内で発生したトラブル事例も参照し,以下のとおり,損傷・機能喪失モードを抽 出した。
 - 建屋天井や屋外設備に対する荷重
 - ② 送電変電設備の屋外設備への着氷
 - ③ 空調給気口の閉塞
 - ④ 積雪によるアクセス性や作業性の悪化
- (2) 評価対象設備の選定

(1)項で抽出した各損傷・機能喪失モードに対し,影響を受ける可能性のある設備等の内,プラントの運転継続や安全性に影響を及ぼす可能性のある設備等を評価対象設備として選定する。

具体的には,以下に示す建屋及び屋外設置(屋外に面した設備含む)の設備等を 評価対象設備として選定した。

<建屋>

- ・原子炉建屋
- ・コントロール建屋
- ・タービン建屋
- <屋外設備>
 - ·送変電設備
 - ・軽油タンク及び非常用ディーゼル発電設備燃料移送系(以下,軽油タンク等)
 - 中央制御室換気空調設備
 - ・ディーゼル発電機非常用給気設備(6号機),非常用電気品区域空調設備(7 号機)(以下,D/G室空調)
- (3) 起因事象になりうるシナリオの選定

(1)項で抽出した各損傷・機能喪失モード毎に,(2)項で選定した評価対象設備への影響を検討の上,発生可能性のあるシナリオを選定した。

建屋天井や屋外設備に対する荷重
 建屋及び屋外設備に対する積雪荷重により発生可能性のあるシナリオは以下

のとおり。

<建屋>

○原子炉建屋

原子炉建屋屋上が積雪荷重により崩落した場合に,建屋最上階に設置し ている原子炉補機冷却系のサージタンクが物理的に機能喪失することで, 原子炉補機冷却系が喪失し,最終ヒートシンク喪失に至るシナリオ。

○タービン建屋

タービン建屋屋上が積雪荷重により崩落した場合に,タービンや発電機 に影響が及び,タービントリップに至るシナリオ。

○コントロール建屋

コントロール建屋屋上が積雪荷重により崩落した場合に,建屋最上階に 設置している中央制御室が物理的又は積雪(雪融け水含む)により機能喪 失し,計測制御系機能喪失に至るシナリオ。その後,中央制御室の下階に 位置している直流電源設備へ溢水が伝播し機能喪失に至るシナリオ。

- <屋外設備>
- ○軽油タンク等

軽油タンク天井が積雪荷重により崩落した場合には,軽油タンク機能喪 失に至る可能性があり,以下②に示す外部電源喪失が発生している状況下 においては,非常用ディーゼル発電設備(ディタンク)の燃料枯渇により, 全交流電源喪失に至るシナリオ。

② 送変電設備の屋外設備への着氷

送電線や碍子へ雪が着氷(着氷雪)することによって,相間短絡を起こし外部 電源が喪失するシナリオ。

空調給気口の閉塞

中央制御室換気空調およびD/G室空調給気口閉塞による各空調設備が機能喪失 に至る。(ただし、中央制御室換気空調については、外気遮断による再循環運転 が可能な設計となっているため、考慮すべきシナリオとしては抽出不要とする。) 仮にD/G室空調給気口の閉塞により、非常用ディーゼル発電設備が機能喪失に 至るような場合において、上記②の外部電源喪失の同時発生を想定した場合、全 交流電源喪失に至る。

④ 積雪によるアクセス性や作業性の悪化

積雪により屋外現場へのアクセス性や屋外での作業性に影響を及ぼす可能性 があるものの,設計基準対象施設のみで対応可能なシナリオであれば基本的に屋 外での現場対応はなく,仮にアクセス性や屋外の作業性へ影響が及んだ場合であ っても構内の道路又はアクセスルートについては,除雪を行うことから問題はな $\langle v_{\circ} \rangle$

そのため上記①~③の影響評価の結果として、電源車の接続といった屋外での 作業が必要になるケースが確認された場合に、別途、詳細検討するものとする。

(4) 起因事象の特定

(3)項で選定した各シナリオについて,想定を越える積雪事象に対しての裕度評価(起因事象発生可能性評価)を実施し,事故シーケンスグループ抽出にあたって 考慮すべき起因事象の特定を行った。

① 建屋天井や屋外設備に対する荷重により発生可能性のあるシナリオ

積雪荷重が各建屋天井の許容荷重を上回った場合には、(3)項で選定した各シ ナリオが発生する可能性はあるものの、最終ヒートシンク喪失、タービントリ ップについては、運転時の内部事象レベル 1PRA でも考慮していること、計測制 御系機能喪失については、地震や津波のレベル 1PRA でも考慮していることから 追加のシナリオではない。軽油タンクについても、天井の許容荷重を上回る積 雪荷重によって破損に至る可能性はあるものの、外部電源喪失との重畳による 全交流電源喪失は、運転時の内部事象や地震、津波のレベル 1PRA でも考慮して いるものであり、追加のシナリオではない。

なお、各建屋や軽油タンクの天井が崩落するような積雪事象は、年超過確率 評価上、10⁻⁷/年より小さい事象であること(表4.1参照)、積雪事象の進展速度 の遅さを踏まえると除雪管理が可能であることから、発生可能性は非常に稀で あり、有意な頻度又は影響のある事故シーケンスの要因とはなりえないと考え られるため、考慮すべき起因事象としては選定不要であると判断した。

建屋・タンク	積雪荷重	年超過頻度	結果		
原子炉建屋	6 号炉 357cm	266cm:10 ⁻⁷ /年未満	積雪荷重を超		
	7 号炉 361cm	〔10 ⁻⁴ /年·135.9cm〕	えるまでに大		
タービン建屋	6 号炉 266cm	$10^{-7}/\oplus 213.3$ cm	きな裕度があ		
	7 号炉 266cm		る		
コントロール建屋	371cm				
軽油タンク	6 号炉 321cm				
	7 号炉 321cm				

表4.1 各建屋・タンクの積雪荷重と年超過頻度の比較

② 送変電設備の屋外設備への着氷

着氷に対して設計上の配慮はなされているものの,設計基準を超える積雪事象 に対して発生を否定できないため,送変電設備の損傷に伴う外部電源喪失につい ては考慮すべき起因事象として選定する。 ③ 空調給気口の閉塞

仮に D/G 室空調給気口閉塞により非常用ディーゼル発電設備が機能喪失に至 り、かつ同時に外部電源喪失に至ることを想定した場合、全交流電源喪失に至 ることとなるが、全交流電源喪失については、運転時の内部事象や地震、津波 レベル 1PRA でも考慮しており、追加のシナリオではない。

なお、基本的には除雪管理が可能であるが、D/G室空調給気口が閉塞に至る積 雪深さは、年超過確率評価上、10⁻⁷/年より小さくなること、積雪の給気口への 付着・堆積についても除雪管理が可能であることから、積雪事象による給気口 閉塞事象の発生可能性は非常に稀であり、有意な頻度又は影響のある事故シー ケンスの要因とはなりえないと考えられるため、考慮すべき起因事象としては 選定不要であると判断した。(表4.2にD/G室空調及び中央制御室換気空調給気 口を示す。)

空調給排気口	設置高さ	年超過頻度	結果	
D/G 室空調(A)	6 号炉:11.7 m	7.8m:10 ⁻⁷ /年未満	設置高さを	
給気口	7号炉:11.5 m		超えるまで	
D/G 室空調(A)	78 m	$\left[10^{-4}/$ 年:135.9cm \right]	に大きな裕	
排気口	7.0 m	$10^{-7}/\Xi \cdot 213$ 3 cm	ー 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
D/G 室空調(B)	6 号炉:11.7 m		反いのの	
給気口	7号炉:11.5 m			
D/G 室空調(B)	7 9 m			
排気口	7.0 m			
D/G 室空調(C)	6 号炉:11.7 m			
給気口	7号炉:11.5 m			
D/G 室空調(C)	7 0 m			
排気口	7.0 m			
中央制御室換気	4 9 m			
空調設備給気口	4.2 III			
中央制御室換気	4 9 m			
空調設備排気口	4.2 m			

表 4.2 各空調給排気口の高さと年超過頻度の比較

- 2. 事故シーケンスの特定
 - 1. (3)項にて起因事象となりうるシナリオを以下のとおり選定した。
 - ○原子炉建屋の天井が崩落した場合に,原子炉補機冷却系が機能喪失し,最終ヒ ートシンク喪失に至るシナリオ。
 - ○タービン建屋の天井が崩落した場合にタービンや発電機に影響が及びタービ ントリップに至るシナリオ。

- ○コントロール建屋の天井が崩落した場合に,建屋最上階に設置している中央制 御室が物理的又は積雪(雪融け水含む)により機能喪失し,計測制御系機能喪 失に至るシナリオ。さらには中央制御室の下階に位置している直流電源設備が 溢水により機能喪失に至るシナリオ。
- ○軽油タンクの天井が崩落した場合で、かつ外部電源喪失が発生している状況下 において、非常用ディーゼル発電設備(ディタンク)の燃料枯渇により、全交 流電源喪失に至るシナリオ。
- ○送電線や碍子へ雪が着氷することによって,相間短絡を起こし外部電源が喪失 するシナリオ。
- ○D/G室空調給気口閉塞により非常用ディーゼル発電設備が機能喪失,かつ外部 電源喪失の同時発生により全交流電源喪失に至るシナリオ。

上記シナリオについては、いずれも運転時の内部事象や地震、津波レベル1PRA にて考慮しているものであり、追加すべき新たなものはない。

また、1.(4)項での起因事象の特定結果のとおり、上記シナリオの内、建屋又 は軽油タンクの天井崩落やD/G室空調給気口閉塞については、事象の発生頻度が 表4.1及び表4.2に示したように非常に小さいこと、除雪管理により発生を防止可 能なことから、発生自体が非常に稀な事象であり、事故シーケンス抽出にあたっ て考慮すべき起因事象として選定不要であると判断した。

よって、事故シーケンス抽出にあたって考慮すべき起因事象は、外部電源喪失 のみとなるが、各建屋及び軽油タンク等の健全性が確保される限り、非常用交流 電源等の必要な影響緩和設備の機能維持が図られるため、事故シーケンスに至る ことはない。

従って,積雪事象を要因として発生しうる有意な頻度又は影響のある事故シー ケンスは生じないと判断した。

以上

設計基準を超える低温事象に対する事故シーケンス抽出

- 1. 起因事象の特定
- (1)構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 柏崎刈羽原子力発電所の立地環境,国外の評価事例や国内で発生したト ラブル事例等から低温に対する発電所への影響を調査し,その結果,以下 の通り機能喪失モードを抽出した。
 - 屋外タンク及び配管内流体の凍結
 - ② ヒートシンク(海水)の凍結
 - ③ 着氷による送電線の相間短絡
- (2) 評価対象設備の選定

(1)項で抽出した損傷・機能喪失モードに対し,影響を受ける可能性のある設備等の内,プラントの運転継続や安全性に影響を及ぼす可能性のある 設備等を評価対象設備として選定する。

具体的には,以下に示す屋外設置の設備等を評価対象設備として選定した。

(屋外設備)

- ・軽油タンク及び非常用ディーゼル発電設備燃料移送系(以下,軽油タン ク等)
- · 取水設備(海水)
- ·送変電設備
- (3) 起因事象になりうるシナリオの選定

(1)項で抽出した各損傷・機能喪失モードに対して,(2)項で選定した評価対象設備への影響を検討の上,発生可能性のあるシナリオを選定した。

①屋外タンク及び配管内流体の凍結

低温によって軽油タンク等内の軽油が凍結するとともに,以下③に示す 外部電源喪失が発生している状況下においては,非常用ディーゼル発電設 備(ディタンク)の燃料枯渇により,全交流電源喪失に至る。

②ヒートシンク(海水)の凍結

低温によって柏崎刈羽原子力発電所周辺の海水が凍結することは起こ

りえないと考えられるため、この損傷・機能喪失モードは考慮しない。

③着氷による送電線の相間短絡

送電線や碍子へ雪が着氷(着氷雪)することによって,相間短絡を起こ し外部電源が喪失するシナリオ。

(4) 起因事象の特定

(3)項で選定した各シナリオについて,想定を越える低温事象に対しての 裕度評価(起因事象発生可能性評価)を実施し,事故シーケンスグループ抽 出にあたって考慮すべき起因事象の特定を行った。

①屋外タンク及び配管内流体の凍結

低温に対して設計上の配慮はなされているものの,設計基準を超える低 温事象に対しては発生を否定できないため,軽油タンク等内の軽油の凍結 を想定した場合,外部電源喪失の同時発生時においては,非常用ディーゼ ル発電設備(ディタンク)の燃料枯渇により全交流電源喪失に至るシナリ オは考えられる。

ただし、軽油タンク等内の軽油が凍結に至る温度-20℃は、年超過確率 評価上、約10⁻⁷/年(10⁻⁷/年の年超過頻度に対する温度は-21.2℃)となる ことから、起因事象としての発生頻度は十分に小さい。

②ヒートシンク(海水)の凍結

上述のとおり、この損傷・機能喪失モードは考慮しないため、想定する シナリオはない。

③送変電設備の屋外設備への着氷

着氷に対して設計上の配慮はなされているものの,設計基準を超える低 温事象に対しては発生を否定できないため,送変電設備の損傷に伴う外部 電源喪失については考慮すべきシナリオとして選定する。

2. 事故シーケンスの特定

1. にて設計基準を超える低温事象に対し発生可能性のある起因事象として 全交流電源喪失と外部電源喪失を選定したが、いずれも運転時の内部事象や 地震、津波レベル1PRAにて考慮していることから、追加すべき新しい事故シ ーケンスではない。

また、上述のとおり、軽油タンク等内の軽油が凍結に至る低温事象は、年 超過確率評価上、約10⁻⁷/年と非常に稀な事象であることから、低温事象を要 因とする全交流電源喪失についての詳細評価は不要と考えられる。

よって、事故シーケンス抽出にあたって考慮すべき起因事象は、外部電源

喪失のみとなるが、軽油タンク等内の軽油が凍結する可能性の小ささを踏ま えると、有意な頻度又は影響のある事故シーケンスは生じないと判断した。

以上

設計基準を超える落雷事象に対する事故シーケンス抽出

- 1. 起因事象の特定
- (1)構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 落雷事象により設備等に発生する可能性のある影響について,国外の評価 事例,国内で発生したトラブル事例も参照し,以下のとおり,損傷・機能喪 失モードを抽出した。
 - ① 落雷により屋内外計測制御設備に発生するノイズ
 - ② 落雷により屋外設備に発生する雷サージ
 - ③ 落雷により屋外及び屋内設備に発生する誘導電位
- (2) 評価対象設備の選定

(1)項で抽出した損傷・機能喪失モードに対し,影響を受ける可能性のある 設備の内,プラントの運転継続や安全性に影響を及ぼす可能性のある設備等を 評価対象設備として選定する。

ただし, 落雷については, 建屋内外を含め全ての設備等に影響が及ぶ可能性 が考えられるため, 具体的な設備の特定は実施せず, 次項の起因事象になりう るシナリオの選定にあたっては, 影響範囲が同様である地震 PRA の評価を参照 し行うこととする。

(3) 起因事象になりうるシナリオの選定

(1)項で抽出した損傷・機能喪失モードに対し,(2)項で選定した評価対象 設備への影響を検討の上,発生可能性のあるシナリオを選定した。

シナリオの作成に関しては、「原子力発電所の地震を起因とした確率論的 安全評価に関する実施基準:2007」((社)日本原子力学会)および柏崎刈羽 原子力発電所7号炉に対する地震 PRA の起因事象選定の考え方から、落雷で の発生可能性のある起因事象となりうるシナリオについて検討した。

ただし、落雷の影響として構造損傷は発生しないことから、地震 PRA にて 考慮している起因事象の内、原子炉格納容器及び圧力容器の損傷、LOCA 事象 といった建屋・構造物の損傷については除外した。

また,設計基準を上回る落雷では,ノイズにより計測制御設備が誤動作し スクラムする可能性がある。また,雷サージや誘導電位によりプラントが影 響を受けた場合,その異常(タービントリップ等)を検知しスクラムするこ とから、プラントスクラム後を想定した。

落雷については単発雷を想定すると,複数の系統に期待出来る設備につい ては区分分離が実施されているので,機能喪失することはない。従って,想 定を超える落雷の複数発生により生じるシナリオを想定した。

① 落雷により屋内外計測制御設備に発生するノイズ

計測制御設備誤動作によりプラントスクラムに至るシナリオ。

② 落雷により屋外設備に発生する雷サージ

屋外設備(送電線や送電鉄塔,変圧器,屋外設置タンク)への落雷により,当該設備の機能喪失に至るシナリオ。また,外部とのケーブルを融通している建屋内の制御盤・電源盤が機能喪失に至るシナリオ。

③ 落雷により屋外及び屋内設備に発生する誘導電位

屋外及び屋内設備に発生する誘導電位により,建屋内設備が機能喪失す るシナリオ。

(4) 起因事象の特定

(3)項で選定した各シナリオについて,想定を上回る落雷(雷撃電流値)に 対する裕度評価(起因事象発生可能性評価)を実施し,事故シーケンスグル ープ抽出にあたって考慮すべき起因事象の特定を行った。

① 落雷により計測制御設備に発生するノイズ

当該事象の発生時には、計測制御設備誤動作によりプラントスクラム に至る可能性はあるが、ノイズの影響は計測制御設備に限定され、仮に 誤動作に至る場合でもプラントはスクラムし、以降の事象進展について は内部事象 PRA における過渡事象に含まれるため、起因事象としてはそ の他過渡事象として整理する。スクラム以外の誤動作(ポンプの誤起動 等)については、設備の機能喪失には至らず、かつ復旧についても容易 であることから、起因事象としては抽出しない。

② 落雷により屋外設備に発生する雷サージ

屋外変圧器に過度な電流が発生した場合,機器には雷サージの影響を 緩和するため保安器が設置されているが,設計を超える落雷が発生した 場合,外部電源喪失に至る可能性がある。さらに,屋外設置のタンク類 (軽油タンク,液化窒素貯槽)の内,軽油タンクと屋内非常用ディーゼル 発電設備制御盤を融通するケーブルへの雷サージによる非常用ディー ゼル発電設備機能喪失に至る場合,全交流電源喪失となることから起因 事象として抽出した。また,シナリオとして抽出されない各個別機器の 機能喪失についてはその他過渡事象として考慮した。

③ 落雷により屋外及び屋内設備に発生する誘導電位

落雷による屋外及び屋内設備へ発生する誘導電位については、その影響が広範囲に渡るため、地震 PRA にて選定される起因事象の内、建屋・ 構造物の損傷を除外した起因事象として下記を抽出した。ただし、スク ラム後の状態を想定していることから、ATWS については対象外とし、下 記に含まれない事象についてはその他過渡事象とした。柏崎刈羽原子力 発電所7号炉に対する地震 PRA での起因事象選定のフローを参考に落雷 により発生しうる起因事象選定を実施した。(図1参照)

- ·外部電源喪失
- · 全交流電源喪失
- ·原子炉補機冷却系喪失
- · 直流電源喪失
- 計測・制御系喪失に伴う制御不能
- ・その他過渡事象

上記起因事象の内,安全上重要な設備の損傷を要因とするものについて,設計基準雷撃電流値200kAを超える雷撃電流値に対する裕度(起因事象発生可能性)を評価した。

評価は、過去に実施した雷インパルス試験結果をもとに、雷撃電流に より発生する誘導電位が各設備の絶縁耐力値を上回る雷撃電流値を評 価し、その雷撃電流値の発生可能性について評価を実施した。具体的に は、印加電流とそれにより発生する誘導電位は比例関係にあることが知 られていることから、過去の電インパルス試験結果から印加電流(雷撃 電流)に応じて発生する誘導電位を推定し、各設備の絶縁耐力値(設計 値が低い計測制御設備:雷インパルス試験絶縁耐力値 1000V) との比較 により機能喪失判断を実施した。6 号炉の場合、印加電流に対し発生し うる最大の誘導電圧は 200kA 換算で 709.3V であるが(表 1 参照), こ の関係から絶縁耐力値 1000V に達する雷撃電流値は 282kA(発生頻度は 8.7×10⁻⁶件/年)で設備損傷と判断する。7号炉の場合表2より絶縁耐 力値 1000V に達する雷撃電流値は 620kA(発生頻度 1.4×10⁻⁷件/年)と なる。従って,安全上重要な設備が損傷に至る雷撃が発生する可能性は 非常に小さく、かつ起因事象の発生には複数区分の設備が損傷すること が必要となるため、落雷を要因とする上記起因事象の発生は極低頻度事 象であるため考慮不要とした。

発点- 着点	ケーブル 種類	誘導電圧測定値(V) (()内は印加電流(A))		誘導電圧 200kA 換算値(V)	
		発点側	着点側	発点側	着点側
R/B(FMCRD) - C/B	計装	0.6(900)	1.06(888)	133.3	238.7
R/B(4F 東側)- T/B	計装	3. 22 (908)	0.012(884)	709.3	2.7
R/B(4F 東側 以外)- T/B	制御	0.84(900)	0.042(900)	186. 7	9. 3
R/B2F — B3F	計装	0.1(888)	0.24(896)	22.5	53.6

表1. 雷インパルス試験結果によるケーブルへの誘導電圧(6 号炉)

表 2. 雷インパルス試験結果によるケーブルへの誘導電圧(7 号炉)

	ケーブル 種類	誘導電圧測定値(V) (()内は印加電流(A))		誘導電圧	
発点- 着点				200kA 換算値(V)	
		発点側	着点側	発点側	着点側
R/B(FMCRD) - C/B	計装	1.1(868)	0.34(872)	253.5	78.0
R/B(4F 東側) — T/B	計装	5.04(876)	0.32(868)	1150.7 *	73.7
R/B(4F 東側	制御	1 04(004)	1 1 (868)	220 1	200 G
以外)— T/B	ተካባሥካ	1.04(904)	1.4(000)	230.1	322.0
R/B2F — B3F	計装	0.12(864)	0.66(872)	27.8	151.4

※柏崎刈羽原子力発電所7号炉の場合, R/B(4F 東側) - T/B間で最大約1150V/200kAの誘導電位が発生するが,当該区間を融通しているのは「R/A 外気差圧発信器」のみであり,差圧発信器にはアレスタ(雷インパルス試験耐電圧値:15kV)が内蔵されており,機器に影響を及ぼすことは無い。

図1 原子炉の燃料の重大な損傷に至る起因事象選定フロー(落雷)

2. 事故シーケンスの特定

1. にて設計基準を超える落雷事象に対し発生可能性のあるシナリオ及び起因事象として以下の通り抽出した。

- ○落雷により計測制御機器に発生するノイズの影響により、プラントスク ラムに至るシナリオ
- ○屋外設備への雷サージの影響により,外部電源喪失,全交流電源喪失及 びその他過渡事象に至るシナリオ
- ○建屋内外への雷による誘導電流の影響により,各種設備が機能喪失に至 るシナリオ

上記のシナリオにおける起因事象については、内部事象や地震、津波レベル1PRAにて考慮しており、落雷により追加するべき事故シーケンスは無いと判断した。

また, 上記シナリオの発生頻度は, 1. (4)に示した通り極低頻度であること, または発生した場合であっても緩和設備に期待出来ることから, 有意な 頻度または影響をもたらす事故シーケンスには至らないものと判断した。

以上

設計基準を超える火山事象に対する事故シーケンス抽出

- 1. 起因事象の特定
 - (1)構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 火山事象の内,火砕流や火山弾といった原子力発電所の火山影響評価ガイド (制定 平成25 年 6 月 19 日 原規技発第 13061910 号 原子力規制委員会決定) (以下,影響評価ガイド)において設計対応不可とされている事象については, 影響評価ガイドに基づく立地評価にて原子力発電所の運用期間中に影響を及ぼ す可能性が無いと判断されている。よって,個々の火山事象への設計対応及び運 転対応の妥当性について評価を行うため抽出した降下火砕物のうち火山灰(以下, 降下火山灰)を対象に原子力発電所への影響を検討するものとする。

降下火山灰により設備等に発生する可能性のある影響について,影響評価ガイ ドも参照し,以下のとおり,損傷・機能喪失モードを抽出した。

- 降下火山灰の堆積荷重による静的荷重
- ② 降下火山灰による取水口及び海水系の閉塞
- ③ 降下火山灰による換気空調系フィルタの閉塞
- ④ 火山灰に付着している腐食成分による化学的影響
- ⑤ 火山灰の送電網又は変圧器への付着による相間短絡
- ⑥ 降下火山灰によるアクセス性や作業性の悪化
- (2) 評価対象設備の選定

(1)項で抽出した各損傷・機能喪失モードに対し,影響を受ける可能性のある 設備の内,プラントの運転継続や安全性に影響を及ぼす可能性のある設備等を評 価対象設備として選定する。

① 降下火山灰の堆積荷重による静的荷重

(建屋)

原子炉建屋, コントロール建屋, タービン建屋

(屋外設備)

軽油タンク,非常用ディーゼル発電設備燃料移送系(以下,軽油タンク 等)

降下火山灰による取水口及び海水系の閉塞

取水口及び海水系(原子炉補機冷却海水系)

- ③ 降下火山灰による換気空調系フィルタの閉塞
 - ·中央制御室換気空調
 - ・ディーゼル発電機室非常用給気設備(6号炉),非常用電気品区域換気 空調(7号炉)(以下,D/G室空調)
- ④ 火山灰に付着している腐食成分による化学的影響
 軽油タンク等
- ⑤ 火山灰の送電網又は変圧器への付着による相間短絡 送変電設備
- ⑥ 降下火山灰によるアクセス性や作業性の悪化– (アクセスルート)
- (3) 起因事象になりうるシナリオの選定

(1)項で抽出した損傷・機能喪失モードに対して,(2)項で選定した評価対象 設備への影響を検討の上,発生可能性のあるシナリオを選定した。

降下火山灰の堆積荷重による静的荷重

<建屋>

○原子炉建屋

原子炉建屋屋上が火山灰堆積荷重により崩落した場合に,建屋最上階 に設置している原子炉補機冷却系のサージタンクが物理的に損傷,機能 喪失し,最終ヒートシンク喪失に至る。

○タービン建屋

タービン建屋屋上が火山灰堆積荷重により崩落した場合に, 建屋最上 階に設置しているタービン, 発電機に影響が及び, タービントリップに 至る。

○コントロール建屋

コントロール建屋屋上が火山灰堆積荷重により崩落した場合に,建屋 最上階に設置している中央制御室内設備が損傷し,計測制御系機能喪失 に至る。

<屋外設備>

○軽油タンク

軽油タンクが火山灰堆積荷重により天井崩落,破損に至り,以下⑤に 示す外部電源喪失が発生している状況下においては,非常用ディーゼル 発電設備(ディタンク)の燃料枯渇により,全交流電源喪失に至る。

添 2-4-2

建屋及び屋外設備に対する降下火山灰堆積荷重により発生可能性のある シナリオは以下のとおり。

② 降下火山灰による取水口及び海水系の閉塞

海水中への降下火山灰による取水口や海水系への影響については,定量 的な裕度評価は困難ではあるが,降下火山灰に対する取水量や取水設備構 造などを考慮すると,取水口閉塞の発生は考えにくく,考慮すべきシナリ オとしては抽出不要と考えられる。

海水系については,海水中の火山灰が高濃度な場合には,熱交換器の伝 熱管,海水ポンプ軸受の閉塞による異常磨耗や海水ストレーナの自動洗浄 能力を上回ることによる閉塞により,海水系設備の機能喪失,最終ヒート シンク喪失に至る。

③ 降下火山灰による換気空調系フィルタの閉塞

降下火山灰によって中央制御室換気空調および D/G 室空調給気口閉塞に より各空調設備が機能喪失に至る。(ただし、中央制御室換気空調につい ては、外気遮断による再循環運転が可能な設計となっているため、考慮す べきシナリオとしては抽出不要とする。)

D/G 室空調給気口閉塞により,非常用ディーゼル発電設備の機能喪失に至る場合において,以下⑤の外部電源喪失が発生している状況下では,全交流電源喪失に至る。

④ 火山灰に付着している腐食成分による化学的影響

火山灰が屋外設備に付着することによる腐食については,屋外設備表面 には耐食性の塗装(エポキシ等)が施されており腐食の抑制効果が考えら れること,腐食の進展速度の遅さを考慮し,適切な保全管理が可能と判断, 考慮すべきシナリオとしては抽出不要とする。

- ⑤ 火山灰の送電網又は変圧器への付着による相間短絡 火山灰が送電網の碍子や変圧器へ付着し、霧や降雨の水分を吸収することによって、相間短絡を起こし外部電源喪失に至る。
- ⑥ 降下火山灰によるアクセス性や作業性の悪化

降下火山灰により屋外現場へのアクセス性や屋外での作業性に影響を及 ぼす可能性があるものの,設計基準対象施設のみで対応可能なシナリオで あれば基本的に屋外での現場対応はなく,仮にアクセス性や屋外の作業性 へ影響が及んだ場合であっても構内の道路又はアクセスルートについては, 除灰を行うことから問題はない。

そのため上記①~⑤の影響評価の結果として、電源車の接続といった屋 外での作業が必要になるケースが確認された場合に、別途、詳細検討する

添 2-4-3

ものとする。

(4) 起因事象の特定

(3)項で選定した各シナリオについて、想定を超える降下火山灰に対しての裕 度評価を実施し、事故シーケンスグループ抽出にあたって考慮すべき起因事象の 特定を行った。(火山事象については、積雪や落雷のように年超過確率の評価が 困難であるため、それに基づく起因事象発生可能性の考慮は実施しない。)

① 建屋天井や屋外設備に対する荷重により発生可能性のあるシナリオ

設計として想定している降下火山灰堆積量30cmは,表4.1に示す各建屋天 井及び軽油タンクの許容荷重より小さく,裕度を有しているものの,各建 屋及び軽油タンクの許容荷重以上に堆積した場合には,(3)項で選定した各 シナリオに至る可能性がある。

ただし,最終ヒートシンク喪失,タービントリップ,計測制御系機能喪 失,全交流電源喪失については,内部事象や地震,津波のレベル1PRAでも 考慮している事象であることから,追加のシナリオではない。

建屋・タンク	許容荷重
原子炉建屋	6 号炉:71cm
	7 号炉:72cm
タービン建屋	6 号炉:53cm
	7 号炉:53cm
コントロール建屋	74cm
軽油タンク	6 号炉:64cm
	7 号炉:64cm

表4.1 各建屋・タンクの火山灰堆積における許容荷重

② 降下火山灰による取水口及び海水系の閉塞

海水中の降下火山灰による海水系への影響については、火山灰の性質で ある硬度を考慮すると、海水中の降下火山灰によって熱交換器の伝熱管や 海水ポンプ軸受の異常磨耗は進展しにくく、また、海水ストレーナの自動 洗浄機能によって、機能喪失することは考えにくい、しかし、何らかの理 由で、海水中の火山灰が大量に流入した場合には、海水系が機能喪失し、 最終ヒートシンク喪失に至る可能性はある。ただし、最終ヒートシンク喪 失は内部事象や地震、津波のレベル 1PRA でも考慮しており追加のシナリオ ではない。

③ 降下火山灰による換気空調系フィルタの閉塞

添 2-4-4
D/G 室空調フィルタへの降下火山灰の影響については,設計基準を超える 降下火山灰に対しても、フィルタ交換が可能な構造であることを考慮する と、換気空調系フィルタの閉塞発生可能性が十分に低減されると考えられ るが、定量的な裕度評価が困難であり、何らかの理由で大量の火山灰が流 入した場合は、非常用ディーゼル発電機の機能喪失に至る。ただし、非常 用ディーゼル発電機の機能喪失は内部事象や地震、津波のレベル 1PRA でも 考慮しており追加のシナリオではない。

- ④ 火山灰に付着している腐食成分による化学的影響
 - 火山灰が屋外設備に付着することによる腐食については,屋外設備表面 に耐食性の塗装(エポキシなど)が施されており腐食の抑制効果があるこ と,及び腐食の進展速度が遅いことを考慮し,適切な保全管理により発生 防止が可能であるため,腐食を要因とする起因事象は考慮不要である。
- ⑤ 火山灰の送電網又は変圧器への付着による相間短絡

降下火山灰の影響を受ける可能性がある送変電設備は,発電所内外の広 範囲に渡るため,全域における管理が困難なことを踏まえると設備等の不 具合による外部電源喪失の発生可能性は否定できない。ただし,外部電源 喪失は内部事象や地震,津波でも考慮しており追加のシナリオではない。

2. 事故シーケンスの特定

1. (3)項にて起因事象となりうるシナリオを以下のとおり選定したが、いずれの シナリオについても、内部事象または地震、津波レベル1PRAにて考慮しているも のであり、追加すべき新たなものはない。

- ・原子炉建屋天井崩落による最終ヒートシンク喪失
- ・タービン建屋天井崩落によるタービントリップ
- ・コントロール建屋天井崩落による計測制御系機能喪失
- ・軽油タンク等の損傷及び外部電源喪失の重畳による全交流電源喪失
- ・海水系の閉塞による最終ヒートシンク喪失
- ・D/G室空調給気口閉塞及び外部電源喪失による全交流電源喪失
- ・送電網又は変圧器への相間短絡による外部電源喪失

また、上記シナリオの内、各建屋及び軽油タンクの天井の崩落については、除灰 により発生防止を図ることが可能であること、 D/G室空調給気口閉塞についてもフ ィルタ交換により発生防止を図ることが可能であることから、それぞれ発生自体が 影響のある事故シーケンスとはならないものと判断した。

以上

添 2-4-5

設計基準を超える風(台風)事象に対する事故シーケンス抽出

1. 起因事象の特定

- (1) 構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 風(台風)事象により設備等に発生する可能性のある影響について,国外の評価 事例,国内で発生したトラブル事例も参照し,以下のとおり,損傷・機能喪失モー ドを抽出した。
 - 風荷重による建屋や設備等の損傷
 - ② 強風により取水口周辺の海に飛散した資機材等による取水口閉塞
 - ③ 強風によるアクセス性や作業性の悪化
- (2) 評価対象設備の選定

(1)項で抽出した損傷・機能喪失モードに対し,影響を受ける可能性のある設備等の内,プラントの運転継続や安全性に影響を及ぼす可能性のある設備等を評価対象設備として選定する。

具体的には,以下に示す建屋及び屋外設置の設備等を評価対象設備として選定した。

- <建屋>
 - ・原子炉建屋, コントロール建屋, タービン建屋
- <屋外設備>
 - 送変電設備
 - ・軽油タンク、非常用ディーゼル発電設備燃料移送系(以下、軽油タンク等)
 - ・取水口
- (3) 起因事象になりうるシナリオの選定

(1)項で抽出した各損傷・機能喪失モード毎に,(2)項で選定した評価対象設備への影響を検討の上,発生可能性のあるシナリオを選定した。

風荷重による建屋や設備等の損傷

建屋及び屋外設備に対する風荷重により発生可能性のあるシナリオは以下の とおり。

<建屋>

○原子炉建屋

風速については、年超過確率評価上、10⁻⁷/年となる風速は55.7m/s(地上

高 10m, 10 分間平均風速)となるが,原子炉建屋については十分な厚さを 有した鉄筋コンクリート造のため,この程度の極めて発生することが稀な風 荷重を想定しても建屋の頑健性は維持されると考えられる。

○コントロール建屋

風速については、年超過確率評価上、10⁻⁷/年となる風速は55.7m/s(地上高 10m, 10 分間平均風速)となるが、コントロール建屋は十分な厚さを有した鉄筋コンクリート造であり、極端な風荷重を想定しても建屋の頑健性は維持されると考えられる。

○タービン建屋

タービン建屋については,建屋上層部が鉄骨造である。万が一,風荷重に より破損に至るような場合は,鉄骨造である建屋上層部が考えられる。その 場合の影響範囲としては,タービンや発電機が想定され,シナリオとしては タービントリップが考えられる。

- <屋外設備>
 - ○送変電設備

風荷重により送変電設備が損傷した場合、外部電源が喪失する。

○軽油タンク等

風速については、年超過確率評価上、10⁻⁷/年となる風速は55.7m/s(地上 高 10m、10 分間平均風速)となるが、この程度の風荷重に対しても軽油タ ンク等が損傷に至ることは無いものの、仮にこれを上回る風荷重に対し軽油 タンク等が損傷し、かつ送変電設備の損傷により外部電源喪失に至っている とすると、非常用ディーゼル発電設備(ディタンク)の燃料枯渇により全交 流電源喪失に至る。

②強風により取水口周辺の海に飛散した資機材等による取水口閉塞

強風により資機材,車両等が飛散して取水口周辺の海に入り取水口を閉塞さ せた場合,原子炉補機冷却海水ポンプの取水ができなくなり最終ヒートシンク 喪失に至るシナリオが考えられるが,取水口を閉塞させる程の資機材や車両等 の飛散は考えられないことから考慮不要とする。

③"アクセス性や作業性の悪化"

強風により屋外現場へのアクセス性や屋外での作業性に影響を及ぶ可能性が あるものの,設計基準対処設備のみで対応可能なシナリオであれば基本的に屋 外現場対応はなく,仮にアクセス性や屋外作業へ影響が及んだ場合であっても 問題はない。

そのため上記①の影響評価の結果として,電源車の接続といった屋外での作 業が必要となるケースが確認された場合に,別途,詳細検討するものとする。 (4) 起因事象の特定

(3)項で選定した各シナリオについて,想定を超える風荷重に対しての裕度評価 (起因事象発生可能性評価)を実施し,事故シーケンスグループ抽出にあたって 考慮すべき起因事象の特定を行った。

① 建屋や屋外設備に対する"荷重"により発生可能性のあるシナリオ

<建屋>

タービン建屋上層部は鉄骨造であり風荷重に対して設計上の配慮はなされ ているものの,設計基準を大幅に超える風荷重が建屋に作用した場合,建屋が 損傷してタービン,発電機に影響を及ぼす可能性は否定できないため,タービ ン建屋損傷に伴うタービントリップについては考慮すべきシナリオとして選 定する。

なお、原子炉建屋及びコントロール建屋については、鉄筋コンクリート造で あり、風荷重よりも大きい地震荷重に対して設計されていることから、年超過 確率10⁻⁷/年の風速55.7m/s(地上高10m,10分間平均風速)を超える風荷重が 作用した場合であっても大規模損傷に至らないと考えられることから風荷重 による建屋損傷シナリオは考慮不要とした。

<屋外設備>

○送変電設備損傷に伴う外部電源喪失

風荷重に対して設計上の配慮はなされているものの,設計基準を超える風 荷重に対して発生を否定できないため,送変電設備の損傷に伴う外部電源喪 失については考慮すべきシナリオとして選定する。

○軽油タンク等損傷に伴う全交流電源喪失

仮に軽油タンク等が損傷し、かつ外部電源喪失の同時発生を想定すると全 交流電源喪失に至るが、軽油タンク等は、年超過確率評価上、10⁻⁷/年となる 風速55.7m/s(地上高10m、10分間平均風速)の風荷重が作用した場合であ っても損傷に至らないことから、起因事象としての発生頻度は十分小さく詳 細評価は不要と考えられる。

- 2. 事故シーケンスの特定
 - 1. (3)項にて起因事象となりうるシナリオを以下のとおり選定した。
 - ○タービン建屋損傷に伴いタービントリップに至るシナリオ
 - ○送変電設備損傷に伴い外部電源喪失に至るシナリオ
 - ○軽油タンク等が損傷,かつ外部電源が喪失している状況下において,非常用デ ィーゼル発電設備(ディタンク)の燃料枯渇により,全交流電源喪失に至るシ ナリオ

上記シナリオについては、運転時の内部事象や地震、津波レベル1PRAにて考慮

しており追加のシナリオはない。

また、上記シナリオの内、全交流電源喪失シナリオは、軽油タンク等の損傷可能 性(年超過確率評価上、<10⁻⁷/年)を考慮すると、発生自体が非常に稀な事象であ り、起因事象としてはタービントリップと外部電源喪失のみを考慮すればよく、原 子炉建屋及びコントロール建屋、軽油タンク等の損傷可能性を踏まえると、これら 起因事象から有意な頻度又は影響のある事故シーケンスは生じないと判断した。

以上

設計基準を超える竜巻事象に対する事故シーケンス抽出

- 1. 起因事象の特定
- (1) 構築物,系統及び機器(以下,設備等)の損傷・機能喪失モードの抽出 竜巻事象により設備等に発生する可能性のある影響について,国外の評価 事例,国内で発生したトラブル事例も参照し,以下のとおり,損傷・機能喪 失モードを抽出した。
 - 風荷重及び気圧差荷重による建屋や設備等の損傷
 - ① 飛来物の衝撃荷重による建屋や設備等の損傷
 - ③ 風荷重,気圧差荷重及び飛来物の衝撃荷重を組み合わせた荷重による建 屋や設備等の損傷
 - ④ 竜巻により取水口周辺の海に飛散した資機材等による取水口閉塞
 - ⑤ 竜巻襲来後のガレキ散乱によるアクセス性や作業性の悪化
- (2) 評価対象設備の選定

(1)項で抽出した損傷・機能喪失モードに対し,影響を受ける可能性のある 設備等の内,プラントの運転継続や安全性に影響を及ぼす可能性のある設備 等を評価対象設備として選定する。

具体的には、以下に示す建屋及び屋外設置の設備等を評価対象設備として 選定した。ただし、屋内設備については、飛来物の建屋外壁貫通を考慮する と屋内設備に影響が及ぶ可能性が考えられるが、個別機器としては特定せず、 地上1階以上かつ PCV 外の機器については損傷を前提とする。

<建屋>

- ・原子炉建屋, コントロール建屋, タービン建屋
- <屋外設備>
 - ・送変電設備,軽油タンク,非常用ディーゼル発電設備燃料移送系
- (3) 起因事象になりうるシナリオの選定

(1)項で抽出した損傷・機能喪失モードに対し,(2)項で選定した評価対象設備への影響を検討の上,発生可能性のあるシナリオを選定した。

シナリオの作成に関しては、「原子力発電所の地震を起因とした確率論的 安全評価に関する実施基準:2007」((社)日本原子力学会)および柏崎刈羽原 子力発電所7号機に対する地震 PRA の結果から,地震により発生する起因事 象を参照し、竜巻での発生可能性のある起因事象となりうるシナリオについて検討した。

竜巻の影響としては, 飛来物の建屋外壁貫通が考えられるものの, 原子炉 建屋等の大規模破損に至ることは考えられないこと, 更には原子炉格納容器 及び原子炉格納容器内の設備まで影響を及ぼすことは考えられないことから, 地震 PRA にて考慮している起因事象の内, 原子炉格納容器の損傷, 原子炉圧 力容器の損傷, LOCA 事象といった建屋・構造物の損傷については除外した。

(1)項で抽出した各損傷・機能喪失モード毎に,(2)項で選定した評価対象設備への影響を検討の上,発生可能性のあるシナリオを選定した。

風荷重及び気圧差荷重による建屋や設備等の損傷

建屋及び屋内外設備に対する風荷重及び気圧差荷重により発生可能性 のあるシナリオは以下のとおり。

<建屋>

○原子炉建屋

竜巻の最大風速については、年超過確率評価上、10⁻⁷/年となる風速 は 90m/s 程度となるが、原子炉建屋については十分な厚さを有した鉄 筋コンクリート造であり、風荷重よりも大きい地震荷重に対して設計 されていることから、この程度の極めて発生することが稀な風荷重に 対しても建屋の頑健性は維持されると考えられる。また、風荷重に加 えて気圧差荷重が作用した場合であっても、風荷重と気圧差荷重を組 み合わせた荷重は、原子炉建屋設計時の地震荷重よりも小さいため建 屋の頑健性は維持されると考えられる。ただし、ブローアウトパネル は、建屋内外の差圧により開放する。

○コントロール建屋

原子炉建屋同様,コントロール建屋は十分な厚さを有した鉄筋コン クリート造であり,風荷重よりも大きい地震荷重に対して設計されて いることから,この程度の極めて発生することが稀な風荷重に対して も建屋の頑健性は維持されると考えられる。また,風荷重に加えて気 圧差荷重が作用した場合であっても,風荷重と気圧差荷重を組み合わ せた荷重は,コントロール建屋設計時の地震荷重よりも小さいため建 屋の頑健性は維持されると考えられる。

○タービン建屋

タービン建屋については、建屋上層部が鉄骨造であるため、年超過 確率10⁻⁷/年以下である風速92m/sを超える竜巻の風荷重及び気圧差荷 重により破損に至る可能性が高いと考えられる。その場合の影響範囲 としては、タービンや発電機が想定され、シナリオとしてはタービン トリップが考えられる。

<屋外設備>

○送変電設備

風荷重により送変電設備が損傷した場合,外部電源が喪失する。 ○軽油タンク,非常用ディーゼル発電設備燃料移送系

竜巻の最大風速については、年超過確率評価上、10⁻⁷/年となる風速 は 90m/s 程度となるが、この程度の風荷重に対しても軽油タンク等が 損傷に至ることは無いものの、仮にこれを上回る風荷重に対し軽油タ ンク等が損傷した場合で、かつ送変電設備の損傷により外部電源喪失 に至っているとすると、非常用ディーゼル発電設備(ディタンク)の 燃料枯渇により全交流電源喪失に至るシナリオが考えられる。

<屋内設備>

- タービン建屋上層部が風荷重及び気圧差荷重により破損に至った場合、タービンや発電機への影響が想定され、シナリオとしてはタービントリップが考えられる。
- 非常用電気品区域換気空調設備は、原子炉建屋内に設置されており 風荷重の影響を直接受けないが、気圧差荷重によりダクト、ファン、 ダンパ等の損傷が考えられる。それらの設備の損傷により、非常用 ディーゼル発電機室の換気が困難になった場合、非常用ディーゼル 発電機室温度の上昇に伴い、非常用ディーゼル発電機が機能喪失、 交流電源喪失に至るシナリオが考えられる。また、その状況下にお いて、送変電設備の損傷により外部電源喪失にも至っているとする と、全交流電源喪失となる。
- ・中央制御室換気空調設備は、コントロール建屋に設置されており、 気圧差荷重によりダクト、ファン、ダンパ等への影響が考えられる。
 それら設備の損傷により中央制御室の換気が困難になった場合、中 央制御室内の温度が上昇するが、即、中央制御室内の機器へ影響が 及ぶことはなく、また、竜巻の影響は瞬時であり竜巻襲来後の対応 は十分可能であるため計測・制御系喪失により制御不能に至るシナ リオは考慮不要とする。
- ② 飛来物の衝撃荷重による建屋や設備等の損傷

建屋及び建屋内外設備に対する飛来物の衝撃荷重により発生可能性の あるシナリオは以下のとおり。

<建屋>

○原子炉建屋, コントロール建屋, タービン建屋

飛来物が建屋外壁を貫通することにより、屋内設備に波及的影響を 及ぼすことが考えられるが、発生可能性のあるシナリオについては、 <屋内設備>で考慮することとする。

<屋外設備>

○送変電設備

風荷重により発生可能性のあるシナリオと同様。
 ○軽油タンク,非常用ディーゼル発電設備燃料移送系
 風荷重により発生可能性のあるシナリオと同様。

<屋内設備>

- 原子炉建屋最上階に設置している原子炉補機冷却系のサージタンク に建屋外壁を貫通した飛来物が衝突して全数機能喪失した場合,原 子炉補機冷却系が喪失し,最終ヒートシンク喪失に至る可能性があ るが,原子炉補機冷却系のサージタンクは,多重化されていること に加えて分散配置されているため原子炉補機冷却系のサージタン クに建屋外壁を貫通した飛来物が衝突して全数機能喪失する確率 は極低頻度であること,更には,竜巻の襲来確率が極低頻度である ことを考慮すると,補機冷却系が喪失するのは107/年より小さくな ることから,最終ヒートシンク喪失に至るシナリオは考慮不要とす る。
- 原子炉建屋3階に設置している非常用ディーゼル発電設備ディタンクに建屋外壁を貫通した飛来物が衝突して全数機能喪失した場合で、かつ送変電設備の損傷により外部電源喪失に至っているとすると、非常用ディーゼル発電設備(ディタンク)の燃料枯渇により全交流電源喪失に至るシナリオが考えられるが、原子炉建屋3階の非常用ディーゼル発電設備ディタンク室のコンクリート外壁の厚さは70cmであり、飛来物の衝突に対して貫通を避けるための十分な厚さであるため、貫通することはないと考えられる。したがって、飛来物による非常用ディーゼル発電設備ディタンクの損傷は考慮不要とする。
- 原子炉建屋1階に設置している非常用ディーゼル発電設備に建屋扉 を貫通した飛来物が衝突して全数機能喪失した場合や3階に設置し ている非常用ディーゼル発電設備室空調給気口に飛来物が衝突し て閉塞し、全数機能喪失した場合で、かつ送変電設備の損傷により 外部電源喪失に至っているとすると、全交流電源喪失に至るシナリ オが考えられるが、非常用ディーゼル発電設備及び空調給気口は多 重化されていることに加えて分散配置されているため、非常用ディ

ーゼル発電設備が全数機能喪失する確率は極低頻度であること、更には、竜巻の襲来確率が極低頻度であることを考慮すると、非常用 ディーゼル発電設備の機能が喪失するのは 10⁻⁷/年より小さくなる ことから、全交流電源喪失に至るシナリオは考慮不要とする。

- コントロール建屋最上階に設置している中央制御室内の計測・制御 設備に建屋外壁を貫通した飛来物が衝突して安全系設備の制御に 係る設備が全数機能喪失した場合,計測制御系機能喪失に至るシナ リオが考えられるが,飛来物の衝突により安全系設備の制御に係る 設備が全数機能喪失するのは,極低頻度であると考えられることか ら飛来物による計測制御系機能喪失シナリオは考慮不要とする。
- タービン建屋2階に設置しているタービンや発電機に建屋外壁を貫通した飛来物が衝突した場合のシナリオとしては、タービントリップが考えられる。
- タービン建屋1階に設置している循環水ポンプに建屋外壁を貫通した飛来物が衝突して全数機能喪失した場合、復水器の真空度が低下し、出力低下または手動停止に至る。

ただし、上記シナリオの内、タービントリップ以外は、飛来物発生の 要因である大規模竜巻の発生頻度が極低頻度であり、更に飛来物が発生 し建屋へ衝突、壁を貫通する可能性、壁を貫通したとしてもそれにより 屋内設備が機能喪失に至る可能性を考慮すると、発生可能性は極めて小 さい。加えて、安全系に関わる設備(原子炉補機冷却系、非常用ディー ゼル発電設備ディタンクなど)は多重化されており、複数区分の設備が 同時に損傷に至らない限り上述の起因事象には至らないことから、極め て稀な事象であり詳細評価不要と判断した。

③ 風荷重,気圧差荷重及び飛来物の衝撃荷重を組み合わせた荷重による建屋 や設備等の損傷

建屋及び屋内外設備に対する組み合わせ荷重により発生可能性のあるシ ナリオについては、①, ②に包絡される。

④竜巻により取水口周辺の海に飛散した資機材等による取水口閉塞

竜巻により資機材、車両等が飛散して取水口周辺の海に入り取水口を閉 塞させた場合、原子炉補機冷却海水ポンプの取水ができなくなり最終ヒー トシンク喪失に至るシナリオが考えられるが、取水口を閉塞させる程の資 機材や車両等の飛散は考えられないことから考慮不要とする。

⑤ "アクセス性や作業性の悪化"

竜巻襲来後のガレキ散乱により屋外現場へのアクセス性や屋外での作 業性に影響を及ぶ可能性があるものの,設計基準対処設備のみで対応可能 なシナリオであれば基本的に屋外現場対応はなく,仮にアクセス性や屋外 作業へ影響がおよんだ場合であっても問題はない。

そのため上記①~④の影響評価の結果として、電源車の接続といった屋 外での作業が必要となるケースが確認された場合に、別途、詳細検討する ものとする。

(4) 起因事象の特定

(3)項で選定した各シナリオについて,想定を超える風荷重,気圧差荷重及 び飛来物の衝撃荷重に対しての裕度評価(起因事象発生可能性評価)を実施 し,事故シーケンスグループ抽出にあたって考慮すべき起因事象の特定を行 った。

 建屋や建屋内外設備に対する"風荷重及び気圧差荷重"により発生可能 性のあるシナリオ

<建屋>

タービン建屋上層部は鉄骨造であり年超過確率 10⁻⁷/年以下である風速 92m/s を超える竜巻の風荷重及び気圧差荷重が建屋に作用した場合, 建 屋が損傷してタービン,発電機に影響を及ぼす可能性は否定できないた め,タービン建屋損傷に伴うタービントリップについては考慮すべきシ ナリオとして選定するが,運転時の内部事象および地震,津波レベル 1PRA でも考慮しているものであり追加のシナリオではない。

なお,原子炉建屋及びコントロール建屋については,鉄筋コンクリー ト造であり,風荷重よりも大きい地震荷重に対して設計されており,年 超過確率10⁻⁷/年以下である風速92m/sを超える竜巻の風荷重及び気圧差 荷重が作用した場合であっても大規模損傷に至らないことから風荷重及 び気圧差荷重による建屋損傷シナリオは考慮不要としている。

<屋外設備>

○送変電設備損傷に伴う外部電源喪失

風荷重に対して設計上の配慮はなされているものの,設計基準を超 える風荷重及び気圧差荷重に対して発生を否定できないため,送変電 設備の損傷に伴う外部電源喪失については考慮すべきシナリオとして 選定する。

○軽油タンク等損傷に伴う全交流電源喪失

仮に軽油タンク等が損傷し、かつ外部電源喪失の同時発生を想定す

ると全交流電源喪失に至るが,軽油タンク等は,年超過確率10⁻⁷/年以 下である風速92m/sを超える竜巻の風荷重及び気圧差荷重が作用した 場合であっても損傷に至らないことから,起因事象としての発生頻度 は十分小さく詳細評価は不要と判断した。

- <屋内設備>
- ○タービン建屋の損傷によりタービンや発電機に影響及ぼすことによ るタービントリップ

先述のとおり、タービン建屋損傷によりタービンや発電機に影響 を及ぼす可能性は否定できないため、タービン建屋損傷に伴うター ビントリップについては考慮すべきシナリオとして選定するが、運 転時の内部事象および地震、津波レベル 1PRA でも考慮しているも のであり追加のシナリオではない。

○非常用電気品区域換気空調設備損傷に伴う全交流電源喪失

非常用電気品区域換気空調設備の内,気圧差の影響を受けやすい ダクトについては,設計を超える荷重が作用した場合変形する可能 性はあるものの,一定の風量は確保可能であると考えられるため, 非常用電気品区域換気空調設備損傷に伴う非常用ディーゼル発電設 備の機能喪失(外部電源喪失状況下においては全交流電源喪失)が シナリオとしては考えられる。しかし,内部事象レベル 1PRA でも 考慮しており追加のシナリオではない。

② 建屋や建屋内外設備に対する"飛来物の衝撃荷重"により発生する可能 性のあるシナリオ

<建屋>

原子炉建屋,コントロール建屋及びタービン建屋は,飛来物が建屋外 壁を貫通することにより,屋内設備に波及的影響を及ぼすが,発生可能 性のあるシナリオは,<屋内設備>で考慮することとする。

<屋外設備>

○送変電設備損傷に伴う外部電源喪失

飛来物の衝撃荷重に対して発生を否定できないため、送変電設備の 損傷に伴う外部電源喪失については考慮すべきシナリオとして選定す るが、運転時の内部事象および地震、津波レベル 1PRA でも考慮して いるものであり追加のシナリオではない。

○軽油タンク等損傷に伴う全交流電源喪失

仮に軽油タンク等が損傷し、かつ外部電源喪失の同時発生を想定す ると全交流電源喪失に至るが、全交流電源喪失は運転時の内部事象お よび地震、津波レベル1PRAでも考慮しているものであり追加のシナリ

添 2-6-7

才ではない。

<屋内設備>

- ○飛来物がタービンや発電機に衝突することに伴うタービントリップ タービン建屋上層部は鉄骨造であり、外壁については、原子炉建 屋やコントロール建屋に比べて強度が低い材質であるため飛来物の 貫通リスクが高く、タービン建屋 2 階に設置しているタービンや発 電機に飛来物が衝突する可能性は否定できないため、飛来物がター ビンや発電機に衝突することに伴うタービントリップについては考 慮すべきシナリオとして選定するが、運転時の内部事象および地震、 津波レベル 1PRA でも考慮しているものであり追加のシナリオでは ない。
- ○循環水ポンプが飛来物の衝突により損傷し,復水器の真空度が低下す ることに伴い出力低下または手動停止に至るシナリオ

タービン建屋1階の循環水ポンプエリアの外壁には、開口部(ルーバ)があるため飛来物の侵入リスクが高く、循環水ポンプに飛来物が衝突し、循環水ポンプが損傷する可能性がある。その場合の影響としては、復水器真空度低下に伴う出力低下または手動停止などの措置が考えられるが、運転時の内部事象および地震、津波レベル 1PRAでも考慮しているものであり追加のシナリオではない。

- 2. 炉心損傷事故シーケンスの特定
 - 1. (3)項にて起因事象となりうるシナリオを以下のとおり選定した。
 - ○風荷重及び気圧差荷重によるタービン建屋損傷または、飛来物が建屋外 壁を貫通し、タービンや発電機に衝突することに伴いタービントリップ に至るシナリオ
 - ○送変電設備損傷に伴い外部電源喪失に至るシナリオ
 - ○軽油タンク等が損傷,かつ外部電源喪失している状況下において,非常 用ディーゼル発電設備の燃料枯渇により,全交流電源喪失に至るシナリ オ
 - ○循環水ポンプが飛来物の衝突により損傷し,復水器の真空度が低下する ことに伴い出力低下または手動停止に至るシナリオ

上記シナリオについては、運転時の内部事象及び地震、津波レベル1PRAにて考慮しており追加のシナリオはない。

また、上記シナリオの内、全交流電源喪失シナリオは、軽油タンク等の損 傷可能性(年超過確率10⁻⁷/年未満)を考慮すると、発生自体が非常に稀な事 象であることから起因事象としてはタービントリップと外部電源喪失のみを 考慮すればよく,原子炉建屋及びコントロール建屋,軽油タンク等の損傷可 能性及び飛来物の建屋貫通による屋内設備の損傷可能性を踏まえると,これ ら起因事象から有意な影響のある炉心損傷事故シーケンスは生じないと判断 した。

以上

【凡例】 I:各自然現象から同じ影響がそれぞれ作用し、重ね合わさって増長するケース I:ある自然現象の防護施設が他の自然現象によって機能喪失することにより、影響が増長するケース Ⅲ-1:他の自然現象の作用により前提条件が変化し、影響が増長するケース Ⅲ-2:他の自然現象の作用により影響が及ぶようになるケース

				i			ii				1		2		3	4	5			6	7	8	9				10	
主事象			地震			津波			ß	洚水		積雪		雪崩	ひょう, あら れ	氷嵐,雨氷,る	みぞれ	氷	目	霜,霜柱	結氷板,海 氷,氷壁	風(台風	含む)		肓	ī巻		
	in the second seco	重畳事象	損傷・機能喪失 モード	①荷重(地 震荷重)	①浸水	②荷重(衝 突) 襲来物・波 力	③浮力	④閉塞(取水)製来物・海底砂移動	⑤冷却機 能低下:海 水系	①浸水	②荷重(堆 積)	①荷重(堆 積)	②相間短 絡	③閉塞(空 調)	①荷重(衝 突)	①荷重(衝 突)	①荷重(堆 ②] 積) 調)	閉塞(空	①荷重(堆 積)	②閉塞(空 調)	<u>(</u>)-	①閉塞(取 水)	①荷重(風 (圧)	2)閉塞(取 水)	①荷重(風 圧)	②荷重(気 圧差)	③荷重(衝 突)	④閉塞(取 水)
	自然現象	損傷・機能喪失モード	備考	-																		発生しない						
i	地震	①荷重(地震荷重)		\sim	П	Ι	-	Ⅲ −1	П	П	П	-	-	-	III-1	Ι	-	-	-	-	-		Ι	-	Ι	Ι	I, Ш, Ш-1	Ⅲ −1
		①浸水		- 1	\sim	\sim	\sim	\sim		Ι	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	П, Ш-1	-
ii	津波	 ②荷重(衝突) 襲来物・波力 ③浮力 ③ (明本) 		I Ⅲ-1	\square		\square	\square	\mathbb{N}	-	-	-	-	-	-	I -	-	-	-	-	-	\mathbb{N}	I -	-	I _	-	I _	-
		襲来物·海底砂移動		-						-	-	-	-	-	-	-	-	-	-	-	-		-	Ι	-	-	-	I, Ⅲ-1
		⑤冷却機能低下:海水系		-		/		/		-	-	-	-	-	-	-	-	-	-	-	-	/	-	-	-	-	-	
1	降水	①浸水 ②共季(世徒)		- 	I	-	I	-	-		\sim	- T	Ⅲ −1	-	-	-	- T	-	- T	-	-		-	-	-	-	-	
		②何里(堆積) ①荷重(堆積)		Ш,Ш-1	-	-	-	-	-	π	ΤΠ		<u> </u>	<u> </u>		-	I	_	I	-	-		-	_	_	-	-	
2	積雪	②相間短絡 ③閉塞(空調)			-	-	-	-	-	- -	-	\mathbb{N}	\mathbb{N}	\mathbb{N}	- -	-	-	- I	-	– I	-	\mathbb{N}	-	-	-	- I	-	-
3	雪崩	①荷重(衝突) ①#毛(衛空)		I	-	I	-	-	-	Ι, Π	-	-	-	-	<u> </u>	I	-	-	-	-	-	/	I	-	I	-	I	-
4	いより,められ	①何里(衝突)①荷重(堆積)	1	1 1	-	-	-		-	- Π	-	- T			-	-		_	- I	-	_		I ∭−1	-	I Ⅲ-1	-	-	-
5	氷嵐,雨氷,みぞれ	②閉塞(空調)	1	-	-	-	-	-	-	-	-	-	-	Ι	-	-		\sim	-	Ι	-	\sim	-	-	-	I	-	-
6	氷晶	①荷重(堆積)	I	Ⅲ −1	-	-	-	-	-	Π	Ι, Π	Ι	-	-	-	-	I	-	\sim		-		Ⅲ −1	-	Ⅲ −1	-	-	
-		②閉塞(空調)	I		-	-			-	-		-	-	Ι		-	-	Ι					-	-	-	Ι		<u> </u>
7	稻,稻灶 結氷板 海氷 氷辟	① 閉塞(取水)		-	-	-	-	-	-	-		-	-	-	-	-	-	_		-			-	-	-	-	-	
0	□(小□会t.)	①荷重(風圧)		Ι	-	Ι	-	-	-	-	-	-	-	Ⅲ-1	Ⅲ −1	Ⅲ-1	-	Ш-1	-	Ⅲ-1	-				Ι	-	Ι	-
9	風(台風古む)	②閉塞(取水)		-	-	-	-	Ι	-	-	-	-	-	-	-	-	-	-	-	-	-				-	_	-	Ι
		①荷重(風圧)		I	-	I	-	-	-	-	-	-	-	Ⅲ −1	Ⅲ −1	III−1 x	-	Ⅲ −1	-	Ⅲ −1	-		I	-				
10	竜巻	 ②荷重(気圧差) ③荷重(衝空) 		I	-	I	-	-	- П	-	-	-	-	-	- T	I	-	-	-	-	-		I	-				
		④何重(圖天) ④閉塞(取水)		-	-	-	-	I	-	-	-	-	-	-	-	-	-	_	_	-	-		-	I				\sim
11	砂嵐	①閉塞(空調)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
12	霧,靄			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	/	-	-	-	-	-	
13	高温	 外気温度高 (冷却機能低下:空調) 		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
14	低温	①外気温度低(凍結)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
15	高温水(海水温高)	①海水温度高		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
16	低温水(海水温低)	(冷却機能低下:海水糸) ①-		-	_	-	_	-	_	-	-	-	_	-	-	-	_	_	_	-	_		_	-	-	-	-	+
17	極限的な圧力	○ ① 告重(写正美)		т	_	т	т	<u> </u>	_	_	т	т	_	_	_	т	_	_		_	_		т	_	т	т	т	
10	(気圧高/低)			1		1	1				1	1				1							1		1	1	1	<u> </u>
18	高潮	①音リーン&誘導電加		-	- I	-	- I	-	_	- I	-	-	-	_	-	-	_	_	_	-	-		_	_	-	-	-	-
20	波浪	 ①浸水 		-	I	-	I	-	-	I	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
21	風津波	①浸水		-	Ι	-	Ι	-	-	Ι	-	-	-	-	-	-	-	-	-	-	-	/	-	-	-	-	-	
22	外部洪水	①浸水		-	I	-	I	-	-	I	-	-	-	-	-	-	-	-	-	-	-	/	-	-	-	-	-	
23	他・何川の永位低下 河川の汗同	<u>0-</u>		-	-	-	-	-	_	-	-	-	-	-	-	-	_	_	_	-	-		_	_	-	-	-	-
25	干ばつ	<u></u>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
		①荷重(堆積)		Ⅲ-1	-	-	-	-	-	П	Ι, Π	Ι	-	-	Ⅲ-1	-	I	-	Ι	-	-		-	-	-	-	-	-
26	dertu	②閉塞(取水) ◎問案(恋調)		-	-	-	-	I	-	-	-	-	-	- T	-	-	-	- T	-	- T	-	/	-	I	-	- T	-	I
20	ХШ	③闭莖(空調) ④腐食		Π	П	-	-	-	_	-	-	-	_	-	_	-	_	-		-	_		-	_	_	-	-	-
		⑤相間短絡		<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	I	<u>1 </u>		<u> </u>	<u> </u>	-				/				<u> </u>	<u> </u>	<u> </u>
27	地滑り	①荷重(衝突)		Ι	-	Ι	-	-	-	П	-	-	-	-	Ι	Ι	-	-	-	-	-	/	Ι	-	Ι	-	Ι	
28	海水中の地滑り	 (1)閉墨(取水) ①地般不定定 		-	-	-	-	I	11	-	-	-	-	-	-	-	-	-	-	-	-		-	I	-	-	-	I
30	地面座起/低樹位 十地の浸食、カルスト	①地盤不安定		-	_	-	-	-	_	-	-	-	_	-	_	-	_	-		-	_		-	_	_	-	-	
31	土の伸縮	 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
32	海岸浸食	①冷却機能低下:海水系		-	-	-	-	-	Ι	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
33	地下水 (冬島/杜渥)	 (1)浸水 ①地下水の料洞 		-	I	-	-	-	-	I	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
	(多里/伯佝)	 ②地下水の枯渇 ①地般不安定 		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-		-	_	-	-	-	
34	地ト水による浸食	②浸水		<u> </u>	I	-	<u> </u>	-		I		<u> </u>	<u> </u>	-	-	<u> </u>	_	-				\sim			-	<u> </u>	-	<u> </u>
35	森林火災	 ①熱影響 		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	/	-	-	-	-	-	
		(2)外気取人機器及び人への影響 ①問案(取水)	l	-	-	-	-	- T	-	-	-	-	-	-	-	-		-	-	-	-		-	- T	-	-	-	<u> </u>
36	生物学的事象	① 個 加 磁 (取 小)② 個 別 機 器 の 指 傷	1	-	-	-	-	-	-	-	-	-	-	- 1	-	-		-	-	-	-	\sim	-	-	-	-	-	-
97	粘 垢	①浸水		<u> </u>	Ι	<u> </u>	Ι	<u> </u>		I	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		-							_	<u> </u>	<u> </u>	<u> </u>
51	HT DX	②冷却機能低下:海水系		-	-	-	-	-	Ι	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
38	塩害, 塩雲	 (1)腐食 ① 荷重(衝空) 		П	П	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
39	隕石/衛星の落下	①(用里(開天)②(荷重(衝突))		-	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-	-	$\langle \rangle$	-	_	-	-	-	-
		③浸水		-		-		-		<u> </u>	-	-		-	-	-		-		-	-			_	-	-	-	-
40	太陽フレア,磁気嵐	 (1)誘導電流 		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-

【凡例】 I :各自然現象から同じ影響がそれぞれ作用し,重ね合わさって増長するケース Ⅱ :ある自然現象の防護施設が他の自然現象によって機能喪失することにより,影響が増長するケース Ⅲ-1 :他の自然現象の作用により前提条件が変化し,影響が増長するケース Ⅲ-2 :他の自然現象の作用により影響が及ぶようになるケース

<u> </u>				11	12	13	14	15	16	17	18	19	20	21	22	23	24	25			26			27	28	29	30	31
		<u>,</u>			10	10	11	10	10	極限的な	10	10	20			20	21	20			20			21	20	20	土地の浸	01
		王爭象		砂嵐	霧,靄	高温	低温	高温水(海	低温水(海	(「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	落雷	高潮	波浪	風津波	外部洪水	池・河川の	河川の迂	干ばつ			火山			地滑り	海水中(の 地面隆起	食,カルス	土の伸縮
								水温尚)	水温(広)	(気圧高/ 低)						水11/1、1	巴								地宿り	低潮位	ŀ	
					①外気温		①海水温		PEN/																			
		舌里声鱼	損傷·機能喪失	①閉塞(空		度高	①外気温	度高		①荷重(気	 ①雷サー ※8.新満 		D III III						①荷重(堆	②閉塞(取	③閉塞(空		⑤相間短	①荷重(衝	①閉塞(]	取 ①地盤不	①地盤不	①地盤不
		里宜尹豕	モード	調)	<u>(</u>)-	(行却機 能低下・ か	度低(凍 1 結)	 (冷却機能 低下:海水 	(I)-	圧差)	· ン&誘導 雷流	①浸水	①浸水	①浸水	①浸水	(<u>1</u>)-	(<u>1</u>)-	<u>(</u>)-	積)	水)	調)	(4)腐食	絡	突)	水)	安定	安定	安定
						肥 肉「 調)	<u>^ //P /</u>	或 1. 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一			电1/1L																	
	自然現象	損傷・機能喪失モード	備考	発生しない		10.27																						
i	世間	 (1)荷重(地震荷重) 		/	-	-	-	-	-	I	Π	П	Π	п	П	-	-	-	-	-	-	-	-	Ⅲ-1	Ⅲ-1	Ⅲ −1	I. Π −1	L. Π-1
-	- LIAK									-		T	T	I	T												I, III 1	.,
		① 夜 小 ② 荷 重 (衝 空)		$\langle \rangle$	_		-	_	_	_	_	1	1	1	1	_				_	_	_	_		_		1,ш-і	_
		襲来物·波力			-	-	-	-	-	-	Ш	-	-	-	-	-	-	-	-	-	-	-	-	Ш-1	-	-	-	-
ii	津波	③浮力			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		④閉基(取水) 龍立伽·海底砂移動			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ι	-	-	-	-	Ι	-	-	-
		⑤冷却機能低下:海水系		\sim	-	-	-	Ι	-	-	-	-	-	-	-	-	-	-	-	Ι	-	-	-	-	I	-	-	-
1	RA-Ju	①浸水		\sim	-	-	-	-	-	-	-	Ι	Ι	Ι	Ι	-	-	-	Ⅲ-1, Ⅲ-2	- 2	-	-	Ⅲ −1	Ⅲ-1	-	-	I, Ⅲ-1	-
1	年小	②荷重(堆積)		/	-	-	-	-	-	Ι	-	-	-	-	-	-	-	-	Ι	-	-	-	-	-	-	-	-	-
	体局	①荷重(堆積)			-	-	-	-	-	I	-	-	-	-	-	-	-	-	I, Ⅲ-1	-	-	-	III−1	Ⅲ -1	-	-	-	-
2	傾当	④111月起給 ③閉塞(空調)					-			T	+ -	-	-	-		-		<u> </u>		-	 Т	-	-		+		-	-
3	雪崩	①荷重(衝突)	1		-	-	-	-	-	I	- 1	-	-	-	-	-	-	-	-	-	-	- 1	-	T	-	-	-	-
4	ひょう, あられ	①荷重(衝突)		\sim	-	-	-		-	I	<u> </u>	-	-	-	-	-	-	-	-	-		-	-			-	-	-
5	氷嵐 雨氷 みぞれ	①荷重(堆積)		$\langle \rangle$	-	-	-	-	-	Ι	-	-	-	-	-	-	-	-	Ι	-	-	-	Ⅲ −1	Ⅲ-1	-	-	-	-
Ľ		②閉塞(空調)	l		-	-	-	-	-	I	-	-	-	-	-	-	-	-	-	-	Ι	-	-	-	-	-	-	-
6	氷晶	 ①何里(準積) ⑦問塞(売調) 	ł				-	-	-	<u>І</u> т	+ -	-			-	-	-		- 1	-	- Т		ш-1	<u> </u>	-		-	
7	霜.霜柱	(上)−		\sim	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	結氷板,海氷,氷壁	① ①閉塞(取水)	1	\sim	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Q	周(台周今ね)	①荷重(風圧)			-	-	Ⅲ-1	-	-	Ι	П	-	-	-	-	-	-	-	-	-	Ⅲ −1	-	-	-	-	-	-	-
3		②閉塞(取水)			-	-	-	Ι	-	-	-	-	-	-	-	-	-	-	-	Ι	-	-	-	-	Ι	-	-	-
		①荷重(風圧) ◎ 弗香(欠仄革)			-	- T	-	-	-	- T	П	-	-	-	-	-	-	-	- T	-	<u>II</u> −1	-	-	-	-	-	-	-
10	竜巻	② 荷重 (<u>気</u>)上左) ③ 荷重 (衝空)			_	-	-	-	-	-	- Π	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
		④同重(周天) ④閉塞(取水)			-	-	-	I	-	-	-	-	-	-	-	-	-	-	-	I	-	-	-	-	I	-	-	-
11	砂嵐	①閉塞(空調)		\sim	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	霧,靄	<u>()</u> -				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13	高温	①外気温度高			-	\sim	-	I, Ⅲ-1	-	-	-	-	-	-	-	-	-	-	-	-	Ι	-	-	-	-	-	-	-
14	低温	①外気温度低(凍結)		\sim	-	-	\sim	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	高温水(海水温高)	①海水温度高			_	_	-		-	_	_	-	-	-	_	-	-	-	-	-	-	_	-	_	I	_	-	_
16	低温水(海水温低)	(冷却機能低下:海水系)			_	_			<hr/>	_	_	<u> </u>				_		_		_	_	_	_		-		-	_
10	極限的な圧力			$\langle \rangle$		x		_											x		Ţ							
17	(気圧高/低)	①何里(风庄差)			-	1	-	-	-		-	-	-	-	-	-	-	-	I	-	1	-	-	-	-	-	-	-
18	落雷	 ① 雷サージ& 誘導電流 ③ ヨュ 			-	-	-	-	-	-		-	- T	-	-	-	-	-	-	-	-	-	-	-	-	-	- T III 1	-
19	局閉 油油	 ① 浸水 			-	-	-	-	-	-				I	I	-	-	-	-	-	_	_	-	-		-	I, III-1	_
20	風津波	① 浸水 ① 浸水		\sim	-	-	-	-	-	-	-	I	T	- ·	I	-	-	-	-	-	-	-	-	-	-	-	I, Ⅲ 1	-
22	外部洪水	①浸水			-	-	-	-	-	-	-	Ι	Ι	Ι	/	-	-	-	-	-	-	-	-	-	-	-	I,Ⅲ-1	-
23	池・河川の水位低下	0-			-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
24	四川の辻回 王ぼっ	<u>U</u> -			+ -	+ -	+ -	-	-	-	+ -		+ -	-		-		<u> </u>	-	-	+ -	+ -	-			-	-	+ -
20	+u-)	① [−] ①荷重(推積)			_	-	-	_	-	- I	-	-	-	-	-	-	-		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		_	-	-	_
1		②閉塞(取水)	1	\sim	-	-	-	Ι	-	-	-	-	-	-	-	-	-	-	\sim	\sim	\sim	\sim	\sim	-	I	-	-	-
26	火山	③閉塞(空調)	[-	Ι	-	-	-	Ι	-	-	-	-	-	-	-	-		\square		\square	\sim	-	-	-	-	-
1		④腐食			-		-		-	-			-	-		-	-		1					-			-	
07	中心面的	(5)相間短絡 ① 共重(衝突)	1		-	-	-	-	-	- T	-	-	-	-	-	-	-	-	\rightarrow	\rightarrow	\vdash	\vdash		-	-	-	-	-
21	地頂り 海水中の地滑り	①17月里(間天) ①閉塞(取水)	1		-	+ -	+ -	- T	+ -	-	+	+ -	+ -	+ -		-	<u> </u>	+ -		- T	+ -	+ -	+ -		\sim		+ -	+ -
29	地面隆起/低潮位	①地盤不安定	1	\sim	-	- 1	- 1	-	-	- 1	1 -	- 1	- 1	-	- 1	-	- 1	- 1	-	-	- 1	1 -	-	- 1	<u> </u>	\sim	-	- 1
30	土地の浸食、カルスト	①地盤不安定		\sim	-		-		-	-		-		-	-	-	-		-	-			-				\sim	
31	土の伸縮	①地盤不安定			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	/
32	海岸浸食	① 冷却機能低下:海水系	l		-	-	-	I	-	-	-	- T	- T	- T	- T	-	-	-	-	I	-	-	-	-	I	-	- 1 m·	-
33	地下小 (多量/枯濕)	 ① 使 小 ② 地 下 水 の 枯 渇 ② 地 下 水 の 枯 渇 	1	\sim	-	+ -	+ -	-	<u> </u>	-	+ -	-	-	-	-	-	-	+ -	-	_	<u> </u>	-	-	-	+ -	-		ш-1 Ш-1
		①地盤不安定	1	\sim	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	Ⅲ-1	-	-	Ι	I
34	地下水による浸食	②浸水			-	-	-	-	-	-		Ι	Ι	Ι	Ι	-	-		-	-			-	-	-	-	I, Ⅲ-1	Ⅲ-1
35	森林火災	①熱影響			-	Ι	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- 50		②外気取入機器及び人への影響	l		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
36	生物学的事象	 ①闭基(取水) ⑦個別機哭の損塩 	ł					-	-								-		-	-					-			
	***	①浸水			-	-	-	-	-	-	-	I	I	I	I	-	-	-	-	-	-	-	-	-	-	-	I, Ⅲ-1	-
37	靜振	②冷却機能低下:海水系			-	-	-	I	-	-	-		-	-	<u> </u>	-	-	<u> </u>	-	Ι			-		I	-		
38	塩害,塩雲	①腐食		/	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ι	-	-	-	-	-	-
20	阻て/海日の支て	 ①荷重(衝突) ③弗季(衝突) 	l		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
39	順中/ 衛星の洛下	 ④何里(衝突) ③温水 	ł				-	-	-	-	+ -	-			-	-	-		-	-			-	-	-		-	
40	太陽フレア、磁気嵐	 ①誘導電流 	1	\sim	-	<u> </u>	- 1	- 1	t -	-	I	-	- 1	-	- 1	-	- 1	+ -	-	-	1 -	<u> </u>	- 1	-	- 1	-	<u> </u>	- 1
			-												÷													

【凡例】 I :各自然現象から同じ影響がそれぞれ作用し,重ね合わさって増長するケース Ⅱ :ある自然現象の防護施設が他の自然現象によって機能喪失することにより,影響が増長するケース Ⅲ-1 :他の自然現象の作用により前提条件が変化し,影響が増長するケース Ⅲ-2 :他の自然現象の作用により影響が及ぶようになるケース

			32 33		34		35		36		37		38	39			40	
主事象			海岸浸食	地 ⁻ (多量	下水 /枯渇)	地下水に	よる浸食	森林	、火災	生物学	的事象	辪	·振	塩害, 塩雲	肾	石/衛星の落	客下	太陽フレ ア,磁気嵐
	重畳事象	損傷・機能喪失 モード	①冷却機 能低下:海 水系	①浸水	②地下水 の枯渇	①地盤不 安定	②浸水	 ①熱影響 	 ②外気取 入機器及 び人への 影響 	①閉塞(取 水)	②個別機 器の損傷	①浸水	②冷却機 能低下:海 水系	①腐食	①荷重(衝 突)	②荷重(衝 突)	3浸水	①誘導電 流
自然現象	損傷・機能喪失モード	備考													発生しない	発生しない	発生しない	
i 地震	 ①荷重(地震荷重) 		Ⅲ −1	П,Ш-1	_	Ⅲ −1	П,Ш−1	-	-	_	-	-	П	-	\backslash			_
	①浸水		Ⅲ −1	Ι	-	-	Ι	-	-	-	-	Ι	-	-	\sim	\sim		-
	②荷重(衝突)		-	-	-	-	-	-	-	-	-	-	-	-	\backslash	\backslash		-
ii 津波	<u> </u>		-	-	-	-	-	-	-	_	-	-	-	-	\sim	\sim	\sim	-
	④閉塞(取水)		т	-	_	_	-	-	-	т	-	_	т	_				_
	襲来物·海底砂移動 ⑤冷却機能低下·海水系		I	-	-	-	-	-	-	I	-	_	I	-			\sim	_
1 欧	①浸水		-	Ι	-	-	Ι	-	-	-	-	Ι	-	-	\sim		\sim	-
1 冲华/八	2荷重(堆積)		-	-	-	-	-	-	-	-	-	-	-	-				-
9 積雪	 ①荷重(堆積) ⑦相間毎終 		-	-	-	-	-	-	-	-	-	-	-	-				
	③閉塞(空調)		-	-	-	-	-	-	Ι	-	-	-	-	-	\sim			-
3 雪崩	 (衝突) (衝突) 		-	-	-	-	-	-	-	-	-	-	-	-				-
4 いよつ, あられ	 ①何里(餌哭) ①荷重(堆積) 		-	-	-	-	-	-					-	-		\sim	\sim	
5 氷嵐, 雨氷, みぞれ	②閉塞(空調)	<u> </u>							I								$ \ge $	
6 氷晶	①荷重(堆積)		-	-	-	-	-	-	-	-	-	-	-	-				-
7 霜 霜柱	②闭基(空調) ①-				-	-	-		<u> </u>	-			-			\geq	\sim	
8 結氷板,海氷,氷壁	① ①閉塞(取水)		-	-	-	-	-	-	-	-	-	-	-	-			\sim	-
9 風(台風含む)	①荷重(風圧)		-	-	-	-	-	Ⅲ −1	Ⅲ −1	-	-	-	-	-	/		//	-
	② 闭基(取水) ① 荷重(圖正)		-	-	-	-	-	- III-1	- Π-1	-	-	-	-	-				-
10 帝举	②荷重(気圧差)		-	-	-	-	-	-	-	-	-	-	-	-				-
10 电仓	③荷重(衝突)		-	-	-	-	-	-	-	-	-	-	-	-				-
11 砂崗	 ④ 閉塞(取水) ① 閉塞(空調) 		-	-	-	-	-	-	-	-	-	-	-	-				-
12 霧,靄	①-		-	-	-	-	-	-	-	-	-	-	-	-				-
13 高温	 ①外気温度高 (冷却継能低下:空調) 		-	-	-	-	-	I, Ⅲ-1	-	-	-	-	-	-	/	\backslash	/	-
14 低温	①外気温度低(凍結)		-	-	-	-	-	-	-	-	-	-	-	-	\backslash		\sim	-
15 高温水(海水温高)	 海水温度高 (冷却機能低下:海水系) 		Ι	-	-	-	-	-	-	-	-	-	Ι	-	\sim	\sim	\sim	-
16 低温水(海水温低)			-	-	-	-	-	-	-	-	-	-	-	-				-
17 17 17 (気圧高/低)	①荷重(気圧差)		-	-	-	-	-	-	-	-	-	-	-	-	\sim	\sim	\sim	-
18 落雷	①雷サージ&誘導電流		-	-	-	-	-	-	-	-	-	-	-	-				Ι
19 高潮	①浸水 ①浸水		-	I	-	-	I	-	-	-	-	I	-	-				-
20 波浪 21 風津波	①浸水		-	I	-	-	I	-	-	-	-	I	-	-			\sim	-
22 外部洪水	①浸水		-	Ι	-	-	Ι	-	-	-	-	Ι	-	-				
23 池・河川の水位低下 24 河川の迂回	(l)- (l)-		-	-	-	-	-	-	-	-	-	-	-	-				-
24 内川の丘回 25 干ばつ	<u>0</u> -		-	-	-	-	-	-	-	-	-	-	-	-	\sim			-
	①荷重(堆積)		-	-	-	-	-	-	-	-	-	-	-	-				-
26 火山	 ②闭墨(取水) ③閉塞(空調) 		-	-	-	-	-	-	- T	-	-		-	-		\geq	\geq	-
	④腐食			_				_	-					I				
07 山山道 20	 ⑤相間短絡 ① #重(新空) 		-	-	-	-	-	-	-	-	-	-	-	-	$\langle \rangle$	\square	\sim	
 21 地宿り 28 海水中の地滑り 	①何里(餌突)① 閉塞(取水)		- T	-	-	-	-	-		- T			- I		\sim	\sim	\sim	d
29 地面隆起/低潮位	①地盤不安定		-	_				_		-								
30 土地の浸食, カルスト	①地盤不安定		-	-	-	-	-	-	-	-	-	-	-	-	$\langle \rangle$	$\langle \rangle$	\square	
31 土の仲稲 32 海岸浸食	① 地 盛 小 女 足 ① 冷 却 機 能 低 下 · 海 水 系			-	-	-	-	-	-	- I	-	-	- I	-		\sim		-
33 地下水	①浸水		- `	/	-	Ⅲ-1	Ⅲ-1	-	-	-	-	Ι	-	-				-
*** (多量/枯渇)	②地下水の枯渇		-		\sim	<u> </u>		-	-	-	-	-	-	-				-
34 地下水による浸食	②浸水		-	 III-1	-		\sim	_	- 1	-	-	I	-	-		\sim		-
35 森林火災	①熱影響		-	-	-	- `	- `	\sim	\sim	-	-	-	-	-	\sim	\sim	\sim	
	 ②外気取人機器及び人への影響 ①閉塞(取水) 		— Т					-	-	_			- т			\sim	\geq	-
36 生物学的事象	②個別機器の損傷	1	-	-	-	-	_	-	-	\sim	\sim	-	-	-	\sim	\sim	\sim	-
37 静振	①浸水		-	Ι	-	-	Ι	-	-	-	-	$\left \right $	\sim	-			\sim	
38 塩害 塩雪	② 府却機能低下:海水系		<u> </u>	-	-	-	-	-		-				/		\sim	\sim	-
	①荷重(衝突)								<u> </u>					<u> </u>			\square	-
39 隕石/衛星の落下	2荷重(衝突)		-	-	-	-	-	-	-	_	-	-	-	-	//			
40 大陽フレア 磁気量	 ③ 役 水 ① 季道 雷 流 			-	-	-		-					-			\geq	\sim	<u> </u>

外部人為事象に関わる重畳の影響について

外部事象のうち,自然現象同士が重畳することによる影響については,添付資料3に示 すように組み合わせを考慮し,単独事象とは異なる新たな影響が発生しないことを確認し た。一方,外部人為事象については,以下に示す理由から個々の組み合わせについて確認 する必要はなく,自然現象同士の重畳影響評価に包絡されると考える。

【理由】自然現象と比べて外部人為事象は影響範囲が限定的(狭い)である。

自然現象の影響は,原子炉施設全体に対して同時に作用する点が特徴である。一方, 外部人為事象の場合は,人工物の事故等により引き起こされるものであり,影響範囲は 当該人工物の大きさや内包する危険物量等により決まる。従って,外部人為事象の場合, 低頻度事象を仮定しようとしても,実際に設置されている設備や立地状況等により制限 され,際限なく事象影響範囲が拡がるということはない。

以上より,各外部人為事象により生じる影響の特徴を踏まえ,それぞれの影響を包絡 する自然現象について重畳影響を確認しておくことで,外部人為事象についても重畳影 響を確認したことと同等になる。(表1参照)

自然現象	特徴	包絡される外部人為事象
		(No.は添付資料 1-2 中の事象の番号)
地震	原子炉施設全体に対して同時に外力が	No.9 航空機衝突(意図)
	作用し、複数の機器が同時に機能喪失す	No.14 軍事活動によるミサイルの飛来
	る場合がある。敷地の変動等により屋外	No.15 サイト内外での掘削
	設備の基礎や地中設備の損傷が生じう	
	る。	
津 波	原子炉施設への浸水により、複数の機器	No.5 船舶の衝突
	が同時に機能喪失する場合がある。波力	No.16 内部溢水
	により海水系機器を損傷させる可能性	No.19 化学物質の放出による水質悪化
	がある。	No.20 油流出
落 雷	原子炉施設への落雷により、広範な範囲	No.6 電磁的障害
	の計測系、制御系の損傷が生じる可能性	No.10 妨害破壊行為
	がある。	No.11 サイバーテロ
竜 巻	移動しながら広範囲にわたって風圧、気	No.7 パイプライン事故(飛来物)
	圧差,飛来物による影響を与える。特に	No.13 輸送事故(飛来物)
	飛来物については、屋外設備だけではな	No.18 重量物輸送(重機等の転倒)
	く,建屋内の設備を損傷させる場合もあ	
	る。	

表1 自然現象と包絡される外部人為事象

なお,表1のとおり自然現象に包絡される事象以外の"その他の事象"については以下のとおりである。

添 4-1

【その他の事象】

(1) 外部人為事象の影響の方が大きい場合

火災による熱影響については、自然現象では「森林火災」、外部人為事象では「No.1 航空機落下(偶発)」、「No.3 火災・爆発」、「No.7 パイプライン事故」及び「No.13 輸送 事故」が該当するが、原子炉施設に対して最も厳しい影響がある事象は「No.3 火災・爆 発」にて想定している軽油タンクの火災である。軽油タンク火災と原子炉施設周辺で発 生し得る重畳事象としては、「森林火災」と「No.1 航空機落下(偶発)」が挙げられる。

軽油タンクの消火設備が機能せず、かつ「森林火災」が防火帯を越えて延焼する事象 は低頻度事象と推定されること、軽油タンクへ偶発的に航空機が落下することによる重 畳事象については、10⁻⁷/年程度の低頻度事象ではあるものの外部火災評価の中で許容値 以下の熱影響に止まることを確認済みであることを踏まえると、事象の重畳により新た な起因事象の追加は無い。

爆発による影響については、「No.7 パイプライン事故」、「No.9 航空機衝突(意図)」、 「No.13 輸送事故」及び「No.14 軍事活動によるミサイルの飛来」で想定されるが、そ れぞれの事象の特徴を踏まえれば、個別の重畳影響評価をするまでもなく、自然現象同 士の重畳事象を評価することで影響が包絡される。(「No.7 パイプライン事故」について は、パイプラインが地中に埋設されているため単独事象として影響が無いと判断。「No.13 輸送事故」については、発電所前面の海上航路約 30km の場所を航行する輸送船舶が漂 流して発電所港湾内に侵入すること自体が非常に稀な事象であること、及び発電所港湾 内に侵入し得る最大規模の高圧ガス輸送船舶の爆発事故を想定した場合であっても、爆 風圧の影響が原子炉施設へ及ばないことを確認済みであることを踏まえ、単独事象とし て影響が無いと判断。また、「No.9 航空機衝突(意図)」及び「No.14 軍事活動による ミサイルの飛来」は、損傷規模が地震に包絡される。)

(2) 事象の影響について考慮が不要な場合

以下に挙げる外部事象については、重畳影響を考慮するまでもなく、単独事象として原 子炉施設への影響を考慮する必要が無いものとして整理している。

- ○単独事象として発生頻度が稀な事象(10⁻⁷/年以下)
 No.1 航空機落下(偶発)(原子炉施設への衝突)
 No.17 タービンミサイル(原子炉施設への衝突)
- ○発生源となる施設が発電所へ影響が及ぶ範囲にない事象
 No.2 ダムの崩壊
 No.7 パイプライン事故(火災,爆発)
 No.12 産業施設の事故
- ○発生しても影響が軽微な事象,影響を遮断できる事象
 No.4 有毒ガス
 No.8 第三者の不法な接近
 No.18 重量物輸送 (燃料集合体落下)

1 航空機落下(偶発) 【一】 衝突は低頻度事象。(その他の事象(2) 1 航空機落下(偶発) 【一】 熱影響は No.3 火災・爆発に包絡。(その他のとおり。) 2 ダムの崩壊 【一】 影響が及ぶ範囲に発生源となる施設無し。	のとおり。) 也の事象(1)
2 ダムの崩壊 【一】 影響が及ぶ範囲に発生源となる施設無し。	
(その他の事象(2)のとおり。)	
3 火災・爆発 【 - 】 影響確認済み。 (その他の事象(1)のとおり。)	
4 有毒ガス 【 - 】 影響を遮断可能。 (その他の事象(2)のとおり。)	
5 船舶の衝突 【津波】 海水系機器の損傷	
6 電磁的障害 【落雷】 計測系,制御系機器へのノイズ影響等	
7 パイプライン事故 【竜巻】 飛来物による影響。熱影響等はその他の事 のとおり。	象(1),(2)
8 第三者の不法な接近 【 - 】 侵入行為では影響無し。(その他の事象(2 原子炉施設への影響は No. 10 妨害破壊行為)	2)のとおり。) みに包絡。
9 航空機衝突(意図) 【地震】 広範な範囲の機器等の同時損傷。	
10 妨害破壊行為 【落雷】 機器の破壊,無力化,悪意操作による外乱	- <u>-</u> -
11 サイバーテロ 【落雷】 機器の悪意操作等による外乱。	
12 産業施設の事故 【 - 】 影響が及ぶ範囲に発生源となる施設無し。 (その他の事象(2)のとおり。)	
13 輸送事故 【 竜巻】 飛来物による影響。熱影響等はその他の事 おり。	『象(1)のと
14 軍事活動によるミサ イルの飛来 【地震】 広範な範囲の機器等の同時損傷。	
15 サイト内外での掘削 【地震】 敷地の変動等による屋外設備の基礎や地中	「設備の損傷。
16 内部溢水 【津波】 広範な範囲の機器等の同時浸水。	
17 タービンミサイル 【 - 】 低頻度事象。(その他の事象(2)のとお	り _。)
18 重量物輸送 重機の転倒等による屋外設備の損壊。燃料 その他の事象(2)のとおり。	操合体落下は
19 化学物質の放出によ 【津波】 海水系機器の機能低下。	
20 油流出 【津波】 海水系機器の機能低下。	

表2 各外部人為事象が包絡される自然現象等

凡例:【】 包絡される自然現象

以 上

1. はじめに

実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則 第三十七条(重大事故等の拡大の防止等)にて要求されている原子炉格納容器の 破損の防止に関する有効性評価に関し、必ず想定すべき格納容器破損モード以外 の破損モードの有無について、内部事象についてはレベル1.5PRAにより確認を 実施済みであるが、地震事象特有の影響について以下にて確認を実施した。

2. 地震事象特有の原子炉格納容器破損モードについて

炉心損傷後の原子炉格納容器の健全性に影響を与える物理現象による事象進展 に関し内部事象と地震事象の差はなく、地震事象特有の影響としては、地震動に より直接的に原子炉格納容器が損傷する場合、原子炉格納容器の隔離機能又は圧 力抑制機能に係る設備が損傷することで格納容器破損に至る場合が考えられる。
(1) 原子炉格納容器本体の損傷

地震動による原子炉建屋の損傷影響により原子炉格納容器が破損に至る、または原子炉格納容器本体が直接的に破損に至るケースは、地震事象特有の格納

容器破損モードであり、日本原子力学会標準「原子力発電所の地震を起因とした確率論的安全評価実施基準」では、原子炉建屋破損のXモードとして分類されている。

このケースの場合、炉心損傷時に原子炉格納容器の放射性物質閉じ込め機能 は既に喪失しており、内部事象レベル1.5PRAでは、格納容器隔離失敗として考 慮している。

(2) 原子炉格納容器隔離機能喪失

地震動により原子炉格納容器隔離弁が閉鎖できなくなることで、炉心損傷に より発生した放射性物質が原子炉格納容器外へ直接放出される可能性がある。 このケースについては、原子炉格納容器本体の損傷と同様に炉心損傷時には原 子炉格納容器の放射性物質閉じ込め機能は喪失している状態であり、内部事象 レベル1.5PRAでは格納容器隔離失敗として考慮している。

(3) 原子炉格納容器圧力抑制機能喪失

地震動により残留熱除去系(格納容器スプレイ冷却モード)や格納容器ベント 管、圧力抑制室の損傷により原子炉格納容器圧力が抑制できなくなり、原子炉 格納容器が過圧破損に至る可能性がある。このケースについては、内部事象レ ベル1.5PRAにおいて、水蒸気(崩壊熱)蓄積等による過圧によって格納容器が破 損に至る過圧破損モードとして考慮されている。

以上を踏まえると、地震事象特有の影響として原子炉格納容器本体や隔離弁等 の破損が考えられるものの、地震事象特有の格納容器破損モードは無く、内部事 象レベル1.5PRAと同様であるといえる。

別紙 1(補足 2)-1

3. 原子炉格納容器破損防止対策に係る有効性評価事故シーケンスについて

上述の通り、地震事象特有の影響として原子炉格納容器や隔離機能等の地震動 による損傷が考えられるものの、格納容器破損モードとしては内部事象レベル 1.5PRAと同様である。

また、地震動による直接的な原子炉格納容器や隔離機能等の損傷については、 重大事故の事象進展により格納容器へ圧力荷重、熱荷重といった物理的な負荷が 加わった結果として放射性物質閉じ込め機能が喪失に至るものではない。そのた め、原子炉格納容器破損防止対策の有効性評価の判断基準に照らすと、重大事故 対策の有効性評価の観点としてではなく、対象設備の耐震性の観点から評価がな されるべきものと判断される。

加えて原子炉格納容器本体の損傷については、内部事象レベル 1.5PRA でも想 定していない機器の損傷モードであるが、原子炉格納容器が損傷に至るような大 規模地震を想定した場合、その損傷の程度や緩和系設備使用可否の評価、事故シ ナリオを特定することは非常に困難である。従って、そのような状況下において は、地震によるプラントの損傷の程度や事象進展に応じて、様々な格納容器破損 防止対策を臨機応変に組み合わせて影響緩和を図るとともに、大規模損壊対策と して放水砲等の影響緩和措置を講じられるようにしておくことが重要であると 考えられる。

4. 地震レベル1.5PRAについて

内的事象PRAでは、レベル1PRAの結果抽出された炉心損傷に至る事故シーケ ンスグループをレベル1.5PRA評価の起点となるようプラント損傷状態を定義し た上で、炉心損傷に至るまでのプラント状態などの観点から原子炉格納容器の健 全性に影響を与える事象(過温破損、水蒸気爆発など)を抽出しているが、地震レ ベル1.5PRAでは、地震事象特有の影響として原子炉建屋、原子炉格納容器等の 損傷から原子炉格納容器の閉じ込め機能喪失に至るシナリオを考慮する必要が ある。

具体的には、地震レベル1PRAにおいて緩和系に期待することができず、炉心 損傷直結事象として整理している原子炉建屋損傷やExcessive-LOCAといった事 故シナリオが対象となるものの、現段階では、それら事故の起因となる設備の損 傷の規模や範囲の特定を行うことは困難かつ不確実さが大きく、これらの事故シ ナリオが発生した場合の事象進展(炉心損傷までの時間余裕や緩和系の健全性な ど)を定量化することが困難な状況にある。

そのため、今後、対象設備の損傷影響評価などの精緻化を進めるとともに、実 機適用へ向けた検討を進めていくところである。

以上

外部事象(地震)に特有の事故シーケンスについて

1. はじめに

外部事象の内,地震PRAを実施した結果,内的事象PRAでは抽出されていない建屋・構築物 (原子炉建屋)の損傷,建屋・構築物(格納容器・圧力容器)の損傷といった事故シーケンスが抽出 されている点,内的事象PRAでは有意な頻度ではなかった原子炉冷却材圧力バウンダリ喪失の全 体に占める寄与割合が大きくなっている点が地震事象の特徴となっている。

また,これら事故シーケンスに加え,計測・制御系喪失,直流電源喪失,格納容器バイパスについては,事象進展の特定,詳細な事故シーケンスの定量化が困難であるため,保守的に炉心損傷 直結事象として整理している点も地震事象評価特有の扱いである。

以下では、これら地震事象に特有の各事故シーケンス(炉心損傷直結事象)について、地震PRA 評価におけるフラジリティ評価や事故シーケンス評価における条件設定の妥当性等について再整 理の上、炉心損傷防止対策の有効性評価の事故シーケンスグループとして取り扱うべきかの検討を 実施した。

2. 炉心損傷直結事象について

炉心損傷直結事象として整理した各事故シーケンスに関連する建屋・構築物,機器のフラジリティ 評価や事故シーケンスの評価条件や想定シナリオ等の詳細についてあらためて確認を行うとともに, 評価の最適化について検討を実施した。

- 2.1 建屋・構築物(原子炉建屋)の損傷
 - (1) 想定事故シナリオ

原子炉建屋については、「原子炉建屋」又は「原子炉建屋基礎地盤すべり線」の損傷を 以て原子炉建屋損傷としており、このうち、寄与が大きい要因は「原子炉建屋基礎地盤す べり線」である。

原子炉建屋あるいは,原子炉建屋を支持している基礎地盤が損傷に至ることで,建屋内の原子炉格納容器,原子炉圧力容器等の機器及び構造物が大規模な損傷を受ける可能 性があり,影響緩和系に期待できる可能性を厳密に考慮することが困難なため,直接炉心 損傷に至る事故シナリオとして整理している。

【炉心損傷頻度】 3.8×10⁻⁶/炉年(点推定值)

- ・原子炉建屋基礎地盤すべり線:3.5×10-6/炉年(点推定値)
- ・原子炉建屋:7.2×10⁻⁷/炉年(点推定値)

【全炉心損傷頻度への寄与割合】約28%

- (2) フラジリティ評価
 - a.評価対象機器/評価部位

PSA標準に従えば,建屋基礎地盤,周辺斜面などの地盤のすべり破壊,転動の可能性

のある岩塊を評価対象として, すべり安全率の小さなすべり線上の土塊及び不安定な岩 塊を選定することが求められる。

原子炉建屋基礎地盤の場合,基準地震動Ssを対象として実施した基礎地盤安定性評価の結果(K6/7申請書 添付六)に基づいて,図1に示す最小安全率(基準地震動Ss-3に対して安全率1.6)を算定したすべり線を評価対象として選定している。

図1 すべり安全率 1.6(6・7号炉原子炉建屋基礎地盤, Ss-3)

b.評価方法

フラジリティ評価方法として「現実的耐力と現実的応答による方法(応答解析に基づく 方法)」を選択した。評価手法は地震PSA 学会標準に準拠した手法とする。

現実的耐力に相当する地盤強度は、試験結果に基づき設定した。ばらつきについては、LHS法(Latin Hypercube Sampling、ラテン方格法)によってサンプリングし、任意に組み合わせたデータセット30ケースを用いることで評価した。

現実的応答については, 試験結果に基づき設定した物性値を用いて, 地震応答解析 を実施することにより評価した。地震応答解析は, 等価線形化法による周波数応答解析 手法を用い, 水平・鉛直動を同時入力している。

地盤のせん断剛性については、ばらつきを考慮した値を設定し、地震応答解析を実施 することにより評価を行った。ばらつきは、LHS法によってサンプリングし、任意に組み合 わせたデータセット30ケースを用いることで評価する。

応答解析モデルは,基礎地盤安定性評価(K6/7申請書 添付六)に記載の地盤モデルを用いた。基礎地盤の解析モデルを図2に示す。

図2 解析用要素分割図(6·7号炉汀線平行断面)

フラジリティ評価では、まず、模擬地震波と平均物性値を用いた地震応答解析を実施することで、すべり安全率が1.0 となる限界加速度を算定する。地盤物性値のばらつきを評価

するため、LHS法によってサンプリングしたデータセット30ケースを設定する。データセット 30ケースを用いて、限界加速度に相当する模擬地震波を入力条件とした地震応答解析、 すべり安全率の算定を行い、フラジリティ曲線を算出する。HCLPF は信頼度95%フラジリ ティ曲線を基に算出した。

原子炉建屋基礎地盤のフラジリティ曲線を図3に示す。

(中央値:1193Gal, β_R:0.043, β_U:0.15)図3 フラジリティ曲線

なお、最終的なHCLPF、中央値については、二次元基礎地盤安定解析における奥行き 方向の側面抵抗効果を考慮して、上述の手法により得られた値に対して係数1.5を乗じてい る。奥行き方向の側面抵抗効果とは、二次元解析では期待していない平面奥行き方向のす べり面の抵抗を考慮するものであり、7号炉、6号炉、5号炉を対象とした既往バックチェック *1において、検討対象とした解析断面に対する効果を確認している。F2断層沿いのすべり を想定する安全率1.6のケース(図1)に対して、奥行き方向の側面抵抗を考慮する場合、す べり安全率は3.3(約2.1倍)となる(HCLPF:1.33G、中央値:1.83G、βR:0.043、βU: 0.15)。

*1 柏崎刈羽原子力発電所7号機「発電用原子炉施設に関する耐震
 設計審査指針」の改訂に伴う耐震安全性評価結果報告書(改訂
 1)(平成21年1月)

c.決定論的耐震評価/設計基準地震動に対する裕度

既往バックチェックの中では、7号炉、6号炉、5号炉を対象として、二次元解析において は期待していない平面奥行き方向のすべり面の抵抗を検討している。奥行き方向の側面 抵抗を考慮した結果、すべり安全率の最小値は2.9となる。

基礎地盤に対して,基準地震動を用いた決定論的耐震評価を行う場合,3程度の裕度 がある。 (3) 現実的評価/最適評価(フラジリティ/シナリオ)

a.現行評価手法(すべり安全率)における保守性について

原子炉建屋基礎地盤の安定性は、すべり安全率を指標として評価を行う。しかし、実現象を考えれば、原子炉建屋の設置されている平坦な敷地に対して、地震動に起因した すべり線に沿った土塊の破壊・変形を想定することは困難である。

基礎地盤の耐震安定性評価にあたって採用されているすべり安全率評価には,以下 の保守性が含まれていると考えることができる。

○力の釣合条件に基づく評価をしていることによる保守性

土木工学の分野では、斜面の安定性を検討するにあたり、想定したすべり線上の力 の釣合条件に基づいた安全率により評価・設計を行う。斜面の場合、地震動の継続時 間のうち極めてわずかの時間でも、地震に起因する滑動力が地盤の抵抗力を上回り、 すべり線が破壊に至れば、安定性を失った斜面土塊が重力の作用により不安定な状 態(崩壊)に至る懸念があり、すべり安全率を指標とした設計が一般的に実施されてい る。

一方で,基礎地盤の安定性について検討する場合,支持力と変形(沈下)を指標と した評価が一般的であり,原子力発電所の基礎地盤に要求されるすべり安全率評価 は一般的ではない。平坦な基礎地盤を考える場合,地震動の継続時間の中で,すべり 線が破壊に至った場合でも,不安定な土塊が形成されることはない。また,地震に起 因する滑動力が地盤の抵抗力を上回る(すべり安全率が1.0を下回り破壊に至る)のは 微小な時間であり,大変形が生じることは考えられない。

基礎地盤のすべり安全率に対する考え方は,斜面設計の考え方と地盤の極限支持 力の考え方を勘案して,保守的に導入されたものと推定される。なお,地盤安定性評 価を実施する上で一般的な指標となる支持力については,申請書に記載した通り,原 位置試験等により得られた極限支持力と建物・構築物の荷重を評価することにより,十 分な安全性を確認している。

○地盤モデルにおける断層の扱いにおける保守性

基礎地盤の解析モデルの作成にあたっては,主要な断層が直線的に連続するもの であると仮定している。実際の断層では,走行・傾斜,破砕部形状・性状に変化がある ことから,一様な解析モデル上の断層と比較すれば,大きな抵抗力を有するものと推 定される。

b.基礎地盤に対する現実的評価

既往の審査指針, JEAG等の中では, 基礎地盤の安定性を評価するにあたり, すべり 安全率を指標とした評価を要求しているが, その評価には保守性が含まれると考えられる。 PSA標準では,より現実的な地盤耐力の評価手法として, 許容すべり量の評価について も言及していることから,非線形有限要素解析を適用した検討を行い,変形量について 評価する。

UHS(10・6)相当地震波(2138Gal)を入力した場合,基礎地盤に変形が生じる可能性 は否定できないものの,安全上重要な機器・配管系の安全機能に支障を与えるものでは ないと考えられる。以下,検討結果の概要を示す。

○非線形有限要素解析を適用した検討

フラジリティ評価を実施した等価線形解析に替えて、地震後の残留変形量を評価することができる非線形有限要素解析により変形量評価を行った。UHS(10⁻⁶)相当地震波を入力し、変形量を評価する。なお、非線形有限要素解析に適用する地盤モデルは、フラジリティ評価に適用したモデルと共通とする。

非線形有限要素解析の結果を図7~9,表2に示す。地震後の残留傾斜は,K6R/B で1/1500,K7R/Bで1/2800と算定された。残留傾斜は1/1000以下であり、安全上重 要な機器・配管系の安全機能に支障を与えるものではない。

以上より,非線形有限要素解析を適用してUHS(10%)相当地震波(2138Gal)を入力した結果,基礎地盤に変形が生じる可能性は否定できないものの,安全上重要な機器・配管系の安全機能に支障を与えるものではないと考えられる。

図7 非線形有限要素解析 残留変形(UHS(10-6)相当地震波)

図8 6号機原子炉建屋の鉛直相対変位量(UHS(10⁻⁶)相当地震波)

図9 7号機原子炉建屋の鉛直相対変位量(UHS(10⁻⁶)相当地震波)

	最大鉛直 相対変位 (cm)	最大傾斜	発生時刻 (秒)	残留鉛直 相対変位 (cm)	残留傾斜		
K6R/B	-13.6	-1/400	37.00	-3.8	-1/1500		
K7R/B	-14.7	-1/300	13.78	2.0	1/2800		

表2 非線形有限要素解析による原子炉建屋の変位まとめ

(4) 有効性評価における事故シーケンスグループとしての取り扱い

以上の通り,建屋・構築物(原子炉建屋)損傷シーケンスの評価は,現状のフラジリティ評価手法にかなりの保守性を有していると考えられ,このような高い加速度領域における基礎地盤変形が起きるということは現実的には考えにくい。

仮に基礎地盤変形が起きた場合に考え得るシナリオとしては、原子炉建屋自体の損傷に 伴う建屋内機器の機能喪失ではなく、建屋間に生じる可能性のある相対変位により、建屋 間を貫通している機器等の損傷である。建屋間を貫通している機器としては、配管、電線 管・ケーブルトレイがあるが、電線管・ケーブルトレイについては、損傷に至った場合であっ ても、ケーブルは、ある程度、余長をもった施工がなされていることから、(3)項に示したよう な変位に対して断線に至る可能性は小さい。そのため、想定し得る範囲においては、配管 の損傷となるが、緩和系に関係する配管で損傷が想定されるのは、原子炉建屋とタービン 建屋(熱交換器エリア)を貫通している原子炉補機冷却系配管、給水系配管、及び消火系 配管、またコントロール建屋と原子炉建屋を貫通している純水補給水系配管などがある。原 子炉補機冷却系配管が破断するシナリオは既存の事故シーケンスグループである、原子 炉補機冷却系喪失として整理されている。また、破断箇所からの溢水により、全ての水が原 子炉建屋内へ流入することは現実的には考えられないものの、その場合の事故シナリオに ついても、高圧・低圧注水機能喪失として整理される。

以上を総合的に勘案した上で、本事象については新たな有効性評価の事故シーケンス グループとしては取り扱わないこととした¹。

¹ 建屋間相対変位による配管の損傷に留まらず、大規模な範囲での損傷を仮定した場合、地震による原子炉建屋の損傷程度や緩和系の健全性を評価の上、事故シーケンスを特定することは困難であり、炉心損傷対策の有効性評価の事故シーケンスグループとしては適切でない。

- 2.2 建屋・構築物(格納容器・圧力容器)の損傷
 - (1) 想定事故シナリオ

格納容器又は圧力容器の損傷は、原子炉格納容器内の構造物や原子炉圧力容器などの損傷に続く事象の進展が複雑であり、影響緩和系による事象収束について厳密に考慮することは合理的ではないことから、直接炉心損傷に至る事故シナリオとして整理している。 【炉心損傷頻度】8.9×10⁻⁷/炉年(点推定値) 【全炉心損傷頻度への寄与割合】約7%

(2) フラジリティ評価

a.評価対象機器/評価部位

建屋・構築物(格納容器・圧力容器)の損傷を起因とする燃料損傷に対して最も大きな 影響をもつ施設は、RPVペデスタルである。RPVペデスタルの概要図を図10に示す。

RPVペデスタル下層は内外にある2枚の円筒鋼板(内筒,外筒)から構成されている。 これらの鋼板はたてリブ鋼板(隔壁)により一体化され,鋼板間にコンクリートを充填した構 造物である。

地震時には、ダイヤフラムフロアを介して、RPVペデスタル頂部に原子炉建屋からせん断力が伝達される。

原子炉圧力容器のスカート状の支持脚が、RPVペデスタルのブラケットに設置され、 120本の基礎ボルトによって固定されており、地震時に原子炉圧力容器からRPVペデス タルにせん断力・モーメントが伝達される。

RPVペデスタル基部は,リングガーダを介してアンカボルト(内筒側160本,外筒側320本)により原子炉格納容器底部に定着されており,RPVペデスタルに付加された荷重は,この基部に伝達される。

決定論による耐震評価結果において、地震荷重に対して裕度が小さい部位(アンカボ ルト,たてリブ)を、フラジリティの評価部位とした。

図 10 RPV ペデスタルの概要図

b.評価方法

今回のフラジリティ評価では,決定論による耐震評価結果に基づき,耐力係数と応答係 数を用いた簡易的な安全係数法によりフラジリティを評価した。

c.決定論的耐震評価/設計基準地震動に対する裕度

原子炉建屋内の原子炉圧力容器,原子炉格納容器,RPVペデスタル等の大型機器・ 構造物は,支持構造上から建屋との連成が無視できないため,地盤・建屋と連成し,コン クリート,鋼板の剛性を適切に考慮した解析モデルにより,基準地震動Ssによる地震応答 解析を時刻歴解析で実施する(図11)。

図 11 原子炉しゃへい壁, RPV ペデスタル及び原子炉圧力容器 地震応答解析モデル(NS 方向)

RPVペデスタルのたてリブの構造強度評価においては、上記の地震応答解析により 算出した時刻歴荷重データのうち最大荷重を用いて有限要素法による解析を実施してい る(図12)。この時、コンクリートの強度を無視して、最大荷重を静的に扱い評価を行って いる。

RPVペデスタルのアンカボルトの構造強度評価においては、上記の地震応答解析により算出した時刻歴荷重データのうち最大荷重を静的に扱い、応力のつり合い式の計算を行っている(図13)。

たてリブおよびアンカボルトにおいては、ともに地震荷重(最大荷重)を交番荷重では

なく,静的に負荷され続けている状態を想定して評価を行っているところに保守性がある。 さらにたてリブの構造強度評価ではコンクリート強度を無視しているところにも保守性があ る。

図12 RPVペデスタル 解析モデル概要図

図13 決定論による耐震評価のイメージ(アンカボルト)

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

現実的な損傷に対して現実的な評価を行うとすれば、鋼板、アンカー部、基礎マットおよ び充填コンクリート全体を詳細にモデル化して応答解析を行う詳細法が考えられるが、今回 の評価としては保守的な決定論的評価に基づいた簡易的な方法により評価しているため、 RPVペデスタルの支持性能が実際に失われる地震動の大きさは、耐震評価から求まる地 震動の大きさよりもはるかに大きいと考えられる。また、RPVペデスタルが支持機能を喪失 する地震動の大きさであっても、ダイヤフラムフロアや原子炉格納容器の壁が存在するため、 圧力容器が大きく傾くスペースは存在せず、圧力容器に接続されている一次系配管の一部 破断もしくは破損に留まると考えられる。

(4) 有効性評価における事故シーケンスグループとしての取り扱い

以上の通り, 建屋・構築物(格納容器・圧力容器)の損傷シーケンスの評価は, 現状のフ ラジリティ評価手法にかなりの保守性を有していると考えられ, 現実的な耐性がPRAの結果 に現れているものではない。

仮にペデスタルにおける支持機能の喪失が起きた場合に考え得るシナリオとして,(3)項 の通り,一次系配管の一部破断もしくは破損が生じるに留まり,想定し得る範囲においては, これによる冷却材喪失(LOCA)の発生が考えられ,この場合の事象進展は,既存のLOCA シナリオと同様の進展となることが想定される。

以上を総合的に勘案した上で、本事象については新たな有効性評価の事故シーケンス グループとしては取り扱わないこととした。

- 2.3 原子炉冷却材圧力バウンダリ喪失
 - (1) 想定事故シナリオ

原子炉冷却材圧カバウンダリ喪失については、地震によるスクラム後、S/R弁の開放失敗 による原子炉圧力上昇または地震による直接的な荷重により、原子炉格納容器内の一次 冷却材配管が損傷に至るシナリオを想定している。いずれの場合も原子炉冷却材圧カバウ ンダリの損傷の規模や影響緩和系による事象収束可能性の評価が困難なため、保守的に E-LOCA相当とし、炉心損傷に至る事故シナリオとして整理している。

【炉心損傷頻度】8.2×10⁻⁷/炉年(点推定值)

【全炉心損傷頻度への寄与割合】約6%

①S/R開失敗シナリオ

①-(2) フラジリティ評価

a.評価対象機器/評価部位

事故シーケンスとしては、過渡事象や外部電源喪失、全交流電源喪失時の発生時 を想定しているが、いずれのケースにおいても、S/R弁の損傷に起因している。 b.評価方法

S/R弁の構造上, 最弱部の決定論的評価結果に基づき, フラジリティ評価を実施し

ている。

①-(3) 現実的評価/最適評価(フラジリティ/シナリオ)

S/R弁については合計18台設置されているものの、フラジリティ評価上は、機器の完全 相関を仮定しており、単一機器の評価=全台の評価としている。共通原因故障として単一 機器の機能喪失を全台機能喪失と仮定すること自体は保守的な取り扱いではあるが、実 際には機器配置の差など、応答に差があることを踏まえると、さらに余裕があると言える。

①-(4) 有効性評価における事故シーケンスグループとしての取り扱い

PRA評価では、S/R開失敗によるLOCAシナリオとして、S/R弁全数破損により原子炉 圧力が過剰に上昇し原子炉一次冷却材バウンダリが広範囲・大規模に破損に至ることを 想定し、影響緩和系に期待できず炉心損傷が回避不可となるケースを考え、炉心損傷直 結としている。

ただし、①-(3)の通り、要因となっているS/R弁の現状のフラジリティ評価にかなり保守的な仮定をおいており、現実的な事故シナリオとしては、合計18台あるS/R弁が同時損傷する可能性は極めて低いことから、E-LOCAには至ることなく緩和系による事象収束が期待できる。そのため、炉心損傷に至る確率が十分小さいと判断し、有効性評価の事故シーケンスグループとしては取り扱わないこととした²。

②格納容器内配管損傷シナリオ

②-(2) フラジリティ評価

a.評価対象機器/評価部位

配管が格納容器内を通る系統について,配管本体及びその支持構造物のフラジ リティを評価した。

b.評価方法

配管の評価は、各系統で耐震評価上厳しい決定論の結果に基づき、フラジリティ 評価を実施している。

² E-LOCA を仮定した場合でも、ECCS 系による注水流量では足りないほどの原子炉冷却材の流出が考えられることから、この事故シーケンスは、LOCA 時に ECCS 系による注水機能が喪失した場合と類似の状況となる可能性が高いと考えられ、「LOCA 時注水機能喪失」の事故シーケンスグループに整理できる。また、E-LOCA 発生時には、大LOCA+SBO シーケンスと同様に、早い段階で炉心損傷に至ることから、炉心損傷防止対策を講じることは困難である。そのため、本事故シーケンスについては、炉心損傷対策の有効性評価の事故シーケンスグループとして定義するのではなく、格納容器破損防止対策を講じることにより、格納容器閉じ込め機能を維持できるようにしておくことが重要であると考えられる。

c.決定論的耐震評価/設計基準地震動に対する裕度

地震力をモーダル解析による応答スペクトル法により算出する配管系は,その配 管系の振動性状を考慮したモデルを用い,適切な減衰定数により地震応答解析を 行う。

配管系の地震応答解析に用いる減衰定数,評価基準値等は保守的に設定され ており,裕度を確保している。

配管本体については設計に比べて大きな耐震裕度を有しており、既往研究結果 等からも設計想定レベルを上回る地震力に対して健全性を維持することが確認され ている。「平成15年配管系終局強度試験」においては、配管バウンダリが設計レベ ルの約12倍の耐震裕度を有していることが確認された。

平成18年に実施した電共研における配管系耐震試験では、配管サポート及び定着部を含めて模擬した配管サポート系試験体の実規模加振試験を実施しており、配管及びサポートについて、設計で許容されるレベルに対して少なくとも9倍の耐震裕度があることを確認している。

②-(3) 現実的評価/最適評価(フラジリティ/シナリオ)

現実的な損傷に対して現実的な評価を行うとすれば、配管および配管サポートを一体 でモデル化した応答解析を行う詳細法が考えられるが、今回の評価としては保守的な決定 論的評価に基づいた簡易的な方法により評価しているため、配管系が損傷に至る地震動 の大きさは、耐震評価から求まる地震動の大きさよりもはるかに大きいと考えられる。

②-(4) 有効性評価における事故シーケンスグループとしての取り扱い

PRA評価では、格納容器内配管損傷によるLOCAシナリオとして、損傷程度(規模,範囲)を特定することは困難であるものの、②-(3)の通り、フラジリティ評価にかなり保守的な仮定をおいており、現実的な事故シナリオとしては、E-LOCAには至ることなく緩和系による事象収束が期待できると考えられるため、炉心損傷に至る確率が十分小さいと判断し、 有効性評価の事故シーケンスグループとしては取り扱わないこととした3。

- 2.4 計測·制御系喪失
 - (1) 想定事故シナリオ

計装・制御系が損傷した場合, プラントの監視及び制御が不能に陥る可能性があること,

³ E-LOCA を仮定した場合でも、ECCS 系による注水流量では足りないほどの原子炉冷却材の流出が考 えられることから、この事故シーケンスは、LOCA 時に ECCS 系による注水機能が喪失した場合と類似の状 況となる可能性が高いと考えられ、「LOCA 時注水機能喪失」の事故シーケンスグループに整理できる。ま た、E-LOCA 発生時には、大 LOCA+SBO シーケンスと同様に、早い段階で炉心損傷に至ることから、炉 心損傷防止対策を講じることは困難である。そのため、本事故シーケンスについては、炉心損傷対策の有 効性評価の事故シーケンスグループとして定義するのではなく、格納容器破損防止対策を講じることにより、 格納容器閉じ込め機能を維持できるようにしておくことが重要であると考えられる。

発生時のプラント挙動に対する影響が現在の知見では明確でないことから,保守的に直接 炉心損傷に至る事故シナリオとして整理している。

【炉心損傷頻度】6.9×10⁻⁸/炉年(点推定值)

【全炉心損傷頻度への寄与割合】 1%未満

(2) フラジリティ評価

a.評価対象機器/評価部位

計測・制御系喪失において評価対象となる電気計装機器は,制御盤,計装ラック,バイ タル交流電源設備である。

これらの電気計装機器について,基礎ボルトの構造損傷及び,盤または計装ラック全体 における機能損傷について評価している。

b.評価方法

制御盤及びバイタル交流電源設備は、盤の形状が何れも直立盤に分類されることから、 水平方向の耐力評価については、過去に直立盤について機能確認済加速度値を検証し ているJNESの知見を用いて行った。

計装ラックについても水平方向の耐力評価については、JNESによる計装ラック全体を 加振して検証した機能確認済加速度値が検証されていることから、この知見を用いて耐力 評価を実施した。

鉛直方向については,既往の試験結果による機能確認済加速度を適用することとした。

c.決定論的耐震評価/設計基準地震動に対する裕度

今回の耐力評価に使用している機能確認済加速度は, 誤動作を起こすまでの結果である場合が多く, 電気計装機器の機能損傷レベルに対して余裕のある機能確認済加速度値 を採用している。

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

今回の直立盤及び計装ラックの評価に適用した機能確認済加速度値は,盤及び内蔵器 具類が再使用困難な状態までを検証した結果でないことから,仮に地震動が機能確認済 加速度値を超過した場合においても一時的な故障にとどまる可能性が高く,地震収束後に 再起動操作等を適切に実施することにより機能回復が可能と考える。

そのため、今回の評価においては炉心損傷直結事象と整理してはいるが、現実的に、直 立盤または計装ラックが倒壊するような復旧困難な損傷でない限りは事象収束措置が図ら れること及び、上記理由により機能回復が見込めることからも、実態として炉心損傷に直結 しないものと考えられる。

(4) 有効性評価における事故シーケンスグループとしての取り扱い 仮に直立盤または計装ラックが倒壊するような機能回復が見込めないような場合であって
も、その範囲により事象収束の可能性が残されているものの、損傷の程度や、影響の程度 によって変化する事故シーケンスを個別に特定していくことは困難である。

ただし、(3)の通り、現実的な事故シナリオとしては、一時的な機能喪失にとどまる機器が 多く、地震収束後に再起動操作を適切に実施することで緩和系による事象収束が期待でき るため、炉心損傷に至る確率が十分小さいと判断し、有効性評価の事故シーケンスグルー プとしては取り扱わないこととした。

2.5 直流電源喪失

(1) 想定事故シナリオ

直流電源系が損傷に至ることで,ほぼ全ての安全機能の制御機能が喪失することから直 接炉心損傷に至る事故シナリオとして整理。

【炉心損傷頻度】 6.0×10⁻⁸/炉年(点推定值)

【全炉心損傷頻度への寄与割合】1%未満

(2) フラジリティ評価

a.評価対象機器/評価部位

直流電源喪失において評価対象となる電気計装機器は, 蓄電池, 充電器盤, 直流主 母線盤, ケーブルトレイ, 電線管, 直流MCCである。

これらの電気計装機器について, 蓄電池架台と盤の基礎部の構造損傷, ケーブルトレイ及び電線管のサポート類の構造損傷, 盤における機能損傷について評価している。

b.評価方法

蓄電池については蓄電池架台の基礎部についての構造損傷評価を実施し、ケーブルトレイ及び電線管については、ケーブルトレイと電線管の本体及び各サポート類の構造損傷を評価した。

また,充電器盤及び直流主母線盤は,盤の形状が何れも直立盤に分類されることから, 水平方向の耐力評価については,過去に直立盤について機能確認済加速度値を検証し ているJNESの知見を用いて行った。

直流MCCについても水平方向の耐力評価については、JNESによるMCC全体を加振 して検証した機能確認済加速度値が検証されていることから、この知見を用いて耐力評価 を実施した。

鉛直方向については,既往の試験結果による機能確認済加速度を評価して適用することとした。

c.決定論的耐震評価/設計基準地震動に対する裕度

今回の耐力評価に使用している機能確認済加速度は, 誤動作を起こすまでの結果である場合が多く, 電気計装機器の機能損傷レベルに対して余裕のある機能確認済加速度値 を採用している。 直流電源喪失において,特にHCLPFが低い電線管及びケーブルトレイは,多数のサ ポート類における決定論上の評価結果より,最も裕度の低かった部位(最弱部位)の評価 結果を適用して得られた結果である。よって,部分的に損傷を開始する可能性は考えられ るが,多数の電線管等が全て同時に損傷するものではないと考えられる。更に,電線管及 びケーブルトレイの評価部位は,最弱部位(サポート類)に対する評価結果であり,電線管 やケーブルトレイに収納されているケーブルが断線等により直接的に機能喪失に至ること を評価したものではない。

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

今回の直立盤,直流MCCの評価に適用した機能確認済加速度値は,盤及び内蔵器具 類が再使用困難な状態までを検証した結果でないことから,仮に地震動が機能確認済加 速度値を超過した場合においても一時的な故障にとどまる可能性が高く,地震収束後に再 起動操作等を適切に実施することにより機能回復が可能と考える。

また,ケーブルトレイ及び電線管に適用した決定論上の評価結果についても,最弱部位 (サポート類)の内,最も裕度の低い評価結果を適用した結果であることから,全てのサポートが同時に損傷するものでは無いと考えられること及び,ケーブル断線等の直接的な機能 喪失を評価した結果を適用しているものではないことからも,実際のケーブル断線等の機能 損傷に至るまでには裕度があると考えられる。

今回の評価結果から炉心損傷直結事象と整理されてはいるが,現実的に,直立盤また は直流MCC或いは蓄電池が倒壊するような復旧困難な損傷でない限りは事象収束措置が 図られ機能回復が見込めること及び,電線管等についてもケーブル断線等の機能喪失に 至るまでには裕度を有していることからも,実態として炉心損傷に直結しないものと考えられ る。

(4) 有効性評価における事故シーケンスグループとしての取り扱い

仮に一部の直流MCCや蓄電池が倒壊し復旧困難な場合においては,事象収束措置が 困難となり炉心損傷に至るケースも想定されるものの,損傷の程度や影響の程度によって 変化する事故シーケンスを個別に特定していくことは困難であり,大規模に機器が損傷に 至る場合においては,さらにその困難さや評価の不確実さが増すことから,PRA評価では, 直流電源喪失シナリオは,保守的に炉心損傷直結としている。

ただし、(3)の通り、現実的な事故シナリオとしては、一時的な機能喪失にとどまる機器に 対し、地震収束後に適切に対応することで緩和系による事象収束が期待できるため、炉心 損傷に至る確率が十分小さいと判断し、有効性評価の事故シーケンスグループとしては取 り扱わないこととした。

2.6 格納容器バイパス

(1) 想定事故シナリオ

格納容器バイパス事象は、インターフェースシステムLOCA(IS-LOCA)と、バイパス破

断に細分化される。IS-LOCAは、格納容器バウンダリ内外の高圧設計配管と低圧設計配 管のインターフェースの隔離機能が喪失することによって、格納容器外の低圧設計配管、 弁などに一次冷却材の高圧負荷がかかり損傷が生じ、格納容器外へ原子炉冷却材流出を 引き起こす事象である。バイパス破断は、常時開などの隔離弁に接続している配管が格納 容器外で破損すると同時に隔離弁が閉失敗することで、原子炉冷却材が流出する事象で ある。

本事故シーケンスにおいて支配的なシナリオは原子炉冷却材浄化系(CUW系)隔離弁 の下流側配管(耐震Bクラス)の地震による損傷と,通常開状態である隔離弁の同時損傷に よる隔離失敗に至ることでバイパス破断が発生するものである。事故シナリオとしては,原子 炉冷却材が格納容器外への流出することで,建屋内の広範な影響緩和系に係る機器(電 気品,計装品等)が機能喪失するとし,直接炉心損傷に至るものと整理している。

【炉心損傷頻度】1.2×10⁻⁷/炉年(点推定值)

【全炉心損傷頻度への寄与割合】 1%未満

- (2) フラジリティ評価
 - a.評価対象機器/評価部位

本事故シーケンスで支配的なシナリオである格納容器バイパス破断については, CUW系配管の破損と,CUW系隔離弁の閉失敗に関する機器(隔離弁,電源設備(D/G, 電源盤等))である。

b.評価方法

隔離弁や電源設備については、本事故シーケンス特有の設備ではないため、特段、 フラジリティ評価に変わりはないが、CUW系配管については、耐震Bクラスということで地 震発生時の損傷確率1.0としている。

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

CUW系配管については、耐震Bクラスということでフラジリティ評価では地震に対する耐力を考慮していないものの、一定程度の耐力は有していると考えられる。また、隔離弁については、2重化されているものの、完全相関を仮定していることから、地震動の大きさによっては、同時破損確率は、現評価よりは低くなることが考えられる。

(4) 有効性評価における事故シーケンスグループとしての取り扱い

PRA評価では,格納容器バイパスシナリオについて,配管損傷の程度やその発生位置 に応じて変化する溢水量や溢水(又は蒸気)の伝播経路の特定,影響緩和措置の実現性 や成立性の確認を含めた詳細な事象進展の特定は不確実さも大きく定量化困難である。

ただし、(3)の通り、現実的な事故シナリオとしては、損傷の程度や位置によっては、建屋 内で影響の及ぶ機器は限定的なものとなり、原子炉へ注水を継続することにより炉心損傷 回避が図られる。また、(2)の通り、地震動の大きさに限らずCUW系配管(耐震クラスB)に ついて損傷確率1と仮定した評価を実施しているものの,新潟県中越沖地震の際も,建屋 での配管損傷事例は確認されておらず,実際には一定の裕度を有しておりことから,更に 発生頻度は低くなると判断される。

すなわち,損傷の程度によっては既存の有効性評価の事故シーケンスグループに含ま れること,加えて本事故シーケンスにより炉心損傷に至る頻度はかなり稀な事象であるとい えることから,新たな有効性評価の事故シーケンスグループとしては取り扱わないものとし た。

3. まとめ

炉心損傷直結事象として整理した6つの事故シーケンスについては,現実的な耐力や事故シナリ オを考慮することにより,新たな有効性評価の事故シーケンスグループとしては取り扱わないものとし た4。

本来はPRA評価においても、損傷の程度に応じて緩和系による事象収束可否を詳細に評価する ことが望ましいが、現段階では損傷の規模や範囲の特定は困難かつ不確実さが大きく、これら事故 シーケンスが発生した場合の事象進展、具体的には炉心損傷までの時間余裕、緩和系の健全性や 炉心損傷防止への必要性能有無などについて評価を行うことは現実的ではないことから、保守的に 炉心損傷直結として取り扱っている。

⁴ 大規模な地震を想定した場合の,多数の設備の損壊により炉心損傷回避が困難となるケースについても, 炉心損傷防止対策の有効性評価の事故シーケンスグループとして単独で定義する必要はなく,地震による 損傷の程度や事象進展に応じて,さまざまな炉心損傷防止対策を臨機応変に組み合わせて活用可能なよ うに準備しておくことが重要である。また,原子炉建屋全体が損壊し,建屋内部の安全系機器が機能喪失に 至ってしまうような非常に苛酷な状況下においても,屋外の可搬型設備により注水,除熱,電源機能を確保 するとともに,大規模損壊対策として放水砲等の影響緩和措置を講じられるようにしておくことが重要である と考えられる。

重大事故防止に関係する設備についての諸外国の調査結果

(1) 諸外国における先進的な安全対策の調査方法

諸外国(米国及び欧州)において整備されている対策の状況については、国外 の原子力規制機関である米国原子力規制委員会(NRC)等の規制文書、米国の事 業者公開資料、欧州におけるストレステスト報告書等を調査した。また、原子 力規制関係の調査委託会社の提携先である国外コンサルティング機関から得 られる情報等についても合わせて調査した。当社における海外情報収集の体系 を図1に示す。

(2) 諸外国での先進的な対策について

諸外国における重大事故防止に関係する対策の情報について、柏崎刈羽原子 力発電所 6,7 号炉で整備している対策と比較した結果を表1に示す。

調査の結果、全ての事故シーケンスグループについて、諸外国の既設プラントで整備されている各機能の対策と同等の対策が、柏崎刈羽原子力発電所 6,7 号炉にも整備されていることを確認した。

以 上

【主な情報入手先】

- ・各機関からの直接入手
- ・会議体・レビュー等
- ・原子力安全推進協会(JANSI)
- ・国外原子力規制関係情報の調査委託会社

図1 当社における海外等の情報収集の仕組み

表1	米国・欧州での重大事故対策に関する設備例の比較(1/3)

【 】: 設計基準事故対処設備, ※: 有効性評価において有効性を評価した対策, 下線:電力自主対策

	 view 	事故				重大事故等対策にかかる設備			1.1.64e - an Amir mar	
	分類	シーケンス グループ	想定する機能	柏崎刈羽 6号炉及び7号炉	米国	ドイツ	スウェーデン	フィンランド	対策の概要	
	1	高庄, 切庄 注水機能喪失	炉心冷却	・低圧代替注水系(復水補給水 系)(常設)※ ・高圧代替注水系(HPAC)	 ・ディーゼル駆動消火ボンブ (燃料)貯蔵タンク+燃料供給系 有。水源:防火用水タンク、飲 料水系) ・高圧サービス水系(RHR経 由)(水源:池、非常用冷却塔) ・CRDポンプ ・復水ボンプ ・RHRSW(RHR経由) 	 ・独立非常用系の中圧ポンプ (専用電源・専用ヒートシンク 有) ・サービス水系(水源:河川) ・復水系(給水ポンプパイパス ライン追説) ・インターナルポンプ・シール水 系 	_	・火災用ポンプ+ブースターポ ンプ(専用電源有)	欧米では、注水ボンブの追加設置または炉心注水機能を有さない既 設ポンプに炉心注水機能を追加する等による炉心冷却手段を整備して いる。 当社においては、復水移送ボンプによる炉心冷却手段を整備してい る。また、RCICとは別の蒸気駆動による炉心冷却手段として高圧代替 注水系を設置している。	
				・低圧代替注水系(可搬型) (消防車)	・可搬型低圧注水ポンプ	・可搬式消火ポンプ	-	・可搬ポンプ導入	欧州では、炉心冷却手段として可搬型ポンプを整備している。 当社においても同様に炉心冷却手段として消防車および接続口を整 備している。	
別紙 3-:			最終ヒートシンク	最終ヒートシンク	 ・格納容器圧力逃がし装置※ ・耐圧強化ベント系 ・代替格納容器圧力逃がし装置 	・W/Wベント ・原子炉冷却材浄化系による S/P除熱	 ・独立非常用系の専用ヒートシンク ・フィルタベント ・必須サービス水系による除熱 (ヒートシンク:川、地下水、 冷却塔) 	・フィルタベント	・フィルタベント ・代替最終ヒートシンクの導入	米国においては、大気を最終ヒートシンクとする耐圧強化ラインか らのベントを整備している。また、欧州においては、河川、地下水、 大気を最終ヒートシンクとする熟文機器やポンプ等を含む独立非常用 系や大気を最終ヒートシンクとするフィルタ付きベントを整備してい る。 当社においては、多重性及び独立性を考慮して、大気を最終ヒート シンクとする耐圧強化ベント系、格納容器圧力逃がし装置(地上式フィ ルタベント)及び代替格納容器圧力逃がし装置(地下式フィルタベント) を整備している。
				 代替原子炉補機冷却系 	-	-	-	-	当社においては、海を最終ヒートシンクとする可搬型の代替原子炉 補機冷却設備および接続口を整備している。	
			格納容器注水 (格納容器スプレイ)	・低圧格納容器スプレイ冷却系 (復水補給水系)※	 ・ディーゼル駆動消火ポンプ ・可搬型ポンプ(大規模損壊) 	・サービス水系(D/W,W/Wスプ レイ可) ・可搬型消火ポンプ(S/P注水)	・ディーゼル駆動バックアップ ポンプ ・消防車	 ・火災防護系によるスプレイ (専用電源有,外部水源使用可) 	欧米では、注水ボンブの追設または格納容器注水機能を有さない既 設ポンプに格納容器注水機能を追加する等による格納容器注水手段を 整備している。 当社においては、復水移送ポンプによる格納容器注水手段を整備し ている。	
			給水源	 CSPへの水の補給※ -防火水槽 -淡水貯水池 -海水 	・CSTへの水の補給 ・処理水:脱塩水貯蔵タンク, 復水器H/W,燃料プール,他ユ ニット貯蔵タンク ・非処理水:消火用水系,公共 の消火水,水道水等 -RWSTからの補給 ・他ユニットCSTからの補給 ・防火用水タンク ・飲料水系	・CSTへの補給 ・消火水系からの補給	 ・脱塩水タンクへの補給 ・脱塩水系からの補給 ・消火系からの補給 ・消火系への補給 ・消火系への補給 ・純水系からの補給(重力による移送) 	 ・脱塩水タンク(既設設備の水 源)への補給 ・消火系からの補給 ・Korvensuo原水池(火災系の 水源) 	欧米においては、淡水タンクのほか、河川やため池等の代替補給水 源からの給水が可能である。 当社においては、防火槽、淡水貯水池のほか、代替補給水源として 海水の給水が可能である。	
			まとめ	上述の調査結果より、国外の既認	設プラントで整備されている対策	が、柏崎刈羽6号炉及び7号炉に	おいても整備されていることを確	認した。		
	2	高圧注水 • 減圧機能喪失	炉心冷却	 (LPFL] ※ ・低圧代替注水系(復水補給水 系)(常設)※ ・高圧代替注水系(HPAC) ・低圧代替注水系(可搬型) (消防車) 	1と同様	1と同様	-	1と同様	1 と同様	
			原子炉減圧	 ・減圧自動化ロジック※ ・減圧機能の信頼性向上 -予備高圧窒素ボンベ配備 ・窒素供給圧の調整機能 ・可搬型代替直流電源からの 給電 	 過渡時減圧自動化ロジック ・減圧機能の信頼性向上 ・ADS作動のための追加電源 (DC)の設置 ・ADS作動のための窒素ボン べの設置 ・ADS作動のためのケーブル (中能の確保 	 ・多重化炉容器減圧系(S/R弁11 弁のうち3弁に電動弁によるバ イパスライン設置) 	・過渡時の減圧自動ロジック	 ・滅圧機能の信頼性向上 -S/RVへのパックアップ用窒素ボンベ ・消火系からの水圧による開 	欧米においては、過渡事象時の減圧自動化ロジックを整備するとと もに、S/R弁駆動用の予備窒素ボンベや電源の整備等による減圧機能の 信頼性向上手段を整備している。 当社においても、過渡事象時の減圧自動化ロジックの整備や、S/R弁 駆動用の予備窒素ボンベや電源の整備等による減圧機能の信頼性向上 手段を整備している。	
			最終ヒートシンク	 【・原子炉補機冷却/冷却海水 系)※ ・格納容器圧力逃がし装置 ・耐圧強化ベント系 ・代替格納容器圧力逃がし装置 ・代替原子炉補機冷却系 	1と同様	1と同様	1と同様	1と同様	1と同様	
			給水源	1と同様	1と同様	1と同様	1と同様	1と同様	1と同様	
			まとめ	上述の調査結果より、国外の既認	設プラントで整備されている対策	が、柏崎刈羽6号炉及び7号炉にお	おいても整備されていることを確	認した。		

表 1	米国・	欧州での重大事故対策に関する設備例の比較(2/3)

【 】: 設計基準事故対処設備, ※: 有効性評価において有効性を評価した対策, 下線:電力自主対策

事故		想定する機能			対策の期間			
分規	グループ	想走する機能	柏崎刈羽 6号炉及び7号炉	米国	ドイツ	スウェーデン	フィンランド	対東の幌姿
3 土文(小男)// 電源喪失		炉心冷却	 ・原子炉隔離時冷却系(24Hま で)※ ・低圧代替注水系(復水補給水 系)(常設)(24H以降)※ ・高圧代替注水系(HPAC) 	・ディーゼル駆動消火ボンブ (燃料貯蔵タンク+燃料供給系 有。水源:防火用水タンク、飲 料水系) によるサービマ水系から給水系 を通っての注水(水源:河川,湖, 貯水池,海など) ・原子炉隔離時冷却系の手動起 動(大規模損壊)	・独立非常用系の中圧ポンプ (専用電源・専用ヒートシンク 有)	1 と同様	1 と同様	全交流電源喪失を想定し、欧米では、電源に依存しない注水ボンプ 又は専用の電源を有する注水ボンプの追設による全交流電源喪失時の 注水手段を整備している。 当社においては、空冷式ガスタービン発電機による復水移送ボンプ への給電手段を整備している。また、電源対策が達成できない場合に 備えて、RCICの手動起動手順を整備している。さらに、自主的対策と して電源に依存しない蒸気駆動の高圧代替注水ボンプの設置を計画し ている。
			・低圧代替注水系(可搬型) (消防車)	1と同様	1と同様	-	1 と同様	欧州では、炉心冷却手段として可搬型ボンプを整備している。 当社においても同様に炉心冷却手段として消防車および接続口を整 備している。
		原子炉減圧	 減圧機能の信頼性向上 予備高圧窒素ポンベ配備 窒素供給圧の調整機能 可搬型代替直流電源からの 給電 	 ・減圧機能の信頼性向上 -ADS作動のための追加電源 (DC)の設置 -ADS作動のための窒素ボン べの設置 -ADS作動のためのケーブル 性能の確保 	2と同様	-	2と同様	欧米では、全交流電源喪失時の減圧機能の信頼性向上手段として、 SRA弁駆動用の予備窒素ボンベおよび電源の整備等を実施している。 当社においても、全交流電源喪失を想定して、SRA弁駆動用の予備窒 素ボンベおよび電源の整備による減圧機能の信頼性向上手段を整備し ている。
		最終ヒートシンク	・格納容器圧力逃がし装置※ ・耐圧強化ベント系 ・代替格納容器圧力逃がし装置	1と同様	1 と同様	1 と同様	1 と同様	1と同様
		<u>休</u> 山)))	・代替原子炉補機冷却系※	-	-	-	-	< 1. D1W
	代替電源設備 (交流電源)	・常設代替交流電源設備※ (空冷式ガスタービン発電機)	・非常用ディーゼル発電機の追 加設置 ・ガスタービン発電機の使用	・独立非常用系のディーゼル発 電機	・ガスタービン発電機(4日分の 燃料有)	・非常用ディーゼル発電機の信 輕性向上 ・起動用バッテリー追設 ・燃料タンクの購入 ・非常用ディーゼル発電機更 新に合わせて、除熱系2系統(海 水、空冷)設置 ・非常用ディーゼル発電機の新 設(独立建屋に設置) ・ガスタービン発電機(100%×2 台,9日分の燃料有)	米国においては、ディーゼル発電機の追加設置等を実施している。 また、欧州においては、非常用ディーゼル発電機とは別の独立非常用 のディーゼル発電機等を設置すると共に、既設の非常用ディーゼル発 電機の冷却系の最終ヒートシンクの多様化(水冷、空冷)を実施してい る。 当社においては、常設の代替交流電源として、空冷式ガスタービン 発電機3台(6,7号炉共用で1台,予備2台)を高台(標高35m)に設置してい る。	
			 可搬型代替交流電源設備 (電源車) 	・可搬型ディーゼル発電機	・可搬型ディーゼル発電機	・可搬型ディーゼル発電機	 ・SA用可搬型ディーゼル発電 機(FP系→PCV注水への弁操作 用) 	欧米においては、可搬型の交流代替電源である可搬型ディーゼル発 電機を配備している。 当社においても同等の設備を配備しており、常設代替交流電源設備 が機能しない場合にも、原子炉の安全停止に必要な電源を供給可能で ある。
			・号炉間電源融通	 ・ユニット間での交流電源接続 ・水力発電ユニットの使用 	 ユニット間での交流電源接続 第3の送電線(地中埋設) 余熱除去系1系統と外部電源 を結線 	・小型可搬DG×3台(サイト外保 管)	 ・ユニット間の交流電源接続 ・近隣水力発電所からの受電 ・地域電力会社からの受電(容量が限定的) 	欧米においては、ユニット間での電源接続を整備している。 当社においても同等の手段を整備している。
		代替電源設備	・常設代替直流電源設備※ (不要負荷切り離し無しで8時 間、切り離し後残り16時間の計 24時間給電)	 ・バッテリー容量増加 ・非安全関連パッテリーの設置 (安全系バッテリーの負荷軽減 のため) 	・バッテリー容量の増強	 ・不要負荷の切り離しによる蓄 電池容量保持 	-	欧米においては、既設蓄電池容量の増加、給電時間延長対策とし て、負荷切り離しによる蓄電池容量確保手段を整備している。 当社においても同等の手段を整備している。
		代晉電源設備 (直流電源)	 ・蓄電池(重大事故等対処用)追< 設 ・可搬型代替直流電源設備 	・携帯型バッテリーによる所内 バッテリーの再充電	・可搬型ディーゼル発電機によ る充電	・SA設備への給電バッテリー	 充電用可搬型発電機 充電用可搬型整流器 	米国においては、携帯型バッテリーによる蓄電池充電手段を整備し ている。また、欧州においては、可搬型発電機による蓄電池充電手段 を整備している。 当社においては、重大事故等対策用に蓄電池を追設するとともに、 可搬型バッテリーを整備している。
1		まとめ	上述の調査結果より、国外の既認	投プラントで整備されている対策	だが、柏崎刈羽6号炉及び7号炉に	おいても整備されていることを確	筆認した。	

	事故				重大事故等対策にかかる設備			
分類	シーケンス グループ	想定する機能	柏崎刈羽 6号炉及び7号炉	米国	ドイツ	スウェーデン	フィンランド	対策の概要
4 • 1	崩壞熱除去機能喪 失 (取水機能喪失) (SBO重畳想定)	炉心冷却	【・RCIC】※ ・低圧代替注水系(復水補給水 系)(常設)※ ・高圧代替注水系(HPAC)	3と同様	3と同様	1と同様	1と同様	3と同様
			 ・ 低圧代替圧水糸(可搬型) (消防重) 	1と同様	1と同様	-	1と同様	
		原子炉減圧	3と同様	3と同様	2と同様	-	2と同様	3と同様
		最終ヒートシンク	 ・格納容器圧力逃がし装置 ・耐圧強化ベント系 ・代替格納容器圧力逃がし装置 	1 と同様	1 と同様	1 と同様	1と同様	1と同様
		故如宏聖注水	・代替原子炉補機冷却系※	—	—	-	—	
		(格納容器スプレイ)	1と同様	1と同様	1と同様	-	1と同様	1 と同様
		給水源	1と同様	1と同様	1と同様	1と同様	1と同様	1と同様
		代替電源設備 (交流電源)	 ・常設代替交流電源設備※ (空冷式ガスタービン発電機) ・可撮型代替交流電源設備 (電源車) ・号炉間電源融通 	3 と同様	3と同様	3と同様	3と同様	3と同様
		まとめ	上述の調査結果より、国外の既	設プラントで整備されている対策	が、柏崎刈羽6号炉及び7号炉に:	おいても整備されていることを確	認した。	
4-2	崩壞熱除去機能喪 失(RHR機能喪失)	炉心冷却	 (• RCIC] ※ (• HPCF) ※ • 低圧代替注水系(常設)※ (復水補給水系) • 高圧代替注水系(HPAC) • 低圧代替注水系(可衡型) (源性常) 	1と同様	1と同様	_	1と同様	1 と同様
		原子炉減圧	3と同様	3と同様	2と同様	_	2と同様	3と同様
		最終ヒートシンク	1と同様	1と同様	1と同様	1と同様	1と同様	1と同様
		格納容器注水 (格納容器スプレイ)	1と同様	1と同様	1と同様	-	1と同様	1と同様
		給水源	1と同様	1と同様	1と同様	1と同様	1と同様	1と同様
5	I O O A BE SELLAR AS AN	まとめ	上述の調査結果より、国外の既	設プラントで整備されている対策	tが、相崎刈羽6号炉及び7号炉に:	おいても整備されていることを確	認した。	1 1 日梯
Э	LUCA时注水機能喪 生	炉心行动 原子后减压	1 と 内 惊 3 と 同 様	1 こ 回 惊 3 と 同 様	1 と 回 様 9 と 同 様	1 と 内 依 _	1 と 回 様 9 と 同 様	12回様
	大 (外部雷源柬生重昌)	最終ヒートシンク	1と同様	1 と 同様	1と同様	1と同様	<u>2 と同様</u>	1と同様
	()1000000000000000000000000000000000000	格納容器注水 (格納容器スプレイ)	1と同様	1と同様	1と同様	1と同様	1と同様	1と同様
		給水源	1と同様	1と同様	1と同様	1と同様	1と同様	1と同様
		まとめ	上述の調査結果より、国外の既	設プラントで整備されている対策	モが、柏崎刈羽6号炉及び7号炉に:	おいても整備されていることを確	認した。	
6	原子炉骨止機能要失	原子炉停止	 ・代替制御棒挿入機能(ARI) ・代替冷却材再循環ポンプ・トリップ機能(RPT) ・ほう酸水注入系(SLC)※ 	 ・代替制御棒挿入回路 ・SLCSのホウ酸濃度の増加 (AB-03,8) ・SLCSの自動起動 ・CRD系、原子炉冷却材浄化系 によるホウ酸水注入 ・ATWS・RPTの設置 ・MSIV閉後のATWS時の炉圧 高で給水ポンプトリップロジッ クを追加 	・SLC(手動起動)	 ・バックアップ・スクラム回路 (制御棒の電動挿入、再循環ボンプ減速) SLC手動起動 SLC自動起動 	• SLC	欧米においては、代替制御棒挿入回路および代替再循環ボンプ・ト リップ回路の設置やSLC等を整備している。 当社においても、欧米と同等の設備を整備している。
		まとめ	上述の調査結果より、国外の既	設プラントで整備されている対策	前、柏崎刈羽6号炉及び7号炉に:	おいても整備されていることを確	認した。	
7	インターフェイス システムLOCA	炉心冷却	4-2と同様	既存設備で対応	 (情報なし)	 (情報なし)	 (情報なし)	米国においては、炉心冷却は既存設備を用いて実施することとなっている。 当社においても、既存設備を用いた炉心冷却を実施することとしている。
		格納容器バイパス防止	 インターフェイスシステム LOCAの検知・隔離(既設の計 装・設備から兆候を検知) ・原子炉減圧・水位制御の手順 整備 	 インターフェイスシステム LOCAの早期検出・隔離(既設の 計装・設備から兆候を検知) ・原子炉の減圧 	・隔離弁の自動閉止あるいは代 替隔離弁の閉止による格納容器 隔離の確保	(情報なし)	 (情報なし)	米国においては、インターフェイスシステムLOCAの早期検出・隔 離手段を整備している。また欧州におていては、格納容器隔離手段と して代替隔離弁を設置している。 当社においては、インターフェイスシステムLOCAの早期検出・隔 離手段を整備している。また、原子炉減圧及び水位制御により、流出 量を低減する手段を整備している。
1		まとめ	上述の調査結果より、国外の既	設プラントで整備されている対策	む、柏崎刈羽6号炉及び7号炉に:	おいても整備されていることを確	認した。	

表 1	米国・欧州での	重大事故対策に関す	-る設備例の比較(3/3)

【】:設計基準事故対処設備,※:有効性評価において有効性を評価した対策,下線:電力自主対策

別紙 3-5

内部事象 PRA における主要なカットセット

各事故シーケンスグループに分類される事故シーケンスについて、炉心損傷 又は格納容器破損に至る要因をカットセットレベルまで展開し、炉心損傷頻度 又は格納容器破損頻度への寄与割合の観点で整理し、主要なカットセットに対 する重大事故防止対策の整備状況等を確認した。

以下に、内部事象運転時レベル 1PRA、内部事象運転時レベル 1.5PRA、内部 事象停止時レベル 1PRA それぞれのカットセットの分析結果を示す。

- 1. 内部事象運転時レベル 1PRA
 - (1) 選定条件

事故シーケンスの種類によっては展開されるカットセットが無数に存在 するため、ここでは、各事故シーケンスについて以下の基準を基に主要な カットセットを抽出した。

・主要な事故シーケンス**のうち、最も炉心損傷頻度の大きな事故シーケンスについて、上位3位までのカットセット

各事故シーケンスにおける主要なカットセット及び炉心損傷防止対策の 整備状況等を第1-1表に示す。

- ※ 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる 複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化 して分類したもの。
- (2) 主要なカットセットの確認結果

第1-1 表に示した通り、一部に炉心損傷防止が困難な事故シーケンスが 存在するものの、大半の事故シーケンスに対しては、主要なカットセット レベルまで展開しても、整備された重大事故等防止対策により炉心損傷を 防止できることを確認した。

一方、事故シーケンスグループのうち、「高圧注水・減圧機能喪失」、「全 交流動力電源喪失」、「LOCA 時注水機能喪失」に含まれる一部の事故シー ケンスにおいて、故障モードによっては有効性評価で考慮した対策では対 応できない場合があることを確認した。

事故	一十一十二			炉心損傷頻度	FZ		
シーケンス グループ	土安な 事故シーケンス ^{*2}	主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	心損傷頻度 要な事故 $「)) つ つ つ(別) 一 つ つ の(別) 一 つ つ つ の(別) 一 つ つ つ の(別) 主な対策190.71140.55.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.25.20.2190.6(復水補給水系)140.4-(代替席子炉補機冷却スプレイ系5.21.73.81.33.81.33.81.31.56.1156.1114.5114.5511.1150.3150.3590.3410.2$	对录 有効性	
		S/R 弁誤開放+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水位制御失敗	4.8×10^{-12}	19	0.7		0
事故 シーケンス グループ TQUV (高圧・低圧注 水機能喪失) (6.9×10 ⁻¹⁰ /炉年)		S/R 弁誤開放+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水位制御失敗	$3.5 imes 10^{\cdot 12}$	14	0.5		0
		S/R 弁誤開放+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+MUWP による CSP への水補給失敗(現 場弁閉失敗に伴う5号機原子炉建屋側への誤送水)	$1.3\!\times\!10^{\cdot12}$	5.2	0.2		0
	過渡事象 +高圧/低圧注水失敗	S/R 弁誤開放+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+MUWP による CSP への水補給失敗(現 場弁閉失敗に伴う5号機タービン建屋側への誤送水)	$1.3 imes 10^{\cdot 12}$	5.2	0.2		0
	(2.5×10 ⁻¹¹ /炉年)	S/R 弁誤開放+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+MUWP による CSP への水補給失敗(現 場弁閉失敗に伴う6号機原子炉建屋側への誤送水)	$1.3 imes 10^{-12}$	5.2	0.2	・高圧代替注 水 亥	0
		S/R 弁誤開放+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+MUWP による CSP への水補給失敗(現 場弁閉失敗に伴う6号機タービン建屋側への誤送水)	$1.3 imes 10^{-12}$	5.2	0.2	小示 ・手動減圧	0
		S/R 弁誤開放+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+MUWP による CSP への水補給失敗(現 場弁閉失敗に伴う7号機原子炉建屋側への誤送水)	$1.3 imes 10^{-12}$	5.2	0.2	 ・低圧代替注 水系(常設) 	0
	過渡事象	非隔離事象+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水 位制御失敗	A再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水 4.0×10 ⁻¹² 19 0.6	0.6	(復水補給 (0	
	+S/R 弁再閉鎖失敗 +高圧/低圧注水失敗 (2.1×10 ⁻¹¹ /炉年)	非隔離事象+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェ ル水位制御失敗	$2.9 imes 10^{-12}$	14	0.4	水糸) ・代替格納容	0
TQUV		非隔離事象+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+MUWP による CSP への水補給失敗(現場弁閉失敗に伴う5号機原子炉建屋側への誤送水)	$1.0 imes 10^{-12}$	4.8	0.1	器冷却スプ レイ系	0
(高圧・低圧注 水機能 <u>専</u> 生)	通常停止 +高圧/低圧注水失敗	通常停止+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水位制御失敗+RCICポ ンプ起動失敗	$1.2 imes 10^{-11}$	5.2	1.7	 代替原子炉 補機冷却系 	0
(6.9×10 ⁻¹⁰		上+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水位制御失敗+ ペンプ起動失敗 8.7×10 ⁻¹² 3.8 1.3		1.3	(熱交換ユ (0	
/炉年)	(2.3×10 ⁻¹⁰ /炉年)	通常停止+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水位制御失敗+RCICメ ンテナンス	$7.3 imes 10^{-12}$	3.2	1.1	ニット+代 替原子炉補	0
	这些信止	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水系起動操作失敗	$4.2\!\times\!10^{\cdot11}$	15	6.1	機冷却海水	0
	□吊停止 +S/R 弁再閉鎖失敗	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル水位 制御失敗	4.2×10^{-11}	15	6.1	ホンプ) ・格納容器圧	0
	+高圧/低圧注水失敗	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+復水系起動操作失敗	$3.1 imes 10^{-11}$	11	4.5	力逃がし装	0
	(2.9×10 ⁻¹⁰ /炉年)	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+復水器ホットウェル 水位制御失敗	3.1×10^{-11}	11	4.5	置 • 可搬型代麸	0
	サポート系喪失	タービン補機冷却系故障+ECCS デジタル制御系(DTM)故障(共通原因故障)+高圧注水系起動操作失敗	$7.6\!\times\!10^{\cdot12}$	51	1.1	注水ポンプ	0
	+高圧/低圧注水失敗	タービン補機冷却系故障+原子炉水位計不動作/誤高出力(共通原因故障)+高圧注水系起動操作失敗+低圧注水 系起動操作失敗	$2.4\!\times\!10^{\cdot12}$	16	0.3	(水源補給)	0
	(1.5×10 ⁻¹¹ /炉年)	タービン補機冷却系故障+ECCS デジタル制御系(DTM)故障(多重故障)+高圧注水系起動操作失敗	$2.2\!\times\!10^{\cdot12}$	15	0.3		0
	サポート系喪失	タービン補機冷却系故障+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)	$2.0 imes10^{\cdot12}$	59	0.3		0
	+S/R 弁再閉鎖失敗	タービン補機冷却系故障+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)	$1.4 imes 10^{\cdot 12}$	41	0.2		0
	+尚上/低上注水失敗 (3.4×10 ⁻¹² /炉年)	タービン補機冷却系故障+S/R 弁再閉鎖失敗+ECCS デジタル制御系(DTM)故障(共通原因故障)+高圧注水系起 動操作失敗	$4.0 imes 10^{.14}$	1.2	<0.1		0

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(1/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。 【主要なカットセットに対する検討】(TQUV)

- 主要な事故シーケンスのうち、「過渡事象+高圧/低圧注水失敗」、「過渡事象+S/R 弁再閉鎖失敗+高圧/低圧注水失敗」、「通常停止+高圧/低圧注水失敗」、「通常停 止+S/R 弁再閉鎖失敗+高圧/低圧注水失敗」、「サポート系喪失+S/R 弁再閉鎖失 敗+高圧/低圧注水失敗」では、高圧・低圧注水機能が喪失する要因として、原子 炉補機冷却系又は原子炉補機冷却海水系の起動又は継続運転失敗の共通原因故 障による電動の ECCS 注水ポンプの機能喪失と合わせて、S/R 弁の開固着又は起 動失敗等による RCIC の機能喪失が挙がっている。炉心損傷防止対策としては、 機能喪失した ECCS 注水系の代替となる、低圧代替注水系(常設)による注水が有 効である。
- 「サポート系喪失+高圧/低圧注水失敗」については、計測・制御機器の共通原因 故障と合わせて、高圧/低圧 ECCS の起動失敗が挙がっている。炉心損傷防止対 策としては、機能喪失した ECCS 注水系の代替となる、低圧代替注水系(常設) による注水が有効である。
- いずれの事故シーケンスについても、注水による炉心冷却を確保した後は、代替 原子炉補機冷却系又は格納容器圧力逃がし装置を用いて除熱を行う。なお、上位 のカットセットとしては抽出されていないが、残留熱除去系が機能喪失している 場合には、格納容器圧力逃がし装置を用いて除熱を行う。

事故 シーケンス グループ				炉心損傷頻周	Ť		1.1.64-
シーケンス グループ	土要 ⁷ \$ 事故シーケンス ^{*2}	主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	事故シーケンス グループへの 寄与割合[%] 主な対策 10	对束 有効性	
	過渡事象	全給水喪失事象+原子炉注水自動起動不能の認知失敗+原子炉水位計不動作/誤高出力(共通原因 故障)	6.9×10 ⁻¹¹	35	10		×
事故 シーケンス グループ TQUX (高圧注水・減 圧機能喪失) (6.8×10 ⁻¹⁰ /炉年)	+原子炉減圧失敗 (2.0×10 ⁻¹⁰ /炉年)	全給水喪失事象+原子炉減圧操作失敗+原子炉水位高(L8)誤信号	$3.9 imes 10^{\cdot 11}$	20	5.7		0
		全給水喪失事象+原子炉注水自動起動不能の認知失敗+ECCS デジタル制御系(DTM)故障(共通原因故障)	$3.2 imes 10^{-11}$	16	4.7		×
	過渡事象 +S/R 弁再閉鎖失敗	全給水喪失事象+S/R 弁再閉鎖失敗+原子炉注水自動起動不能の認知失敗+原子炉水位計不動作/ 誤高出力(共通原因故障)	$3.6 imes 10^{-13}$	12	0.1		×
	+高圧注水失敗	全給水喪失事象+S/R 弁再閉鎖失敗+原子炉減圧操作失敗+HPCF 室空調起動失敗(共通原因故障)	3.1×10^{-13}	10	<0.1	計庁古動ル	0
	+原子炉减圧矢敗 (3.0×10 ⁻¹² /炉年)	全給水喪失事象+S/R 弁再閉鎖失敗+原子炉減圧操作失敗+HPCF 注入弁開失敗(共通原因故障)	$2.1 imes 10^{-13}$	7.0	<0.1	 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 	0
	通常停止 +高圧注水失敗 +原子炉減圧失敗 (3.2×10 ⁻¹⁰ /炉年)	通常停止+原子炉注水自動起動不能の認知失敗+原子炉水位計不動作/誤高出力(共通原因故障)+ 給水系操作失敗	力(共通原因故障)+ 5.9×10 ⁻¹¹ 18 8.7	8.7	 (残留熱除 去系ポン 	×	
		通常停止+原子炉減圧操作失敗+原子炉水位高(L8)誤信号+給水系操作失敗	$3.3 imes 10^{-11}$	10	4.9	ノ 吐 田 圧 確立+原子	0
TQUX (高圧注水・減		通常停止+原子炉注水自動起動不能の認知失敗+ ECCS デジタル制御系(DTM)故障(共通原因故 障)+給水系操作失敗	$2.8 imes 10^{-11}$	8.8	4.1	炉水位低 (レベル1)	×
广機能丧天) (6.8×10 ⁻¹⁰ /炉年)	通常停止	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+原子炉減圧 操作失敗	$6.5 imes 10^{-12}$	30	1.0	+600 秒経 過で SRV4	0
.,, 1,	+S/R 并再闭鎖失敗 +高圧注水失敗	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)+原子炉 減圧操作失敗	4.7×10^{-12}	21	0.7	・ 开開放) ・ 高圧代替注 水	0
	·凉丁炉减压天蚊 (2.2×10 ⁻¹¹ /炉年)	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)+原子炉注水 自動起動不能の認知失敗	$3.7 imes 10^{-12}$	17	0.5	・残留熱除去 系(低圧注	0
	サポート系喪失 +高圧注水失敗	直流電源故障(区分 1)+原子炉注水自動起動不能の認知失敗+原子炉水位計不動作/誤高出力(共通 原因故障)	1.9×10^{-12}	10	0.3	水. 除熱)	×
	+原子炉減圧失敗	直流電源故障(区分 1)+原子炉減圧操作失敗+HPCF 室空調起動失敗(共通原因故障)	$1.7 imes 10^{-12}$	8.9	0.3		0
	(1.9×10 ⁻¹¹ /炉年)	直流電源故障(区分 1)+原子炉減圧操作失敗+HPCF 注入弁開失敗(共通原因故障)	$1.1\!\times\!10^{\text{-}12}$	5.8	0.2		0
	サポート系喪失	直流電源故障(区分 2)+S/R 弁再閉鎖失敗+原子炉減圧操作失敗+ECCS デジタル制御系(SLU)故障	1.2×10^{-12}	24	0.2		0
	+S/R 弁再閉鎖失敗 +高圧注水失敗	直流電源故障(区分 2)+S/R 弁再閉鎖失敗+原子炉注水自動起動不能の認知失敗+ECCS デジタル 制御系(SLU)故障	$6.7 imes 10^{-13}$	13	0.1		×
	+原于炉减庄矢敗 (5.1×10 ⁻¹² /炉年)	直流電源故障(区分 2)+S/R 弁再閉鎖失敗+原子炉減圧操作失敗+RSW(C)メンテナンス	$2.2 imes 10^{-13}$	4.3	<0.1		0

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(2/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。

別紙 4-5

【主要なカットセットに対する検討】(TQUX)

- いずれの主要な事故シーケンスのカットセットからも、原子炉注水自動起動不能の認知失敗のヒューマンエラー、原子炉減圧操作失敗のヒューマンエラーが抽出され、「通常停止+S/R 弁再閉鎖失敗+高圧注水失敗+原子炉減圧失敗」を除く主要な事故シーケンスのカットセットからは、原子炉水位計不動作/誤高出力(共通原因故障)等の信号系の故障も抽出された。このうち、原子炉注水自動起動不能の認知失敗と信号系の共通原因故障が重畳する場合、認知失敗により重大事故等対処設備として設置した高圧代替注水系の手動起動に期待できず、実際には故障の内容によるが、信号系の共通原因故障の場合は減圧自動化ロジックにも期待できないとすると、重大事故等防止対策に期待できず、炉心損傷を防止できない。この基事象の組み合わせ以外の場合には、高圧代替注水系による高圧注水のバックアップや減圧自動化ロジックによる低圧状態への移行等により、注水による炉心冷却を確保できる。
- 注水による炉心冷却の確保に成功した後は、代替原子炉補機冷却系又は格納容器 圧力逃がし装置を用いて除熱を行う。なお、上位のカットセットとしては抽出さ れていないが、残留熱除去系が機能喪失している場合には、格納容器圧力逃がし 装置を用いて除熱を行う。
- 全炉心損傷頻度から見た場合、炉心損傷を防止できないカットセットの頻度は非常に小さな値に抑えられていると考えるが、炉心損傷を防止できないカットセットに含まれている原子炉注水自動起動不能の認知失敗については、訓練等によりその発生可能性の低減に努めていく。

事故 シーケンス グループ ((+S () () () () () () () () () () () () ()				炉心損傷頻度	Ē		1.1.64
	王要な 事故シーケンス ^{*2}	主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	事故シーケンス グループへの 寄与割合 [%]	主な対策	対策 有効性
	過渡事象	隔離事象+原子炉補機冷却海水系ポンプ起動失敗(共通原因故障)	$3.0 imes 10^{-7}$	32	事故シーケンス グループへの 寄与割合 [%] 主な対策 9.1 5.2 3.0 0.3 0.2 ・手動減圧 0.1 ・手動減圧 0.1 ・手動減圧 0.1 ・手動減圧 0.1 ・低圧代替注水系 (常設)(復水補給 水系) 19 ・代替原子炉補機 冷却系(熱交換ユ コスプレイ系 0.1 ・代替原子炉補機 冷却系(熱交換ユ コミット+代替房 子炉補機冷却海 水ポンプ) 0.1 ・水シブ) ・格納容器圧力逃 がし装置 ・常設代替交流電 源設備 0.2 ・可搬型代替注水 給) <0.1	0	
事故 シーケンス グループ TW (崩壊熱除去 (3.3×10 ⁻⁶ /炉年)	+除熱失敗	隔離事象+残留熱除去系起動操作失敗	$1.7 imes 10^{.7}$	18	5.2		0
	(9.4×10 ⁻⁷ /炉年)	隔離事象+原子炉補機冷却系ポンプ起動失敗(共通原因故障)	9.8 $\times 10^{-8}$ 10 3.0		0		
	過渡事象 +S/R 弁再閉鎖失敗 +除熱失敗 (2.9×10 ⁻⁸ /炉年)	非隔離事象+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ起動失敗(共通原因故障)	$9.2 \! imes \! 10^{-9}$	32	0.3		0
		非隔離事象+S/R 弁再閉鎖失敗+残留熱除去系起動操作失敗	$5.4\!\times\!10^{\cdot9}$	19	0.2		0
		非隔離事象+S/R 弁再閉鎖失敗+原子炉補機冷却水ポンプ起動失敗(共通原因故障)	3.1×10 ⁻⁹ 11 0.1	 ・手動減圧 ・低圧代替注水系 	0		
	通常停止 +除熱失敗 (1.5×10 ⁻⁶ /炉年)	通常停止+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)	$8.8 imes10^{-7}$	59	27	(常設)(復水補給	0
		通常停止+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)	$6.4 imes 10^{-7}$	42	19	水糸)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
		通常停止+外部電源喪失(使命時間中の機能喪失)+非常用ディーゼル発電機(D/G)起動失敗 (共通原因故障)	$7.2 imes 10^{-11}$	<0.1	<0.1	おスプレイ系 ・代替原子炉補機	\triangle^{st_3}
TW (崩痺執险主	通常停止	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ継続運転失敗(共通原因故障)	$4.5\!\times\!10^{\cdot9}$	58	0.1	冷却系(熱交換ユ ニット+代替原 子炉補機冷却海 水ポンプ) ・格納容器圧力逃	0
機能喪失)	+S/R 弁再閉鎖失敗	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(共通原因故障)	$3.2 \! imes \! 10^{\cdot 9}$	42	0.1		0
(3.3×10 ⁻⁶ /炉年)	+除熱失敗 (7.7×10 ⁻⁹ /炉年)	通常停止+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ継続運転失敗(運転側)(共通原 因故障)+原子炉補機冷却海水系ポンプ継続運転失敗(待機側)(共通原因故障)	$7.0 imes 10^{-14}$	<0.1	< 0.1		0
	サポート系喪失	原子炉補機冷却海水系故障(C系)+原子炉補機冷却海水系ポンプ起動失敗(共通原因故障(二 重))	$1.5 imes 10^{-8}$	20	0.5	がし装置 ・常設代替交流電	0
	+除熱失敗 (7.4×10 ⁻⁸ /炉年)	原子炉補機冷却海水系故障(C系)+原子炉補機冷却海水系ポンプ起動失敗(共通原因故障(三 重以上))	$7.9 imes 10^{-9}$	11	0.2	源設備 • 可搬型代替注水	0
		原子炉補機冷却海水系故障(C系)+原子炉補機冷却系ポンプ起動失敗(共通原因故障(二重))	$5.0 imes10^{-9}$	6.8	0.2	ボンブ(水源補 絵)	0
	サポート系喪失	原子炉補機冷却海水系故障(C 系)+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ起動失 敗(共通原因故障(二重))	8.0×10 ⁻¹¹	21	<0.1	小口 /	0
	+S/R 弁再閉鎖失敗 +除熱失敗	原子炉補機冷却海水系故障(C 系)+S/R 弁再閉鎖失敗+原子炉補機冷却海水系ポンプ起動失 敗(共通原因故障(三重以上))	4.1×10 ⁻¹¹	11	<0.1		0
	(3.9×10 ⁻¹⁰ /炉年)	原子炉補機冷却海水系故障(C系)+S/R 弁再閉鎖失敗+原子炉補機冷却系ポンプ起動失敗(共 通原因故障(二重))	$2.6 imes 10^{-11}$	6.7	<0.1		0

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(3/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。

※3 長期 TB の対策で対応可能。

【主要なカットセットに対する検討】(TW)

- いずれの主要な事故シーケンスのカットセットからも、原子炉補機冷却系又は原 子炉補機冷却海水系の起動又は継続運転失敗の共通原因故障が抽出されている。 この基事象に対しては、代替原子炉補機冷却系ユニットによる海水への熱除去機 能の代替や、格納容器圧力逃がし装置による大気への除熱により炉心損傷(格納 容器先行破損)を防止できる。
- 主要な事故シーケンスのうち、「過渡事象+除熱失敗」、「過渡事象+S/R 弁再閉 鎖失敗+除熱失敗」では、残留熱除去系起動操作失敗のヒューマンエラーが抽出 されている。この基事象に対しては、格納容器圧力逃がし装置による大気への除 熱により炉心損傷(格納容器先行破損)を防止できる。
- 主要な事故シーケンスのうち、「通常停止+除熱失敗」では、使命時間中の外部 電源喪失等、電源喪失により炉心損傷(格納容器先行破損)に至るカットセットが 抽出されている。このカットセットに対しては、長期 TB のシーケンスにおける 対策により炉心損傷を防止できる。

事故シーケンス					炉心損傷頻周	度			
事故シーケンス グループ 事 長期 TB +D (c TBP +D (c TBP +D +S (1 (1.2×10°) /炉年) TBU TBU +D (c	王要な 事故シーケンス ^{*2}	主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	事故シーケンス グループへの 寄与割合 [%]	主な対策	対策 有効性		
	長期 TB	外部電源喪失 +D/G 全台起動失敗 (4.8×10 ⁻¹⁰ /炉年)		外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 継続運転失敗(共通原因故障)+高圧電源融通失敗	2.2×10^{-10}	46	18	 ・原子炉隔離時冷却系 (所内直流電源設備の確保) ・高圧代替注水系 	0
			外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 起動失敗(共通原因故障)+高圧電源融通失敗	$1.5 imes 10^{-10}$	31	13	 ・手動減圧 ・低圧代替注水系(常設)(復水補給水系) ・代替格納容器冷却スプレイ系 ・格納容器圧力逃がし装置 	0	
			外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 非常用送風機起動失敗(共通原因故障)+高圧電源融通失敗	$2.1 imes 10^{-11}$	4.4	1.8	 ・代替原子炉補機冷却系 ・常設代替交流電源設備 ・可搬型代替注水ポンプ(水源補給) 	0	
	TBP	外部電源喪失 +D/G 全台起動失敗 +S/R 弁再閉鎖失敗	外部電源喪失+S/R 弁再閉鎖失敗+外部電源復旧失敗+非常用ディ ーゼル発電機(D/G)継続運転失敗(共通原因故障)	$5.7 imes 10^{-11}$	48	4.8		×	
			外部電源喪失+S/R 弁再閉鎖失敗+外部電源復旧失敗+非常用ディ ーゼル発電機(D/G)起動失敗(共通原因故障)	4.0×10 ⁻¹¹	33	3.3	・上記の点線枠内の対策	×	
ТВ		(1.2×10 ⁻¹⁰ /炉年)	外部電源喪失+S/R 弁再閉鎖失敗+外部電源復旧失敗+非常用ディ ーゼル発電機(D/G)非常用送風機起動失敗(共通原因故障)	$5.3 imes 10^{-12}$	4.4	0.4		×	
 (全交流 動力電源 喪失) (1.9×10-9) 			外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 継続運転失敗(共通原因故障)+MUWP による CSP への水補給失 敗(現場弁閉失敗に伴う5号機原子炉建屋側への誤送水)	$2.6 imes 10^{-11}$	4.9	2.2		0	
(1.2×10° /炉年)			外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 継続運転失敗(共通原因故障)+MUWP による CSP への水補給失 敗(現場弁閉失敗に伴う5号機タービン建屋側への誤送水)	$2.6 imes 10^{-11}$	4.9	2.2		0	
	TBU	外部電源喪失 +D/G 全台起動失敗 +RCIC 失敗 (5.3×10 ⁻¹⁰ /炉年)	外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 継続運転失敗(共通原因故障)+MUWP による CSP への水補給失 敗(現場弁閉失敗に伴う6号機原子炉建屋側への誤送水)	$2.6 imes 10^{-11}$	4.9	2.2	 ・高圧代替注水系 ・上記の点線枠内の対策 	0	
		(0.0.10 /// //	外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 継続運転失敗(共通原因故障)+MUWP による CSP への水補給失 敗(現場弁閉失敗に伴う6号機タービン建屋側への誤送水)	$2.6 imes 10^{-11}$	4.9	2.2		0	
			外部電源喪失+外部電源復旧失敗+非常用ディーゼル発電機(D/G) 継続運転失敗(共通原因故障)+MUWP による CSP への水補給失 敗(現場弁閉失敗に伴う7号機原子炉建屋側への誤送水)	$2.6 imes 10^{-11}$	4.9	2.2		0	
	TBD	外部電源喪失 +直流電源喪失 (8.1×10 ⁻¹¹ /炉年)	外部電源喪失+バッテリーからの給電失敗(共通原因故障)	8.1×10 ⁻¹¹	100	6.8	 ・常設代替直流電源設備 ・原子炉隔離時冷却系 ・高圧代替注水系 ・上記の点線枠内の対策 	0	

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(4/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

別紙 4-9

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。 【主要なカットセットに対する検討】(TB)

- 主要な事故シーケンスのうち、「外部電源喪失+D/G 全台起動失敗」(長期 TB)では、外部電源、非常用ディーゼル発電機による給電を喪失し、外部電源の復旧、高圧電源融通にも失敗するカットセットが抽出されている。このカットセットに対しては、常設代替交流電源設備により電源を復旧するほか、原子炉隔離時冷却系の運転による長時間の炉心冷却の確保と格納容器圧力逃がし装置による格納容器除熱によってプラントを安定な状態に維持することが有効である。
- 主要な事故シーケンスのうち、「外部電源喪失+D/G 全台起動失敗+S/R 弁再閉鎖 失敗」(TBP)では、全交流電源喪失により電動駆動の ECCS 注水設備が機能喪失 することに加え、S/R 弁再閉鎖失敗により RCIC 及び高圧代替注水系に期待でき ない。また、事象進展が早く、常設代替交流電源設備によって電源を復旧しても 時間的に炉心損傷を防止できない。今回抽出した、いずれのカットセットにおい てもこの理由により炉心損傷を防止できない。このシーケンスは、LOCA 時に ECCS による注水が出来ないシーケンスと同等であり、炉心損傷は防止できない ものの、電源復旧等の後、圧力容器又は格納容器に注水し、格納容器圧力逃がし 装置等による除熱を行うことで、格納容器の破損防止を防止することができる。
- 主要な事故シーケンスのうち、「外部電源喪失+D/G 全台起動失敗+RCIC 失敗」 (TBU)では、外部電源、非常用ディーゼル発電機による給電を喪失し、短時間での外部電源の復旧に失敗し、RCIC の運転継続に必要な復水貯蔵槽(CSP)への補給に失敗するカットセットが抽出されている。このカットセットに対しては、同じ CSP を水源とする高圧代替注水系は有効な対策とならない。一方、CSP への補給に失敗するため、RCIC が使命時間 24 時間の運転を継続することはできないものの、元々CSP に蓄えられている水量を注水に費やせると考えると、少なくとも炉心損傷までに数時間程度の時間余裕を有するカットセットである。このため、今回抽出されたカットセットに対しては、常設代替交流電源設備等による電源復旧によって低圧の注水機能の復旧を図ること等により、炉心損傷を防止することが出来ると考えられる。また、今回のカットセットとしては抽出されなかったが、事象発生と同時に RCIC が故障等によって機能喪失に至る等、対応の時間余裕が短い場合は、高圧代替注水系によって炉心損傷を防止することができる。
- 主要な事故シーケンスのうち、「外部電源喪失+直流電源喪失」(TBD)では、外部 電源を喪失し、共通原因故障により全てのバッテリーからの給電に失敗するカッ トセットが抽出され、主要な事故シーケンスのうち 100%の割合を占めた。この カットセットに対しては、常設代替直流電源設備を用いて直流電源を復旧するこ とにより、炉心損傷を防止することができる。

市地ン、たいス	主要な 事故シーケンス*2	*		炉心損傷頻度			/ ///	
事政シークンス グループ		主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	事故シーケンス グループへの 寄与割合 [%]	主な対策	对束 有効性	
		非隔離事象+制御棒挿入失敗+SLC 手動操作失敗	$2.1 imes 10^{-12}$	100	43	 ・代替制御棒挿入機能 ・代替冷却材再循環ポンプ・トリッ 		
TC (原子炉停止機能喪失)	過渡事象 +原子炉停止失敗 (2.1×10 ⁻¹² /炉年)	過渡事象 (A) +原子炉停止失敗	非隔離事象+制御棒挿入失敗+SLC ほう酸水タンク閉塞	$5.7 imes 10^{-16}$	<0.1	<0.1	プ機能 ・ほう酸水注入系 高広長、泣さる	—
(4.9×10 ⁻¹² /炉年)		非隔離事象+制御棒挿入失敗+SLC ほう酸水タンク保温用ヒ ーター制御回路遮断器閉失敗	$2.0 imes 10^{-16}$	<0.1	<0.1	・ 向上炉心江水糸 ・ 原子炉隔離時冷却系 ・ 残留熱除去系	—	

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(5/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。 【主要なカットセットに対する検討】(TC)

- 主要な事故シーケンスとして、「過渡事象+原子炉停止失敗」について評価したところ、制御棒挿入失敗(機械系故障)に加えて SLC の機能喪失に関する基事象のカットセットが抽出された。原子炉停止機能について、ABWR である柏崎刈羽原子力発電所 6 号炉及び 7 号炉では、今回重大事故対処設備として位置づけた機能・設備がプラント設計当初より設置されていたことから、今回はこれらの機能・設備を考慮して PRA を実施した。このため、これらの機能・設備の喪失を含めて炉心損傷に至るカットセットが抽出されており、対策の有効性を確認することはできない。
- 原子炉停止機能喪失の事故シーケンスグループは、グループの炉心損傷頻度が 4.9×10⁻¹²/炉年であり、評価全体の炉心損傷頻度に占める割合は全シーケンスグ ループの中で最も小さい。主要なカットセットに今回重大事故対処設備として位 置づけた SLC が含まれていることからも、これらの今回重大事故対処設備の寄 与も含めて、非常に小さな炉心損傷頻度に抑えられていると考えられる。

*				炉心損傷頻度			
争政シーケンス グループ	土要な 事故シーケンス ^{*2}	主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	事故シーケンス グループへの 寄与割合 [%]	主な対策	对束 有効性
	LOGA	中 LOCA+原子炉補機冷却海水系ポンプ起動失敗(共通原 因故障)	$2.3 imes 10^{-9}$	59	52		0
	LOCA +高圧/低圧注水失敗 (3.9×10 ⁻⁹ /恒年)	中 LOCA+原子炉補機冷却系ポンプ起動失敗(共通原因故 障)	$7.6 imes 10^{\cdot 10}$	20	17	・手動減圧	0
		中 LOCA+原子炉補機冷却系電動弁(原子炉補機冷却系熱 交換器出口)開失敗(共通原因故障)	$3.0 imes 10^{-10}$	7.7	6.8	・低圧代替注水系(常設)(復水補給水 系)	0
(LOCA 時往水機能喪失) (4.4×10 ⁻⁹ /炉年)	LOCA +高圧注水失敗 +原子炉減圧失敗 (1.1×10 ⁻¹¹ /炉年)	中 LOCA+注水不能認知失敗+ECCS デジタル制御系 (DTM)故障(共通原因故障)	$8.1 imes 10^{-12}$	74	0.2	 ・代替格納容器冷却スプレイ系 ・代替原子炉補機冷却系 ・枚納容器圧力渉がし装置 	×
		中 LOCA+注水不能認知失敗+ECCS デジタル制御系 (DTM)故障(多重故障)	$2.4 imes 10^{\cdot 12}$	22	0.1	・可搬型代替注水ポンプ(水源補給)	×
		中 LOCA+原子炉減圧操作失敗+ECCS デジタル制御系 (DTM)故障(共通原因故障)+高圧注水系起動操作失敗	$3.2 imes 10^{-13}$	2.9	<0.1		×

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(6/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。 【主要なカットセットに対する検討】(LOCA)

- 主要な事故シーケンスのうち、「LOCA+高圧/低圧注水失敗」では、原子炉補機冷却系又は原子炉補機冷却海水系の起動又は熱交換器の弁故障の共通原因故障が抽出されている。中LOCAによりRCICに期待できず、原子炉補機冷却系等の喪失により、駆動機構の冷却が必要な電動駆動のECCS注水系に期待できない状況であるため、このカットセットに対しては、逃がし安全弁の手動作動により原子炉を減圧し、駆動機構の冷却を必要としない常設の低圧代替注水系(常設)(復水補給水系)により注水することで炉心損傷を防止できると考えられる。
- 主要な事故シーケンスのうち、「LOCA+高圧注水失敗+原子炉減圧失敗」では、 注水不能の認知に失敗するヒューマンエラーとデジタル制御系の共通原因故障、 又は多重故障によるカットセットが抽出されている。この場合、代替の注水手段 への移行の必要性に気付けないことから、逃がし安全弁の手動作動等の運転員操 作に期待することができないため、これらの重大事故等防止対策に期待できず、 炉心損傷を防止できない。また、高圧 ECCS 注水及び原子炉の減圧操作に失敗 するヒューマンエラーとデジタル制御系の共通原因故障による ECCS 系の自動 起動に失敗するカットセットが抽出されている。この場合、原子炉を減圧できな い一方で、LOCA により蒸気駆動の高圧代替注水設備にも期待できないことから、 炉心損傷を防止できない。
- LOCA が発生しているにも係わらず、認知に失敗したまま長時間気付かない場合 や、操作に失敗したにも係わらずその後の対応をとらないことは現実的には考え にくく、全炉心損傷頻度から見た場合、これらの炉心損傷を防止できないカット セットの頻度は非常に小さな値に抑えられているが、原子炉注水自動起動不能の 認知失敗等のヒューマンエラーについては、訓練等によりその発生可能性の低減 に努めていく。

事故シーケンス グループ	主要な 事故シーケンス*2			炉心損傷頻度			
		主要なカットセット	[/炉年]	主要な事故 シーケンスへの 寄与割合 [%]	事故シーケンス グループへの 寄与割合 [%]	主な対策	
ISLOCA (9.5×10 ⁻¹¹ /炉年)	ISLOCA (9.5×10 ⁻¹¹ /炉年)	定例試験時 HPCF(B)試験可能逆止弁内部リーク+HPCF(B)ポ ンプ吸込部配管破損+HPCF(B)注入隔離弁閉失敗	$1.5 imes 10^{-11}$	16	16		0
		定例試験時 HPCF(C)試験可能逆止弁内部リーク+HPCF(C)ポ ンプ吸込部配管破損+HPCF(C)注入隔離弁閉失敗	$1.5 imes 10^{-11}$	16	16	・ISLOCA 発生箇所の隔離 ・高圧炉心注水系	0
		定例試験時 HPCF(B)注入隔離弁誤開+HPCF(B)ポンプ吸込部 配管破損+HPCF(B)試験可能逆止弁閉失敗	1.4×10 ⁻¹¹	15	15	・手動減圧 ・低圧炉心注水系	0
		定例試験時 HPCF(C)注入隔離弁誤開+HPCF(C)ポンプ吸込部 配管破損+HPCF(C)試験可能逆止弁閉失敗	1.4×10 ⁻¹¹	15	15		0

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(7/7)*1

※1 主要な事故シーケンスの中の支配的なシーケンスに対する分析結果を示す。

※2 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目して詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの CDF を示す。 【主要なカットセットに対する検討】(ISLOCA)

○ 主要な事故シーケンスである、「ISLOCA」では、HPCFの定例試験時の弁 リークや誤開放に伴うカットセットが抽出されている。これらのカットセ ットに対しては、高圧炉心注水系又は原子炉を減圧した後に高圧又は低圧 炉心注水系による炉心の水位維持によって炉心損傷を防ぐことが出来る。 その後は、注入隔離弁の再閉操作等、破断箇所の隔離を試みると共に、使 用可能な緩和系で水位維持、除熱を行うことで、炉心を安定な状態とする ことができる。

- 2. 内部事象運転時レベル 1.5PRA
 - (1) 選定条件

事故シーケンスの種類によっては展開されるカットセットが無数に存在する ため、ここでは、各事故シーケンスについて以下の基準を基に主要なカットセッ トを抽出した。また、格納容器先行破損シーケンスについては、炉心損傷防止対 策の有効性を確認しているため、カットセットの分析対象から除外した。

・格納容器破損モードの中で最も炉心損傷頻度の大きな事故シーケンスについ て、上位3位までのカットセット

各事故シーケンスにおける主要なカットセット及び格納容器破損防止対策の 整備状況等を第2-1表に示す。

(2) 主要なカットセットの確認結果

第2-1表に示した通り、主要なカットセットレベルまで展開しても、整備された重大事故等防止対策により格納容器破損を防止できることを確認した。

		プラント	主要なカットセット		器破損頻度		1 1 44
	格納容器 破損モード	損傷状態 (PDS) ^{※1}			格納容器破損 モードへの	主な対策	対策 有効性
					寄与割合 [%]		
			外部電源喪失+非常用 D/G 運転継続失敗(共通原因故障)+外部電源復旧失敗+高圧電源融通失敗	1.1×10^{-11}	5.5		0
			外部電源喪失+非常用 D/G 起動失敗(共通原因故障)+外部電源復旧失敗+高圧電源融通失敗	7.7×10^{-12}	3.9		0
	雰囲気圧力・温度		外部電源喪失+非常用 D/G 非常用送風機起動失敗(共通原因故障)+外部電源復旧失敗+高圧電源 融通失敗	1.1×10^{-12}	0.6	低下仏共沿去ズ(浩司心として	0
	による静的負荷 (格納容器過圧破損)	長期 TB	外部電源喪失+非常用 D/G 運転継続失敗(共通原因故障)+高圧電源融通失敗+残留熱除去系操作 失敗(外部電源復旧成功後)	$1.1 imes 10^{-12}$	0.6	・ 低圧 八 督 注 小 赤 (吊 設) に よ る 原子 炉 注 水 ・ 代 基 枚 納 容 哭 冷 却 ス プ レ イ 系	0
	(2.0×10 ⁻¹⁰ /炉年)**2		外部電源喪失+非常用 D/G 冷却水出口弁開失敗(共通原因故障)+外部電源復旧失敗+高圧電源融 通失敗	1.1×10^{-12}	0.6	による格納容器の圧力制御 ・格納容器圧力逃がし装置に	0
			外部電源喪失+非常用 D/G 起動失敗(共通原因故障)+高圧電源融通失敗+残留熱除去系操作失敗 (外部電源復旧成功後)	1.1×10^{-12}	0.6	よる除熱 ・常設代替交流電源設備	0
	 雰囲気圧力・温度 による静的負荷 (格納容器過温破損) (6.1×10^{.9}/炉年) 	LOCA	LOCA+原子炉補機冷却海水系ポンプ起動失敗(共通原因故障)	$2.5 imes10^{-9}$	41		0
			LOCA+原子炉補機冷却系ポンプ起動失敗(共通原因故障)	$8.4 imes 10^{-10}$	14		0
別紙			LOCA+原子炉補機冷却系電動弁(原子炉補機冷却系熱交換器出口)開失敗(共通原因故障)	$3.5 imes 10^{-10}$	5.8		0
4-1	~	長期 TB	外部電源喪失+非常用 D/G 運転継続失敗(共通原因故障)+外部電源復旧失敗+高圧電源融通失敗	$5.1 imes10^{-13}$	46		0
8	局上浴離物放出/格納		外部電源喪失+非常用 D/G 起動失敗(共通原因故障)+外部電源復旧失敗+高圧電源融通失敗	$3.5\!\times\!10^{\text{-}13}$	32	・原子炉圧刀谷器破損までに 毛動撮作により原子に圧力	0
	谷岙芬田凤直按加热 (1.1×10 ⁻¹² /炉年)		外部電源喪失+非常用 D/G 非常用送風機起動失敗(共通原因故障)+外部電源復旧失敗+高圧電源 融通失敗	4.4×10^{-14}	4.0	容器を減圧	0
	原子炉圧力容器外の		LOCA+原子炉補機冷却海水系ポンプ起動失敗(共通原因故障)	1.2×10^{-13}	44	 ・た」 (FCI が発生しても) 	
	溶融燃料-冷却材相 互作用 (2.7×10 ⁻¹³ /炉年)	LOCA	LOCA+原子炉補機冷却系ポンプ起動失敗(共通原因故障)	$4.0 imes 10^{-14}$	15	格納容器圧力バウンダリの	—
			LOCA+原子炉補機冷却系電動弁(原子炉補機冷却系熱交換器出口)開失敗(共通原因故障)	$1.7 imes 10^{-14}$	6.2	機能喪失には至らない。)	_
	溶融炉心・コンクリ	mount	給水操作失敗+原子炉注水自動起動不能の認知失敗+原子炉水位計不動作/誤高出力(共通原因故 障)	女 1.2×10 ⁻¹³ 2.7 ・溶融炊 ペデ・		 溶融炉心落下までに格納容器 ペデスタルへの水張り及び落 	0
	~ト相互作用 (4.5×10 ^{−12} ////////////////////////////////////	TQUX	給水操作失敗+原子炉減圧操作失敗+原子炉水位高(L8)誤信号	$6.6 imes10^{-14}$	1.5	下後の崩壊熱除去も必要な流	0
	(4.0×10 - 1/2)牛)			$4.4 imes 10^{\cdot 14}$	1.0	量での注水	0

第2-1表 事故シーケンスの分析(最小カットセットの抽出)結果

※1 最も格納容器破損頻度の高いシーケンスを抽出しているため、有効性評価における PDS とは一致しない。

※2 格納容器が先行破損に至る崩壊熱除去機能喪失(TW)、原子炉停止機能喪失(TC)による格納容器破損頻度を除く。

【主要なカットセットに対する検討】

◎ 雰囲気圧力・温度による静的負荷(格納容器過圧破損)

- 支配的な事故シーケンスは、長期 TB によって炉心損傷に至った後に過圧破損に 至るシーケンスであり、主要なカットセットには全ての交流電源が失われるケース と、外部電源の復旧に成功するも、格納容器スプレイ(残留熱除去系)の起動に失敗 する基事象の組み合わせが抽出されている。これらのカットセットに対しては、格 納容器圧力逃がし装置が過圧破損防止に有効である。また、常設代替交流電源設備 によって電源を復旧し、代替格納容器冷却スプレイ系によって格納容器圧力の上昇 抑制を図ることも有効である。
- ◎ 雰囲気圧力・温度による静的負荷(格納容器過温破損)

支配的な事故シーケンスは、LOCAによって炉心損傷に至った後に過温破損に至 るシーケンスであり、主要なカットセットには原子炉補機冷却系又は原子炉補機冷 却海水系の起動又は熱交換器の弁故障の共通原因故障が抽出されている。これらの カットセットに対しては、低圧代替注水系(常設)による損傷炉心への注水が有効で ある。

◎ 高圧溶融物放出/格納容器直接加熱

支配的な事故シーケンスは、長期 TB によって炉心損傷に至った後に高圧溶融物 放出/格納容器雰囲気直接加熱に至るシーケンスであり、主要なカットセットには全 ての交流電源が失われる基事象の組み合わせが抽出されている。交流電源を喪失し ても原子炉圧力容器の減圧操作は可能であることから、現状の対策である原子炉圧 力容器の減圧操作によって、本モードによる格納容器破損を防止できる。

- ◎ 原子炉圧力容器外の溶融燃料 冷却材相互作用
 - 支配的な事故シーケンスは、LOCAによって炉心損傷に至った後に原子炉圧力容 器が損傷し、原子炉圧力容器外の溶融燃料ー冷却材相互作用に至るシーケンスであ り、主要なカットセットには原子炉補機冷却系又は原子炉補機冷却海水系の起動又 は熱交換器の弁故障の共通原因故障が抽出されている。この事象については、仮に 発生した場合であっても格納容器の破損に至らないことを確認しており、対策は講 じていない。
- ◎ 溶融炉心・コンクリート相互作用

支配的な事故シーケンスは、TQUX によって炉心損傷に至った後に原子炉圧力容 器が損傷し、ペデスタル床面での溶融炉心・コンクリート相互作用が継続するシー ケンスであり、主要なカットセットには原子炉注水自動起動不能の認知失敗のヒュ ーマンエラー、原子炉減圧操作失敗のヒューマンエラー、原子炉水位計不動作/誤高 出力(共通原因故障)等の信号系の故障が抽出されている。認知の失敗等により炉心 損傷に至るものの、炉心損傷後にはその状況を認知するとともに、炉心損傷から圧 力容器の損傷までの間に低圧代替注水系等を用いて、ペデスタルへの水張りを行う ことで、溶融炉心・コンクリート相互作用の継続を防止することができる。 3. 停止時レベル 1PRA

(1) 選定条件

事故シーケンスの種類によっては展開されるカットセットが非常に多くある。事故 シーケンスグループ毎に主要なシナリオ("添付資料 3.1.2.d-1 柏崎刈羽原子力発電 所 6、7 号機 内的事象停止時レベル 1PRAイベントツリー"の各分岐で分けられ たシーケンスの炉心損傷頻度が高いもの)を抽出した結果を表 3-1 に示す。

(2)主要なカットセットの確認結果

各事故シーケンスグループの炉心損傷頻度が最上位であるシーケンス(図 3-1、2、 3、4)においてミニマルカットセットの分析(MCS)を実施し(表 3-2、4、5)、整備 された炉心損傷防止対策が有効となることを確認した*。

また、崩壊熱除去機能喪失を起因事象とするシーケンスにおいては、炉心損傷頻度 が最上位であった補機冷却系機能喪失を起因事象とするシーケンスだけでなく、 RHR 機能喪失を起因事象とするシーケンスについても同様の評価を実施した(表 3-3)。

* 実施した炉心損傷防止策は起因事象である外部電源喪失や崩壊熱除去機能喪失 に対応した対策(代替交流電源の確保や注水・除熱機能の確保)であるため、 MCS分析をした事故シーケンス以外のシーケンスにも有効である。

事故シーケンスグループ	グループ の上位	全体順位	POS分 類	起因事象	シーケン スNo.	頻度[/日]	MCS分 析
	1	1	C1	崩壞熱除去機能喪失 (補機冷却系機能喪失)	12	2.0E-09	0
崩壊熱除去機能喪失	2	3	C1	崩壞熱除去機能喪失 (RHR機能喪失)	12	1.9E-11	0
	3	-	S	外部電源喪失	357	1.4E-11	—
	1	2	S	外部電源喪失	358	3.2E-11	0
全交流電源喪失	2	-	А	外部電源喪失	358	5.5E-12	—
	3	-	C1	外部電源喪失	358	2.0E-12	—
	1	-	В2	ー次冷却材バウンダリ機能喪失 (RIP点検)	8	7.0E-12	0
原子炉冷却材の流出	2	-	C1	ー次冷却材バウンダリ機能喪失 (CUWブロー)	9	9.0E-13	_
	3	-	B2	ー次冷却材バウンダリ機能喪失 (RIP点検)	16	2.0E-13	_

表 3-1 事故シーケンスグループ毎の主要シーケンス

表 3-2 崩壊熱除去機能喪失(補機冷却系機能喪失)の主要なカットセット

事故シーケンス	CDF	主要なカットセット	CDF	寄与割合	対策	対策の有効性
	2.0E-09	補機冷却系(B)機能喪失+ MUWC系手動弁(T/B復水積算流量計バイパス弁)	1.1E-09	53%	・代替補機冷 却系 ・注水機能の 信頼性向上・ 多様化	0
崩使執险主機能亟失		閉失敗+ 注水系復旧失敗				
崩壊(高力気機能要失) (補機冷却系機能喪失) +崩壊熱除去・注水失敗		補機冷却系(B)機能喪失+ MUWC系手動弁(T/B復水積算流量計バイパス弁) 現場操作失敗(人的過誤)+ 注水系復旧失敗	8.7E-10	43%		0
		補機冷却系(B)機能喪失+ MUWC R/B供給ライン逆止弁 開失敗+ 注水系復旧失敗	6.3E-11	3%		0

(POS C1 シーケンス No.12)

- POS C1 においては、保有水が少ないために炉心損傷までの時間が短く、また取水路点検等により A 及び C 系の補機冷却系に期待していないため、期待する注水機能が少ない状態である。この状態で補機冷却系(B系)が機能喪失すると、運転中であった RHR(B系)だけでなく、待機中の HPCF(B系)についても機能を喪失する。
 - そのため、期待出来る注水機能は補機冷却系と系統間の従属性を持たない MUWC(A~C系)のみとなり、MUWCの全系統が 機能喪失する「T/B 復水積算流量計バイパス弁の手動弁閉失敗」等の共通の基事象を含むカットセットが主要なカットセットと して抽出された。
- 主要なカットセットに対する対策としては代替補機冷却系、注水機能の信頼性向上・多様化(低圧代替注水(常設)[MUWC T/B バイパス隔離弁の追設置等の信頼性向上を実施した MUWC 系]、消防車)であり、当社の実施している炉心損傷防止対策は有 効である。

表 3-3 崩壊熱除去機能喪失(RHR 機能喪失)の主要なカットセット

(POS C1 シーケンス No.12)

事故シーケンス	CDF	主要なカットセット	CDF	寄与割合	対策	対策の有効性
崩壊熱除去機能喪失 (RHR機能喪失) +崩壊熱除去・注水失敗	1.9E-11	RHR(B)機能喪失+ MUWC系手動弁(T/B復水積算流量計バイパス弁) 閉失敗+ 補機冷却系(B)論理回路(SLU)廻りⅠ,Ⅱ系の故障+ 注水系復旧失敗	4.9E-12	25%	・注水機能 の 信頼性向上・ 多様化	0
		RHR(B)機能喪失+ MUWC系手動弁(T/B復水積算流量計バイパス弁) 現場操作失敗 (人的過誤)+ 補機冷却系(B)論理回路(SLU)廻りⅠ,Ⅱ系の故障+ 注水系復旧失敗	4.0E-12	21%		0
		RHR(B)機能喪失+ 補機冷却系(B)論理回路(SLU)廻りⅠ,Ⅱ系の故障+ MUWC系 HPCF手動隔離弁 現場操作失敗(人的過誤)+ 注水系復旧失敗	4.0E-12	21%		0

- POS C1 においては、取水路点検等により A 及び C 系の補機冷却系に期待していないため、期待する注水機能が少ない状態である。この状態で RHR(B系)が機能喪失し、補機冷却系(B系)論理回路(SLU)廻り I、Ⅱ系が故障すると HPCF(B系)、CUW(B系)についても機能を喪失する。この状態で期待出来る注水機能は補機冷却系と系統間の従属性を持たない MUWC(A~C系)のみとなり、MUWCの全系統が機能喪失する「T/B 復水積算流量計バイパス弁の手動弁閉失敗」等の共通の基事象を含むカットセットが主要なカットセットとして抽出された。
- 主要なカットセットに対する対策としては、補機冷却系機能喪失と同様、注水機能の信頼性向上・多様化(低圧代替注水(常設) [MUWC T/B バイパス隔離弁の追設置等の信頼性向上を実施した MUWC 系]、消防車)であり、当社の実施している炉心損傷 防止対策は有効である。

表 3-4 全交流動力電源喪失の主要なカットセット

(POSS シーケンス No.358)

事故シーケンス	CDF	主要なカットセット	CDF	寄与割合	対策	対策の有効性
外部電源喪失 十電源確保失敗	3.2E-11	外部電源喪失+ 非常用D/G(A),(B),(C) 継続運転失敗(共通原因故障)+ 外部電源(短期)復旧失敗 外部電源(長期)復旧失敗 非常用D/G(C) 復旧失敗	1.8E-11	58%	 ・常設代替交 流電源設備 ・注水系の多 様化 	ο
		外部電源喪失 + 非常用D/G(A),(B),(C) 継続運転失敗(共通原因故障)+ 外部電源(短期)復旧失敗 外部電源(長期)復旧失敗 非常用D/G(C) 復旧失敗	1.3E-11	40%		0
		外部電源喪失+ 非常用D/G(A),(B) 継続運転失敗(共通原因故障)+ 非常用D/G(C) 継続運転失敗+ 外部電源(短期)復旧失敗 外部電源(長期)復旧失敗 非常用D/G(C) 復旧失敗	8.4E-14	0.3%		0

- POSSにおいては、除熱系や注水系は多くあるが、崩壊熱量が大きく保有水が少ないので余裕時間は短く、高圧電源融通に期待 していない。外部電源が喪失し、D/G が全台起動に失敗すると全交流電源喪失となる。そのため、D/G の運転継続失敗や起動失 敗の CCF を含むカットセットが主要なカットセットとして抽出された。
- 対策として常設代替交流電源設備(GTG)や注水系の多様化(消火系による原子炉注水)であり、当社の実施している炉心損傷 防止対策は有効である。

表 3-5 一次冷却材バウンダリ喪失(RIP点検)の主要なカットセット

(POS B2 シーケンス No. 8)

事故シーケンス	CDF	主要なカットセット	CDF	寄与割合	対策	対策の有効性
	7.0E-12	冷却材流出(RIP点検)+ オペフロ消火栓 ホース取付失敗(人的過誤)+ RSWポンプ 全台 起動失敗(共通原因故障)	1.2E-12	17%	・注水系の信 頼性向上・多 様化	0
冷却材流出(RIP点検) +注水失敗		冷却材流出(RIP点検)+ オペフロ消火栓 ホース取付失敗(人的過誤)+ RHR注入弁(A),(C) 開失敗(共通原因故障)	6.1E-13	9%		0
		冷却材流出(RIP点検)+ オペフロ消火栓 ホース取付失敗(人的過誤)+ RCWポンプ 全台 起動失敗(共通原因故障)	4.3E-13	6%		0

- POS B2 においては、保有水は多くあるものの、MUWC や HPCF については点検により期待できないため、注水系はオペフロの消火栓を用いた注水と LPFL(A、C 系)となる。燃料プールの除熱系(FPC、RHR 燃料プール冷却モード)はプールからオーバーフローしてスキマサージタンクに流入した保有水を冷却して燃料プールに戻すシステムであり、冷却材流出が発生した場合は流出量によってはオーバーフローする保有水がなくなるため、事象発生後は除熱機能に期待しない。
 - そのため、LPFL(A、C系)の共通的な機能喪失の要因として補機冷却系の共通原因故障やRHR注入弁の共通原因故障、消火栓 を用いた注水の機能喪失の要因として現場作業失敗(ホース取付失敗)を含むカットセットが主要なカットセットとして抽出さ れた。
- 対策として注水系の信頼性向上・多様化(低圧代替注水(常設)[MUWC T/B バイパス隔離弁の追設置等の信頼性向上を実施した MUWC 系]、燃料プール代替注水系 [消防車])であり、当社の実施している炉心損傷防止対策は有効である。

×: プラント状態や起因事象との関係により期待できない設備

図 3-1 崩壊熱除去機能喪失の主要なシーケンス (POS C1 崩壊熱除去機能喪失(補機冷却系機能喪失))

×: プラント状態や起因事象との関係により期待できない設備

図 3-2 崩壊熱除去機能喪失の主要なシーケンス (POS C1 崩壊熱除去機能喪失(RHR機能喪失))

(POSS 外部電源喪失)

×: プラント状態や起因事象との関係により期待できない設備

図 3-4 原子炉冷却材の流出の主要なシーケンス (POS B2 一次冷却材バウンダリ喪失(R I P 点検)) 地震 PRA、津波 PRA から抽出される事故シーケンスと対策の有効性

内部事象 PRA から抽出される事故シーケンスには、一部を除いてそれぞれ有 効な炉心損傷防止対策等が講じられている。内部事象 PRA では、機器の故障等 の発生確率をランダム要因によるものとして炉心損傷頻度等を評価しているが、 外部事象 PRA では、外部事象によっても機器の故障等が発生するため、例えば ランダム要因では壊れにくいが地震に対しては脆弱な機器等が含まれる場合等、 同じ事故シーケンスあるいはカットセットであってもその発生頻度及び寄与率 には違いが表れる。このため、地震レベル 1PRA、津波レベル 1PRA から抽出 される事故シーケンスについても、支配的な事故シーケンスに対してカットセ ットを分析し、炉心損傷防止対策の有効性を整理した。

1. 地震レベル 1PRA

(1) 選定条件

事故シーケンスの種類によっては展開されるカットセットが無数に存在する ため、ここでは、各事故シーケンスについて以下の基準を基に主要なカットセッ トを抽出した。

・事故シーケンスグループのうち、最も炉心損傷頻度の大きな事故シーケンス について、上位3位までのカットセット

各事故シーケンスにおける主要なカットセット及び炉心損傷防止対策の整備 状況等を第1-1表に示す。

(2) 主要なカットセットの確認結果

第1-1表に示した通り、一部に炉心損傷防止が困難な事故シーケンスが存在す るものの、大半の事故シーケンスに対しては、主要なカットセットレベルまで展 開しても、整備された重大事故等対処設備により炉心損傷を防止できることを確 認した。なお、地震により重大事故等対処設備の機能が失われる可能性もあるが、 その際は機能喪失を免れた設備等を用いて対応することとなる。

一方、事故シーケンスグループのうち、「高圧注水・減圧機能喪失」、「全交流 動力電源喪失」に含まれる一部の事故シーケンスにおいて、故障モードによって は有効性評価で考慮した対策では対応できない場合があることを確認した。また、

「LOCA時注水機能喪失」、「計測・制御系喪失」、「格納容器バイパス」、「格納容器・圧力容器損傷」、「原子炉建屋損傷」の炉心損傷直結事象についても、地震動に応じた詳細な損傷の程度や影響を評価することは困難なことから、現状、炉心損傷直結事象として整理しているものの、実際には損傷の程度に応じて使用可能な重大事故等対処設備等を用いて対応することにより、炉心損傷を防止できる可能性があることを確認した。

		評価対象とした地震加速度領域におけるカットセットの分析結果*2						
事故	事故主要な			炉心打	員傷頻度	主た対策	対策	
グループ	事故シーケンス*1	とした地震 加速度領域 [gal]	レた地震 速度領域 [gal]		寄与割合 ^{**4} [%]		有効性	
TQUV	過渡事象		地震による原子炉補機冷却系熱交換器の構造損傷+RCIC ランダム故障	$9.2 imes 10^{-10}$	45	・低圧代替注水系	0	
(高圧・低圧注水 機能喪失)	+高圧/低圧注水失敗	1200	地震による原子炉補機冷却系熱交換器の構造損傷+地震による RCIC 配管の構造損傷	$3.0 imes 10^{-10}$	14	(常設)(復水補給	0	
(1.3×10 ⁻⁸ /炉年)	(5.9×10 ⁻⁹ /炉年)		地震による原子炉補機冷却系配管の構造損傷+RCIC ランダム故障	$2.6 imes 10^{-10}$	13	水系)	0	
TQUX	過渡事象		原子炉減圧操作失敗+原子炉水位高(L8)誤信号	$1.5 imes10^{-9}$	60	・減圧自動化ロジ	0	
(高圧注水・減圧 機能喪失)	+高圧注水失敗	150	原子炉注水自動起動不能の認知失敗+原子炉水位高(L8)誤信号	$6.2 imes 10^{-10}$	24	ック	×	
(9.5×10 ⁻⁹ /炉年)	10 ⁻⁹ /炉年) (5.4×10 ⁻⁹ /炉年)	原子炉注水自動起動不能の認知失敗+原子炉水位計不動作/誤高出力(共通原因故障)	$1.9 imes 10^{-10}$	7	・高圧代替注水系	×		
TW	外部電源喪失 +除熱失敗 (1.4×10 ⁻⁶ /炉年)		地震による碍子の構造損傷(外部電源喪失)+地震による残留熱除去系/低圧炉心注水系共 通弁の機能損傷	$5.4 imes 10^{-8}$	32	 ・代替格納容器冷 却スプレイ系 ・代麸原子恒補機 	0	
(崩壊熱除去 機能喪失)		外部電源喪失 +除熱失敗 1300 (1.4×10 ⁻⁶ /炉年)	地震による碍子の構造損傷(外部電源喪失)+地震による残留熱除去系の弁の機能損傷	$5.4 imes 10^{-8}$	32	冷却系 •格納容器圧力逃	0	
(3.3×10 ⁻⁶ /炉年)			地震による碍子の構造損傷(外部電源喪失)+地震による残留熱除去系配管の構造損傷	$3.9 imes 10^{-8}$	23	かし装直 ・可搬型代替注水 ポンプ	0	
TC (原子炉停止 機能喪失) (3.6×10 ⁻⁷ /炉年)	令态法雪酒軭生		地震による碍子の構造損傷(外部電源喪失)+地震による上部格子板の構造損傷+地震に よる原子炉補機冷却系熱交換器の構造損傷	$9.5 imes 10^{-9}$	24	 ・代替制御棒挿入 機能 	_	
	+原子炉停止失敗 (17×107/炉车)	1650	地震による碍子の構造損傷(外部電源喪失)+地震による制御棒駆動系配管の構造損傷+ 地震による原子炉補機冷却系熱交換器の構造損傷	$8.6 imes 10^{-9}$	22	 ・代替冷却材再循 環ポンプ・トリ 	_	
	(1.7×10°//炉牛)	(1.7×10 ⁻⁷ /炉年)	(1.7×10 ⁻⁷ /炉年)		地震による碍子の構造損傷(外部電源喪失)+地震による上部格子板の構造損傷+地震に よる非常用取水路の構造損傷	3.4×10 ⁻⁹	9	ップ機能 ・ほう酸水注入系

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(1/3)

※1 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目し、詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの炉心損傷頻度(CDF)を示す。

※2 主要な事故シーケンスの中で最も高い CDF を示したシーケンスのうち、最も高い CDF を示す地震加速度領域におけるカットセットの分析結果を示す。

※3 地震 PRA では機器の損傷を完全相関としているため、多重化されたある機器が地震により損傷する場合、他の多重化された機器も全て損傷する。

※4 評価対象とした地震加速度領域における CDF に対するカットセットの寄与割合を示す。

別紙 5-3

				評価対象とした地震加速度領域におけるカットセットの分析結果*																
事故シーケン		主要な 事故シーケンス ^{*1}	評価対象 とした地震			員傷頻度	 主な対策	対策 右効性												
	,	Ψ Ψ Ψ	加速度領域 [gal]	主要なカットセット*3	[/炉年]	寄与割合 ^{**4} [%]														
				地震による碍子の構造損傷(外部電源喪失)+地震による原子炉補機冷却系熱 交換器の構造損傷	$2.3 imes 10^{-7}$	64	・原子炉隔離時冷却系 (所内直流電源設備の確保)	0												
	長期 TB	全交流電源喪失 (3.3×10 ⁻⁶ /炉年)	1350	地震による碍子の構造損傷(外部電源喪失)+地震による原子炉補機冷却系配 管の構造損傷	$6.3 imes 10^{-8}$	18	・格納容器圧力逃がし装置 ・常設代替交流電源設備	0												
				地震による碍子の構造損傷(外部電源喪失)+地震による非常用取水路の構造 損傷	4.4×10 ⁻⁸	12	・可搬型代替注水ボンブ (水源補給)	0												
		全交流電源喪失 +S/R 弁再閉鎖失敗 (1.9×10 ⁻⁸ /炉年)	人六法雪酒市出	<u> </u>	市上	地震による碍子の構造損傷(外部電源喪失)+地震による原子炉補機冷却系熱 交換器の構造損傷+S/R 弁再閉鎖失敗	$1.3 imes 10^{-9}$	63		×										
TB (全交流	TBP		YR 弁再閉鎖失敗 1400 (1.9×10 ⁻⁸ /炉年)	地震による碍子の構造損傷(外部電源喪失)+地震による原子炉補機冷却系配 管の構造損傷+S/R 弁再閉鎖失敗	$3.4 imes 10^{-10}$	17	• 常設代替交流電源設備	×												
動力電源 喪失) (4 0×10 ⁻⁶				地震による碍子の構造損傷(外部電源喪失)+地震による非常用取水路の構造 損傷+S/R 弁再閉鎖失敗	$2.7 imes 10^{-10}$	14		×												
(4.0×10*		全交流電源喪失 HRCIC 失敗 (3.4×10 ⁻⁷ /炉年)					人士法委派主任			人士法美国专业	人士法意运去上	人大法康派市中	人方法承证市生	人大法律派亦中		地震による碍子の構造損傷(外部電源喪失)+地震による復水貯蔵槽(CSP)周り 配管の構造損傷+地震による原子炉補機冷却系熱交換器の構造損傷	$2.9 imes 10^{-8}$	49		
	TBU		全交流電源喪失 +RCIC 失敗 1550 (3.4×10 ⁻⁷ /炉年)	地震による碍子の構造損傷(外部電源喪失)+地震による復水貯蔵槽(CSP)周り 配管の構造損傷+地震による非常用取水路の構造損傷	$8.6 imes 10^{-9}$	14	 ・高圧代替注水系 ・常設代替交流電源設備 	0												
				地震による碍子の構造損傷(外部電源喪失)+地震による復水貯蔵槽(CSP)周り 配管の構造損傷+地震による原子炉補機冷却系配管の構造損傷	$8.3 imes 10^{-9}$	14		0												
		古法重酒市生		地震による直流電源電線管の構造損傷	$5.5 imes10^{-9}$	84		0												
	TBD	旦侃电你丧大 (6.0×10 ⁻⁸ /炉年)	1550	地震による直流電源主母線盤の機能損傷	$5.6 imes10^{-10}$	9	・常設代替直流電源設備	0												
				(0.0~10 1/2 中)	(0.0~10 7次 平)	(0.0×10 1/2+)		地震による直流電源充電器盤の機能損傷	$4.4 imes 10^{\cdot 10}$	7		\circ								

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(2/3)

※1 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目し、詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの炉心損傷頻度(CDF)を示す。

※2 主要な事故シーケンスの中で最も高い CDF を示したシーケンスのうち、最も高い CDF を示す地震加速度領域におけるカットセットの分析結果を示す。

※3 地震 PRA では機器の損傷を完全相関としているため、多重化されたある機器が地震により損傷する場合、他の多重化された機器も全て損傷する。

※4 評価対象とした地震加速度領域における CDF に対するカットセットの寄与割合を示す。

別紙 5-4

			評価対象とした地震加速度領域におけるカットセットの分析結果*2									
	事故 シーケンス グループ	主要な	評価対象		炉心損	傷頻度	主た対策	対策				
		事故シーケンス*1	とした地震 加速度領域 [gal]	主要なカットセット ^{※3}		寄与割合 ^{※4} [%]		有効性				
	LOCA (LOCA 時 注水機能喪失) (8.2×10 ⁻⁷ /炉年)	原子炉冷却材 圧力バウンダリの喪失 (7.8×10 ⁻⁷ /炉年)	1250	地震による格納容器内配管の構造損傷	4.4×10 ⁻⁸	100	_	_				
	11111111111111111111111111111111111111	計測・制御系の損傷 (6.9×10 ⁻⁸ /炉年)	D損傷 1700 年)	地震によるコントロール建屋の構造損傷	$8.0 imes 10^{-9}$	63		_				
	計測・制御糸喪矢 (6.9×10 ⁻⁸ /炉年)			地震による直立盤(制御盤・多重伝送盤)の機能損傷	$1.7\! imes\!10^{-9}$	14	—	-				
				地震によるバイタル分電盤の機能損傷	$1.2 imes 10^{-9}$	9		—				
	故她宏思	低耐震クラス配管破断 +格納容器隔離弁損傷 (1.2×10 ⁻⁷ /炉年)		地震による原子炉冷却材浄化系吸込ライン隔離弁の機能損傷+地震による原子炉 冷却材浄化系吸込ライン隔離弁の下流側配管の構造損傷	4.4×10 ⁻⁹	36		_				
	バイパス		格納容器隔離弁損傷 1600	地震による残留熱除去系停止時冷却モード吸込ライン隔離弁の機能損傷+地震による残留熱除去系停止時冷却モード吸込ライン隔離弁の下流側配管の構造損傷	4.0×10 ⁻⁹	33	_	-				
	(1.2×10 ′ /炉平)			地震による原子炉冷却材浄化系吸込ライン隔離弁の下流側配管の構造損傷+高圧 交流分電盤の機能損傷(隔離弁の電源喪失)	$1.7 imes 10^{-9}$	14		-				
	格納容器・圧力	「七分明の担応		地震による圧力容器ペデスタルの構造損傷	$4.6 imes 10^{-8}$	66		-				
	容器損傷 (8.9×10 ⁻⁷ /炉年)	圧刀谷岙の損傷 (8.9×10 ⁻⁷ /炉年)	1500	地震による制御棒駆動系ハウジング(制御棒駆動機構の外側支持部分)の構造損傷	$9.9 imes10^{-9}$	→×10 ⁻⁹ 14 -		—				
				地震による原子炉冷却材再循環系ポンプモータケーシングの構造損傷	$6.6 imes10^{-9}$	10		-				
	原子炉建屋損傷	原子炉建屋・ 構筑物の損傷	1750	地震により原子炉建屋が基礎地盤すべり線に沿って動くことによる損傷	$1.9 imes 10^{-7}$	89	_					
	(3.8×10 ⁻⁶ /炉年)	構築物の損傷 (3.8×10 ⁻⁶ /炉年)	構築物の損傷 (3.8×10 ⁻⁶ /炉年)	構築物の損傷 (3.8×10 ⁻⁶ /炉年)	構築物の損傷 (3.8×10 ⁻⁶ /炉年)	構築物の損傷 (3.8×10 ⁻⁶ /炉年)	1100	地震による原子炉建屋の損傷	$2.4 imes 10^{-8}$	11		_

第1-1表 事故シーケンスの分析(最小カットセットの抽出)結果(3/3)

※1 主要な事故シーケンスは、同じ事故シーケンスグループに含まれる複数のシーケンスを、シーケンスの上の主な特徴に着目し、詳細化して分類したもの。 括弧内は主要な事故シーケンスに含まれるシーケンスのうち、支配的なシーケンスの炉心損傷頻度(CDF)を示す。

※2 主要な事故シーケンスの中で最も高い CDF を示したシーケンスのうち、最も高い CDF を示す地震加速度領域におけるカットセットの分析結果を示す。

※3 地震 PRA では機器の損傷を完全相関としているため、多重化されたある機器が地震により損傷する場合、他の多重化された機器も全て損傷する。

※4 評価対象とした地震加速度領域における CDF に対するカットセットの寄与割合を示す。

別紙 5-5

0

【主要なカットセットに対する検討】

- 高圧・低圧注水機能喪失(TQUV)
 - いずれのカットセットにも、地震による原子炉補機冷却系(RCW)の構造損傷と 地震あるいはランダム故障による原子炉隔離時冷却系(RCIC)の機能喪失が含ま れている。つまり、電動駆動の ECCS 注水系の機能喪失の原因については、RCW の機能喪失により空調及び駆動部の冷却機能を喪失し、注水不能となるカットセ ットが支配的となる。これらのカットセットに対しては、駆動部の冷却が不要な 低圧代替注水系(常設)(復水補給水系)により、圧力容器に注水することにより炉 心損傷を防止できる。
- 高圧注水・原子炉減圧機能喪失(TQUX)

本事故シーケンスグループで最も高い炉心損傷頻度となる加速度領域は 150 gal であり、いずれのカットセットにも、地震による機器の損傷の基事象は含ま れていない。このため対策は、内部事象レベル 1PRA の結果抽出されたカットセ ットに対する対策と同様のものとなる。

○ 崩壞熱除去機能喪失(TW)

いずれのカットセットにも、地震による残留熱除去系(RHR)の構造損傷又は機 能損傷が含まれている。この基事象に対しては、代替原子炉補機冷却系ユニット による海水への熱除去機能の代替には期待できないが、格納容器圧力逃がし装置 による大気への除熱により炉心損傷(格納容器先行破損)を防止できる。

○ 原子炉停止機能喪失(TC)

いずれのカットセットにも、原子炉補機冷却系又は非常用取水路の構造損傷が 含まれている。原子炉スクラムが必要な際に制御棒を挿入できない場合、高圧炉 心注水系による水位制御に期待できないことから炉心損傷に至る。

原子炉停止機能について、ABWR である柏崎刈羽原子力発電所 6 号炉及び 7 号炉では、今回重大事故対処設備として位置づけた機能・設備がプラント設計当 初より設置されていたことから、今回はこれらの機能・設備を考慮して PRA を 実施した。このため、これらの機能・設備の喪失を含めて炉心損傷に至るカット セットが抽出されており、対策の有効性を確認することはできない。

- 全交流動力電源喪失(TB)
 - ・ 全交流電源喪失(長期 TB)

主要な事故シーケンスのうち、「全交流電源喪失」(長期 TB)では、原子炉補機 冷却系又は非常用取水路の構造損傷を含むカットセットが抽出されている。この カットセットに対しては、常設代替交流電源設備により電源を復旧するほか、原 子炉隔離時冷却系の運転による長時間の炉心冷却の確保と格納容器圧力逃がし 装置による格納容器除熱によってプラントを安定な状態に維持することが有効 である。

・全交流電源喪失+S/R 弁再閉鎖失敗(TBP)

主要な事故シーケンスのうち、「全交流電源喪失+S/R 弁再閉鎖失敗」(TBP) では、原子炉補機冷却系又は非常用取水路の構造損傷を含むカットセットが抽出 されている。これにより非常用ディーゼル発電機の冷却機能が失われ、外部電源 喪失と合わせて全交流電源喪失に至り、電動駆動の ECCS 注水設備が機能を喪 失する。また、S/R 弁再閉鎖失敗により RCIC 及び代替高圧注水系に期待できな い。さらに、事象進展が早く、常設代替交流電源設備によって電源を復旧しても 時間的に炉心損傷を防止できない。このため、今回抽出したいずれのカットセッ トにおいても炉心損傷を防止できない。このシーケンスは、LOCA 時に ECCS による注水が出来ないシーケンスと同等であり、炉心損傷は防止できないものの、 電源復旧等の後、圧力容器又は格納容器に注水し、格納容器圧力逃がし装置等に よる除熱を行うことで、格納容器の破損防止を防止することができる。

・全交流電源喪失+RCIC 失敗(TBU)

主要な事故シーケンスのうち、「全交流電源喪失+RCIC 失敗」(TBU)では、原 子炉補機冷却系又は非常用取水路の構造損傷及び RCIC の水源となる復水貯蔵 槽(CSP)周りの配管の構造損傷を含むカットセットが抽出されている。このカッ トセットに対しては、同じ CSP を水源とする高圧代替注水系は有効な対策とな らない。一方、S/C に水源を切り替えることができれば、一定時間原子炉隔離時 冷却系(RCIC)によって注水できると考えると、少なくとも炉心損傷までに数時間 程度の時間余裕を有するカットセットである。このため、今回抽出されたカット セットに対しては、RCIC による注水及び可搬型の低圧代替注水系によって、炉 心損傷を防止することが出来ると考えられる。また、今回のカットセットとして は抽出されなかったが、事象発生と同時に RCIC が故障等によって機能喪失に至 る等、対応の時間余裕が短い場合は、高圧代替注水系によって炉心損傷を防止す ることができる。

・直流電源喪失(TBD)

主要な事故シーケンスのうち、「直流電源喪失」(TBD)では、地震により直流 電源設備の構造損傷又は機能損傷に至るカットセットが抽出された。このカット セットに対しては、常設代替直流電源設備を用いて直流電源を復旧することによ り、炉心損傷を防止することができる。

○ LOCA 時注水機能喪失(LOCA)

カットセットとしては、地震による格納容器内配管の構造損傷が抽出された。

地震動に応じた詳細な損傷の程度を評価することは困難なことから、格納容器内 配管の構造損傷を以って炉心損傷直結としているものの、実際には配管損傷の規 模に応じて炉心損傷を防止できる場合も考えられる。

○ その他の炉心損傷直結事象

計測・制御系喪失、格納容器バイパス、格納容器・圧力容器損傷、建屋・構築 物損傷については、別紙2の通り、評価方法にかなりの保守性を有しており、ま た、地震動に応じた詳細な損傷の程度や影響を評価することは困難なことから、 現状、炉心損傷直結事象として整理しているものの、実際には損傷の程度に応じ て使用可能な重大事故等対処設備等を用いて対応することにより、炉心損傷を防 止できる可能性があるものと考える。その場合は、損傷した機能に応じて内部事 象運転時レベル 1PRA の結果から抽出された既存の事故シーケンスグループに 包絡されるものと考える。

例えば、別紙2の2.1 建屋・構築物(原子炉建屋)の損傷の(4)に示した通り、現 実的には考えにくいものの、仮に基礎地盤の変形が生じ、建屋間での配管破断に 至り、原子炉建屋内への水の流入によって高圧・低圧注水機能の喪失に至ったと しても、サプレッションプールを水源とした原子炉隔離時冷却系(RCIC)による注 水や可搬型の低圧代替注水系によって対応できると考える。

また、別紙2の2.2 建屋・構築物(格納容器・圧力容器)の損傷の(4)に示した通 り、フラジリティの評価手法が有する保守性により、現実的には PRA の結果以 上に起こりにくい事象と考えるものの、仮にペデスタルにおける支持機能の喪失 が発生し、一次系の配管破断等が発生した場合は、LOCA と同等の対応として、 使用可能な注水設備による注水及び格納容器圧力逃がし装置等を用いた除熱に よって、プラントを安定な状態に導くことが出来ると考える。 2. 津波レベル 1PRA

津波 PRA の結果、今回評価の対象としたプラント状態では、津波高さ 4.2 m 以上の場合、取水口からの浸水により炉心損傷に至る。津波高さと機能喪失する 安全上重要な機器の組み合わせから、高圧・低圧注水機能喪失(TQUV)、直流電 源喪失(TBD)に事故シーケンスグループを区分しているものの、安全上重要な機 器の機能喪失の原因はいずれも浸水であり、対策としては浸水防止対策が最も有 効であると考える。

また、何らかの要因により浸水防止対策が機能せず、建屋内に浸水した場合に は、喪失した機能に応じ、重大事故等対処設備等を用いて対応することで、炉心 損傷を防止できるものと考える。何らかの要因による建屋内への浸水時に重大事 故等対処設備等に期待できるか否かについては、建屋内への浸水の状況等による 部分もあるが、建屋内部の浸水防止対策や高台に配備した設備等により対応する ことが可能であると考える。

以 上

「水素燃焼」及び「溶融物直接接触(シェルアタック)」を 格納容器破損モードの評価対象から除外する理由

「実用発電用原子炉に係る炉心損傷防止対策及び格納容器(PCV)破損防止対策の有効性評価に関する審査ガイド」(有効性評価ガイド)では、必ず想定する PCV 破損モードの1つとして水素燃焼及び格納容器直接接触(シェルアタック) が挙げられている。

一方、有効性評価ガイドに基づき、格納容器破損モード抽出のための個別プ ラント評価として実施した、KK6/7 号機(ABWR)の内部事象運転時レベル 1.5PRA では、水素燃焼及び格納容器直接接触(シェルアタック)を PCV 破損モ ードの評価対象から除外している。以下に、除外理由の詳細を示す。

○「水素燃焼」の除外理由

有効性評価ガイドにおける、「水素燃焼」の現象の概要は以下の通りである。

原子炉格納容器内に酸素等の反応性のガスが混在していると、水-ジル コニウム反応等によって発生した水素と反応することによって激しい燃 焼が生じ、原子炉格納容器が破損する場合がある。

・ 炉心損傷に伴う PCV 内の気体の組成及び存在割合の変化

KK6/7(ABWR)では、運転中は PCV 内を常時窒素で置換しており、酸素の濃度は 3.5%以下に管理されている。一般に可燃限界とされている濃度は、水素が 4%以上かつ酸素が 5%以上の場合である。

水-ジルコニウム反応の程度や水蒸気等他の気体の存在割合にも依るが、 燃料温度の著しい上昇に伴って水-ジルコニウム反応が生じる状況になれば、 水素濃度は4%をほぼ上回る。

一方酸素は、事象発生前から PCV 内に存在している量の他には水の放射 線分解によって生じるのみである。このため、炉心損傷後の PCV 内での水 素燃焼の発生を考慮する際には、酸素濃度に着目する必要がある。なお、 水の放射線分解による酸素濃度の上昇に対して保守的なシナリオで評価し ても、事象発生から7日以内に酸素濃度が5%を超えることは無い。

・内部事象運転時レベル 1.5PRA の格納容器破損モードから除外する理由

内部事象運転時レベル 1.5PRA において、仮にイベントツリーに水素燃焼に関するヘディングを設けたとしても、上記の通り、7日以内に酸素濃度が5%を超えることは無く、また、7日以上 PCV の機能を維持(破損を防止)

しながら酸素濃度の上昇については何も対応しない状況は考え難いことを 考えると、水素燃焼に関するヘディングの分岐確率は0となる。

内部事象運転時レベル 1.5PRA は、格納容器破損のシーケンスに加えて 格納容器破損頻度(CFF)を求める評価であることから、発生する状況が想定 されない水素燃焼を評価対象とすることは適切でないと考える。

上記の理由により、水素燃焼は内部事象運転時レベル 1.5PRA の対象か ら除外した。但し、有効性評価においては、酸素濃度の観点で最も厳しい シナリオを考慮し、可燃限界に至らないことを示している。

なお、PCV 外部からの空気の流入によって酸素濃度が上昇する場合については、既に PCV の隔離機能が失われている状況であるため、内部事象運転時レベル 1.5PRA の対象外となる。

○「溶融物直接接触(シェルアタック)」の除外理由

有効性評価ガイドにおける、「溶融物直接接触(シェルアタック)」の現象の 概要は以下の通りである。

原子炉圧力容器内の溶融炉心が原子炉格納容器内の床上へ流れ出す時 に、溶融炉心が床面で拡がり原子炉格納容器の壁に接触することによって、 原子炉格納容器が破損する場合がある。

・シェルアタックについて

シェルアタックについては、NUREG/CR-6025^[1]において、BWR MARK I型 PCV に対する検討が実施されている。BWR MARK I型 PCV における シェルアタックのメカニズムは次の通り。

炉心損傷後、原子炉圧力容器底部から流出した溶融炉心はペデスタル部 に落下する。この時、BWR MARK I 型 PCV はペデスタル部に切れ込み(図 1)があるため、溶融炉心がペデスタル床面に広がった場合、溶融炉心が切れ 込みからペデスタル部の外側に流出して PCV の壁面(金属製のライナー部 分)に接触する可能性(図 2)がある。

この事象は、PCVの構造上、BWR MARK I 型 PCV 特有である。

・内部事象運転時レベル 1.5PRA の格納容器破損モードから除外する理由

KK6/7(ABWR)の RCCV 型 PCV のペデスタルの側面は、二重の円筒鋼板 内部にコンクリートを充填した壁で囲まれており、BWR MARK I 型 PCV の様な切れ込みを持たない構造(図 3, 4)であるため、溶融炉心がペデスタル 床面で広がった場合でも、ペデスタル外側へ溶融炉心が流れ出ることは無 い。この様に、ABWR では構造的に発生しない PCV 破損モードであるこ とから、内部事象運転時レベル 1.5PRA の対象から除外した。なお、同様の理由により、有効性評価の対象からも除外している。

以 上

参考文献

[1] NUREG/CR-6025, The Provability of Mark-I Containment Failure by Melt-Attack of the Liner, U.S. Nuclear Regulatory Commission (1993)

図1BWR MARK I型 PCV におけるシェルアタックのイメージ(側面図)[1]

図2 BWR MARK I型 PCV における溶融炉心のペデスタル外側への流出のイメージ[1]

図3RCCV型格納容器の構造

図4RCCV型格納容器のペデスタル部内筒展開図(ペデスタルの内側から見た図)

【分岐確率の根拠】

KK6/7 号機の内部事象運転時レベル 1.5PRA では、炉心損傷の時点で原子炉 格納容器(PCV)の隔離に失敗している場合を考慮しており、これを「PCV 隔離 失敗」のヘディング(分岐確率 5.0×10⁻³)として設定している。

この分岐確率は、PCV 隔離システムの信頼性について評価している NUREG/ CR-4220^[1]をもとに設定している。NUREG/CR-4220 では、米国の LER (Licensee Event Report)(1965 年~1984 年分)を分析し、PCV からの大規模漏 洩が生じた事象 4 件を抽出、これを評価時点での運転炉年(740 炉年)で割ること により、PCV 隔離失敗の発生頻度(5.0×10⁻³/炉年)を算出している。更に、PCV 隔離失敗の継続時間の情報が無いことから、工学的判断として平均継続時間を1 年とし、上記の発生頻度に1年を掛けることにより、「PCV 隔離失敗」の確率と している。

本評価においても、PCVの隔離機能は少なくとも1年に1回程度は確認されるもの(1サイクルに1回程度)と考え、上記の発生頻度に1年を掛けることにより、「PCV隔離失敗」の確率としている。

なお、NUREG/CR-4220 では、潜在的な漏洩が発生する経路として、ベント 弁等の大型弁の故障や PCV 壁に穴が空く事象等の直接的な破損を考えている。

【JNES による検討事例】

PCVの隔離失敗については、独立行政法人 原子力安全基盤機構(JNES)による評価結果^[2]が報告されている。国内 BWR-5MARKII型格納容器プラントを対象に、フォールトツリー(FT)を用いて PCV 隔離失敗確率を評価しており、PCV 隔離失敗確率は平均値で 8.3×10⁻⁴(EF=2.4)と示されている。

PCV の貫通部を抽出した上で、貫通部の弁の構成等を考慮し、リークのパタ ーンを FT でモデル化している。また、FT の基事象には国内機器故障率データ を使用している。

【分岐確率の設定について】

NUREG/CR-4220 では米国の運転実績から、JNES による評価では、FT に よる分析から PCV 隔離失敗の頻度又は確率が評価されている。用いているデー タ及び評価方法は異なるものの、いずれも 1.0×10⁻³前後の値である。

本評価において、PCV 隔離失敗は他のヘディングとの従属関係を持たない独 立のヘディングであり、プラント損傷状態の発生頻度と PCV 隔離失敗確率の積 がそのまま PCV 隔離失敗による PCV 破損頻度となる。また、PCV 隔離の成功 確率はほぼ1であることから、PCV 隔離以降のイベントツリーの分析結果(CFF) には殆ど影響しない。これらのことから、参照可能と考える評価結果のうち、 大きめの値を示している NUREG/CR-4220 の評価結果をもとに分岐確率を 5.0 ×10⁻³と設定することに問題は無いものと考える。

なお、現状の運転管理として格納容器内の圧力を日常的に監視しているほか、 格納容器圧力について1日1回記録を採取している。仮に今回想定した様な大 規模な漏えいが生じた場合、速やかに検知できる可能性が高いと考える。

以 上

参考文献

- NUREG/CR-4220, Reliability Analysis of Containment Isolation Systems., U.S. Nuclear Regulatory Commission (1985)
- [2]「JNES/SAE06-031,06 解部報-0031 格納容器健全性に関する機器の重要度評価」独立 行政法人 原子力安全基盤機構 (2006)

炉内溶融燃料-冷却材相互作用(炉内 FCI)に関する知見の整理

1. 現象の概要

原子炉容器内水蒸気爆発による格納容器破損は a モード破損と呼ばれ、 WASH-1400から研究が続けられてきた。この現象は、溶融炉心(コリウム)が原 子炉圧力容器下部ヘッドに溜まっている水中に落下した時に水蒸気爆発が発生 し、それにより水塊がミサイルとなって炉内構造物を破壊し、原子炉圧力容器 上蓋に衝突することで上蓋を固定するボルトを破壊し、上蓋が格納容器に衝突 して格納容器破損に至るという現象である。

炉内での現象は、以下のようなメカニズムであると考えられている。

- 炉内の冷却材が喪失し、炉心が溶融して、その溶融炉心が下部プレナムの残 存水に落下する。水と接触した溶融炉心は、その界面の不安定性により、溶 融炉心の一部もしくは大部分が分裂し、膜沸騰を伴う水との混合状態となる (粗混合)。更に、自発的もしくは外部からの圧力パルスにより、膜沸騰が不 安定化し(トリガリング)、二液が直接接触する。
- ② 下部プレナムにおける二液の直接接触により、急速な熱の移動が発生し、急速な蒸気発生・溶融炉心の微細化によって、更に液体どうしの接触を促進し (伝播)、蒸気発生を促進する。この蒸気発生により、圧力波が発生する。
- ③発生した圧力波が通過した後の高温高圧領域(元々は粗混合領域)の膨張により運動エネルギが発生し、上部ヘッドを破壊する。この結果、上部ヘッドはミサイルとなって格納容器に衝突する。

2. 過去の実験結果の整理[1]

FCI について、過去に実施された比較的大規模な実験概要及び結果を以下に示す。

2.1 FARO 実験

FARO 実験は、イタリアのイスプラ研究所において実施された実験で、圧力 容器内での FCI を調べることを主な目的とした試験である。多くの実験は高 圧・飽和水条件で実施されているが、圧力容器外を対象とした低圧・サブクー ル水条件の実験も実施されている。

図 2.1 に試験装置の概要図を示す。試験装置は主にるつぼと保温容器で構成されている。るつぼ内で溶融させたコリウムを一度リリースベッセルに保持し、 その底部にあるフラップを開放することにより溶融コリウムを水プールに落下 させる。溶融物落下速度は、リリースベッセルの圧力を調整することにより調 整可能である。 実験は、酸化物コリウム(80wt% UO₂+20wt% ZrO₂)または金属 Zr を含むコリウム(77wt% UO₂+19wt% ZrO₂+4wt% Zr)を用いて実施された。

表 2.1 に試験条件及び試験結果を示す。

結果として、いずれの実験においても、水蒸気爆発の発生は確認されなかった。

溶融コリウムの粒子化量について、高圧条件・低サブクール水条件において は水深約1mの場合で溶融コリウムの約半分が粒子化し、残りはジェット状で プール底面に衝突し、パンケーキ状に堆積したとの結果が得られている。また、 低圧条件・サブクール水条件では、全てのコリウムは粒子化した。

さらに、粒子の質量中央径は 3.2 mm~4.8 mm であり、試験パラメータ(初期 圧力、水深、コリウム落下速度、サブクール度)に依存しないことが報告されて いる。

2.2 COTELS 実験

COTELS 実験は、(財)原子力発電技術機構により実施された実験であり、圧 力容器底部が溶融破損して溶融コリウムが格納容器床面上の水プールに落下し た場合の水蒸気爆発の発生有無を調べることを目的に実施された。図 2.2 に実験 装置の概要図を示す。実験は、シビアアクシデント時の溶融コリウム成分を模 擬するため、比較的多くの金属成分を含む模擬コリウム(55wt% UO₂+5wt% ZrO₂+25wt% Zr+15wt% SUS)が用いられた。また、多くの実験ケースはプール 水深 40 cm、飽和水温度で実施されている

表 2.2 に実験条件及び結果を示す。

結果として、いずれの実験においても、水蒸気爆発の発生は確認されなかった。

プールに落下した溶融コリウムはほとんどが粒子化し、落下速度が大きいケ ースでは、全てのコリウムが粒子化するとの結果が得られている。

また、コリウム落下速度の大きいケースを除いて、粒径分布に大きな差はな く、質量中央径で 6 mm 程度であり、落下速度が大きいケースでは粒子径は小 さくなっている。

2.3 KROTOS 実験

KROTOS 実験はイスプラ研究所で実施された実験であり、FARO 実験が高圧 条件を主目的として実施されたのに対して、KROTOS 実験では、低圧・サブク ール水を主として実施が行われている。

図 2.3 に実験装置の概要図を示す。本実験では摸擬コリウムとして UO₂ 混合物(80% UO₂+20% ZrO₂)またはアルミナを用いた実験を行っている。また、外部 トリガ装置によりトリガを与えることで、水蒸気爆発を誘発させる実験も実施 されている。 表 2.3 に実験条件及び結果を示す。

アルミナを用いた実験では、サブクール水(ケース 38, 40, 42, 43, 49)の場合、 外部トリガ無しで水蒸気爆発が発生、低サブクール水(ケース 41, 44, 50, 51)の 場合、外部トリガがある場合(ケース 44)に水蒸気爆発が発生した。一方、UO₂ 混合物を用いた実験では、サブクール度が 4~102 K の場合、外部トリガ無しで は水蒸気爆発が発生せず、外部トリガありの場合でも、溶融物の重量が大きい、 または、水プールのサブクール度が高い場合(ケース 52)に水蒸気爆発が観測さ れている。

これらの差異として、粒子径はアルミナの 8~17 mm に対し UO₂ 混合物は 1 ~1.7 mm であり、UO₂ 混合物の方が小さく、粒子化直後の表面積が大きいため 粗混合時に水プールが高ボイド率となり、トリガの伝播を阻害した可能性があ る。また、アルミナは比重が小さいことから水面近傍でブレークアップし、径 方向に拡がったことによりトリガが伝搬しやすくなったと考えられている。一 方、UO₂ 混合物は、粒子表面と水が接触した直後に表面が固化することにより 蒸気膜が崩壊した際の微粒子化が起こりにくく、これが一つの要因となって水 蒸気爆発の発生を阻害すると考えられる。

2.4 ALPHA 実験

旧原子力研究所(JAERI)で実施された実験であり、シビアアクシデント時の格納容器内の諸現象を明らかにし、格納容器の耐性やアクシデントマネジメント策の有効性を評価することを目的に、1988年から事故時格納容器挙動試験の一環で実施された。

図 2.4 に実験装置の概要図を示す。実験では、溶融ステンレス鋼または酸化ア ルミニウムと鉄からなる溶融物を実験装置の摸擬格納容器内に設置した水プー ルに落下させるもので、摸擬格納容器の寸法は、内径約4m、高さ約5m、内 容積約 50m³である。

表 2.4 に実験条件及び結果を示す。

溶融ステンレス鋼の実験ケースでは、水プールのサブクール度が高い場合で も水蒸気爆発の発生は確認されていない。

酸化アルミニウムと鉄の溶融物の実験では、溶融物の重量が 20kg、雰囲気圧 力が 0.1 MPa で、サブクール度が 73~90 K において実施されたケース(ケース 2,3,5,9,17,18)において水蒸気爆発が発生している。溶融物量を半減させたケ ース 1, 10, 13 では、ケース 10 のみ水蒸気爆発が確認された。この 3 ケースの 条件には有意な差が無いことから、この 3 ケースの条件がこの実験体系におけ る水蒸気爆発の発生の有無の境界近傍であること及びこの結果からは、溶融物 の落下量が多い場合に水蒸気爆発が発生し易いことが示されている。水プール を飽和水としたケース 14 では水蒸気爆発は観測されなかった。一方、ケース 8, 12, 15, 25 は雰囲気圧力を 0.5~1.6 MPa の範囲で変化させているが、最も低い 0.5 MPaのケースのみ水蒸気爆発が観測された。

以上の結果から、高雰囲気圧力あるいは低サブクール水の場合に水蒸気爆発 発生が抑制される傾向があることが示されている。

ケース 6, 11, 19, 20, 21 は、溶融物を分散させ複数のジェットを形成させたケ ースであるが、3 ケースで水蒸気爆発が観測されたが、水蒸気爆発の規模は抑制 される場合と増大される場合があり、溶融物と冷却水の粗混合状態が FCI の進 展に大きな影響を及ぼすことを示していると結論付けられている。

3. 知見のまとめ

上記で示した主な実験結果をまとめると以下のとおりとなる。

- ・UO₂ を用いた実験では、水蒸気爆発は確認されていない。(FARO 実験、 COTELS 実験)
- ・高圧力条件、または、低サブクール水条件は、水蒸気爆発を抑制する傾向 がある(ALPHA 試験)
- ・粒子化割合は、サブクール度に依存し、サブクール度が大きいと粒子化割 合は高くなる(FARO 実験)
- ・粒子化割合は、デブリ落下速度に依存し、落下速度が大きいと粒子化が促進される(COTELS 実験)
- ・デブリ落下後の水プールが高ボイド率状態になると、トリガの伝播を阻害 する可能性がある(KROTOS 実験)
- ・溶融物と水の粗混合状態が、FCIの進展に大きな影響を及ぼす(ALPHA 実験)

BWR 体系に対して、上記の実験結果を踏まえた分析結果を表 3.1 に示す。実験結果からは、水蒸気爆発の発生は不確実さが大きいと考えられるものの、BWR 体系では炉内における水蒸気爆発は発生しにくいと考えられることが分かる。

また、BWR において炉内での自発的水蒸気爆発(外部トリガ無しの状態での 水蒸気爆発)が発生しにくい理由として、BWR の炉内の水が低サブクール(飽和 水に近い状態)であり、低サブクールであれば溶融炉心を覆う蒸気膜が凝縮効果 によって崩壊する可能性が低いことから、蒸気膜の安定性が高く、蒸気膜の崩 壊(トリガリング)が生じにくいことが挙げられている。^[1]

炉内 FCI の発生確率低減に対する炉心下部の構造物の効果として考慮される 事項としては、以下の事項が考えられる。また、溶融炉心の流路を図 3.1 に示す。

・水蒸気爆発に寄与する溶融炉心の質量が限られること。

炉心下部の構造物によって、溶融炉心の流路が阻害され、一度に炉水中 に落下する溶融炉心の質量が限定(炉水中に移行する溶融炉心のエネルギが 抑制される。)されることにより、水蒸気爆発を仮定してもそのエネルギが 低く抑えられると考えられる。 ・溶融炉心の落下速度が抑えられること。

溶融炉心の落下速度が大きい場合、粗混合時の粒径が小さくなることが 報告されている。炉心下部の構造物によって、溶融炉心の落下速度が抑制 されれば、粗混合時の粒径が大きくなり、溶融炉心の表面積が小さくなる ことから、蒸気膜の表面積も小さくなり、トリガリング発生の可能性が小 さくなると考えられる。

4. 専門家会議等の知見[2]

BWR の炉内 FCI の発生確率に関して、専門家の間で議論がなされており、 その結果を表 4.1 に示す。

専門家の間での議論の結果として、BWR 体系では下部プレナムに制御棒案内 管等が密に存在しており、これらはデブリ落下時の粗混合を制限すると考えら れるため、水蒸気爆発の発生確率はプラント全体で見た際に他の要因による格 納容器破損頻度に比べて十分小さく無視出来ると結論付けられている。

5. まとめ

これまでに実施された各種実験結果および専門家による工学的判断の結果から、BWR 体系における炉内 FCI 発生の可能性は十分小さいと考えられる。

したがって、BWR における格納容器破損モードとして、炉内 FCI の考慮は 不要である。

6. 参考文献

- [1] 社団法人日本原子力学会「シビアアクシデント熱流動現象評価」平成12年3月
- [2] 財団法人原子力安全研究協会「シビアアクシデント対策評価のための格納容器イベント ツリーに関する検討」平成13年7月

図 2.1 FARO 試験装置

No.	溶融 コリウム ※	溶融物質量 [kg]	溶融物温度 [K]	溶融物落下 粒径[mm]	雰囲気圧力 [MPa]	水深[m]	サブクール度 [K]	FCI発生の 有無
L-06	Α	18	2923	100	5.0	0.87	0	無
L-08	А	44	3023	100	5.8	1.00	12	無
L-11	В	151	2823	100	5.0	2.00	2	無
L-14	А	125	3123	100	5.0	2.05	0	無
L-19	А	157	3073	100	5.0	1.10	1	無
L-20	А	96	3173	100	2.0	1.97	0	無
L-24	А	177	3023	100	0.5	2.02	0	無
L-27	А	129	3023	100	0.5	1.47	1	無
L-28	А	175	3052	100	0.5	1.44	1	無
L-29	А	39	3070	100	0.2	1.48	97	無
L-31	A	92	2990	100	0.2	1.45	104	無
L-33	A	100	3070	100	0.4	1.60	124	無

表 2.1 FARO 試験の試験条件及び FCI 発生の有無

※ A:80wt% UO2+20wt% ZrO2

B:77wt% UO2+19wt% ZrO2+4wt% Zr

図 2.2 COTELS 試験装置

No.	溶融 コリウム ※	溶融物質量 [kg]	雰囲気圧力 [MPa]	水深[m]	サブクール度 [K]	FCI発生の 有無
A1	С	56.3	0.20	0.4	0	無
A4	С	27.0	0.30	0.4	8	無
A5	С	55.4	0.25	0.4	12	無
A6	С	53.1	0.21	0.4	21	無
A8	С	47.7	0.45	0.4	24	無
A9	С	57.1	0.21	0.9	0	無
A10	С	55.0	0.47	0.4	21	無
A11	С	53.0	0.27	0.8	86	無

表 2.2 COTELS 試験の試験条件及び FCI 発生の有無発生の有無

※ C: 55wt% UO2+5wt% ZrO2+25wt% Zr+15wt% SUS

図 2.3 KROTOS 試験装置

No.	溶融 コリウム	溶融物質量 [kg]	溶融物温度 [K]	雰囲気圧力 [MPa]	水深[m]	サブクール度 [K]	外部トリガ の有無	FCI発生の 有無
38	アルミナ	1.53	2665	0.10	1.11	79	無	有
40	アルミナ	1.47	3073	0.10	1.11	83	無	有
41	アルミナ	1.43	3073	0.10	1.11	5	無	無
42	アルミナ	1.54	2465	0.10	1.11	80	無	有
43	アルミナ	1.50	2625	0.21	1.11	100	無	有
44	アルミナ	1.50	2673	0.10	1.11	10	有	有
49	アルミナ	1.47	2688	0.37	1.11	120	無	有
50	アルミナ	1.70	2473	0.10	1.11	13	無	無
51	アルミナ	1.79	2748	0.10	1.11	5	無	無
37	コリウム※	3.22	3018	0.10	1.11	77	有	無
45	コリウム※	3.09	3106	0.10	1.14	4	有	無
47	コリウム※	5.43	3023	0.10	1.11	82	有	無
52	コリウム※	2.62	3023	0.20	1.11	102	有	有

表 2.3 KROTOS 試験の試験条件及び FCI 発生の有無

※ コリウム : 80% UO2+20% ZrO2

No.	溶融 コリウム	溶融物質量 [kg]	溶融物温度 [K]	雰囲気圧力 [MPa]	水深[m]	サブクール度 [K]	FCI発生の 有無
1	Fe+アルミナ	10	2723	0.1	1.0	80	無
2	Fe+アルミナ	20	2723	0.1	1.0	84	有
3	Fe+アルミナ	20	2723	0.1	1.0	81	有
5	Fe+アルミナ	20	2723	0.1	1.0	73	有
6	Fe+アルミナ	20	2723	0.1	1.0	75	有
8	Fe+アルミナ	20	2723	1.6	1.0	186	無
9	Fe+アルミナ	20	2723	0.1	1.0	84	有
10	Fe+アルミナ	10	2723	0.1	1.0	80	有
11	Fe+アルミナ	20	2723	0.1	1.0	83	有
12	Fe+アルミナ	20	2723	1.6	1.0	184	無
13	Fe+アルミナ	10	2723	0.1	1.0	76	無
14	Fe+アルミナ	20	2723	0.1	1.0	1	無
15	Fe+アルミナ	20	2723	1.0	1.0	171	無
16	Fe+アルミナ	20	2723	0.1	0.9	78	有
17	Fe+アルミナ	20	2723	0.1	0.9	87	有
18	Fe+アルミナ	20	2723	0.1	0.9	90	有
19	Fe+アルミナ	20	2723	0.1	0.9	92	有
20	Fe+アルミナ	20	2723	0.1	1.0	92	無
21	Fe+アルミナ	20	2723	0.1	0.9	92	有
22	Fe+アルミナ	20	2723	0.1	0.8	87	無
23	Fe+アルミナ	20	2723	0.1	0.3	140	有
24	Fe+アルミナ	20	2723	0.1	0.8	145	有
25	Fe+アルミナ	20	2723	0.5	0.9	145	有

表 2.4 ALPHA 試験の試験条件及び FCI 発生の有無

BWR 体系	FCI 発生への影響	備考
下部プレナム残存水はおおよそ飽和温度	 ・飽和温度に近いため粒子化割合が少なくなることから、初期粗混合が抑制されることが推測され、FCI発生は阻害される可能性が考えられる。 ・飽和温度に違いことからデブリ落下のボイド発生が多くなり、ト 	・FARO 実験 ・KROTOS 実験
	リガが発生した場合の伝播が妨げられ、FCI 発生は阻害される可能性が考えられる。	
下部プレナムに残存する水量は少量	 ・水量が少ないことから熱容量が小さく、デブリ落下時のボイド発生が多くなり、トリガが発生した場合の伝播が妨げられ、FCI発生は阻害される可能性が考えられる。 	・KROTOS 実験
プール水面衝突時のデブリ落下速度は比 較的遅い	 ・落下速度が遅いためデブリの粒子化割合が少なくなり、初期粗混 合が抑制されることが推測され、FCI発生は阻害される可能性が 考えられる。 	・COTELS 実験
デブリ落下は単一ジェットではなく、複 数ジェット	 ・複数ジェットのため初期のデブリ落下量が多く、ボイド発生が多くなり、トリガが発生した場合の伝播が妨げられ、FCI発生は阻害される可能性が考えられる。 ・複数ジェットにより粗混合状態が促進される状態となった場合は、FCI発生を促進される可能性が考えられる。 	・KROTOS 実験 ・ALPHA 実験

表 3.1 BWR 体系を踏まえた炉内 FCI 発生の整理

図 3.1 BWR における溶融炉心の流路^[1]

著者	会議/文献	議論
Okkonen 等	OECD/CSNI	BWR の圧力容器下部プレナムは、制御棒案内管で密
(1993)	FCI 専門家会議	に占められている。そして、炉心の広い範囲でのコヒー
	(1993)	レントなリロケーションは、炉心支持板があるため起こ
	NUREG/CP-0127	りにくそうである。これらの特徴は、燃料ー冷却材の粗
		混合のポテンシャルを制限し、水蒸気爆発に起因する水
		- 溶融物スラグの運動エネルギを消失させる可能性が
		ある。従って、スラグにより破壊された圧力容器ヘッド
		のミサイルに伴う格納容器破損は、PWR を対象とした
		研究よりも BWR の方が起こりにくいと評価される。
Theofanous	NUREG/CR-5960	下部プレナムには、密に詰められた制御棒案内管があ
等(1994)		るため、BWR は炉内水蒸気爆発問題の対象とならない。
Corradini	SERG-2 ワークシ	物理的なジオメトリは爆発的事象の発生に貢献しな
(1996)	ョップ(1996)	いため、BWR のαモード格納容器破損確率は、おそら
	NUREG-1524	く PWR より小さい。
Zuchuat 等	OECD/CSNI	下部プレナム構造物の存在は、水蒸気爆発の影響を緩
(1997)	FCI 専門家会議	和する。
	(1997)	一般に、BWR の現在の知見は、炉内水蒸気爆発は格
	JAERI-Conf	納容器への脅威とならないということである。
	97-011	(NUREG/CR-5960 を参考文献としている)

表 4.1 BWR 体系における炉内 FCI 現象の発生確率に関する議論の整理