5. 高レベル放射性汚染水処理設備,貯留設備(タンク等),廃スラッジ貯蔵施設,使用済 セシウム吸着塔保管施設及び関連設備(移送配管,移送ポンプ等)

5.1. 概要

- 5.1.1. 現状及び中期的見通し
- (1) 汚染水処理設備等の設置の背景と目的

福島第一原子力発電所は、平成23年3月11日に発生した東北地方太平洋沖地震によ る津波によりタービン建屋等が海水に浸水され、大量の海水が建屋内に滞留した。ま た、その後の原子炉及び原子炉格納容器の損傷により、炉心冷却水がタービン建屋に 流れ込み、滞留していた海水に高濃度の放射性物質が含まれることになった(以下、 タービン建屋等に滞留している高レベルの放射性汚染水を「滞留水」という)。

平成23年4月2日には、トレンチのひび割れを通じて滞留水が取水口に直接流出す る事象が発生した。当該事象は、平成23年4月6日に止水できたものの、再度の漏え いや別の場所からの漏えいの可能性が否定できないこと及び炉心冷却水の流入、雨水 の浸入、地下水の浸透によりタービン建屋等の水位が上昇し、所外放出のリスクが高 まったことを踏まえ、以下の理由により、安全な箇所へ滞留水を移送し、処理設備に より滞留水に含まれる放射性物質を除去することとした。

- ・ 除去した放射性物質が環境中に移行しがたい性状とすることを目的に, 放射性物 質を吸着させ固定化する, または凝集する
- 滞留水の発生量を抑制することを目的に、処理済水を原子炉への注水に再利用して循環冷却を構築する
- (2) 現状及び中期的見通し

滞留水の移送先として,既存の設備の中から滞留水の受入可能容量,止水工事の施工性等を考慮し,プロセス主建屋及び高温焼却炉建屋を選定し,平成23年4月19日からプロセス主建屋への移送を開始した。

また,汚染水処理設備は,米国キュリオン社,仏国アレバ社及び国内メーカ(東芝, 日立 GENE),協力会社等の協力を経て,平成23年4月29日から現地工事を順次開始 し,平成23年6月17日から滞留水の処理(放射性物質の除去等)を開始した。

タービン建屋の水位は、平成23年6月17日において2号炉;OP.3,689,3号炉;OP.3,826 から平成23年10月11日時点において、2号炉;OP.2,916、3号炉;OP.3,139まで低下 している。また、これまで処理した滞留水は、約124,200m³となっている。

今後は、地下水の浸透により発生する滞留水を抑制するため、原子炉建屋とタービン建屋間の止水が完了するまで、タービン建屋の水位を OP.3,000 付近で管理しながら 汚染水処理設備等を稼働させていく。

- 5.1.2. 基本的対応方針及び中期的計画
- (1) 現状の設備構成に対する基本的対応方針

平成 23 年 10 月 17 日時点において,汚染水処理設備,貯留設備(タンク等),廃ス ラッジ貯蔵施設,使用済セシウム吸着塔保管施設及び関連設備(移送配管,移送ポン プ等)は,滞留水移送装置,油分分離装置,処理装置(セシウム吸着装置,第二セシ ウム吸着装置,除染装置),淡水化装置(逆浸透膜装置,蒸発濃縮缶装置),高濃度滞 留水受タンク,中低濃度タンク(サプレッション・プール水サージタンク,廃液供給 タンク,RO後濃縮塩水受タンク,濃縮廃液貯槽,RO及び蒸発濃縮装置後淡水受タン ク),造粒固化体貯槽(D),使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一 時保管施設で構成される。また,現在実施中の工事として,廃スラッジー時保管施設 の設置工事,中低濃度タンクのうちRO後濃縮塩水受タンク等の増設工事がある。

これら設備の全体概要を図 5-1 に示す。

タービン建屋等の滞留水をプロセス主建屋,高温焼却炉建屋へ移送・貯留した後, 油分を除去し,処理装置(セシウム吸着装置(ゼオライト吸着方式),第二セシウム吸 着装置(ゼオライト吸着方式),除染装置(凝集沈殿方式)),淡水化装置(逆浸透膜装 置,蒸発濃縮缶装置)により主要核種や塩分を除去する。また,各装置間には処理水, 廃水を保管するための中低濃度タンク(サプレッション・プール水サージタンク,廃 液供給タンク,RO後濃縮塩水受タンク,濃縮廃液貯槽,RO及び蒸発濃縮装置後淡水 受タンク)を設置している。

二次廃棄物となる使用済みのセシウム吸着塔及び廃スラッジは、それぞれ使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設及び造粒固化体貯槽(D)、 廃スラッジー時保管施設で一時的に貯蔵する。

また,汚染水処理設備等が長期停止する場合を想定し,プロセス主建屋,高温焼却 炉建屋以外の滞留水の貯留用として高濃度滞留水受タンクを設けている。

これらの設備は,追加発生する滞留水を上回る処理能力を有すること及び放射性物 質等の濃度を適切な値に低減する能力を有することを前提に,高濃度の放射性液体を 扱うことから,以下の安全機能を確保するように設計している。

・ 放射性物質の閉じ込め(液体廃棄物の漏えい防止,漏えい拡大防止を含む)

- ・ 放射線遮へい
- ・ 崩壊熱の除去
- 可燃性ガスの滞留防止
- 気体状放射性物質の放出防止

また,汚染水処理設備等は,機器の故障が発生しても早期運転再開が可能なように, 原則として動的機器を多重化している。

さらに今後、第二セシウム吸着装置の所内電源系統をセシウム吸着装置、除染装置

と分離し、処理装置の多重化を図り信頼性を向上させることを計画している。

(2) 中期的計画

汚染水処理設備は,設計から工事完了まで短期間で実施していること,当社では初 めての設備となることから,初期トラブル等,稼働開始以降これまでにいくつかの不 具合が生じている。これらの不具合に対して再発防止策等を常に講じ設備の改善を図 っており,また,設備の運用を適宜改善し,二次廃棄物発生量の低減等を図っている ところである。

汚染水の処理は、炉心冷却のための循環ラインとともに炉心燃料取出完了まで継続 的に必要な設備であり、基本方針として循環ラインの段階的な縮小化等と合わせて次 期汚染水処理設備のシステム構成の検討等を進めている。

継続的に汚染水処理を進めながら、次期汚染水処理設備の検討を進めることから、 本設備と次期汚染水処理設備は運転面及び設備面での継続性が必要であり、本設備に ついては次期汚染水処理設備の一部の機能を担うことも想定し、可能な範囲で技術基 準に適合するよう運用改善、設備改善を図っていくものとする。現在の汚染水処理設 備等の信頼性については、様々なトラブル等の経験を踏まえて向上しており、一部機 器の設備改善などを行うことで運転継続は可能と考えている。設備改善の一例として、 セシウム吸着装置において装置スキッド内に設置しているポンプが故障しており、高 線量下のため修理できていない状況にあるが、ポンプをスキッド外へ追加設置するこ とで信頼性・保守性を向上させることを検討している。

従って,次期汚染水処理設備については新規設備の追設と合わせ,運用・設備改善 した本設備の一部継続使用について検討を行い,1年後を目途に設備の設置・システム 構築を行う。また,今後の循環ラインの段階的な縮小化等に合わせて設備の改造等を 検討・実施していく。 5.2. 汚染水処理設備, 貯留設備(タンク等)及び関連設備(移送配管,移送ポンプ等)

汚染水処理設備,貯留設備(タンク等)及び関連設備(移送配管,移送ポンプ等)は, 滞留水移送装置,油分分離装置,処理装置(セシウム吸着装置,第二セシウム吸着装置, 除染装置),淡水化装置(逆浸透膜装置,蒸発濃縮缶装置),高濃度滞留水受タンク,中低 濃度タンク(サプレッション・プール水サージタンク,廃液供給タンク,RO後濃縮塩水受 タンク,濃縮廃液貯槽,RO及び蒸発濃縮装置後淡水受タンク)で構成される。

なお,中低濃度タンクのうち,サプレッション・プール水サージタンクは,液体廃棄物 処理系の設備として既に設置していたものを使用している。

5.2.1. 設備の設計方針

- (1) 処理能力
 - a. 汚染水処理設備及び関連設備(移送配管,移送ポンプ等)は,原子炉への注水,雨水の浸入,地下水の浸透等により1号~4号炉のタービン建屋等に発生する滞留水に対して十分対処できる処理容量とする。
 - b. 汚染水処理設備の除染能力及び塩素除去能力は,処理済水の発電所内再使用を可能 とするのに十分な性能を有するものとする。
- (2) 汚染水処理設備等の長期停止に対する考慮
 - a. 主要核種の除去を行う処理装置(セシウム吸着装置,第二セシウム吸着装置,除染 装置)は、単独若しくは組み合わせでの運転が可能な設計とする。また,第二セ シウム吸着装置の所内電源系統は、セシウム吸着装置,除染装置と分離する。
 - b. 汚染水処理設備及び関連設備(移送ポンプ等)の動的機器は、その故障により滞留 水の移送・処理が長期間停止することがないように原則として多重化する。
 - c. 汚染水処理設備が長期間停止した場合を想定し、滞留水がタービン建屋等から所外 に漏れ出ないように、タービン建屋等の水位を管理するとともに、貯留用のタン クを設ける。
 - d. 汚染水処理設備,貯留設備及び関連設備(移送ポンプ等)は,異なる送電系統で2 回線以上の外部電源から受電できる設計とする。
 - e. 汚染水処理設備, 貯留設備及び関連設備(移送ポンプ等)は, 外部電源喪失の場合 においても, 非常用所内電源から必要に応じて受電できる設計とする。
- (3) 監視
 - a. 汚染水処理設備及び貯留設備は、滞留水の処理状況の確認、貯留状況及び漏えいの 検知に必要な主要パラメータを監視できる設計とする。
 - b. 汚染水処理設備及び貯留設備は,異常を検知し対策を講ずるのに必要なパラメータ

を監視できる設計とする。

(4) 規格·基準等

汚染水処理設備,貯留設備及び関連設備(移送配管,移送ポンプ等)の機器等は, 設計,材料の選定,製作及び検査について,原則として適切と認められる規格及び基 準によるものとする。

(5) 放射性物質の漏えい防止及び管理されない放出の防止

汚染水処理設備,貯留設備及び関連設備(移送配管,移送ポンプ等)は,液体状の 放射性物質の漏えいの防止及び所外への管理されない放出を防止するため,次の各項 を考慮した設計とする。

- a. 漏えいの発生を防止するため,機器等には設置環境や内部流体の性状等に応じた適切な材料を使用するとともに、タンク水位の検出器等を設ける。
- b. 液体状の放射性物質が漏えいした場合は,漏えいの早期検出を可能にするとともに, 漏えいを停止するのに適切な措置をとれるようにする。
- c. タンク水位,漏えい検知等の警報については,制御室に表示し,異常を確実に運転 員に伝え適切な措置をとれるようにする。
- (6) 放射線遮へいに対する考慮

汚染水処理設備,貯留設備及び関連設備(移送配管,移送ポンプ等)は,放射線業 務従事者等の線量を低減する観点から,放射線を適切に遮へいする設計とする。

(7) 崩壊熱除去に対する考慮

汚染水処理設備は,放射性物質の崩壊熱による温度上昇を考慮し,必要に応じて崩 壊熱を除去できる設計とする。

- (8) 可燃性ガスの滞留防止に対する考慮 汚染水処理設備は、水の放射線分解により発生する可燃性ガスを適切に排出できる 設計とする。
- (9) 気体廃棄物の放出に対する考慮

汚染水処理設備は,放出する可燃性ガス等の気体に放射性物質が含まれる可能性が ある場合には,排気設備にフィルタ等を設け捕獲する設計とする。また,気体に含ま れる放射性物質濃度を測定するための捕集装置を設ける。 (10) 今後の対応方針

上記設計方針に対し,現在の汚染水処理設備が適合していない項目については,原 則として設備の改善を今後図っていく。

5.2.2. 主要設備

1号~4号炉のタービン建屋等の滞留水は,滞留水移送装置によりプロセス主建屋,高温 焼却炉建屋に移送される。

プロセス主建屋,高温焼却炉建屋で貯留された滞留水は,油分の除去を行った後,処理 装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)によりセシウム等の主要核 種の除去が行われる。さらに,淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)により塩分 の除去が行われ,処理済水となる。

汚染水処理設備等は、原子炉への注水や雨水、地下水の浸透により1年間で追加発生する滞留水量(約150,000m³と推定)及び汚染水処理設備の稼働率(約70%を仮定)を考慮して処理容量1,200m³/日(50m³/h)を100%容量として設計している。ただし、これまでの実績として、セシウム吸着装置と第二セシウム吸着装置を並列運転することにより、1日に1,680m³/日(70m³/h)で処理したこともある。また、移送ポンプも処理容量より多い容量を移送することが可能である。

一方、実際の滞留水発生量は以下の通りとなっている。

- ・ 平成23年10月6日時点における原子炉への注水量は、1号炉:約3.8m³/h、2号炉:約10.7m³/h、3号炉:約10.4m³/hであり、1日の合計は約600m³。
- タービン建屋等の水位測定記録から、雨水、地下水により発生する滞留水量は1日あたり200~500m³(1ヶ月の積算発生量を30日で除した値。1週間の積算発生量を7日で除した場合の1日あたりの最大は1,000m³)*。

※これまでの実績値であり、今後増加することもある。

そのため、短期的には降雨により滞留水発生量の方が処理容量より大きくなる場合もあ り、実際に降雨が連続するとタービン建屋等の水位は上昇する。しかしながら、長期的に は処理容量の方が滞留水発生量より大きく、タービン建屋等の水位を低下させることが可 能である。

(1) 滞留水移送装置

滞留水移送装置の系統構成を図 5-2 に示す。

滞留水移送装置は、移送ポンプ、耐圧ホース等で構成する。

移送ポンプは、2 号炉のタービン建屋及び立坑に容量 12m³/h(汚染水処理設備の処理 容量の 24%に相当)のものを4台、容量 20m³/h (汚染水処理設備の処理容量の 40%に 相当)のものを1台,3号炉のタービン建屋に容量12m³/h(汚染水処理設備の処理容量の24%に相当)のものを2台設置している。

滞留水の移送は,移送元のタービン建屋等の水位や移送先となるプロセス主建屋, 高温焼却炉建屋の水位の状況に応じて,ポンプの起動台数,移送元,移送先を適宜選 定して実施している。

滞留水の移送ラインは,高雰囲気線量下での敷設となることから,放射線業務従事 者の線量低減等を考慮して施工が容易な樹脂製(ポリ塩化ビニル)の耐圧ホースを使 用している。

ポリ塩化ビニルの放射線照射による影響は、10⁵~10⁶Gy の集積線量において、破断時の伸びの減少等が確認されている。過去の測定において、2 号炉タービン建屋の滞留水表面上の線量当量率が 1Sv/h であったことから、耐圧ホースの照射線量率を 1Sv/h と仮定すると、集積線量が 10⁵Gy に到達する時間は 10⁵時間(11.4 年)と評価される。そのため、耐圧ホースは数年程度の使用によっても放射線照射の影響により大きく劣化することはない。

また、屋外敷設箇所の耐圧ホースには、紫外線による劣化を防止するためのフィル ムで覆う処置を施している。さらに、今後は冬期の凍結防止のための保温材施工など を進めていく計画でいる。なお、これらの措置により直接状態を監視することができ なくなるが、劣化の程度等については、放射線レベルの低い耐圧ホースを監視するこ とで評価していく。

滞留水移送時は,耐圧ホース周辺が高雰囲気線量となるため,放射線業務従事者が 耐圧ホースに容易に接近することがないように建屋内への立入制限を行っている。ま た,放射線業務従事者が耐圧ホース周辺に接近する必要がある箇所は,鉛毛マット等 による補助遮へいを設置している。

滞留水の移送を一時中断する場合は,必要に応じて耐圧ホースの洗浄を行い雰囲気 線量の低減を図っている。

また,耐圧ホースは,可撓性を有しているため地震等の相対変位により損傷するこ とはない。ただし,鋼材に比べ,外力に弱く,継手部が溶接構造でないことから漏え いポテンシャルが高い。そのため,以下の対策・対応によりの漏えい防止等を図って いる。

a. 漏えい防止対策

所外放出のリスクを小さくする観点から,耐圧ホースは極力建屋内に敷設する。 また,建屋間等の屋外敷設箇所のうち,重機による作業や車両の通行があるような 箇所は,耐圧ホースを損傷させないようH鋼材等で保護している。

また,耐圧ホースの継手部にカムロック構造を採用し,カムロックを番線で固縛 すること等により,継手が外れない処置を施している。さらに,屋外敷設箇所の継 手部については、ゼオライト入りのビニル袋で覆っており、万一継手部から滞留水 が漏れた場合にも、セシウム等の核種をゼオライトに吸着させることで、汚染拡大 の防止を図る。

b. 漏えいの監視及び漏えい時の措置

滞留水移送時は,プロセス主建屋及び高温焼却炉建屋に設置した水位計を監視す ることにより,適切に滞留水が移送されていることを確認している。

また,屋外敷設箇所は,線量当量率の測定及び巡視により,系外への漏えいがな いことを確認している。

万一,漏えいが確認された場合は,滞留水の移送を停止し漏えい量を限定的なものとする。また,漏えい箇所に人が容易に接近できないように隔離し,必要な措置 を講じる。

(3) 油分分離装置

油分分離装置は、セシウム吸着装置の上流側に 50%容量のものを 3 台、プロセス主 建屋内に設置している。

油分分離装置は,油分が存在するとセシウム吸着装置のゼオライトの吸着性能が低 下するため,その上流側に設置して,滞留水に含まれる油分を自然浮上分離により除 去する。

油分分離装置は,高濃度の滞留水を扱うことから建屋内に設置しており,万一の漏 えいにおいても,所外への放射性物質の放出を防止する。

- (4) 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)
 - a. 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)の概要
 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)の系統構成を
 図 5-3 に示す。

セシウム吸着装置,第二セシウム吸着装置は,吸着塔内部に充填されたゼオライトのイオン交換作用により,滞留水に含まれるセシウム等の核種を除去する。

除染装置は、滞留水にセシウム等の核種を吸着する薬品を注入し凝集・沈殿させ、 上澄液とスラッジに分離することで、滞留水に含まれるセシウム等の核種を除去す る。

各装置の処理容量は100%容量となっている。各装置の動的機器は原則多重化し、 万一,動的機器が故障した場合にも,残りの系列を用いて運転を継続する。

また,各装置内及び装置間には,処理水等の収集槽や移送のためのポンプを設けている。

b. 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)の放射線遮へい, 被ばく低減に対する考慮

滞留水もしくは高濃度の廃水を扱う処理装置の配管については,放射線業務従事 者の線量低減の観点から,人が近づく可能性のある箇所を対象に空間線量当量率が 数 mSv/h 以下となるように遮へいを設置している。

保全時には,内包液の排水・洗浄・除染等により対象部位の線量当量率を低下さ せ,必要に応じて補助遮へいを設置して作業を実施する。

c. 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)の除染性能処理装置(セシウム吸着装置,第二セシウム吸着装置)の除染性能は、セシウム吸着装置と除染装置の組み合わせ運転によりセシウム 134、セシウム 137等の主要核種で除染係数(DF)10⁶を目標に,第二セシウム吸着装置は単独運転により除染係数(DF)10⁶を目標に設計している。除染係数(DF)の目標値は、長半減期核種であるセシウム134、セシウム137の滞留水中濃度が10⁶Bq/cm³オーダあり、放射線業務従事者の線量を可能な限り低減するためには10²Bq/cm³以下まで濃度を低減する必要があること(滞留水に含まれる放射性物質のうち、長半減期核種で且つγ核種で支配的であったセシウム134、137の濃度を下げれば、その他γ核種の半減期を考慮すると滞留水表面で約0.1mSv/hの線量当量率になると推定)及び装置仕様の実現可能性を考慮して設定したものである。装置稼働後の実際の除染係数(DF)及び主要箇所における放射性物質濃度を下表に示す。除染係数(DF)は、変動があるものの概ね目標値を満足するものとなっている。

処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)は,各装置の 組み合わせもしくは単独により運転が可能なライン構成となっており,当初はセシ ウム吸着装置及び除染装置と第二セシウム吸着装置の並列運転としていた。現在は, セシウム吸着装置と第二セシウム吸着装置の並列運転としている。除染装置は,二 次廃棄物低減のため,必要な処理量等を考慮しながら運転時間を抑制させることも ある。また,セシウム吸着装置は,除染能力を高めるため処理容量を低下して運転 させることも可能である。

サンプリング 実施日	DF (セシウム吸着装置)	DF(除染装置)	DF(組み合わせ)	
6月22日	」 22 日 4.6E+01 >4.8E+02		>2.2E+04	
6月24日	3.5E+01	1.8E+03	6.3E+04	
6月26日	6.7E+01	2.0E+03	1.3E+05	
6月27日	8.3E+01	>4.5E+04	>3.7E+06	
7月5日	4.5E+02	>2.8E+03	>1.3E+06	
7月13日	3.1E+02	2.3E+03	7.1E+05	
7月28日	4.9E+02	>4.7E+03	>2.3E+06	
8月9日	1.1E+02	>1.8E+04	>1.9E+06	
9月6日	1.3E+02	2.2E+02	2.9E+04	
9月26日	1.6E+04	- (装置停止)	1.6E+04	

表 セシウム吸着装置,除染装置の除染係数(核種;セシウム137)

表 第二セシウム吸着装置の除染係数(核種;セシウム137)

サンプリング実施日	DF
8月19日	5.7E+04
9月1日	4.8E+05
9月7日	>2.5E+05
9月26日	>2.3E+06

試料名	集中RW地下 高汚染水 (滞留水)	セシウム吸 着装置処理 水	HTI地下高 汚染水 (滞留水)	第二セシウム吸着装置処理水 A系	第二セシウム吸着装置処理水 B系	淡水化装置 入口水	淡水化装置 出口水	淡水化装置 濃廃水
試料採取日 時	平成23年10 月17日 6時45分	平成23年10 月17日 6時30分	平成23年10 月17日 6時20分	平成23年10 月17日 6時20分	平成23年10 月17日 6時20分	平成23年10 月17日 6時15分	平成23年10 月17日 6時10分	平成23年10 月17日 6時10分
検出核種 (半減期)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)	試料濃度 (Bq/cm3)
I-131 (約8日)	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満
Cs-134 (約2年)	6.7E+05	検出限界 未満	4.5E+05	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	1.1E+01
Cs-137 (約30年)	8.3E+05	検出限界 未満	5.5E+05	検出限界 未満	検出限界 未満	8.2E-01	検出限界 未満	1.1E+01
Ba-140 (約13日)	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満
La-140 (約2日)	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満
Co-58 (約71日)	検出限界 未満	1.6E+00	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満	検出限界 未満
Co-60 (約5年)	検出限界 未満	1.2E+01	検出限界 未満	5.5E-01	8.0E-01	1.1E+00	検出限界 未満	8.2E+00
Mn-54 (約312日)	検出限界 未満	3.7E+01	検出限界 未満	6.6E+00	9.0E+00	3.8E+00	2.9E-02	3.5E+01
Sb-125 (約2.7年)	検出限界 未満	7.0E+01	検出限界 未満	6.3E+01	5.8E+01	1.5E+01	8.7E-02	1.3E+02

試料採取日 時	平成23年9月 19日 16時30分	_	_	_	_	平成23年9月 20日 10時05分	平成23年9月 20日 11時25分	平成23年9月 20日 12時05分
全α	<4.23E+00	-	_	_	_	_	_	_
全的	_	_	_	_	_	1.94E+05	1.02E+02	3.90E+05

- d. セシウム吸着装置
 - i. セシウム吸着装置の概要

セシウム吸着装置の系統構成を図 5-4 に示す。また,吸着塔の外形図を図 5-5 に示す。

セシウム吸着装置は、高濃度の滞留水を扱うことから、万一の漏えいにおいても所外への放射性物質の放出を防止するため、焼却工作室建屋に約28m×約8mの区域(吸着塔設置部のみの寸法)を確保して設置している。

セシウム吸着装置は、25%容量(300m³/日)のものを4系列配置しており、 各系列で多段の吸着塔により除染している。現在は、除染性能を高めるため 2系列運転としている。

吸着塔は,重量約 15 トン,外径約 1.4m,高さ約 2.4m の円筒形容器で, 内部にゼオライトを充填したステンレス製の容器を,炭素鋼製の遮へい容器 が覆う二重構造となっている。また,吸着塔は,吸着装置スキッド内に収容 する。

吸着塔の交換頻度は、滞留水の水質や処理容量にも依るが、現在は2系列 運転において、1系列あたり2,3日に1体となっている。今後、滞留水に含 まれるセシウム等の濃度の低下や塩素濃度の低下により交換頻度は延びる 方向となる。

吸着塔の交換作業では放射線業務従事者が吸着塔に接近するため、線量低減の観点からスキッド表面の線量当量率が 4mSv/h 程度になると交換している。

また,交換した吸着塔は,使用済セシウム吸着塔仮保管施設に移送している。

ii. 可燃性ガスの滞留防止に対する考慮

吸着塔内の水の放射線分解により発生する可燃性ガスは,通水時は処理水 とともに排出される。

通水停止時は滞留の恐れがあるため,吸着塔にベントを設け,ベント弁を 開操作して通気する。排出された可燃性ガスは,建屋内に放出されることに なるが,これまでの実績において,建屋内で可燃性ガスが検出されたことは ない。また,検出された場合においても,建屋内に設置している局所排風機 等を介して排気することができる。

交換した吸着塔は,可燃性ガスの発生抑制のため,使用済セシウム吸着塔 仮保管施設において内部の水抜きを行っている。なお,内部水は,滞留水を 貯留している高温焼却炉建屋の地下階に排出している。 iii. 崩壊熱除去に対する考慮

ゼオライトに吸着した放射性物質の崩壊熱は,通水時は処理水により熱除 去される。

通水停止後に、何らかの理由により吸着塔内部の水抜きが実施できない場合、内部水の温度上昇が懸念されるが、内部水の温度上昇幅は1時間あたり約1℃に過ぎず、状態を確認しながら復旧しても安全上の問題は生じない。

また,保管時における定常状態での吸着塔中心部温度は約360℃,炭素鋼 製遮へい容器温度は約40℃であり,ゼオライトの健全性(600℃程度までは 分子構造が安定でゼオライトは離脱しない)や鉄の遮へい性能に影響を与え るものではない。

(添付資料-1参照)

iv. 放射性物質の漏えい防止等に対する考慮

吸着塔の内部容器は、耐腐食性、耐応力腐食割れ性を有する SUS316L 材 を使用しており、腐食により液体廃棄物が漏えいすることはない。万一、漏 えいしても、スキッド内部に設置した漏えい検知器により制御室に警報を発 し、運転員が停止操作等の必要な措置を講ずることができる。また、巡視点 検等で漏えいがないことを確認している。

- e. 第二セシウム吸着装置
 - i. 第二セシウム吸着装置の概要

第二セシウム吸着装置の系統構成を図 5-6 に示す。また,吸着塔の外形図 を図 5-7 に示す。

第二セシウム吸着装置は、高濃度の滞留水を扱うことから、万一の漏えい においても所外への放射性物質の放出を防止するため、高温焼却炉建屋に約 16m×約7mの区域(吸着塔設置部のみの寸法)を確保して設置している。

第二セシウム吸着装置は,50%容量(600m³/日)のものを2系列配置している。

吸着塔は,重量約24トン,外径約1.4m,高さ約3.6mの円筒形容器で, 内部にゼオライトを充填したステンレス製の容器を,炭素鋼製の遮へい容器 が覆う二重構造となっている。また,遮へい容器は,二重管構造となってお り,アニュラス部に鉛を装填している。

吸着塔の交換頻度は、滞留水の水質や処理容量にも依るが、現在は1系列 あたり6日に1体となっている。今後、滞留水に含まれるセシウム等の濃度 の低下や塩素濃度の低下により交換頻度は延びる方向となる。

吸着塔の交換作業では放射線業務従事者が吸着塔に接近するため,線量低

減の観点から吸着塔表面の線量当量率が 4mSv/h 程度になると交換している。 交換した吸着塔は、本施設において内部の水抜きを行い、使用済セシウム 吸着塔仮保管施設に移送しており、今後は使用済セシウム吸着塔一時保管施 設にも移送する。

ii. 可燃性ガスの滞留防止に対する考慮

吸着塔内の水の放射線分解により発生する可燃性ガスは,通水時は処理水 とともに排出される。

通水停止時は滞留の恐れがあるため,吸着塔にベントを設け,オートベ ント弁により自動排出する。排出された可燃性ガスは,建屋内に放出され ることになるが,これまでの実績において,建屋内で可燃性ガスが検出さ れたことはない。また,検出された場合においても,建屋内に設置してい る局所排風機等を介して排気することができる。

交換した吸着塔は,可燃性ガスの発生抑制のため内部の水抜きを行っている。なお,内部水は,滞留水を貯留している高温焼却炉建屋の地下階に排出している。

iii. 崩壊熱除去に対する考慮

ゼオライトに吸着した放射性物質の崩壊熱は,通水時は処理水により熱除 去される。

通水停止後に、何らかの理由により吸着塔内部の水抜きが実施できない場合、内部水の温度上昇が懸念されるが、内部水の温度上昇幅は1時間あたり約1℃に過ぎず、状態を確認しながら復旧しても安全上の問題は生じない。 また、保管時における定常状態での吸着塔中心部温度は約500℃、鉛遮へい体温度は約100℃であり、ゼオライトの健全性(600℃程度までは分子構造が安定でゼオライトは離脱しない)や鉛の遮へい性能に影響を与えるものではない。

(添付資料-1参照)

iv. 放射性物質の漏えい防止等に対する考慮

吸着塔の内部容器は,耐腐食性,耐応力腐食割れ性を有する SUS316L 材 を使用しており,腐食により液体廃棄物が漏えいすることはない。万一,漏 えいしても床面に設置した漏えい検知器により汚染水処理設備の制御室に 警報を発し,運転員が停止操作等の必要な措置を講ずることができる。また, 巡視点検等で漏えいがないことを確認している。

- f. 除染装置
 - i. 除染装置の概要

除染装置の系統構成を図 5-8 に示す。

除染装置は、高濃度の滞留水を扱うことから、万一の漏えいにおいても所 外への放射性物質の放出を防止するため、プロセス主建屋に約42m×約16m の区域(加圧浮上分離装置、凝集沈殿装置等の主要装置設置部の寸法)を確 保して設置している。

除染装置は,滞留水に放射性物質を吸着する薬品を注入し,吸着剤に付着 した放射性物質を凝集剤により凝集・沈殿させ,上澄液とスラッジに分離す ることで,放射性物質を除去する。

除染装置は、加圧浮上分離装置、反応槽、凝集沈殿装置、ディスクフィル ター、薬品注入装置で構成し、100%容量(1,200m³/日)のものを1系列設置 している。反応槽及び凝集沈殿装置は、1組の装置を2段設置することによ り除染性能を上げているが、1段の装置での運転も可能である。

加圧浮上分離装置は,滞留水に含まれる懸濁物質や浮遊物質を除去する。 反応槽は,薬品注入装置から吸着剤を注入し放射性物質の吸着を促す。 凝集沈殿装置は,薬品注入装置からの凝集剤の注入により,放射性物質を 凝集・沈殿し,上澄液とスラッジに分離する。スラッジは造粒固化体貯槽(D)

に排出する。

ii. 可燃性ガスの滞留防止等に対する考慮

除染装置の塔槽類の気相部は,可燃性ガスが滞留する恐れがあることから, 排風機により大気へ放出している。また,排風機のラインには,高性能粒子 フィルタ,ヨウ素吸着フィルタを設けており,気相に含まれている放射性物 質を捕獲する。さらに,ダストサンプラ等により,必要に応じて放射性物質 濃度を測定している。

- iii. 崩壊熱除去に対する考慮
 滞留水に含まれる放射性物質の崩壊熱は、通水により熱除去される。
- iv. 放射性物質の漏えい防止等に対する考慮

炭素鋼製の槽類の接液部には、塗装による防錆処理を施している。

薬品注入装置の機器等は,薬品の性状が強酸性又は強アルカリの場合には, 腐食等を防止するため塩化ビニル系やステンレス系の材料を用いている。ま た,凝集沈殿装置内の水は,強酸性や強アルカリ性とならないように管理し ている。なお,除染装置で使用する薬品は,いずれも不燃性で反応熱,反応 ガスも発生しないことから、火災の観点や人に対する安全性は確認されている。

運転時は,除染装置の周囲は高雰囲気線量下となり巡視点検が困難なこと から,制御室から監視カメラにより漏えい監視を行っている。

(5) 淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)

淡水化装置の系統構成を図 5-9 に示す。

淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)は,滞留水を原子炉注水に再使用す るため,滞留水に含まれる塩分を除去する。

淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)は、仮設ハウス内に設置することか ら、漏えい拡大防止のための堰を設けているとともに、巡視点検等で漏えいの有無を 確認している。

ただし、平成23年12月4日に蒸発濃縮缶装置から漏えいが発生し堰から屋外に流 出したことから、当該事象の原因を究明し再発防止対策を講ずるとともに、逆浸透膜 装置、蒸発濃縮缶装置等が設置されている箇所のその他の堰についても点検を実施し、 ひび等が発見された場合はエポキシ樹脂塗布等の修理を行う。また、堰内での早期漏 えい検知が可能なように、漏えい検知器の設置等を実施していくこととし、漏えい検 知器等が設置されるまでの間は、巡視点検の頻度をあげて、監視強化を行う。

淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)の廃水には,ストロンチウムなどの β線核種が集約されるため,廃水を直接扱う場合にはβ線防護の措置が必要となり, 適切な防護具を着用することにしている。

淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)で使用する薬品は,次亜塩素酸ソー ダ,重亜硫酸ソーダ,殺菌剤等であり,可燃物ではないものの,暴露等により人に害 を与える可能性があるため,保護手袋・保護眼鏡等の防護具を着用して取り扱うとと もに,専用容器にて火気のない場所で保管している。また,装置内での反応熱,反応 ガスも特に発生しないことから,火災の観点や人に対する安全性は確認されている。

a. 逆浸透膜装置(RO装置)

逆浸透膜装置は,約22%容量(270m³/日)のものを1系列,25%容量(300m³/日)のものを1系列,100%容量(1200m³/日)のものを2系列設置している。また,100%容量の逆浸透膜装置は,50%容量の逆浸透膜を2台設置している。

逆浸透膜装置は、水を通しイオンや塩類など水以外の不純物は透過しない逆浸透 膜の性質を利用して滞留水に含まれる塩分を除去し、処理済水と塩分が濃縮された 廃水に分離する。処理済水と廃水の生成割合は、設計上約40:60となっている。

処理済水を原子炉への注水に再使用するため、塩素濃度を可能な限り低くすることが望ましいが、逆浸透膜装置における一般仕様が 250ppm であったことから、目

標値として 250ppm 以下を掲げ設計を行った。実際の塩素除去能力は,平成 23 年 9 月 27 日のサンプリングにおいて 44ppm であり目標値を下回っている。

b. 蒸発濃縮缶装置

蒸発濃縮缶装置は、100%容量(逆浸透膜装置の廃水のため720m³/日)に対し、約2%容量のものを1台、約4%容量のものを1台、約7%容量のものを1台、約11% 容量のものを2台、35%容量のものを3台設置している。

蒸発濃縮缶装置は、逆浸透膜装置により塩分が濃縮された廃水を蒸気により蒸発 濃縮(蒸留)し、処理済水と濃縮廃液に分離する。処理済水と廃水の生成割合は設 計上、35%容量のものは約70:30、その他のものは約30:70となっている。

蒸発濃縮缶装置は,濃縮廃液の発生量を低減する観点から,原子炉への注水量や 処理済水の保有量等を考慮しながら運転することにしている。

- (6) 高濃度滞留水受タンク
 - a. 高濃度滞留水受タンクの概要

高濃度滞留水受タンクは、28 基のタンクから構成され、屋外に地中埋設している。 高濃度滞留水受タンクは、万一タービン建屋等の滞留水の水位が所外放出レベル に達した場合に、プロセス主建屋に貯留している滞留水を約 2,800m³ 受け入れ、タ ービン建屋等の滞留水の貯留先を確保するために設けている。所外放出のリスクが 低下した場合には、高濃度滞留水受タンクの滞留水をプロセス主建屋に移送する。

b. 漏えい防止対策

高濃度滞留水受タンクは、地中埋設としているため、漏えい防止として以下を考 慮したものとしている。

- i. 高濃度滞留水受タンクは,過去に漏えい実績が無く,防災タンクとして利用 されているものを使用している。
- ii. 漏えいリスクを低減するため、タンク上部(気相部)のみに接続口を設けて いる。
- iii. 必要な強度を確保し、海水成分による腐食を低減するため、材料に炭素鋼を 使用するとともに、十分な腐食代を設けている。土中腐食速度は、最大でも 0.2mm/年程度であることに対し(出典「材料環境学入門」(腐食防食協会編, 丸善株式会社))、タンク本体の肉厚は 9mm を確保している。
- iv. タンク内外面に繊維強化プラスチック(FRP)塗装(内面 1mm 以上,外面 2mm 以上)による防錆処理を施している。繊維強化塗装の健全性は、工場 試験として塗装膜厚測定、ピンホール検査を実施しているほか、据付後に外 観目視点検を実施することにより確認している。

v. 工場において気密試験を行い漏えいのないことを確認している。

c. 漏えい拡大防止及び漏えい検知

高濃度滞留水受タンクは、難透水性地盤である粘土層(深さ約2.2m)の一部を約 1.8m 掘削して設置し、その周囲を遮へいのために土を盛っている。粘土層と盛土で は、透水係数が3~4桁程度異なるため、タンクから漏えいした水は、タンク下部の 粘土層に達した後、粘土層と盛土の界面を広がる。そのため、盛土部と粘土層の界 面を通った漏えい水を貯留し、さらに観測できるようにタンクエリア周囲に観測側 溝を設け、観測側溝の水をサンプリング分析することにより漏えいの有無を確認す る。また、観測側溝を区切ることにより、漏えいタンクの選定及び汚染範囲を確認 する。

さらに,各タンクにレベルスイッチを設け,水位低下により警報を制御室に発す ることにより監視を行う。

万一,高濃度滞留水受タンクからの漏えいが生じた場合は,タンク内包水をプロ セス主建屋へ排出するとともに,必要な措置を講ずる。

なお,タンク設置エリアの難透水性地盤の水平方向の広がりをボーリング調査に よっても確認し,難透水性地盤界面に流れる漏えい水を捉えられるように,観測側 溝を設ける。

(添付資料-2参照)

d. 放射線遮へいに対する考慮

盛土による遮へいにより、地表面での線量率は、タンクの満水レベルにおいて約 0.04 μ Sv/h と評価している。

(添付資料-3 参照)

e. 可燃性ガスの滞留防止に対する考慮

水の放射線分解により発生する可燃性ガスのタンク内での滞留を防止するため, ベントラインを設けている。 (7) 中低濃度タンク

中低濃度タンクは、各装置間に設置しており、サプレッション・プール水サージタンク、廃液供給タンク、RO 後濃縮塩水受タンク、濃縮廃液貯槽、RO 及び蒸発濃縮装置後淡水受タンクで構成する。

サプレッション・プール水サージタンクは,液体廃棄物処理系の設備として既に屋外 に設置されていたもので,処理装置(セシウム吸着装置,第二セシウム吸着装置,除 染装置)により主要核種が除去された水等を保管している。

廃液供給タンクは,処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)により主要核種が除去された水等を貯留するもので,屋外に設置している。

RO 後濃縮塩水受タンクは,逆浸透膜装置の廃水を貯留するもので,屋外に設置して いる。

濃縮廃液貯槽は、蒸発濃縮缶装置の廃水を貯留するもので、屋外に設置している。

RO 及び蒸発濃縮装置後淡水受タンクは,逆浸透膜装置の処理水及び蒸発濃縮缶装置の処理水を貯留するもので,その水は,処理済水として原子炉への注水に再利用している。

中低濃度タンクは、漏えいがないことを巡視点検で定期的に確認している。

万一,漏えいが発生した場合には、止水、堰設置等の適切な対策を講じる。

平成 23 年 10 月 4 日時点における各タンクの貯留水量及びタンク容量は次表に示す 通りである。各タンクは、必要に応じて順次増設しており、現在、RO 後濃縮塩水受タ ンク等の増設工事を平成 23 年 12 月まで計画している。今後も、必要に応じて増設し ていく。

タンク名称	保管水量 [m ³]	運用上のタンク容量 [m ³] (公称容量 [m ³]) (平成 23 年 10 月 11 日時点)	タンク公称容量 [m ³] (平成 23 年 12 月)
サプレッション・プール 水サージタンク	890	3,100 (3,500)	3,500
廃液供給タンク	590	1,200 (1,200)	1,200
RO 後濃縮塩水受 タンク ^{※1}	65,653	75,100 (73,800)	116,800
濃縮廃液貯槽	2,989	9,500 (10,000)	20,000
RO 及び蒸発濃縮装置後 淡水受タンク ^{※2}	8,837	10,900 (11,600)	24,800

表 各タンクの保管水量及びタンク容量

※1: RO 濃縮水一時貯槽, RO 濃縮水貯槽, 濃縮水受タンクにて構成。

※2: RO 処理水一時貯槽,濃縮処理水タンク,蒸発濃縮処理水貯槽にて構成。

(8) 制御室

制御室は,制御盤,制御装置,監視盤を設けており,汚染水処理設備の運転状況並 びに主要パラメータの監視及び制御ができる設計としている。制御室の主要監視項目 を次表に示す。

制御室では,タンク等の水位,各装置の処理量を監視しながら,流量調整弁の開度 調整,インバータ制御ポンプの回転数調整を行っている。

異常がある場合には制御室に警報を発し,または ITV 画像を確認し,制御室にいる 操作員もしくは IF 免震重要棟に待機している保全部員等により適切な対策を講ずる。 また,通常運転時,異常時に想定される主要なパラメータを記録・管理している。

制御盤,制御装置,監視盤はコンテナ内に収容し,コンテナを屋外に設置している。 また,放射線業務従事者の線量低減のため,コンテナの周囲には遮へいを設けている。

制御室は,早期火災検知及び早期消火が行えるように,火災感知器及び消火器を設 けている。

また,各建屋の滞留水の水位は,水位計を設置し所内の免震重要棟で監視している。

主要監視項目
 汚染水処理設備工程(工程異常警報)
 流量
・各装置の運転状態(工程異常警報)
・ポンプ,弁の運転状態(ポンプトリップ警報)
・主要タンク液位(レベル高高,レベル低低警報)
・漏えい検知(警報)
・ITV 監視

表 制御室での主要監視項目

(9) 電源設備

汚染水処理設備等の電源構成図を図 5-10 に示す。

汚染水処理設備,貯留設備(タンク等)及び関連設備(移送ポンプ等)は,66kV大 熊線 3L から受電している。また,東北電力東電原子力線 66kV 及び 275kV 大熊線 2L とも接続している。さらに,汚染水処理設備,貯留設備(タンク等)及び関連設備(移 送ポンプ等)は,非常用所内電源とも接続しており,外部電源喪失時には,タービン 建屋等の水位の状況や汚染水処理設備以外の設備負荷を考慮しながら復旧することに なる。

また, 第二セシウム吸着装置の所内電源系統をセシウム吸着装置, 除染装置と分離 し, 処理装置として機能の多重化を今後図る。

- 5.2.3. 設備の構造強度等
- (1) 基本方針

汚染水処理設備等を構成する機器は,技術基準上,廃棄物処理設備に相当するクラス3機器と位置付けられる。この適用規格は,「JSME S NC-1 発電用原子力設備規格設計・建設規格」(以下,「設計・建設規格」という。)で規定されるものであるが,設計・建設規格は,鋼材を基本とした要求事項を設定したものであり,耐圧ホース等の非金属材についての基準がない。

従って、鋼材を使用している設備については、設計・建設規格のクラス 3 機器相当 での評価を行い、非金属材料については、当該設備に加わる機械的荷重により損傷に 至らないことをもって評価を行う。この際、JIS や独自の製品規格等を有している場合 や、試験等を実施した場合はその結果などを活用できるものとし、評価を行う。

また,構造強度に関連して経年劣化の影響を評価する観点から,原子力発電所での 使用実績がない材料を使用する場合は,他産業での使用実績等を活用しつつ,必要に 応じて試験等を行うことで,経年劣化の影響についての評価を行う。なお,試験等の 実施が困難な場合にあっては,巡視点検等による状態監視を行うことで,健全性を確 保する。

- (2) 主要設備の構造強度
 - a. ポンプ

材料証明書がなく設計・建設規格におけるクラス3機器の要求を満足するもので はないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常が無いこと を確認している。

以上のことから、ポンプは、必要な構造強度を有するものと評価している。 なお、海外製の一部ポンプを除き、JIS 規格に準用したポンプを使用している。

b. セシウム吸着塔

材料証明書がなく設計・建設規格におけるクラス3機器の要求を満足するもので はないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常が無いこと を確認している。

また,吸着塔の主要仕様から必要肉厚を評価し,十分な肉厚を有していることを 確認している。

以上のことから、吸着塔は、必要な構造強度を有するものと評価している。

(添付資料-4 参照)

c. 配管(鋼製)

材料証明書がなく設計・建設規格におけるクラス3機器の要求を満足するもので

はないが,漏えい試験等を行い,有意な変形や漏えい,運転状態に異常が無いこと を確認している。

また,配管の主要仕様から必要肉厚を評価し,十分な肉厚を有していることを確認している。

以上のことから、配管は、必要な構造強度を有するものと評価している。

(添付資料-4 参照)

d. 耐圧ホース(樹脂製)

耐圧ホースは,設計・建設規格上のクラス3機器に対する規定を満足する材料で はないが,系統の温度,圧力を考慮して仕様を選定した上で,漏えい試験等を行い, 漏えい,運転状態に異常がないことを確認している。

以上のことから、耐圧ホースは、必要な構造強度を有するものと評価している。

e. タンク・槽類

材料証明書がなく設計・建設規格におけるクラス3機器の要求を満足するもので はないが、水頭圧による漏えい試験を行い、有意な変形や漏えいが無いことを確認 している。

また、タンクは全て大気開放のため、水頭圧以上の内圧が作用することはない。 以上のことから、タンク・槽類は、必要な構造強度を有するものと評価している。 なお、丸形タンクについては、主要仕様から必要肉厚を評価し、十分な肉厚を有 していることを確認している。

(添付資料-4 参照)

(3) その他

腐食,熱による劣化,凍結,生物汚染,ウォータハンマ等の衝撃への対応は以下の 通りである。

a. 腐食

海水による炭素綱の腐食速度は、「材料環境学入門」(腐食防食協会編,丸善株式 会社)より、0.1mm/年と評価される。

一方,炭素綱を使用している配管・機器は,必要肉厚に対して十分な肉厚があり 腐食代を有していることを確認している。

セシウム吸着塔は,容器に耐腐食,耐応力腐食割れを有する SUS316L 材を用いている。

なお,高濃度の滞留水を扱う機器は,建屋内に設置しており,腐食により万一漏 えいが生じたとしても所外に放出するようなことはない。 b. 熱による劣化

滞留水の温度はほぼ常温のため、金属材料の劣化の懸念はない。

c. 凍結

滞留水を移送している過程では、水が流れているため凍結の恐れはない。 滞留水の移送を停止した場合、屋外に敷設されている耐圧ホースは、凍結による 破損が懸念される。そのため、高濃度の滞留水を移送している屋外敷設の耐圧ホー スに保温材を取り付けることを計画する。

d. 生物汚染

滞留水移送装置の移送ポンプの取水口には、メッシュを設けており、大きな藻等 がポンプ内に浸入して機器を損傷させるようなことはない。

また,滞留水を移送している上では有意な微生物腐食等は発生しないと考える。 ただし,海水腐食速度(炭素綱の場合 0.1mm/年)以上の速度で腐食が進み漏えいが 生じた場合において,微生物腐食が原因であると判明すれば,生物汚染を考慮した 対策を講じていく。

e. ウォータハンマ等の衝撃

試運転時にウォータハンマが発生しないことを確認している。また,ポンプ起動 時は,ウォータハンマの発生を防止するため,急激な弁の開閉操作を行わないよう にしている。

また,滞留水の温度はほぼ常温のため,配管・機器が熱衝撃を受けることはない。

- 5.2.4. 耐震性
- (1) 基本方針

汚染水処理設備等を構成する機器のうち放射性物質を内包するものは,耐震設計審 査指針上の B クラス相当の設備と位置づけられる。

耐震性を評価するにあたっては、「JEAG4601 原子力発電所耐震設計技術指針」等に 準拠して構造強度評価を行うことを基本とするが、評価手法、評価基準について実態 にあわせたものを採用する場合もある。

支持部材がない等の理由によって,耐震性に関する評価ができない設備を設置する 場合においては,可撓性を有する材料を使用するなどし,耐震性を確保する。

(2) 主要設備の耐震構造

各機器は、必要な耐震性を確保するため、原則として以下の方針に基づき設計して

いる。

- ・ 倒れ難い構造(機器等の重心を低くする,基礎幅や支柱幅を大きく取る)
- ・動き難い構造・外れ難い構造(機器を固縛する)
- ・座屈が起こり難い構造
- ・変位よる破壊を防止する構造(配管等に可撓性を持たせる)

以下に、各装置の具体的な耐震構造を示す。

a. 滞留水移送装置

移送ポンプは、水中ポンプであり地震により有意な応力は発生しない。 また、耐圧ホース(樹脂製)は可撓性を有し、建屋貫通部等の拘束部は最小曲げ 半径に対して余裕を確保するように敷設しているため、有意な応力は発生しない。

- b. 油分分離装置,処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置) 油分分離装置,処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置) は,後打ちアンカ,溶接等で固定するとともに低重心構造としている。さらに,地 震により装置が損傷しても漏えい水が所外に流出しないように,建屋内に設置している。
- c. 淡水化装置(逆浸透膜装置,蒸発濃縮缶装置) 淡水化装置(逆浸透膜装置,蒸発濃縮缶装置)は低重心構造としている。さらに, 地震により装置が損傷しても漏えい水が所外に流出しないように,堰内に設置している。
- d. 配管(鋼管)

油分分離装置から処理装置出口までは,高濃度の滞留水を扱うことを考慮し,可 能な限り配管(鋼管)で施工している。また,配管(鋼管)の耐震性を確保するた め,原子力発電所の配管設計で用いられている定ピッチスパン法によりサポート間 隔を決定している。

e. 高濃度滞留水受タンク

高濃度の滞留水を屋外に設置する設備であることから,基準地震動 Ss に対して健 全性を維持できるように設計する。

f. 中低濃度タンク

中低濃度タンクは、低重心構造とする。

- g. サプレッション・プール水サージタンク サプレッション・プール水サージタンクは,液体廃棄物処理系の設備として耐震 B クラスの施設として設計されている。
- (3) 耐震性の評価

汚染水処理設備等の機器について、地震による転倒の有無について評価した。

その結果,一部の機器において,耐震 B クラスの施設に要求される水平震度に対し て,転倒の可能性が完全には否定できないことが確認された。ただし,当該の機器は 建屋内に設置しているため,滞留水が所外に放出されることはなく,周辺公衆に放射 線被ばくのリスクを与えることはない。

(添付資料-4 参照)

また,高濃度滞留水受タンクは,滞留水を屋外に貯留することになるため,基準地 震動 Ss に対しても評価を行い,健全性を確認している。

(添付資料-5 参照)

(4) 地震時の対応

地震が発生した際には,設備の巡視点検を行い,漏えい,設備の健全性を確認する。

5.2.5. 主要仕様

汚染水処理設備等の主要仕様を表 5-1,表 5-2 に示す。

5.2.6. 要求事項に対する代替措置

汚染水処理設備等は、概ね設計方針を満足するものであるが、「構造強度」及び「耐震性」 については、本来の原子力設備に求められる設計・建設規格で規定された材料や耐震 B ク ラスの要求事項を一部満足しないものもある。

このため,汚染水処理設備等の運用にあたっては,本来の原子力設備に対して構造強度 や耐震性が劣るものと想定し,必要な対応を定めておくこととする。

- (1) 運転管理
 - a. 定期的な巡視点検および地震後の巡視点検

定期的に巡視点検を行い,設備の異常の有無を確認する。

地震が発生した場合,汚染水処理設備等の監視パラメータを確認し,設備の損傷 の有無を確認する。パラメータに異常がある場合は,巡視点検による確認を行う。

- b. 設備の運転状態の監視
 - i. 滞留水移送装置

タービン建屋等からプロセス主建屋,高温焼却炉建屋への滞留水移送は, 各建屋の水位を免震重要棟で監視しながら,処理装置の稼働状況等を踏まえ て,移送元,移送先,移送量,停止時期等を決定し,移送装置を運転する。

- ii. 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)等 操作員が制御室に常駐する等により,各装置の運転パラメータを連続して 監視し,設備の運転状態に問題がないことを確認する。
- c. タービン建屋等の水位監視 タービン建屋等の水位を定期的に監視し、滞留水の所外放出リスクが低いことを 確認する。
- (2) 保守管理

汚染水処理設備等は、動的機器、外部電源の多重化を図っているため、これらの機器の単一故障により滞留水の処理機能が喪失した場合でも、切替作業により滞留水の 処理の再開が可能である。

そのため、保守管理については、作業に伴う被ばくを極力低減することに重きをお き、巡視点検等を行う中で機器の状態を監視し、異常の兆候が確認された場合に対応 を行うこととする。

(3) 不適合管理

汚染水処理設備等で発生した不適合については,安全性・信頼性に対する重要度に 応じて,原因を調査し,適切な対策・対応を取ることにしている。具体的な管理項目 としては,発生日,装置区分,件名,概要,原因,現状の対策(不適合処置),追加対 策等(是正処置等)としている。

- (4) 異常時の措置
 - a. 機器の単一故障時の対応

汚染水処理設備は,機器の単一故障により滞留水の処理機能が喪失するのを防止 するため,動的機器や外部電源を多重化している。そのため,機器等の切替作業に より,速やかな滞留水の処理が可能である。

b. 処理装置の除染能力が目標性能以下となる場合の対応 セシウム吸着装置,第二セシウム吸着装置,除染装置による処理装置全体で多重 化が確立されており,各装置の組み合わせもしくは単独による運転が可能である。 そのため,一つの処理装置が故障しても性能回復は短時間で行える。

しかしながら,万一,所定の除染能力が得られない場合は,以下の対応を行う。 【対応】

下流側の逆浸透膜装置の受け入れ条件(10²Bq/cm³オーダ)を満足しない場 合,RO及び蒸発濃縮装置後淡水受タンクでの希釈効果等を踏まえながら,必 要に応じて処理装置出口の処理水を再度セシウム吸着装置,第二セシウム吸 着装置,除染装置に水を戻す「再循環処理」を実施する(手動操作)。なお, 再循環処理を実施する場合,稼働率が 50%以下となるため,タービン建屋等 からの滞留水の移送量を調整し,プロセス主建屋,高温焼却炉建屋の水位上 昇を監視する。

c. 降水量が多い場合の対応

気象庁の観測データにおいて,月降水量の最大は,福島県浪江町で634mm (2006 年 10 月),富岡町で615mm (1998 年 8 月)となっている。

一方,降雨があった場合のタービン建屋等の水位は,降水量に対し85%の水位上 昇を示したことがある。そのため、1ヶ月あたり540mm(634mm×0.85%)の降雨 があった場合の評価を行う。

建屋水位を上昇させるものとして、上述の降雨以外に、①地下水の流入として 500m³/日, ②炉注水量として 600m³/日が想定される。

1号~4号炉の滞留水が存在している建屋面積の合計は,約23,000m²となるため, 1ヶ月に発生する滞留水量の合計は45,420m³となる。

各建屋の水位を維持するためには、約 1,520m³/日の滞留水移送・処理が必要となる。移送ポンプは、1 台あたり 20m³/h の運転実績があり、1,920m³/日の滞留水移送が可能である。また、処理装置も実績として 1,680m³/日で処理を実施したことがある。

以上のことから,降水量が多い場合には,滞留水の移送量,処理量を定格より増加させる等の措置をとる。また,大量の降雨が予想される場合には,事前に滞留水 をプロセス主建屋等へ移送し,タービン建屋等の水位を低下させる措置をとる。

なお,移送ポンプ,処理装置の能力から,月降水量最大約850mmまではタービン 建屋等の水位を維持することが可能である。また,タービン建屋等の水位をOP.3,000 程度で管理しているため,所外放出レベルのOP.4,000 に達するまでに,更に約 1,000mm程度の余裕を確保している。さらに,タービン建屋の水位が上昇すれば, 炉注水量の低下措置等の対応を図る。 d. 津波時の対応

海岸線に設置する仮設防潮堤(高さ14m)により,余震津波(7~8m 程度の津波) は防げるものと考える。

ただし,予想を上回る津波の襲来を想定すると,プロセス主建屋,高温焼却炉建 屋へ津波が浸入し,処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装 置)を損傷させる可能性がある。

そのため、大津波警報が出された場合は、装置を停止し、隔離弁を閉めることに より、滞留水の流出を防止する。

e. 滞留水の処理機能喪失時の対応

汚染水処理設備は、セシウム吸着装置、第二セシウム吸着装置、除染装置のそれ ぞれで単独運転が可能である。また、今後、第二セシウム吸着装置の所内電源系統 を、セシウム吸着装置、除染装置と分離する計画としている。さらに、セシウム吸 着装置、第二セシウム吸着装置、除染装置は、建屋により分離して設置している。 以上のことから、共通要因によりすべての装置が故障する可能性は十分低い。ただ し、全装置が長期間停止することを想定し、以下の対応を図る。

- i. タービン建屋等の水位を OP.3,000 程度で管理し、処理装置が長期間停止することになれば炉注水量を調整し、滞留水の発生量を抑制する。管理値のOP.3,000 から所外放出レベルの OP.4,000 に達するまでの貯留容量は約23,000m³あり、さらに高濃度滞留水受タンク(容量約2,800 m³)、タービン 建屋の復水器(容量約3,000m³)へ滞留水を移送することにより、これまでの運転実績から、炉注水量を約320m³/日まで低下させれば、地下水の浸透、雨水の浸入により追加発生する滞留水量(200~500m³/日)の1ヶ月分以上の貯留が可能である。
- ii. セシウム吸着装置もしくは第二セシウム吸着装置の吸着塔の予備品を用意し、短期間(1ヶ月程度)で新たな処理が可能なように準備する。
- iii. タービン建屋等の水位が所外放出レベル近くに達すると,滞留水の追加発生 量を高濃度滞留水受タンクに移送することで,放射性物質の所外放出を防 止する。
- iv. 滞留水の系外への漏えいを防止するために,集中廃棄物処理建屋のサイトバンカ建屋(容量約1,300m³),焼却工作室建屋(容量約2,500m³)等への移送準備を行い,滞留水受け入れ容量を確保する。

5.3. 使用済セシウム吸着塔保管施設及び廃スラッジ貯蔵施設

使用済セシウム吸着塔保管施設は,使用済セシウム吸着塔仮保管施設,使用済セシウム 吸着塔一時保管施設で構成する。また,廃スラッジ貯蔵施設は,造粒固化体貯槽(D),廃ス ラッジー時保管施設で構成する。

使用済セシウム吸着塔仮保管施設は,セシウム吸着装置及び第二セシウム吸着装置で使 用した吸着塔を使用済セシウム吸着塔一時保管施設へ移送するまでの間貯蔵する。

使用済セシウム吸着塔一時保管施設は,吸着塔を処理施設等へ移送するまでの間一時貯 蔵する。

造粒固化体貯槽(D)は,除染装置の凝集沈殿装置で発生したスラッジを受け入れ,廃スラ ッジー時保管施設へ移送するまでの間貯蔵する。造粒固化体貯槽(D)は,固体廃棄物処理系 の設備として既に設置していたものを改造して使用している。

廃スラッジー時保管施設は、スラッジを処理施設等へ移送するまでの間一時貯蔵する。

また,次期汚染水処理設備から発生する二次廃棄物の一時貯蔵の方法については,次期 汚染水処理設備の設計を進めていく段階で,その性状及び発生量を踏まえて検討する。

- 5.3.1. 設備の設計方針
- (1) 貯蔵能力

使用済セシウム吸着塔一時保管施設及び廃スラッジー時保管施設は,汚染水処理設 備で発生する放射性廃棄物を貯蔵できる容量とする。また,必要に応じて増設する。

(2) 多重性等

廃スラッジー時保管施設の動的機器及び駆動電源は,故障により設備が長期間停止 することがないように,多重性又は多様性を備えた設計とする。

- (3) 監視
 - a. 造粒固化体貯槽(D),廃スラッジー時保管施設は,廃スラッジの貯蔵状況,除熱状 況及び水素の排気状況等を把握するために必要な主要パラメータを監視できる設 計とする。
 - b. 造粒固化体貯槽(D), 廃スラッジー時保管施設は, 異常を検知し対策を講ずるのに 必要なパラメータを監視できる設計とする。
- (4) 規格·基準等

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設,造粒固化 体貯槽(D),廃スラッジー時保管施設の機器等は,設計,材料の選定,製作及び検査に ついて,原則として適切と認められる規格及び基準によるものとする。 (5) 放射性物質の漏えい防止及び管理されない放出の防止

造粒固化体貯槽(D),廃スラッジー時保管施設の機器等は、液体状の放射性物質の漏 えいの防止及び所外への管理されない放出を防止するため、次の各項を考慮した設計 とする。

- a. 漏えいの発生を防止するため,機器等には設置環境や内部流体の性状等に応じた適切な材料を使用するとともに、タンク水位の検出器等を設ける。
- b. 液体状の放射性物質が漏えいした場合は,漏えいの早期検出を可能にするとともに, 漏えい液体の除去・回収を行えるようにする。
- c. タンク水位,漏えい検知等の警報については,制御室に表示し,異常を確実に運転 員に伝え適切な措置をとれるようにする。

なお,使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設では, 内部の水を抜いた吸着塔を保管するため,漏えいの可能性はない。

(6) 放射線遮へいに対する考慮

使用済セシウム吸着塔一時保管施設,廃スラッジー時保管施設は,放射線業務従事 者の線量を低減する観点から,放射線を適切に遮へいする設計とする。

- (7) 崩壊熱除去に対する考慮
 - a. 吸着塔は、崩壊熱を大気に逃す設計とする。
 - b. 造粒固化体貯槽(D), 廃スラッジー時保管施設は, 放射性物質の崩壊熱による温度 上昇を考慮し, 必要に応じて熱を除去できる設計とする。
- (8) 可燃性ガスの滞留防止に対する考慮

吸着塔,造粒固化体貯槽(D),廃スラッジー時保管施設は,水の放射線分解により発 生する可燃性ガスの滞留を防止でき,必要に応じて適切に排出できる設計とする。

(9) 気体廃棄物の放出に対する考慮

造粒固化体貯槽(D),廃スラッジー時保管施設は、放出する可燃性ガス等の気体に放 射性物質を含む可能性がある場合は、排気設備にフィルタ等を設け捕獲収集する設計 とする。また、気体廃棄物の放出を監視するためのモニタを設ける。

- 5.3.2. 主要設備
- (1) 使用済セシウム吸着塔保管施設現在,吸着塔の交換頻度は,滞留水の水質や処理容量にも依るが,セシウム吸着装

置では2系列運転において1系列あたり2,3日に1体,第二セシウム吸着装置では1系 列あたり6日に1体となっている。この使用済みの吸着塔を一時的に貯蔵するための 施設として,使用済セシウム吸着塔仮保管施設及び使用済セシウム吸着塔一時保管施 設を設けている。

- a. 使用済セシウム吸着塔仮保管施設
 - i. 施設の概要

使用済セシウム吸着塔仮保管施設は,汚染水処理設備の供用開始にあわせ, 吸着塔を当面の間貯蔵するために設けた施設である。図 5-11 に使用済セシ ウム吸着塔仮保管施設概要図を示す。

使用済セシウム吸着塔仮保管施設は、セシウム吸着装置或いは第二セシウム吸着装置の吸着塔の割合にも依るが約400体貯蔵できる。平成23年10月11日時点において、使用済みの吸着塔を244体(内訳:セシウム吸着装置吸着塔228体、第二セシウム吸着装置吸着塔16体)貯蔵している。

また,使用済セシウム吸着塔仮保管施設には,吸着塔を取り扱うための門 型クレーン,セシウム吸着装置吸着塔のろ過水による洗浄,水抜きを実施す る装置等を設置している。門型クレーンは,地震で吸着塔に倒れないように, 使用後は保管エリアの端で待機させている。

セシウム吸着装置吸着塔は、セシウム吸着装置より運搬し、本施設にて吸 着塔内の水抜きを実施する。その後、遮へい機能を有するコンクリート製ボ ックスカルバートに収納した状態で、鉄板養生の上に貯蔵している。

第二セシウム吸着装置吸着塔は,第二セシウム吸着装置において水抜きを 実施し,専用の輸送用容器に収納し本施設に運搬する。その後,輸送容器に 収納した状態で,鉄板養生の上に貯蔵している。

ii. 放射線遮へいに対する考慮

セシウム吸着装置吸着塔は、炭素鋼製の遮へい容器及びコンクリート製ボ ックスカルバートにより放射線を遮へいする。

第二セシウム吸着装置吸着塔は,鉛を装填した炭素鋼製の遮へい容器により放射線を遮へいする。

また,使用済セシウム吸着塔仮保管施設からの放射線による影響として, セシウム吸着装置吸着塔 384 体,第二セシウム吸着装置吸着塔 20 体貯蔵し た条件において,近辺の汚染水処理設備制御室の線量率を評価したところ, 約0.01mSv/hであり放射線業務従事者に過度の放射線被ばくのリスクを与え ることはない。

(添付資料-6参照)

iii. 可燃性ガスの滞留防止に対する考慮

吸着塔は,可燃性ガスの発生を抑制するために,内部の水抜きを行い保管 している。また,ベントを開けた状態で保管することにより,可燃性ガスを 大気に放出する。

iv. 崩壊熱除去に対する考慮

放射性物質の崩壊熱は、対流、輻射、伝導により大気へ放熱する。

セシウム吸着装置吸着塔の場合,保管時における定常状態での吸着塔中心 部温度は約360℃,炭素鋼製遮へい容器温度は約40℃であり,ゼオライトの 健全性や鉄の遮へい性能に影響を与えるものではない。

第二セシウム吸着装置吸着塔の場合,保管時における定常状態での吸着塔 中心部温度は約 500℃,鉛遮へい体温度は約 100℃であり,ゼオライトの健 全性(600℃程度までは分子構造が安定でゼオライトは離脱しない)や鉛の 遮へい性能に影響を与えるものではない。

(添付資料-1 参照)

v. 放射性物質の漏えい等に対する考慮

吸着塔内部の水を抜いた後に貯蔵するため,基本的に漏えいの可能性はない。なお,吸着塔内部の水は,滞留水を貯留している高温焼却炉建屋の地下 階に排出している。

また,セシウム等の主要核種は吸着塔内のゼオライトに化学的に吸着して おり,地震によっても吸着塔は転倒しないことから,セシウム吸着塔内の放 射性物質が漏えいし難い構造となっている。

さらに,吸着塔の容器は耐腐食性,耐応力腐食割れ性を有する SUS316L 材を使用している。

- b. 使用済セシウム吸着塔一時保管施設
 - 施設の概要

使用済セシウム吸着塔一時保管施設は,吸着塔の処理施設等が設置される までの間一時的に貯蔵を行う施設である。図 5-12 に使用済セシウム吸着塔 一時保管施設概要図を示す。

使用済セシウム吸着塔一時保管施設は、約 OP.34,000 の地点に設置する。

使用済セシウム吸着塔一時保管施設は,約210m(南北方向)×約40m(東西方向)の区域に,セシウム吸着装置吸着塔を544体,第二セシウム吸着装置吸着塔を200体貯蔵できる。ただし,吸着塔の貯蔵割合は,セシウム吸着装置,第二セシウム吸着装置の運用状況により変わる場合もある。

平成23年10月11日時点において,使用済セシウム吸着塔仮保管施設では、セシウム吸着装置吸着塔を228体、第二セシウム吸着装置吸着塔を16体貯蔵している。また、吸着塔の交換頻度は、滞留水の水質や処理容量にも依るが、現在の運転状態においてセシウム吸着装置では2系列運転において1系列あたり2,3日に1体、第二セシウム吸着装置では2系列運転において1系列あたり6日に1体となっている。現状の交換頻度から予測される今後1年間の発生量はセシウム吸着装置吸着塔約300体、第二セシウム吸着装置吸着塔約130体となる。今後、滞留水に含まれるセシウム等の濃度の低下や塩素濃度の低下により交換頻度は延びる方向となるため、使用済セシウム吸着塔一時保管施設は、今後1年間に発生する使用済みの吸着塔を十分に保管することができる。また、使用済の吸着塔の発生本数を管理し、必要に応じて増設を行う。

また,現在使用済の吸着塔は貯蔵していないが,今後,使用済セシウム吸 着塔仮保管施設等から吸着塔を受け入れる予定である。

使用済セシウム吸着塔一時保管施設には,吸着塔を取り扱うための門型ク レーン等を設置している。門型クレーンは,地震で吸着塔に倒れないように, 使用後は保管エリアの端で待機させる。

セシウム吸着装置吸着塔は, 遮へい機能を有するコンクリート製ボックス カルバートに収納した状態で, 鉄筋コンクリート床版上に貯蔵する(図 5-13 参照)。

第二セシウム吸着装置吸着塔は、保管用スキッド(吸着塔5基×スキッド 2列)に収納した状態で、鉄筋コンクリート床版上に貯蔵する(図5-14参照)。 また、雨水が吸着塔内に浸入しないようベントに雨水防止板を取り付ける。

ii. 放射線遮へいに対する考慮

セシウム吸着装置吸着塔は、炭素鋼製の遮へい容器及びコンクリート製ボ ックスカルバートにより放射線を遮へいする。さらに、スカイシャイン対策 としてコンクリート製の蓋を被せる。

第二セシウム吸着装置吸着塔は,鉛を装填した炭素鋼製の遮へい容器により放射線を遮へいする。

また,使用済セシウム吸着塔一時保管施設からの放射線による影響として, セシウム吸着装置吸着塔 544 体,第二セシウム吸着装置吸着塔 200 体をすべ て貯蔵した条件において,近辺の汚染水処理設備制御室の線量率を評価した ところ,約 0.24 μ Sv/h であり,放射線業務従事者に過度の放射線被ばくのリ スクを与えることはない。

(添付資料-7参照)

iii. 可燃性ガスの滞留防止に対する考慮

吸着塔は、可燃性ガスの発生を抑制するために、内部の水抜きを行い保管 する。また、ベントを開けた状態で貯蔵することにより、可燃性ガスを大気 に放出する。

さらに、セシウム吸着装置吸着塔に被せるコンクリート製の蓋は、吸着塔 内部で発生する可燃性ガスがボックスカルバート内に滞留しないように通 気口を設けている。

iv. 崩壊熱除去に対する考慮

放射性物質の崩壊熱は、対流、輻射、伝導により大気へ放熱する。

セシウム吸着装置吸着塔の場合,ボックスカルバートに収納しない場合に おいて,保管時における定常状態での吸着塔中心部温度は約360℃,炭素鋼 製遮へい容器温度は約40℃である。一方,コンクリート製ボックスカルバ ートの保温性を考慮した場合,吸着塔中心部温度は約470℃,炭素鋼製遮へ い容器温度は約100℃となるが,ゼオライトの健全性や鉄の遮へい性能に影 響を与えるものではない。

第二セシウム吸着装置の吸着塔の場合,保管時における定常状態での吸着 塔中心部温度は約 500℃,鉛遮へい体温度は約 100℃であり,ゼオライトの 健全性(600℃程度までは分子構造が安定でゼオライトは離脱しない)や鉛 の遮へい性能に影響を与えるものではない。

(添付資料-1参照)

v. 放射性物質の漏えい等に対する考慮

吸着塔内部の水を抜いた後に貯蔵するため,基本的に漏えいの可能性はない。なお,吸着塔内部の水は,滞留水を貯留している高温焼却炉建屋の地下 階に排出している。

また,セシウム等の主要核種は吸着塔内のゼオライトに化学的に吸着して おり,地震によっても吸着塔は転倒しないことから,セシウム吸着塔内の放 射性物質が漏えいし難い構造となっている。

さらに,吸着塔の容器は耐腐食性,耐応力腐食割れ性を有する SUS316L 材を使用している。

(2) 廃スラッジ貯蔵施設

除染装置では、凝集沈殿によりセシウム等の核種を除去するため、二次廃棄物とし てスラッジが発生する。このスラッジを貯蔵するための施設として、既存の固体廃棄 物処理系の設備である造粒固化体貯槽(D)を使用するとともに、廃スラッジー時保管施 設を設ける。

- a. 造粒固化体貯槽(D)
 - i. 設備の概要

造粒固化体貯槽(D)は,固体廃棄物処理系の設備として既にプロセス主建 屋に設置されている。

造粒固化体貯槽(D)は,汚染水処理設備の供用開始にあわせ,除染装置で 発生したスラッジを一時的に受け入れる設備として使用している。廃スラッ ジー時保管施設完成後には,スラッジを廃スラッジー時保管施設に移送する。 造粒固化体貯槽(D)は,スラッジを700m³貯蔵できる。平成23年10月4 日時点における貯蔵量は,581m³となっている。ただし,槽内で静置するこ とで,凝集沈殿物(スラッジ)と上澄液に分離でき,今後,上澄液を抜き, 貯蔵容量を確保する計画でいる。また,除染装置は,二次廃棄物低減のため, 必要な処理量等を考慮しながら運転時間を抑制させる。

ii. 崩壊熱除去に対する考慮

造粒固化体貯槽(D)は、貯槽内部に設置した熱交換器と屋外に設置した空 冷チラーによりスラッジに含まれる放射性物質の崩壊熱を除去することで、 貯槽内温度を 25℃程度に管理する設計としている。また、空冷チラーは多 重化しており、電源構成は汚染水処理設備と同様となっている。

ただし,貯槽内の崩壊熱量が低く(1cm³あたり10⁻⁵W程度),これまで空 冷チラーを運転した実績がなく,貯槽内の温度は30℃以下で推移している。 このため,スラッジに含まれる放射性物質の崩壊熱は,安全機能に影響を及 ぼすことはない。

iii. 可燃性ガスの滞留防止等に対する考慮

造粒固化体貯槽(D)内の水の放射線分解により発生する可燃性ガスは,除 染装置に設置されている排風機により大気へ放出している。また,排風機の ラインには,高性能粒子フィルタ,ヨウ素吸着フィルタを設けており,気相 に含まれている放射性物質を捕獲する。さらに,ダストサンプラ等により, 必要に応じて放射性物質濃度を測定している。

また,換気ラインにベントを設け,排風機の機能停止時には,ベント弁を 開操作することで可燃性ガスを大気へ放出する設計としている。排風機が機 能停止した場合には,汚染水処理設備の制御室に一括警報が発すること及び 可燃性ガスの燃焼領域に達するまでに放射能濃度等を保守的に見積もって も約 42 時間あることから,燃焼領域に達するまでにベント弁を開操作する ことが可能である。

iv. 放射性物質の漏えい防止等に対する考慮

造粒固化体貯槽(D)は、建物と一体のピット構造となっているため、建屋 外への漏えいの可能性は低いが、念のため漏えい防止策としてコンクリート 保護材を塗布している。

また,造粒固化体貯槽(D)におけるスラッジの貯蔵状況は,汚染水処理設備の制御室において,液位,排風機の運転状況を確認することで監視している。また,スラッジの貯蔵量は,液位の他に,滞留水の処理量及び薬品注入量からも管理している。

v. 監視

造粒固化体貯槽(D)は,汚染水処理設備の制御室で監視している。主な監 視項目を下表に示す。

主要監視項目	
・各機器の運転状態	
・貯槽液位	
・貯槽温度	

表 造粒固化体貯槽(D)に係る監視項目

- b. 廃スラッジー時保管施設
 - i. 施設の概要

廃スラッジー時保管施設は、スラッジ貯槽、セル、オフガス処理系、圧縮 空気系及びスラッジ貯槽等を収容するスラッジ貯槽建屋、圧縮空気系の機器 等を収容するユーティリティ建屋で構成する。廃スラッジー時保管施設の概 要を図 5-15 に示す。

スラッジ貯槽は、8 槽からなり1 槽は万一スラッジ貯槽から漏えいがあった場合の入替先として扱う。1 槽あたりの有効容量は 90m³ であり、造粒固 化体貯槽(D)からのスラッジを 630m³ 貯蔵できる。また、スラッジ貯槽内に バブリング管を収容する。

セルは、スラッジ貯槽を収容するコンクリート製の囲いで、漏えい検知の ためのドリップトレイを収容する。

オフガス処理系は、スラッジ貯槽内の気相部を負圧に維持する。

圧縮空気系は、スラッジ貯槽の気相部に空気を供給し、可燃性ガスを掃気 するとともに、貯槽内のバブリング管に空気を供給し、スラッジを攪拌する。
廃スラッジー時保管施設の動的機器は、原則として多重化する。

スラッジ貯槽建屋,ユーティリティ建屋は,約 OP.34,000 の地点に設置する。スラッジ貯槽建屋は,スラッジ貯槽,セル,オフガス処理系等を収容する。ユーティリティ建屋は,操作室,電気品等を収容する。

ii. 崩壊熱除去に対する考慮

スラッジに含まれる放射性物質の崩壊熱は,造粒固化体貯槽(D)での実績 から、十分低く安全機能に影響を及ぼすものでないことから、自然放熱によ り除去する設計とする。また、貯槽内のバブリング管によりスラッジを攪拌 することで、崩壊熱の集中化を防止する。また、バブリング管による攪拌が できない場合を想定して、ウォータジェットによる攪拌手段を設けている。 (添付資料-8 参照)

iii. 可燃性ガスの滞留防止等に対する考慮

水の放射線分解により発生するスラッジ貯槽内の可燃性ガスは,貯槽気相 部に圧縮空気系から空気を供給するとともに,オフガス処理系により貯槽内 の気体を大気に放出することで,貯槽内での滞留を防止する。また,オフガ ス処理系には,放射性物質を捕獲する高性能粒子フィルタを設けるとともに, ダスト放射線モニタを設置し異常の有無を監視する。

さらに, 貯槽内のバブリング管によりスラッジを攪拌することで, スラッジ内での可燃性ガスの滞留を防止する。

また,換気ラインにベントを設け,排風機の機能停止時には,ベント弁を 開操作することで可燃性ガスを大気へ放出する設計としている。排風機が機 能停止した場合には,汚染水処理設備の制御室に一括警報が発すること及び 可燃性ガスの燃焼領域に達するまでに放射能濃度等を保守的に見積もって も約 42 時間あることから,燃焼領域に達するまでにベント弁を開操作する ことが可能である。

iv. 放射性物質の漏えい防止等に対する考慮

スラッジ貯槽は、塩分を含むスラッジを貯蔵することから、海水飛沫帯の 50℃で想定される腐食速度 0.25mm/年を考慮して容器厚さを 2.5cm としてい る。

セルは、スラッジ貯槽を収容するコンクリート製の囲いで、スラッジ貯槽 の漏えい検知のため、ドリップトレイを設置する。漏えいを検知すると、制 御室に警報を発する。また、漏えいした貯槽内のスラッジは、予備のスラッ ジ貯槽へ移送する。 v. 放射線遮へいに対する考慮

スラッジ貯槽からの放射線は、スラッジ貯槽建屋外壁で線量率が 1mSv/h となるように貯槽周囲のセル(厚さ約 1m)及び建屋(厚さ約 0.5m)を設計 している。

(添付資料-9参照)

vi. 監視

ユーティリティ建屋に設置する操作室は、制御盤、制御装置を設け、主要 パラメータの監視及び制御ができ、汚染水処理設備の制御室においても監視 ができる設計とする。崩壊熱除去及び可燃性ガスの排気は、建屋換気空調系 またはオフガス処理系の運転状態により監視する。主要監視パラメータを下 表に示す。

スラッジ貯槽からの漏えいは、ドリップトレイに設けた漏えい検知器から の信号により監視するとともに、スラッジ貯槽の液位による監視も行う。

異常がある場合には操作室及び汚染水処理設備の制御室に警報を発し,汚 染水処理設備の制御室にいる操作員もしくは IF 免震重要棟に待機している 保全部員等がユーティリティ建屋の操作室等に出向き,適切な対策を講ずる。

主要監視項目	
 ・各装置の運転状態(トリップ警報等) 	
・ドリップトレイの漏えい検知(警報)	
 ・貯槽液位(液位高警報) 	
 ・貯槽温度(温度高警報) 	

表 操作室及び汚染水処理設備の制御室での主要監視項目

vii. 電源

廃スラッジー時保管施設の電源構成図を図 5-16 に示す。外部電源の受電 系統等は今後の詳細設計により決定するが,非常用所内電源とも接続し,外 部電源喪失時には,他の設備負荷を考慮しながら復旧する。

基本的に,多重化されている動的機器は,それぞれ別の駆動電源から電源 を供給する。

- 5.3.3. 設備の構造強度等
- (1) 基本方針

セシウム吸着塔は, 5.2.5 項に示した通り材料証明書等はないが必要な構造強度を有 するものと評価している。

造粒固化体貯槽(D)は、固体廃棄物処理系の既存設備であり、プロセス主建屋と一体のピット構造のため、十分な構造強度を有している。

廃スラッジー時保管施設を構成する機器のうち放射性物質を内包する機器は、「発電 用原子力設備に関する技術基準を定める省令」で定めるクラス 3 機器と位置付けら、 原則としてクラス 3 機器に要求される基準を満足するように設計する。万一適合しな いものがある場合においても、温度、圧力、使用環境等を考慮し、一般民間規格に従 う産業品を使用するとともに、機器の設計、製作、設置、検査等の各段階において、 適切なものとなっていることを確認し、クラス 3 機器と同等以上の構造強度を持たせ る。

- (2) 主要設備の構造強度
 - a. 使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設 セシウム吸着塔は、5.2.3.項に示した通り材料証明書等はないが必要な構造強度を 有するものと評価している。

(添付資料-1 参照)

b. 造粒固化体貯槽(D)

造粒固化体貯槽(D)は、固体廃棄物処理系の既存設備であり、プロセス主建屋と一体のピット構造となっている。

c. 廃スラッジー時保管施設

廃スラッジー時保管施設を構成する機器のうち放射性物質を内包する機器は,原 則としてクラス3機器の要求を満足するように設計する。

(添付資料-1参照)

(3) その他

腐食,熱による劣化,凍結,生物汚染,ウォータハンマ等の衝撃への対応は以下の 通りである。

a. 腐食

セシウム吸着塔は,吸着塔内の水を抜いた状態で保管し,容器に耐腐食性,耐応 力腐食割れ性を有する SUS316L 材を用いている。 スラッジ貯槽は, 想定される腐食速度 0.25mm/年に対して肉厚 2.5cm を有してお り, 十分な腐食代を有している。

b. 熱による劣化

吸着塔中心温度が高い第二セシウム吸着装置吸着塔において,容器温度の最大は約 160℃であり,金属材料に有意な特性変化は生じない。

c. 凍結

造粒固化体貯槽(D)は、万一凍結したとしても、気相部を有しているため膨張が問 題となることはない。

また,廃スラッジー時保管施設のスラッジ貯槽は,スラッジ貯槽建屋の換気設備 により暖房されるため凍結することはない。

d. 生物汚染

セシウム吸着塔は,水を抜いた状態で保管するため,生物汚染が問題となること はない。

造粒固化体貯槽(D)は内面にコンクリート保護材を塗布しており, 微生物腐食は発 生しない。

スラッジ貯層は高線量下なので微生物の影響はないと考える。

- 5.3.4. 耐震性
- (1) 基本方針

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設,造粒固化 体貯槽(D),廃スラッジー時保管施設を構成する機器は,耐震設計審査指針上のBクラ ス相当の設備と位置づけられる。

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設,造粒固化 体貯槽(D),廃スラッジー時保管施設の耐震性に関する評価にあたっては,「JEAG4601 原子力発電所耐震設計技術指針」に準拠することを基本とするが,必要に応じて現実 的な評価を行う。

また,スラッジ貯槽建屋及びユーティリティ建屋は,耐震 B クラスの建物として評価を行う。

さらに,廃スラッジー時保管施設は,高濃度の放射性スラッジを貯蔵する施設であることから,基準地震動 Ss に対しての評価も行う。

(2) 主要設備の耐震構造

各機器は,必要な耐震性を確保するため,原則として以下の方針に基づき設計して いる。

- ・倒れ難い構造
- ・動き難い構造

以下に、各装置の具体的な耐震構造を示す。

- a. セシウム吸着塔
 - i. セシウム吸着装置吸着塔

吸着塔は、コンクリート製ボックスカルバートに収納して保管する。この ような状態で、耐震 B クラスの施設で要求される水平震度に対して転倒しな いように設計する。

- ii. 第二セシウム吸着装置吸着塔
 吸着塔は,保管用のスキッドに収納して保管する。このような状態で,耐
 震 B クラスの施設で要求される水平震度に対して転倒しないように設計する。
- b. 造粒固化体貯槽(D)

造粒固化体貯槽は、耐震 B クラスのプロセス主建屋と一体のピット構造となっている。

- c. 廃スラッジー時保管施設
 - i. スラッジ貯槽

スラッジ貯槽は,低重心構造とし,耐震 B クラスの施設で要求される水平 震度に対して十分耐えうる設計とする。さらに,基準地震動 Ss に対して貯 槽が転倒しない設計とする。

ii. スラッジ貯槽建屋

スラッジ貯槽建屋は、地上1階建で、平面が約24m(南北方向)×約63m (東西方向)の鉄筋コンクリート造の建物である。

iii. ユーティリティ建屋

ユーティリティ建屋は、地上1階建で、平面が約12m(南北方向)×約 65m(東西方向)の鉄骨造の建物である。 (3) 耐震性の評価

吸着塔及びスラッジ貯槽について、地震による転倒の有無について評価した結果、 耐震 B クラスの施設に要求される水平震度に対し、転倒しないことを確認している。 さらに、スラッジ貯槽については、基準地震動 Ss に対しても貯槽が転倒しないことを 確認している。

(添付資料-1 参照)

造粒固化体貯槽は,固体廃棄物処理系の設備として耐震 B クラスで設計されており 要求を満足している。

スラッジ貯槽建屋,ユーティリティ建屋は,耐震 B クラスの建物に要求される水平 震度に対し,構造物が健全であることを確認している。さらに,基準地震動 Ss に対し ても終局耐力に対して余裕を確保していることを確認している。

(添付資料-10,11 参照)

(4) 地震時の対応

地震が発生した際には、設備の巡視点検を行い、漏えい、設備の健全性を確認する。

5.3.5. 主要仕様

使用済セシウム吸着塔保管施設及び廃スラッジ貯蔵施設の主要仕様を表 5-3 に示す。

5.3.6. 要求事項に対する代替措置

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設は,概ね設計方 針を満足するものであるが,「構造強度」については,本来の原子力設備に求められる設計・ 建設規格で規定された材料の要求事項を一部満足しないものもある。

このため、使用済セシウム吸着塔仮保管施設、使用済セシウム吸着塔一時保管施設の運 用にあたっては、本来の原子力設備に対して構造強度が劣るものと想定し、必要な対応を 定めておくこととする。

また,廃スラッジー時保管施設については,今後の詳細設計を踏まえ,具体的な運用を 定めることとする。

(1) 運転管理

定期的に巡視点検を行い、設備の異常の有無を確認する。

地震が発生した場合,汚染水処理設備等の監視パラメータを確認し,設備の損傷の 有無を確認する。パラメータに異常がある場合は,巡視点検による確認を行う。 (2) 保守管理

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設は,静的に 吸着塔を保管する施設であり,安全機能が喪失することはない。

そのため,保守管理については,作業に伴う被ばくを極力低減することに重きをお き,巡視点検等を行う中で機器の状態を監視し,異常の兆候が確認された場合に対応 を行うこととする。

(3) 不適合管理

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設,造粒固化 体貯槽(D),廃スラッジー時保管施設で発生した不適合については,安全性・信頼性に 対する重要度に応じて,原因を調査し,適切な対策・対応を取ることにしている。具 体的な管理項目としては,発生日,装置区分,件名,概要,原因,現状の対策(不適 合処置),追加対策等(是正処置等)としている。

- (4) 異常時の措置
 - a. 機器の単一故障時の対応

廃スラッジー時保管施設は,機器の単一故障により安全機能が喪失するのを防止 するため,動的機器や外部電源を多重化している。そのため,機器等の切替作業に より,速やかな安全機能の回復が可能である。

b. 外部電源喪失時の対応

使用済セシウム吸着塔仮保管施設,使用済セシウム吸着塔一時保管施設は,セシ ウム吸着塔を静的に保管する施設であり,外部電源喪失した場合でも,安全機能に 影響を及ぼすことはない。

造粒固化体貯槽は、外部電源喪失により貯槽内気相部の排気が不可能となるが、 貯槽内気相部の排気についてはベントラインを設けており、手動弁を開操作するこ とで可燃性ガスを放出することが可能である。また、コンプレッサーによる掃気、 仮設コンプレッサーによる掃気が可能であり、更に窒素ボンベ等が接続可能なよう に取合口を設けている。

廃スラッジー時保管施設は,外部電源喪失により貯槽内気相部の排気が不可能と なるが,以下を考慮しており,短時間のうちに安全機能の回復が可能である。

- i. 建屋外に電源車の接続口を設置
- ii. 仮設排風機の接続が可能なように取合口を設置
- iii. 排風機バイパスラインを設け、手動弁を開操作することで、可燃性ガスを放出

5.4. 今後の計画

5.1~5.3 項に示した通り,滞留水の所外放出防止,汚染水処理設備等の安定な稼働等を目的に,

- 次期汚染水処理設備検討(概念設計,仕様検討を含む)
- 高濃度滞留水受タンク設置
- RO及び蒸発濃縮装置後淡水受タンク設置
- ・ 屋外敷設箇所耐圧ホースの凍結防止
- ・ 第二セシウム吸着装置の電源分離
- ・ 廃スラッジー時保管施設設置

の検討,設置工事を実施していく。表 5-4 に今後の計画を示す。

5.5. 添付資料

添付資料-1:セシウム吸着装置及び第二セシウム吸着装置の吸着塔温度評価について

- 添付資料-2:高濃度滞留水受タンク設置部の難透水性地盤の評価
- 添付資料-3:高濃度滞留水受タンク地表面の線量評価
- 添付資料-4:高レベル放射性汚染水処理設備等に関する構造強度,耐震評価結果
- 添付資料-5:高濃度滞留水受タンクの耐震性評価
- 添付資料-6:使用済セシウム吸着塔仮保管施設からの放射線による制御室の線量評価
- 添付資料-7:使用済セシウム吸着塔一時保管施設からの放射線による制御室の線量評価
- 添付資料-8:廃スラッジー時保管施設の崩壊熱評価
- 添付資料-9:廃スラッジー時保管施設の遮へい設計
- 添付資料-10:高濃度スラッジ貯槽施設建屋の耐震性に関する検討結果(スラッジ棟建屋) 添付資料-11:高濃度スラッジ貯槽施設建屋の耐震性に関する検討結果(ユーティリティ建屋)

表 5-1 汚染水処理設備等の主要仕様

(1)	2 号機	ミタービン建屋滞留水	移送ポンプ
	台	数	5
	容	量	12m ³ /h(1 台あたり)(4 台)
			20m3/h (1 台)
	揚	程	30m
(2)	3 号機	後タービン建屋滞留水	移送ポンプ
	台	数	2
	容	量	12m ³ /h(1 台あたり)
	揚	程	30m
(3)	1 号樽	銭抜管エリア移送ポン	プ
	台	数	2
	容	量	10 m ³ /h (1 台あたり)
	揚	程	14 m
(4)	プロイ	マス主建屋滞留水移送	きポンプ
	台	数	2
	容	量	50 m ³ /h (1 台あたり)
	揚	程	38.5m
(5)	高温爆	虎却炉建屋滞留水移 道	きポンプ
	台	数	2
	容	量	40m ³ /h (1 台あたり)
	揚	程	41m
(6)	油分分	分離装置処理水移送太	ペンプ
	台	数	2
	容	皇	50m ³ /h(1 台あたり)

揚 程 41m

(7) セシウム吸着処理水移送ポンプ

台	数	2
容	量	50m ³ /h(1 台あたり)
揚	程	41m

(8) 除染装置処理水移送ポンプ

台	数	2
容	量	50m ³ /h(1 台あたり)
揚	程	20m

- (9) SPT廃液抜出ポンプ
 台数2
 容量50m³/h(1台あたり)
 揚程30m
- (10) SPT受入水移送ポンプ

台	数	2
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(11) 廃液RO供給ポンプ

台	数	2
容	量	70m ³ /h(1 台あたり)
揚	程	30m

(12) RO処理水供給ポンプ

台	数	2
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(13) RO処理水移送ポンプ

台	数	4
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(14) RO濃縮水供給ポンプ

台	数	2
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(15) RO濃縮水貯槽移送ポンプ

台	数	4
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(16) RO濃縮水移送ポンプ

台	数	10
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(17) 濃縮水供給ポンプ台数 2

	<i>///</i>	-
容	量	50m ³ /h(1 台あたり)
揚	程	50m

(18) 蒸留水移送ポンプ

台	数	2
容	量	40m ³ /h(1 台あたり)
揚	程	75m

(19) 濃縮処理水供給ポンプ

台	数	2
容	量	40m ³ /h (1 台あたり)
揚	程	50m

(20) 蒸発濃縮処理水移送ポンプ

台	数	2
容	量	50m ³ /h(1 台あたり)
揚	程	75m

(21) 濃縮水移送ポンプ

台	数	2
容	量	40m ³ /h(1 台あたり)
揚	程	50m

- (22)高レベル滞留水受タンク
 合計容量(公称)
 基数
 2,800 m³
 28 基
 - 基数
 28基

 容量(単機)
 100m³/基
- (23)油分分離装置処理水タンク
 合計容量(公称) 37.5 m³
 基数 3基
 容量(単機) 12.5 m³/基
- (24) セシウム吸着処理水タンク
 合計容量(公称) 37.5 m³
 基数 3基
 容量(単機) 12.5 m³/基
- (25) 除染装置処理水タンク
 合計容量(公称) 37.5 m³
 - 基数3基容量(単機)12.5 m³/基
- (26) サプレッションプール水サージタンク
 基数2基
 容量3,500 m³/基
- (27) SPT受入水タンク
 - 基数
 1基

 容量
 85 m³

(28) 廃液供給タンク	
合計容量 (公称)	1,200m ³
基 数	34 基
容量(単機)	35~110 m ³ /基
(29) RO処理水受タンク	
基 数	1 基
容量	85 m ³
(30) RO処理水一時貯槽	
合計容量 (公称)	5,000m ³
基 数	139 基
容量(単機)	16~42 m ³ /基
(31) RO濃縮水受タンク	
基 数	1 基
容 量	85 m^3
н	
(32) RO濃縮水一時貯槽	
合計容量(公称)	8,000m ³
基 数	295 基
容量(単機)	16~42 m ³ /基
(33) RO濃縮水貯槽	
合計容量 (公称)	65,000m ³
基 数	225 基
容量(単機)	120~1100 m ³ /基
(9.4) 迪宏水巫 4×4	
(34) 仮相小文クンク <u> へ</u> 乳 索 具 (小 新)	800m ³
百司谷里(公称) 甘 粉	800m 26 革
本	20 本
谷里(甲機)	40 m / 奉
(35) 蒸留水タンク	
合計容量 (公称)	94m ³
基 数	3 基
容量(単機)	40 m ³ /基

5-49

- (36)濃縮処理水タンク
 合計容量(公称)
 1,600m³
 基数52基
 容量(単機)
 40m³/基
- (37)蒸発濃縮処理水貯槽
 合計容量(公称)
 基数
 5基
 容量(単機)
 1,100m³/基
- (38) 濃縮水タンク
 合計容量(公称)
 基数
 5基
 容量(単機)
 40m³/基
- (39)濃縮廃液貯槽
 合計容量(公称)
 基数
 花数
 74
 74
 100 基
 100m³/基
- (40) 油分分離装置

台	数	3
容	量	1,200 m ³ /日(2 台で 100%容量)
性	台上 月上	出口にて浮遊油 100ppm 以下(目標値)

(41) セシウム吸着装置

系列数	4
処理量	1,200 m ³ /日
除染係数	103~105程度

(42) 第二セシウム吸着装置

系列数	2
処理量	1,200 m ³ /日
除染係数	10 ⁴ ~10 ⁶ 程度

(43) 除染装置(凝集沈殿法)

系列数	1
処理量	1,200 m ³ /日
除染係数	10 ³ 程度

(44) 淡水化装置1(逆浸透膜装置)

(RO-1A)	処 理 量	270 m ³ /日
	淡水化率	約 40%
(RO-1B)	処理量	$300 \text{ m}^3 / \square$
	淡水化率	約 40%
(RO-2)	処 理 量	1,200 m ³ /日
	淡水化率	約 40%
(RO-3)	処 理 量	1,200 m ³ /日
	淡水化率	約 40%

(45) 淡水化装置2(蒸発濃縮缶装置)

(蒸発濃縮-1A)	処理量	12.7 m ³ /日
	淡水化率	約 30%
(蒸発濃縮-1B)	処理量	$27 \text{ m}^3 / \square$
	淡水化率	約 30%
(蒸発濃縮-1C)	処理量	$52 \text{ m}^3 / \square$
	淡水化率	約 30%
(蒸発濃縮-2A)	処 理 量	$80 \text{ m}^3 / \boxminus$
	淡水化率	約 30%
(蒸発濃縮-2B)	処理量	$80 \text{ m}^3 / \boxminus$
	淡水化率	約 30%
(蒸発濃縮-3A)	処理量	$250 \text{ m}^3 / \boxminus$
	淡水化率	約 70%
(蒸発濃縮-3B)	処理量	$250 \text{ m}^3 / \exists$
	淡水化率	約 70%
(蒸発濃縮-3C)	処理量	$250 \text{ m}^3 / \exists$
	淡水化率	約 70%

名 称	仕 様	
2 号機立坑から 集中廃棄物処理建屋まで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	80A ポリ塩化ビニル 0.98MPa 50℃
3号機タービン建屋から 集中廃棄物処理建屋まで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	80A ポリ塩化ビニル 0.98MPa 50℃
プロセス主建屋地下から プロセス主建屋3階取り合いまで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 1.0MPa 50℃
プロセス主建屋3階取り合いから 油分分離装置入口ヘッダーまで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 1.37MPa 66°℃
油分分離装置入口ヘッダーから 油分分離装置処理水タンクまで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	200A∕Sch.80 STPG370,STPT370 1.37MPa 66°C
油分分離装置処理水タンクから セシウム吸着装置入口まで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 1.37MPa 66°C
セシウム吸着装置入口から セシウム吸着装置出口まで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	50A∕Sch.40 SUS316L 1.37MPa 66°C
セシウム吸着装置出口から セシウム吸着処理水タンクまで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 1.37MPa 66°C
セシウム吸着処理水タンクから 除染装置入口まで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 1.37MPa 66°C
除染装置入口から 除染装置出口まで (鋼管)	口径 /厚さ 材質 最高使用圧力 最高使用温度	50A,80A,100A,150A,200A ∕ Sch.20S SUS316L 0.3MPa 50°C

表 5-2 汚染水処理設備等の主要配管仕様

名称		仕 様
除染装置出口から 除染装置処理水タンクまで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 1.37MPa 66℃
除染装置処理水タンクから SPT建屋2階取り合いまで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 1.37MPa 66°C
SPT建屋2階取り合いから SPT(B)まで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 1.0MPa 50℃
高温焼却炉建屋地下から 高温焼却炉建屋1階取り合いまで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 1.0MPa 50℃
高温焼却炉建屋1階取り合いから 第二セシウム吸着装置入口まで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	100A∕Sch.80 STPG370,STPT370 0.98MPa 40°C
第二セシウム吸着装置入口から 第二セシウム吸着装置出口まで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	50A,80A,100A∕Sch.80 STPG370,STPT370 1.0MPa 66°C
第二セシウム吸着装置出口から 高温焼却炉建屋1階取り合いまで (鋼管)	口径/厚さ 材質 最高使用圧力 最高使用温度	50A∕Sch.80 STPG370,STPT370 0.98MPa 40°C
高温焼却炉建屋1階取り合いからSPT(B)まで(耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 1.0MPa 50℃
SPT(B)から SPT受入水タンクまで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 1.0MPa 60℃
S P T 受入水タンクから 廃液 R O 供給タンクまで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 0.98MPa 60℃

名称		仕 様
廃液RO供給タンクから 淡水化装置(ROユニット)まで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 0.98MPa 60℃
RO濃縮水受タンクから RO濃縮水一時貯槽まで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 0.98MPa 60℃
RO処理水受タンクから RO処理水一時貯槽まで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 0.98MPa 60℃
R O 処理水一時貯槽から バッファタンクまで (耐圧ホース)	口径 材質 最高使用圧力 最高使用温度	100A ポリ塩化ビニル 0.98MPa 60℃

表 5-3 使用済セシウム吸着塔保管施設,廃スラッジ貯蔵施設の主要仕様

- (1)使用済セシウム吸着塔仮保管施設吸着塔保管体数 約400 体
- (2)使用済セシウム吸着塔一時保管施設
 吸着塔保管体数
 544 体(セシウム吸着装置)
 200 体(第二セシウム吸着装置)
- (3)造粒固化体貯槽(D)スラッジ保管容量 700m³
- (4)廃スラッジー時保管施設
 スラッジ保管容量
 スラッジ貯層基数
 8基
 - スラッジ貯層容量 90m³/基

平成23年度 平成 24 年度 10月 11 月 12 月 1月 2月 3月 第一四半期 第二四半期 第三四半期 第四四半期 次期汚染水処理設備 現在,次期汚染水処理設備の概念,仕様等を検討中。 設置 中低濃度タンク設置 RO及び蒸発濃縮装置後淡水受タンク 必要に応じて中低濃度タンクを増設 (RO 及び蒸発濃縮装置後 淡水受タンク設置) 屋外敷設箇所耐圧ホース の凍結防止 第二セシウム吸着装置の 電源分離 廃スラッジー時保管施設 設置

表 5-4 今後の計画

(a) 系統概要図 5-1 汚染水処理設備等の全体概要図

(b) 配置概要図 5-1 汚染水処理設備等の全体概要図

図 5-2 滞留水移送装置の系統構成図

5-59

廃スラッジ貯蔵施設へ(設置中)

図 5-3 処理装置(セシウム吸着装置,第二セシウム吸着装置,除染装置)の系統構成図

図 5-4 セシウム吸着装置の系統構成図

5-61

図 5-4 セシウム吸着装置の外形図

図 5-6 第二セシウム吸着装置の系統構成図

図 5-7 第二セシウム吸着装置の吸着塔外形図

図 5-9 淡水化設備(逆浸透膜装置,蒸発濃縮缶装置)の系統構成図

図 5-10 汚染水処理設備等の電源構成図(平成 23 年 10 月 17 日時点)

5-67

図 5-11 使用済セシウム吸着塔仮保管施設

図 5-12 使用済セシウム吸着塔一時保管施設概要図

図 5-13 コンクリート製ボックスカルバート(セシウム吸着装置吸着塔)

図 5-15 廃スラッジー時保管施設概要図

図 5-16 廃スラッジー時保管施設電源構成図(暫定であり今後の詳細設計により決定する)
セシウム吸着装置および第二セシウム吸着装置の吸着塔温度評価について

1. セシウム吸着装置の温度評価

大気への放熱が定常になる際の吸着塔中心部温度は,解析コード FLUENT Ver.12 を用い て三次元定常解析により計算した。発熱量を,スキッド表面線量率の上限である 4mSv/h の 際の Cs 吸着 (2×10¹⁵Bq/塔) による発熱量に相当する 583W とし,遮へい表面温度を 40℃と 仮定すると,吸着塔中心温度は 360℃と計算される。計算による温度分布を図 1 に示す。

図1 3次元解析計算によるセシウム吸着装置の吸着塔温度分布

ー時保管施設では、コンクリート製ボックスカルバート内に保管されるため、コンクリートによる保温により吸着塔温度が上昇する可能性がある。上記と同様に、FLUENT Ver.12による三次元定常解析を実施した。計算の保守性を担保するため以下のモデルに基づき、ボックスカルバートにより保温された場合の吸着塔温度を算出した。結果を図2に示す。

外気温度を 27℃とすると、塔あたりの発熱量が 583W の場合、吸着塔中心温度は 377℃、 遮へい体の最高温度は 62℃である。

図2 ボックスカルバート内のセシウム吸着装置の温度分布

2. 第二セシウム吸着装置の温度評価

吸着塔は一時保管施設では図 3 に示すように鉛遮へい体を含む収納容器内に保管され る。 収納容器上下には配管があり、内部空気温度が上昇して浮力が発生することで外気 が入口配管から流入し、吸着塔側面で上昇流となり、出口配管から流出する。これによ り吸着塔は空気の自然通風で除熱される。また、収納容器外表面は空気の自然対流で除 熱される。

大気への放熱が定常になる際の吸着塔温度は,解析コード STAR-CD Ver4.08 を用いて 3 次元解析により計算した。発熱量は Cs 吸着(6×10¹⁵Bq/塔)による発熱量とし,外気温度を 40℃と仮定すると,吸着塔中心温度は図 4 に示すように 450℃と計算される。

図3 吸着塔と収納容器隙間の自然通 風空気の流れ

図4 3次元解析による第二セシウム吸着装置の 吸着塔温度分布

高濃度滞留水受タンク設置部の難透水性地盤の評価

高濃度滞留水受タンク設置部の地盤は、福島第一原子力発電所1号機 設置変更許可申 請時に地質評価を実施し、以下の評価結果を得ている(図1,図2)。

- ・ OP.3,000~4,000 程度の M 面段丘堆積層が広く分布している。
- ・ 段丘堆積層を構成する堆積物の上部には厚さ30cm~2m程度の火山灰質粘土で構成されており、段丘堆積層は層厚数m~10m程度でほぼ水平に分布している。

また,設置変更許可時のボーリング調査では、タンク設置箇所付近において表層から約 2.2m まで難透水性地盤である粘土層があることが確認されている。

ただし、タンク設置エリアの難透水性地盤の水平方向の広がりを念のため確認するため のボーリング調査を実施し、難透水性地盤の広がりを確認している。

設置変更許可申請書より抜粋 ボーリング調査下限標高の0. F. -300m付近まで分布が確認されている。 敷地は、浜通り地方中央部の太平洋に面した相双丘陵東縁に位置してお 0. b. +30m~ +40m程度の広い平坦な面 地表地質踏査、ボーリング調査及び試掘坑調査の結果から作成した原稿 尺 5,000分の1の地質平面図を第 1.2.3-2 図に, ボーリング調査から得 られた地質柱状図を第 1.2.3-3 図に, 原縮尺 2,000分の1の地質断面図 敷地の地質は、新第三系鮮新統の富岡層、第四系更新統の段丘堆積層 及び第四系完新統の沖積層で構成されており、富岡層の下位には、古第 本層は, 敷地全域にわたって, 0.1.-110m~-200m付近を上限とし 凝 灰岩類等を挟在しており、岩相から上位より、淘汰の悪い泥質砂岩を 主体とする地層(a層), 祝質砂岩からなる地層(b層), 祝岩を主 体とし砂岩等を挟在する地層(こ層)及び硬質な細粒砂岩からなる地 三系~新第三系中新統の堆積岩(以下、先富岡層と呼ぶ)が分布してい 主として砂岩,泥質砂岩及び泥岩からなり,軽石粒,スコリア粒, を第1.2.3-4 図に示す。また、地質層序表を第1.2.3-1 表に示す。 原子炉施設設置位置の基礎地盤は、富岡層である。 0 各地層の概要は、以下のとおりである。 6 - 1 - 5 0り、主に台地からなる。台地は、 1.2.3.2.2 敷地の地質・地質構造 を呈し、一部開析されている。 層(d層)に区分される。 1.2.3.2.1 敷地の地形 1.2.3.2 調査結果 (1) 敷地の地質 a. 先富岡層 20 ボーリング調査により得られた原子炉施設設置位置の新第三紀層の地質 ・地質構造を直接確認するため、第 1.2.3-1図に示す位置において試頻 坑による調査を実施し、基礎地盤の地層の分布、岩質、断裂の分布等を確 物理試験としては、湿潤密度、含水比等の試験を実施し、力学試験とし 0 6 - 1 - 4 9ては三軸圧縮試験を実施した。 1.2.3.1.3 試掘坑調査 認した。

福島第一原子力発電所1号機

層群に及び d 層は前期漸新世の白水層群にそれぞれ対比される。

上位の富岡層とは不整合関係にある。 なお,

p. 富岡層

本層は, 敷地全域にわたって 0.1.+30m~-200m付近に分布してお り、主として塊状の泥質砂岩〜泥岩からなり、軽石粒、細粒凝灰岩類 等を挟在している。本層は、上位ほど混質に漸移し、下部には軽石粒 を多く挟在しており、これらの岩相及び挟在する軽石粒、凝灰岩類の 特徴等から、下位よりT」、T。及びT。部層に区分される。

刑 として塊状の泥質砂岩からなる。本部層は、軽石粒を多く挟在してお り, 基底付近には層厚数㎝~1m程度の軽石質粗粒凝灰岩を多く挟在 T.1 部層は, 富岡層下部の0.F.-130m付近以深に分布しており, している。 T₂ 部層は, 富岡層中部の 0.1、-20m~-130m付近に分布しており, 主として塊状の混質砂岩からなる。下位のT」部層との境界は漸移し 21120

状の砂質泥岩〜泥岩からなり、本部層上部では淘汰の良い砂岩を挟在 富岡層上部の0.5.-20 m付近以浅に分布しており、 している。下位のT2部層との境界は漸移している。 T 3 部層は,

これらは、水平方向にほぼ同じ層相を示している。

111 新第 本層の堆積年代は,柳沢ほか (1989) 及び微化石分析等から, 紀鮮新世であると判断される。

なお,上位の段丘堆積層とは不整合関係にある。

c. 段丘堆積層

敷地には高位段丘面(H面),中位段丘面(M面)及び低位段丘面

0. b. +30m~ +40m程度の平坦な面からなるM 面が最も広く分布しており、低位のし面は開析された地形に沿って分 主に黄褐色を呈する砂礫及び ¥ 高位のH面は敷地の西に小規模に分布している。 上部には厚さ31㎝~2m程度の火山灰質粘土を伴う。 これらの段丘面を構成する堆積物は、 (L面) が認められ, 布している。また, ゆからなり,

層は, 層厚数m~10m程度でほぼ水平に分布している。

d. 冲積層

(2)

色を呈する未固結の粘土及び砂からなり,層厚は最大5m程度である。 沖積層は、台地が開折された低地に分布し、主として暗緑灰色~褐 敷地の地質構造

ように, 敷地の全域にわたりほぼ同じ層厚で 0.1.+30m~-200m付近に 分布し,南北方向では水平に,東西方向では東方に2。程度傾斜する同 斜構造を示している。各鍵層は連続して分布することから,富岡層に断 ボーリング調査等の結果によると, 富岡層は, 第 1.2.3-4 図に示す 層は存在しないものと判断される。

P S 検層,物理試験結果,力学試験結果及び地質特性 (3)

1.2.3-3 図に, 物理試験の結果を第 1.2.3-2 表及び第 1.2.3-5 図 第 1.3、3~1 図に示す位置において実施した B 後層の結果を第 ボーリング・ Q. D. を第1.2.3-3表に示す。 三軸圧縮試験の結果を第 1.2.3-6 図に示す。また, コアの採取率及び R. IJ,

PS検層の結果によると,第1.3-3図に示すように,弾性波速度 は深度方向に増大する傾向を示し, 0.F. ± 0 m以深においては, P 波速 度 Nº は平均1.61 h/s~1.90 h/s, S 波速度 Nº は平均0.42 h/s ~0.12km/sとなっている。また、各ボーリング孔におけるP波及びS **玻速度の分布は深度方向にほぼ同じ傾向を示し, 水平方向での変化は少** 011 T4

福島第

一原子力発電所1号機

設置変更許可申請書より抜粋

図2 敷地内地質平面図

高濃度滞留水受タンク地表面の線量評価

土中 250cm に埋設した高濃度滞留水受タンクに対して,高濃度滞留水保管時の地表面に おける線量を評価する。

1. 評価条件

保管する滞留水の放射能濃度として,表1に示す2号機の測定値を使用する。 評価条件はタンク3基分とし、タンク上面に250cmの土壌があるとして、タンク上 面の地表表面における線量を評価する。計算コードはQAD-CGGP2Rを使用し、各物質 の密度は、滞留水1.0g/cm³、タンク7.8g/cm³、土壌1.2g/cm³とする。計算モデルを図1 に示す。

2. 評価結果

高濃度滞留水を保管した場合の地表面での線量は約0.04µSv/hとなる。

以上

技種	放射能濃度			
	[Bq/cm ³]			
Tc-99m	8.7E+04			
I-131	1.3E+07			
Cs-134	2.3E+06			
Cs-136	2.5E+05			
Cs-137	2.3E+06			
Ba-140	4.9E+05			
La-140	1.9E+05			
合計	1.9E+07			

表1 放射能濃度(2号機滞留水の測定値)

平成 23 年 3 月 26 日測定データ (3 月 27 日公表)

断面図

図1 計算モデル

高レベル放射性汚染水処理設備等に関する構造強度, 耐震評価結果

1. 構造強度及び耐震性

本評価書は、「5.2.3.設備の構造強度等 (1)基本方針」、「5.2.4.耐震性 (1)基本方針」、「5.3.3. 設備の構造強度等 (1)基本方針」、「5.3.4.耐震性(1)基本方針」に基づき、高レベル放射性汚 染水処理設備等を構成する機器の構造強度及び耐震性の評価を行う。

2. 油分分離装置

- (1) 耐震評価
 - a. ボルトの強度評価

「JEAC4601 原子力発電所耐震設計技術規程」の強度評価方法に準拠して評価を行った。評価の結果,ボルトの強度が確保されることを確認した(表1)。

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$ 基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

b. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較 することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重 による安定モーメントとなることから、転倒しないことを確認した。(表1)

C_H:水平方向設計震度
 m:機器重量
 g:重力加速度
 H:据付面からの重心までの距離
 L:転倒支点から機器重心までの距離

地震による転倒モーメント: $M_1[N \cdot m]=m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m]=m \times g \times L$

機器名称	評価部位	評価項目	水平震度	算出值	許容値	単位
油分分離装置	卡休		0.3	425	1041	mm
	74×174×	料田	0.57	807	1041	
	基礎ボルト	せん断	0.3	26	124	MPa
			0.57	49	134	
		引張	0.57	<0	-	

表1:油分分離装置耐震評価結果

- 3. セシウム吸着装置
 - (1) 構造強度

円筒形容器については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」 に準拠し、板厚評価を実施した。評価の結果、内圧に耐えられることを確認した。(表 2)

t: 胴の計算上必要な厚さ

$$t = \frac{PDi}{2S \ \eta - 1.2P}$$

P:最高使用圧力S:最高使用温度における

材料の許容引張応力

η:長手継手の効率

表2:セシウム吸着装置構造強度結果

機器名称	評価部位	必要肉厚 [mm]	実厚[mm]
セシウム吸着装置 吸着塔	板厚	6.8	9.5

(2) 耐震評価

a. ボルトの強度評価

「JEAC4601 原子力発電所耐震設計技術規程」の強度評価方法に準拠して評価を行った。評価の結果,ボルトの強度が確保されることを確認した。(表3)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \left(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \right)$ 基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$ 基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

b. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較 することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重 による安定モーメントとなることから、転倒しないことを確認した。(表3)

C_H:水平方向設計震度
 m:機器重量
 g:重力加速度
 H:据付面からの重心までの距離
 L:転倒支点から機器重心までの距離

地震による転倒モーメント: $M_1[N \cdot m]=m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m]=m \times g \times L$

c. 滑動評価

地震時の水平荷重によるすべり力と接地面の摩擦力を比較することにより,滑動 評価を行った。評価の結果,セシウム吸着塔において地震時の水平荷重によるすべり 力>接地面の摩擦力となったことから,FEM によるトラニオンとピンガイドの強度 評価を行った。(表3)

	C _H :水平方向設計震度
地震時の水平荷重によるすべり力: $F_L = C_H \times m \times g$	m:機器重量
接地面の摩擦力: $\mathbf{F}_{\mu} = \mu \times \mathbf{m} \times \mathbf{g}$	g:重力加速度
	μ:摩擦係数

d. FEM によるトラニオンとピンガイドの強度評価

セシウム吸着塔は、本体下部に位置決めのためのトラニオンが施工されており、 スキッド側ピンガイドと取合構造となっている。(図1参照)

c.滑動評価において、地震時の水平荷重によるすべりカ>接地面の摩擦力となった ことから、軸方向荷重及び軸直交方向荷重を想定し、トラニオンとピンガイドの強 度を FEM により確認する。なお、FEM モデルは、ピンガイドについては各部材の中 立面にシェル要素で、トラニオンはソリッド要素で作成した。(図2参照)

FEM による強度評価の結果ピンガイドは破断せず吸着塔を支持することができた。 (表3)

図1:トラニオン~ピンガイド概要

(図面)

(FEM モデル)

機器名称	評価部位	評価項目	水平震度	算出值	許容値	単位
	/	声になり	0.3	354	772	100.100
	本件	判	0.57	672	125	
おシウル吸差状	+/+	滑動	0.3	0.3	0.52	(\mathbf{C})
ビジリム吸有塔	平平		0.57	0.57	0.32	(0)
	トラニオン	相当応力	0.57	162	Sy=156 Su=455	MPa
	/	+→ / 7 -1	0.3	466	1110	
スキッド	41 4	転倒	0.57	885	1113	mm
	基礎	声の	0.3	544	1417	
		転倒	0.57	1034	141/	mm
	基礎ボルト	せん断	0.3	18061	30429 40573	N
			0.57	34315		
	本体	転倒	0.3	689	1150	mm
			0.57	1309	1150	
セシウム吸着		せん断	0.3	16	125	MPa
処理水タンク	其碑ポルト		0.57	29	155	
	至(症い)と下	引起	0.3	<0	117	MPa
		JUK	0.57	9	11/	Ivii a
	木休	転 径	0.3	201	615	mm
		TA (P)	0.57	381	015	111111
セシウム吸着		せん断	0.3	6	134	MPa
処理水移送ポンプ	基礎ボルト	ビノレド川	0.57	11	1.54	1 111 a
		引張	0.3	<0	_	MPa
		り版		<0	-	1 VII a

表3:セシウム吸着装置耐震評価結果

- 4. 第二セシウム吸着装置
 - (1) 構造強度

円筒形容器については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」 に準拠し、板厚評価を実施した。評価の結果、内圧に耐えられることを確認した。(表 4)

t: 胴の計算上必要な厚さ

P:最高使用圧力

$$t = \frac{PDi}{2S \ \eta - 1.2P}$$

S:最高使用温度における

材料の許容引張応力

η:長手継手の効率

表4:セシウム吸着装置構造強度結果

機器名称	評価部位	必要肉厚 [mm]	実厚[mm]
第二セシウム吸着装置 吸着塔	板厚	10.2	12.7

(2) 耐震評価

a. ボルトの強度評価

「JEAC4601 原子力発電所耐震設計技術規程」の強度評価方法に準拠して評価を行った。評価の結果,ボルトの強度が確保されることを確認した。(表5)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \left(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \right)$ 基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$ 基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

b. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較 することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重 による安定モーメントとなることから、転倒しないことを確認した。(表5)

C_H:水平方向設計震度
 m:機器重量
 g:重力加速度
 H:据付面からの重心までの距離

L:転倒支点から機器重心までの距離

地震による転倒モーメント: $M_1[N \cdot m]=m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m]=m \times g \times L$

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
	+/+	起在	0.36	138	164	1-NI
	74×174	料刊	0.42	161	104	KINTII
第二セシウト四美棋		十二年	0.36	68	122	MPa
舟 -センリム吸有哈	甘醂ボルト		0.57	107	155	
	産碇小/レト	引張	0.36	<0	71	MDo
			0.57	69		IVIF a
	本体	転倒	0.36	3.84	7.02	1-NI
			0.6	6.4	7.95	KINTIII
ポンプフキッド	甘7株-12-2-1	せん断	0.36	3	120	MDa
<i>ホンノスキット</i>			0.6	4	139	IVIF a
	産(モル)レト	己匡	0.36	<0		MDa
		り坂	0.6	<0	-	MPa

5. 除染装置

- (1) 耐震評価
 - a. ボルトの強度評価

「JEAC4601 原子力発電所耐震設計技術規程」の強度評価方法に準拠して評価を行った。評価の結果,ボルトの強度が確保されることを確認した(表6)。

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \left(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \right)$ 基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$ 基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$ b. 有限要素法によるフレーム構造解析

主要設備についてはコンクリートにアンカーを打った上で架台にて強固に据え付けられていることから,架台の強度評価を実施する。また,評価にあたっては,建築基準法施工令等に基づき行った。評価条件を以下に示す。評価の結果,架台強度に問題がないことを確認した。(表6)

① DAF ユニット

設計用水平震度:0.6G

転倒,引き抜き検討用震度:1.2G

図3:DAF ユニット解析モデル

② ACTIFLO ユニット
 設計用水平震度: 0.6G
 転倒,引き抜き検討用震度: 1.2G

図4:ACTIFLOユニット解析モデル

 ③ DISK FILTER ユニット 設計用水平震度: 0.6G 転倒,引き抜き検討用震度: 1.2G

図5: DISK FILTER ユニット解析モデル

e. 架台強度評価

各部材に発生するたわみ量を算出する。強度評価の結果,架台強度に問題がないこ とを確認した。(表 6)

$$\delta_{\text{max}} = \beta \frac{Wl^3}{EL}$$

δ max:最大たわみ量

- β:部材の種類によって決まる定数
- W:各部材に加わる荷重
- L:部材のスパン
- E:材料の縦弾性係数
- I:断面二次モーメント

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
	架台 (柱脚)	変位	0.6	1/290	1/120	変位量
DAF ユニット	甘本书业人	せん断	0.6	5	20	MDa
	産碇小/レト	引張	0.6	6	23	MPa
		ナノ斯	0.36	53	01	MDa
Dra Contact Taple	甘本书业人	しん肉	0.6	84	91	MPa
Fie Contact Tank	産碇小/レト	日日	0.36	73	150	MDa
		51 張	0.6	105	138	IVIPa
	本体 (壁パネル)	変位	0.6	1/515	1/120	変位量
	基礎ボルト	せん断	0.36	71	101	MDa
MULTIFLO ユニット			0.4	79	101	MPa
		引張	0.36	248	Sy=176	MDa
			0.4	310	Su=400	IVIF a
	架台 (柱脚)	変位	0.6	1/936	1/120	変位量
ACTIFLO ユニット	甘本书业人	せん断	0.6	8	20	MDa
	産碇小/レト	引張	0.6	13	23	IVIF a
	架台 (柱脚)	変位	0.6	1/527	1/120	変位量
DISC FILTER ユニット	主体デルト	せん断	0.6	7	20	MDo
	産焼か/レト	引張	0.6	9	23	IVIFa

表6:除染装置耐震評価結果

6. 淡水化装置

- (1) 耐震評価
 - a. ボルトの強度評価

「JEAC4601 原子力発電所耐震設計技術規程」の強度評価方法に準拠して評価を行った。評価の結果,ボルトの強度が確保されることを確認した(表7,8)。

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \left(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \right)$ 基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$ 基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

b. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較 することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重 による安定モーメントとなることから、転倒しないことを確認した。(表7,8)

C_H:水平方向設計震度
 m:機器重量
 g:重力加速度
 H:据付面からの重心までの距離
 L:転倒支点から機器重心までの距離

地震による転倒モーメント: $M_1[N \cdot m]=m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m]=m \times g \times L$

c. 滑動評価

地震時の水平荷重によるすべり力と接地面の摩擦力を比較することにより,滑動 評価を行った。評価の結果地震時の水平荷重によるすべり力と接地面<接地面の摩 擦力となることから,滑動しないことを確認した。(表7)

地震時の水平荷重によるすべり力: $F_L = C_H \times m \times g$ 接地面の摩擦力: $F_\mu = \mu \times m \times g$

C_H:水平方向設計震度

- m:機器重量
- g:重力加速度
- μ:摩擦係数

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
SPT 受入水供給ポンプ	本体	転倒	0.3	0.17	0.77	m
廃液 RO 供給ポンプ	本体	転倒	0.3	0.17	0.92	m
RO 処理水供給ポンプ	本体	転倒	0.3	0.17	0.77	m
RO 処理水移送ポンプ	本体	転倒	0.3	0.39	0.77	m
RO 濃縮水供給ポンプ	本体	転倒	0.3	0.17	0.77	m
RO 濃縮水貯槽移送ポンプ	本体	転倒	0.3	0.3	0.77	m
RO 濃縮水移送ポンプ	本体	転倒	0.3	0.29	0.71	m
濃縮水供給ポンプ	本体	転倒	0.3	0.17	0.78	m
蒸留水移送ポンプ	本体	転倒	0.3	0.17	0.86	m
濃縮処理水供給ポンプ	本体	転倒	0.3	0.17	0.78	m
蒸発濃縮処理水移送ポンプ	本体	転倒	0.3	0.29	0.71	m
濃縮水移送ポンプ	本体	転倒	0.3	0.17	0.77	m
配管・弁モジュール	本体	転倒	0.3	0.09	0.42	m
逆浸透膜装置	甘本书业人	せん断	0.3	735	23,420	N
(前処理ユニット)	産碇小/レト	引っ張り	0.3	<0	-	11
逆浸透膜装置	甘本书业人	せん断	0.3	956	23,420	N
(RO-1A)	産(症ハ)レト	引っ張り	0.3	<0	-	1N
逆浸透膜装置	甘本书业人	せん断	0.3	882	23,420	N
(RO-1B)	産碇小/レト	引っ張り	0.3	<0	-	IN
逆浸透膜装置	+/+	転倒	0.3	43	143	ĿN
(RO-2)	24×144	滑動	0.3	98	130	KIN
逆浸透膜装置		市市府山	0.2	207	625	kN • m
(RO-3)	24×14×	野田	0.3	207	023	

表7:淡水化装置耐震評価結果(1/2)

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
蒸発濃縮缶装置	甘林ボルト	せん断	0.3	25	166	MDa
(蒸発濃縮-1A)	産碇 小 ノレト	引張	0.3	<0	-	MPa
蒸発濃縮缶装置	甘本モルト	せん断	0.3	32	166	MDa
(蒸発濃縮-1B)	産碇小/レト	引張	0.3	<0	-	IVII a
蒸発濃縮缶装置	甘本モルト	せん断	0.3	30	166	MDa
(蒸発濃縮-1C)	産碇 小 / レト	引張	0.3	<0	-	IVIF a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-2A,B)	其体ボルト	せん断	0.3	74	108	MDa
(濃縮装置)	室硬 ハノレー	引張	0.3	<0	-	IVII a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-2A,B)	其体ポルト	せん断	0.3	55	108	MDa
(保有液タンク)	産碇 小 / レト	引張	0.3	<0	-	IVIF a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-2A,B)	甘本ギルト	せん断	0.3	61	108	MPa
(予熱原液タンク)	産碇 小 ノレト	引張	0.3	<0	-	
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-2A,B)	甘本ポルト	せん断	0.3	3	108	MDa
(冷却塔)	産碇 小 / レト	引張	0.3	<0	-	IVII a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-2A,B)	甘本ポルト	せん断	0.3	2	108	MDa
(スクラバー)	産碇小/レト	引張	0.3	<0	-	IVII a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-3A,B,C)	甘本ポルト	せん断	0.3	75	108	MDa
(濃縮装置)	産碇小/レト	引張	0.3	<0	-	IVII a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-3A,B,C)	甘本ポルト	せん断	0.3	46	108	MDa
(種発生タンク)	産碇 小 / レト	引張	0.3	<0	-	IVIF a
蒸発濃縮缶装置	本体	転倒	0.3	<0	-	kN
(蒸発濃縮-3A,B,C)	主体ボルト	せん断	0.3	66	108	MPa
(中間濃縮液タンク)		引張	0.3	<0	-	1 VII a

表8:淡水化装置耐震評価結果(2/2)

7. 配管

- (1) 構造強度
 - a. 配管(鋼製)

配管については「JSME S NC-1 発電用原子力設備規格 設計・建設規格」に基づき 板厚評価を実施した。評価の結果,最高使用圧力に耐えられることを確認した(表 9)。

t : 管の計算上必要な厚さ

S:最高使用温度における

 $D_0: 管の内径$

P:最高使用圧力[MPa]

 $t = \frac{PD_0}{2S \ \eta + 0.8P}$

材料の許容引張応力[MPa]

η:長手継手の効率

評価機器	口径	Sch.	材質	最高使用 圧力(MPa)	最高使用 温度(℃)	必要肉厚 (mm)	肉厚(mm)
配管①	100A	80	STPG370	1.37	66	1.57	8.6
			STP13/0				
配管②	200A	80	STPG370 STPT370	1.37	66	3.09	12.7
配管③	50A	40	SUS316L	1.37	66	0.74	3.9
配管④	50A	20S	SUS316L	0.3	50	0.17	3.5
配管⑤	80A	20S	SUS316L	0.3	50	0.25	4
配管⑥	100A	20S	SUS316L	0.3	50	0.33	4
配管⑦	150A	20S	SUS316L	0.3	50	0.48	5
配管⑧	200A	20S	SUS316L	0.3	50	0.63	6.5
配管⑨	100A	80	STPG370 STPT370	0.98	40	1.13	8.6
配管⑪	50A	80	STPG370 STPT370	1	66	0.59	5.5
配管⑪	80A	80	STPG370 STPT370	1	66	0.88	7.6
目在白	1004	00	STPG370	4	66	1 15	0.6
HC.E.(L)	TUUA	δU	STPT370		00	1.10	δ.0
司任会	50.4	80	STPG370	0.98	40	0.58	5 5
配官(13) 50A		00	STPT370	0.90	40	0.50	0.0

表 9 配管構造強度評価結果

- 8. 高濃度滞留水受タンク
 - (1) 構造強度

a.円筒形タンク(横置き)

円筒形タンク(横置き)については、「JSME S NC-1 発電用原子力設備規格 設計・ 建設規格」に準拠し、板厚評価を実施した。評価の結果、内圧に耐えられることを 確認した(表 10)。

t: 胴の計算上必要な厚さ

$$t = \frac{PDi}{2S \eta - 1.2P}$$

t: 胴の内径
P:最高使用圧力
S:最高使用温度における
材料の許容引張応力

η:長手継手の効率

表10:円筒形タンク(横置き)板厚評価結果

機器名称	評価部位	必要肉厚 [mm]	実厚[mm]	
高濃度滞留水受タンク	100t 容量 円筒形 (横置き)	タンク板厚	4.1	9

9. 中低濃度タンク

- (1) 構造強度
 - a. 円筒形タンク

円筒形タンクについては、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」 に準拠し、板厚評価を実施した。評価の結果、水頭圧に耐えられることを確認した (表 11)。

> t : 胴の計算上必要な厚さ Di : 胴の内径

H:水頭

 $t = \frac{DiH \rho}{0.2048 \eta}$

ρ:液体の比重

S:最高使用温度における

材料の許容引張応力

η:長手継手の効率

機器名称		評価部位	必要肉厚[mm]	実厚[mm]
RO 濃縮水貯槽	500t 容量 円筒形	タンク板厚	4.1	9.0
	1000t 容量 円筒形	タンク板厚	5.8	9.0
RO 濃縮水貯槽 蒸発濃縮処理水貯槽	1200t 容量 円筒形	タンク板厚	6.2	9.0

表 11 円筒形タンク板厚評価結果

b. 円筒形タンク(横置き)

円筒形タンク(横置き)については、「JSME S NC-1 発電用原子力設備規格 設計・ 建設規格」に準拠し、板厚評価を実施した。評価の結果、水頭圧に耐えられること を確認した(表 12)。

$$t = \frac{PDi}{2S \ \eta - 1.2P}$$

t: 胴の計算上必要な厚さ

Di : 胴の内径

S:最高使用温度における

材料の許容引張応力

η:長手継手の効率

表 I2:円筒形ダング(傾置さ)	板厚評価結果
------------------	---------------

機器名称		評価部位	必要肉厚 [mm]	実厚[mm]
RO 濃縮水貯槽 濃縮廃液貯槽	100t 容量 円筒形 (横置き)	タンク板厚	0.9	9
RO 濃縮水貯槽	120t 容量 円筒形 (横置き)	タンク板厚	1	9

(2) 耐震性

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較 することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重 による安定モーメントとなることから、転倒しないことを確認した。(表 13, 14)

C_H:水平方向設計震度
m:機器重量
g:重力加速度
H:据付面からの重心までの距離
L:転倒支点から機器重心までの距離

地震による転倒モーメント: $M_1[N \cdot m]=m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m]=m \times g \times L$

b. 滑動評価

タンクに作用する水平荷重と基礎底面地盤のせん断抵抗力を比較して,地震時 の滑動に対する評価を行った。基礎底面地盤のせん断抵抗力は「社団法人日本道 路協会(2002):道路橋示方書・同解説IV下部構造編」に基づき次式を用いた。評 価の結果,タンクに作用する水平荷重<基礎底面地盤のせん断抵抗力となり滑動 しないことを確認した。(表 14)

$H_u = c_B A_e + V \tan \phi_B$	H _u :基礎底面と地盤との間に働くせん断抵抗力			
$H = c A + V \tan \phi$	c _B :基礎底面と地盤との間の付着力			
$\Pi_u - C_B \Lambda_e + V \tan \psi_B$	φ _B :基礎底面と地盤との間の摩擦角			
	A _e :有効載荷面積			
	V:基礎底面に作用する鉛直加重			

c. 支持力評価

タンクの鉛直荷重と極限支持力を比較して、地震時の支持力に対する評価を行った。支持力の算定式は「社団法人日本道路協会(2002):道路橋示方書・同解説 IV下部構造編」に基づき次式を用いた。評価の結果、タンクの鉛直加重<タンク 基礎底面地盤の支持力となり、安全性を有していることを確認した。(表 14)

$$Q_{u} = A_{e} \left(\alpha k c N_{c} S_{c} + k q N_{q} S_{q} + \frac{1}{2} \gamma_{1} \beta_{e} N_{r} S_{r} \right)$$

Q_u:荷重の偏心傾斜,支持力係数の寸法効果を考慮した地盤の極度支持力 c:地盤の粘着力

q:上載荷重

Ae: 有効載荷面積

- γ1, γ2: 支持地盤及び根入れ地盤の単位重量
- Be:荷重の偏心を考慮した基礎の有効載荷幅

B:基礎幅

- e_B:荷重の偏心量
- D_f: 基礎の有効根入れ深さ
- α, β :基礎の形状係数
- k:根入れ効果に対する割増し係数
- N_c,N_a,N_r:荷重の傾斜を考慮した支持力係数
- S_c,S_a,S_r:支持力係数の寸法効果に関する補正係数

機器名称		誕 価 郭 位	評価	水亚雲声	管巴信	許灾値	畄位
			項目	小十辰反	开口吧		平匹
	16t 容量	本体	転倒	0.3	4.3×10	1.2×10^{2}	N·m
	16N						
	20t 容量	本体	転倒	0.3	5.4×10	1.8×10^{2}	N•m
	200						
	20t 容量	本体	転倒	0.3	5.4×10	1.7×10^{2}	N•m
	20N						
	24t 容量	本体	転倒	0.3	6.5×10	2.5×10^{2}	N•m
	240						
	24t 容量	本体	転倒	0.3	6.6×10	2.5×10^{2}	N•m
	24N						
	26t 容量	本体	転倒	0.3	8.2×10	2.3×10^{2}	N·m
	26						
	32t 容量	本体	転倒	0.3	1.0×10^{2}	3.3×10^{2}	N·m
DO 淟綻水——時時埔	32						
KU 候 加小 时則 简	35t 容量	本体	転倒	0.3	1.1×10^{2}	3.0×10^{2}	N·m
	35P						
	35t 容量	本体	転倒	0.3	1.2×10^{2}	3.2×10^{2}	N·m
	350						
	35t 容量	本体	転倒	0.3	1.1×10^{2}	3.0×10^{2}	N•m
	35N						
	35t 容量	本体	転倒	0.3	1.1×10^{2}	3.0×10^{2}	N•m
	35H						
	42t 容量	本体	転倒	0.3	1.3×10^{2}	4.5×10^{2}	N•m
	420						
	42t 容量	本体	転倒	0.3	1.4×10^{2}	4.3×10^{2}	N·m
	42N						
	42t 容量	本体	転倒	0.3	1.4×10^{2}	4.3×10^{2}	N·m
	42H						

表13 タンク・槽類の転倒評価結果(1/2)
機器名称	ŝ	評価部位	評価 項目	水平 地震 動	算出値	許容値	単位
	35t 容量	本体	転倒	0.3	1.2×10^{2}	3.4×10^{2}	N·m
 	40t 容量	本体	転倒	0.3	1.4×10^{2}	4.3×10^{2}	N·m
廃版 KO 展相グ シ ク	42t 容量	本体	転倒	0.3	1.4×10^{2}	4.7×10^{2}	N•m
	110t 容量	本体	転倒	0.3	4.2×10^{2}	2.5×10^{3}	N·m
RO 処理水受久	マンク	本体	転倒	0.3	4.2×10^{2}	2.5×10^{3}	N∙m
	16t 容量	本体	転倒	0.3	4.3×10	7.0×10^4	N·m
	160						
₿O 処理水一時貯榑	35t 容量	本体	転倒	0.3	1.1×10^{2}	7.0×10^4	N•m
KO ZEFEN FORITE	35P						
	42t 容量	本体	転倒	0.3	1.4×10^{2}	4.3×10^{2}	N•m
	42P						
RO 濃縮水受久	マンク	本体	転倒	0.3	4.2×10^2	2.5×10^{3}	N·m
	120t 容量	地盤	支持力	0.3	1.1×10^{3}	2.6×10^{3}	kN
	横置き	本体	転倒	0.3	0.72	1.42	m
			滑動	0.3	4.8×10^{2}	6.3×10^2	kN
	500t 容量	本体	転倒	0.3	8.0×10^{3}	2.5×10^4	N∙m
RO濃縮水貯槽	1000t 容量	本体	転倒	0.3	1.6×10^{4}	7.0×10^4	N∙m
	1200t 容量	地盤	支持力	0.3	1.2×10^{4}	3.7×10^4	kN
		本体	転倒	0.3	1.47	4.07	m
			滑動	0.3	3.6×10^{3}	4.7×10^{3}	kN
濃縮水受タンク		本体	転倒	0.3	4.2×10^{2}	2.5×10^{3}	N•m
蒸留水タンク		本体	転倒	0.3	4.2×10^{2}	2.5×10^{3}	N·m
濃縮処理水タンク		本体	転倒	0.3	4.2×10^{2}	2.5×10^{3}	N·m
		地盤	支持力	0.3	1.2×10^{4}	3.7×10^4	kN
蒸発濃縮処理ス	水貯槽	本体	転倒	0.3	1.47	4.07	m
			滑動	0.3	3.6×10^{3}	4.7×10^{3}	kN
濃縮水タン	(ク	本体	転倒	0.3	4.2×10^{2}	2.5×10^{3}	N·m
濃縮廃液貯	槽	本体	転倒	0.3	1.5×10^{2}	1.7×10^{3}	N·m

表 14 タンク・槽類の転倒評価結果(2/2)

- 10. 使用済セシウム吸着塔仮保管施設
 - (1) 耐震性

耐震性の評価として,転倒評価を行った。

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重による安定モーメントとなることから、転倒しないことを確認した。(表 15)

C_H:水平方向設計震度
 m:機器重量
 g:重力加速度
 H:据付面からの重心までの距離
 L:転倒支点から機器重心までの距離

b. 滑動評価

タンクに作用する水平荷重と基礎底面地盤のせん断抵抗力を比較して、地震時 の滑動に対する評価を行った。基礎底面地盤のせん断抵抗力は「社団法人日本道 路協会(2002):道路橋示方書・同解説IV下部構造編」に基づき次式を用いた。評 価の結果、タンクに作用する水平荷重<基礎底面地盤のせん断抵抗力となり滑動 しないことを確認した。(表 15)

H_u:基礎底面と地盤との間に働くせん断抵抗力

- $H_u = c_B A_e + V \tan \phi_B$
- **c**_B:基礎底面と地盤との間の付着力 φ_B:基礎底面と地盤との間の摩擦角
- A_e:有効載荷面積
- V:基礎底面に作用する鉛直加重

c. 支持力評価

タンクの鉛直荷重と極限支持力を比較して,地震時の支持力に対する評価を行った。支持力の算定式は「社団法人日本道路協会(2002):道路橋示方書・同解説 IV下部構造編」に基づき次式を用いた。評価の結果,タンクの鉛直加重<タンク 基礎底面地盤の支持力となり,安全性を有していることを確認した。(表 15)

$$Q_{u} = A_{e} \left(\alpha k c N_{c} S_{c} + k q N_{q} S_{q} + \frac{1}{2} \gamma_{1} \beta_{e} N_{r} S_{r} \right)$$

Q_u:荷重の偏心傾斜,支持力係数の寸法効果を考慮した地盤の極度支持力 c:地盤の粘着力

- q:上載荷重
- Ae: 有効載荷面積
- γ1, γ2: 支持地盤及び根入れ地盤の単位重量
- Be:荷重の偏心を考慮した基礎の有効載荷幅
- B:基礎幅
- e_B:荷重の偏心量
- D_f: 基礎の有効根入れ深さ
- *α*, *β*: 基礎の形状係数
- k:根入れ効果に対する割増し係数
- N_c,N_q,N_r:荷重の傾斜を考慮した支持力係数
- S_c,S_q,S_r:支持力係数の寸法効果に関する補正係数

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
	地盤	支持力	0.3	2.5×10^{2}	1.4×10^{3}	kN
セシウム吸着塔	本体	転倒	0.3	0.39	0.48	m
	本体	滑動	0.3	7.4×10	9.8×10	kN
	地盤	支持力	0.3	2.6×10^{2}	2.8×10^{3}	kN
ボックスカルバート	本体	転倒	0.3	0.59	0.87	m
	本体	滑動	0.3	7.6×10	1.0×10^{2}	kN
		志 (石)	0.3	1.25×10^{2}	4.1×10^{2}	hN . m
第二セシウト四美状	*/*	も可	0.6	2.5×10^{2}	4.1 \ 10	KIN ⁻ III
第 <u>一</u> ビンソム奴有培 	×14	海動	0.3	0.82×10^{5}	1.42×10^{5}	N
		(月 判)	0.52	1.42×10^{5}	1.42 ^ 10	IN

表 15:使用済セシウム吸着塔仮保管施設

- 11. 使用済セシウム吸着塔一時保管施設
 - (1) 耐震性

耐震性の評価として,転倒評価を行った。

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を行った。評価の結果、地震による転倒モーメント<自重による安定モーメントとなることから、転倒しないことを確認した。(表 16)

C_H:水平方向設計震度
 m:機器重量
 g:重力加速度
 H:据付面からの重心までの距離
 L:転倒支点から機器重心までの距離

b.滑動評価

作用する水平荷重と基礎底面地盤のせん断抵抗力を比較して、地震時の滑動に 対する評価を行った。基礎底面地盤のせん断抵抗力は「社団法人日本道路協会 (2002):道路橋示方書・同解説IV下部構造編」に基づき次式を用いた。評価の結 果、一部に作用する水平荷重>基礎底面地盤のせん断抵抗力となり滑動すること を確認したことから、当該部については別途すべり量評価を行った。(表 16)

	H _u :基礎底面と地盤との間に働くせん断抵抗力
$H = c A + V \tan \phi$	c _B :基礎底面と地盤との間の付着力
$m_u - c_B m_e + v \tan \phi_B$	φ _B :基礎底面と地盤との間の摩擦角
	A _e :有効載荷面積
	V:基礎底面に作用する鉛直加重

c. 支持力評価

タンクの鉛直荷重と極限支持力を比較して、地震時の支持力に対する評価を行った。支持力の算定式は「社団法人日本道路協会(2002):道路橋示方書・同解説 IV下部構造編」に基づき次式を用いた。評価の結果、タンクの鉛直加重<タンク 基礎底面地盤の支持力となり、安全性を有していることを確認した。(表 16)

$$Q_{u} = A_{e} \left(\alpha k c N_{c} S_{c} + k q N_{q} S_{q} + \frac{1}{2} \gamma_{1} \beta_{e} N_{r} S_{r} \right)$$

Q_u:荷重の偏心傾斜,支持力係数の寸法効果を考慮した地盤の極度支持力 c:地盤の粘着力

- q:上載荷重
- Ae: 有効載荷面積
- γ₁, γ₂:支持地盤及び根入れ地盤の単位重量
- Be:荷重の偏心を考慮した基礎の有効載荷幅
- B:基礎幅
- e_B:荷重の偏心量
- D_f: 基礎の有効根入れ深さ
- α, β :基礎の形状係数
- k: 根入れ効果に対する割増し係数
- N_c,N_a,N_r:荷重の傾斜を考慮した支持力係数

S_c,S_q,S_r:支持力係数の寸法効果に関する補正係数

d. すべり量評価

吸着塔と架台等の地震時におけるすべり量は、剛体の地震時変形量評価手法で ある Newmark 法を用いて算出する。評価の結果すべり量が架台間の許容値を超え ないことを確認した。(表 17)

機器名称	評価項目	水平震度	算出値	許容値	単位
四羊栱」加厶	南二人石山	0.58	2.7 × 10 ³	1.0×10^{3}	kNum
	부ム [보]	0.3	1.4×10^{3}	4.0 ^ 10	NIN-111
(SARRT 吸眉培 10 平 レ加ム o ム)	温部	0.58	-	-	LN
	消 到	0.3	7.4 × 10 ²	9.8 × 10 ²	KIN
파羊楼 나 바바까 나	市二,万川	0.58	1.1 × 10 ⁴	1 5 × 104	LNI - ma
吸宿培〒ハルハ ⁻ト (⊭⊔DION 吸差楼 22 楼 レ	平云11到	0.3	5.5 × 10 ³	1.5 × 10	KIN-M
	요 좋~	0.58	_	_	LN
个/////// 下10 奉/	旧刧	0.3	3.0 × 10 ³	3.9 × 10 ³	nin

表 16:使用済セシウム吸着塔一時保管施設

機器名称	評価項目	水平震度	算出値	許容値	単位
吸着塔+架台					
(SARRY 吸着塔 10 本	すべり量	0.58	93.3	500	mm
と架台2台)					
吸着塔+カルバート					
(KURION 吸着塔 32 塔と	すべり量	0.58	93.3	500	mm
ボックルカルバート 16 基)					

表 17:使用済みセシウム吸着塔一時保管施設

12. 廃スラッジー時保管施設

(1) 構造強度

スラッジ貯槽について,「JSME S NC-1 2005 発電用原子力設備規格 設計・建設規格」 に準拠し,板厚評価を実施した。(表 18)

- t : 胴の計算上必要な厚さ[mm]
- Di:胴の内径[m]
- H:水頭[m]
- ρ:液体の比重
- $t = \frac{DiH\,\rho}{0.204\mathrm{S}\,\eta}$

材料の許容引張応力[MPa]

η:長手継手の効率

S:最高使用温度における

表18 スラッジ貯槽板厚評価結果

機器名利	弥	評価部位	必要肉厚[mm]	実厚[mm]
スラッジ貯槽	円筒形(横置き)	タンク板厚	0.9	25

(2) 耐震性

耐震性の評価として、基礎ボルトの強度評価を行った。

a. 基礎ボルトの強度評価

「JEAC4601-2008 原子力発電所耐震設計技術規程」に準拠して評価を行った結果, ボルトの強度が確保されることを確認した(表 19)。

L:基礎ボルト間の水平方向距離
m:機器重量
g:重力加速度
H:据付面からの重心までの距離
L₁:重心と基礎ボルト間の水平方向距離
n_f:引張力の作用する基礎ボルトの評価本数
n:基礎ボルトの本数
A_b:基礎ボルトの軸断面積
C_H:水平方向設計震度
C_V:鉛直方向設計震度

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \left(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \right)$ 基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$ 基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

表 19	スラッ	ッジ貯槽の	基礎ボル	トの強度評価結果	₽
------	-----	-------	------	----------	---

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
		引張	0.26	11	439	MPa
フラッジ時挿	基礎ボルト	せん断	0.30	42	337	MPa
スフッン 知道		引張	0.66	125	439	MPa
		せん断	0.00	102	337	MPa

高濃度汚染水受タンクの耐震性評価

1. 耐震性評価方針

当該タンクは地中に埋設され、タンク内部に高濃度滞留水を保管するものであり、設備 全体としては耐震クラスBに相当することから、地中構造物の耐震クラスBに要求され る水平地震力Kh=0.3に対する静的解析により、その耐震安全性を評価する。

また、当該タンクは高濃度滞留水を保管するものであることから、万一、大きな地震が 発生してもタンクが損傷しないことを確認するため、基準地震動 Ss (Ss-1 [水平最大加速 度 450Gal、鉛直最大加速度 300Gal]、Ss-2 [水平最大加速度 600Gal、鉛直最大加速度 400Gal]、 Ss-3 [水平最大加速度 450Gal、鉛直最大加速度 300Gal] の3波)による地震応答解析に ついても併せて実施し、その耐震安全性を評価することとする。

2. タンクの概要

タンクの内径は φ3,200mm、外形寸法は φ3,222mm×W13,508mm(容量 100m³)、材質は SS400、肉厚は 9mm であり、内外面ともに FRP 塗装によって防錆処理されている(内面 1.0mm、外面 2.0mm)。タンク本体の概要図を図 2-1 に、タンクの配置図を図 2-2 に示す。 なお、タンクは表層地盤を掘削して基礎砕石上に設置し、盛土によって 2.5m の土被り厚 を確保する。

断面図

図 2-1 タンク概要図

タンク配置平面図

タンク配置概略断面図

段丘堆積層

図 2-2 タンク配置図

- 3. 耐震クラスBに対する耐震安全性評価
- 3.1 評価手順

耐震クラスBに対するタンクの耐震安全性評価手順を図 3-1 に示す。

図 3-1 耐震安全性評価手順(耐震クラス B 評価)

3.2 評価条件

解析に必要な地盤およびタンクの諸定数、ならびに考慮する荷重は以下の通りとする。 (1) タンクの材料物性値

タンクの使用材料および材料物性値を表 3-1 に示す。

(2) 地盤の物性値

タンク設置エリアでの既存のボーリングデータに基づいて決定した解析用地層構成を 表 3-2 に示す。またボーリング位置を図 3-2 に示す。当該設置位置での地層構成は、表層 に段丘堆積層が堆積し、その下位は富岡層 T3 部層(砂岩、泥質部、互層部)、富岡層 T2 部層、富岡層 T1 部層となり、解放基盤面(先富岡層(b層))に至る。

耐震クラスBに対する解析で用いる地盤物性値を表 3-3 に示す。

地下水位は、上記ボーリングデータの孔内水位を参考に O.P.+6.77m (富岡層 T3 部層内) と設定しており、タンク本体に地下水圧は作用しない。

- (3)荷重
- a)常時荷重

常時荷重として、タンク自重、内水圧、土被り荷重、静止土圧を考慮する。

b)設計用地震力

設計用地震力は水平地震力 Kh=0.3 のみを考慮する。

材料	単位体積重量 (kN/m ³)	ヤング係数 (kN/mm ²)	降伏強度 (N/mm ²)	ポアソン比
タンク SS400 t=9mm	77	200	245	0.3

表 3-1 タンクの材料物性値

		標 高 O.P.(m)		層厚 (m)
段丘堆積層	35.77	\sim	25.32	10.45
富岡層 T3 部層 砂岩	25.32	\sim	7.09	18.23
富岡層 T3 部層 泥質部	7.09	\sim	2.33	4.76
富岡層 T3 部層 互層部	2.33	\sim	-7.38	9.71
富岡層 T3 部層 泥質部	-7.38	\sim	-11.06	3.68
富岡層 T3 部層 砂岩	-11.06	\sim	-13.21	2.15
富岡層 T3 部層 泥質部	-13.21	\sim	-37.13	23.92
富岡層 T2 部層	-37.13	\sim	-143.08	105.95
富岡層 T1 部層	-143.08	\sim	-185.23	42.15
先富岡層(b層)	-185.23	\sim		

表 3-2 解析用地層構成

図 3-2 ボーリング位置図

			中心性体展			十字四日				
		理戻土	段丘堆積層	T3部層 砂岩	T3部層 泥質部	T3部層 互層部	T2部層 *3)	T1部層	无畐岡層	
物理特性	$ ho_{\rm t}({\rm g/cm}^3)$	1.80	1.59	1.84	1.71	1.76	1.75-0.000417Z	1.79	1.88	
E ₀ ($E_0 (N/mm^2)$	17.7	23. 5	124P+94.4 *1)	506	等価変形係数 *2)	120-5.42Z	675	931	
靜 切後/沙村住	ν	0.33	0.21	0.48	0.47	等価ポアソン比 *2)	0.47	0.47	0.45	
and 1.1.1	$G_0 (N/mm^2)$	72.6	158	210	427	302	254-3.22Z	667	954	
勤印波形·村住	$\nu_{\rm d}$	0.35	0.48	0.48	0.45	0.46	0.467+0.000222Z	0.44	0.42	

表 3-3 解析用物性値(耐震クラス B 評価)

*1) Pは,地下水位を考慮した圧密圧力 (N/mm2)を示す。

*2) T3部層 互層部の砂岩と泥質部の層厚比(4:6)から等価物性値を設定する。

*3) Z:標高(m)

3.3 静的 FEM 解析

(1) 解析手法

解析手法は、二次元有限要素法解析を用いる。解析では水平地震力 Kh=0.3 を作用させた。 (2)解析モデル

タンクの解析モデルを図 3-3 に示す。解析モデルでは、タンクを線形の線材要素(梁要素)、 地盤を平面要素でモデル化した。タンクは2基ないしは3基をセットとして配置するため、モ デルでは3基を並べて配置している。

モデルの領域は、底部を解放基盤面(O.P.-196m)までとし、幅を 180m とした。タンク設置 レベルより上位は埋戻土とし、設置計画の条件に合わせて、土被り厚を 2.5m としている。

図 3-3 解析モデル(耐震クラス B 評価)

(3) 耐震安全性評価手法

耐震安全性評価では、曲げおよびせん断について評価を行うものとし、水平地震力 Kh=0.3 を 用いた静的 FEM 解析に基づいた応答値が、評価基準値を満足することを確認する。

照査用応答値は、曲げによる評価では、タンクの部材に発生する曲げモーメントおよび軸力 による応力度とし、せん断による評価では、タンクの部材に発生するせん断応力度とする。こ このとき考慮する断面力は、二次元 FEM 解析から求められた断面力(常時断面力+地震時増分 断面力)である。

評価基準値は、「社団法人日本道路協会(2002):道路橋示方書・同解説 I 共通編、IV下部構 造編」に基づく許容応力度とする。

(4) 耐震安全性評価結果

曲げに対する照査結果を表 3-4 に、せん断に対する照査結果を表 3-5 に示す。これらの結果より、曲げ、せん断ともに、照査用応答値が評価基準値(許容応力度)を十分に下回っていることが確認できることから、当該タンクは耐震クラス B 相当以上の耐震性を有するものと評価した。

火 一 西方に方 の 金 玉 福木 (西 茂) / 5 日 西 /									
	照查用応答値	評価基準値	照査用応答値						
	(N/mm^2)	(N/mm^2)	/評価基準値						
左タンク	21.9	210	0.10						
中央タンク	21.7	210	0.10						
右タンク	20.7	210	0.10						

表 3-4 曲げに対する照査結果(耐震クラス B 評価)

表 3-5	せん断に対する	照査結果	(耐震クラス	B 評価)
200				

			,
	照查用応答値	評価基準値	照查用応答値
	(N/mm^2)	(N/mm^2)	/評価基準値
左タンク	0.018	120	0.00015
中央タンク	0.019	120	0.00016
右タンク	0.019	120	0.00016

- 4. 基準地震動 Ss に対する耐震安全性評価
- 4.1 評価手順

基準地震動 Ss に対するタンクの耐震安全性評価手順を図 4-1 に示す。

図 4-1 耐震安全性評価手順(基準地震動 Ss 評価)

4.2 評価条件

地盤応答解析に必要な地盤およびタンクの諸定数、ならびに考慮する荷重は以下の通りとする。

(1) タンクの材料物性値

タンクの使用材料および材料物性値は表 3-1 に示した通りであり、耐震クラス B に対する評価で用いたものと同じである。

(2) 地盤の物性値

解析用地層構成は表 3-2 に示した通りであり、耐震クラス B に対する評価で用いたものと同じである。

基準地震動 Ss に対する解析で用いる地盤物性値を表 4-1 に示す。

地下水位は、上記ボーリングデータの孔内水位を参考に O.P.+6.77m(富岡層 T3 部層内)と設定しており、タンク本体に地下水圧は作用しない。

- (3)荷重
- a)常時荷重

常時荷重として、タンク自重、内水圧、土被り荷重、静止土圧を考慮する。

b) 地震時荷重

地震時荷重として、基準地震動 Ss (Ss-1~Ss-3の3波)による地震応答解析により求まる荷 重を考慮する。

			印片地体员			富岡層			
		理戻工	段丘堆積層	T3部層 砂岩	T3部層 泥質部	T3部層 互層部	T2部層 *3)	T1部層	无 晶 岡 僧 (b 僧)
物理特性	$ ho_{\rm t}({\rm g/cm^3})$	1.80	1.59	1.84	1.71	1.76	1.75-0.000417Z	1.79	1.88
热的亦取快州	$E_0(N/mm^2)$	17.7	23. 5	124P+94.4 *1)	506	等価変形係数 *2)	120-5. 42Z	675	931
靜印 发//>村住	ν	0. 33	0.21	0. 48	0.47	等価ポアソン比 *2)	0.47	0. 47	0. 45
	$G_0 (N/mm^2)$	72.6	158	210	427	302	254-3.22Z	667	954
動的亦形起州	$\nu_{\rm d}$	0.35	0. 48	0. 48	0.45	0.46	0.467+0.000222Z	0.44	0. 42
<u>動的変形特性</u>	$G/G_0 \sim \gamma$ (γ :%)	$\frac{1}{1+10.\ 65\ \gamma^{\ 0.\ 778}}$	$\frac{1}{1+6.872 \gamma^{0.614}}$	$\frac{1}{1+3.\ 009\ \gamma^{\ 0.\ 604}}$	$\frac{1}{1+3.\ 600\ \gamma^{0.\ 962}}$	$\frac{1}{1+3.257 \gamma^{0.688}}$	$\frac{1}{1+2.845 \gamma^{0.918}}$	$\frac{1}{1+2.586 \gamma^{0.722}}$	$\frac{1}{1+2.714 \gamma^{0.920}}$
	$\begin{array}{c} h \sim \gamma \\ (h, \gamma : \%) \end{array}$	22. 97 γ ^{0. 289}	<u>14.79</u> 1+0.036/γ	<u>21. 80</u> 1+0. 122/ γ	11. 90 γ ^{1. 086} +1. 617	<u>17.57</u> 1+0.084/γ	10. 54 $\gamma^{0.865}$ +0. 903	15. 04 γ ^{0. 517}	14. 69 γ ^{0. 583}

表 4-1 地盤物性値(基準地震動 Ss 評価)

*1) P:有効上載圧 (N/mm²)

*2) T3部層 砂岩とT3部層 泥質部の層厚比(4:6とする)から等価物性値を設定する。

*3) Z:標高 (m)

4.3 地震応答解析

(1) 解析手法

地震応答解析手法は、構造物と地盤の動的相互作用を考慮できる二次元動的有限要素 法解析を用いることとし、解析では水平地震動と鉛直地震動を同時入力する。 (2)解析モデル

タンクの地震応答解析モデルを図 4-2 に示す。地震応答解析モデルでは、タンクを線形 の線材要素(梁要素)、地盤を平面要素でモデル化し、等価線形化法によって地盤の非線 形性を考慮した。タンクは2基ないしは3基をセットとして配置するため、モデルでは3 基を並べて配置している。

モデルの領域は、底部を解放基盤面(O.P.-196m)までとし、幅を 180m とした。タン ク設置レベルより上位は埋戻土とし、設置計画の条件に合わせて、土被り厚を 2.5m とし ている。モデルの側方はエネルギー伝達境界、底面は粘性境界とし、基準地震動 Ss-1、 Ss-2、Ss-3 の 3 波を入力する。

底部粘性境界 図 4-2 解析モデル(基準地震動 Ss 評価)

(3) 耐震安全性評価手法

耐震安全性評価では、曲げおよびせん断について評価を行うものとし、基準地震動 Ss を用いた地震応答解析に基づいた応答値が、評価基準値を満足することを確認する。

照査用応答値は、曲げによる評価では、タンクの部材に発生する曲げモーメントおよ び軸力による応力度とし、せん断による評価では、タンクの部材に発生するせん断応力 度とする。このとき考慮する地震時発生断面力(常時断面力+地震時増分断面力)は、 評価基準値に対する照査用応答値の比(照査用応答値/評価基準値)が最も大きくなる 時刻の断面力である。

評価基準値は、曲げによる評価ではタンクの部材の降伏強度とし、せん断による照査 では降伏強度の 1/√3 とする。

(4) 耐震安全性評価結果

曲げに対する照査結果を表 4-2 に、せん断に対する照査結果を表 4-3 に示す。これらの 結果より、曲げ、せん断ともに、照査用応答値が評価基準値を下回っていることが確認 できることから、当該タンクは基準地震動 Ss に対して貯水機能を保持できるものと評価 した。

		照查用応答値	評価基準値	照査用応答値
		(N/mm^2)	(N/mm^2)	/評価基準値
	左タンク	56.3	245	0.23
Ss-1	中央タンク	59.3	245	0.24
	右タンク	59.5	245	0.24
	左タンク	60.0	245	0.24
Ss-2	中央タンク	59.8	245	0.24
	右タンク	57.2	245	0.23
	左タンク	42.2	245	0.17
Ss-3	中央タンク	43.6	245	0.18
	右タンク	41.1	245	0.17

表 4-2 曲げに対する照査結果(基準地震動 Ss 評価)

		照査用応答値	評価基準値	照查用応答値
		(N/mm^2)	(N/mm^2)	/評価基準値
	左タンク	0.301	141	0.0021
Ss-1	中央タンク	0.295	141	0.0021
	右タンク	0.300	141	0.0021
	左タンク	0.311	141	0.0022
Ss-2	中央タンク	0.304	141	0.0022
	右タンク	0.308	141	0.0022
	左タンク	0.228	141	0.0016
Ss-3	中央タンク	0.222	141	0.0016
	右タンク	0.226	141	0.0016

表 4-3 せん断に対する照査結果(基準地震動 Ss 評価)

以 上

使用済セシウム吸着塔仮保管施設からの放射線による制御室の線量評価

1. 概要

汚染水処理吸着塔(キュリオン、サリー)の仮保管施設からのスカイシャイン線による シールド中操室での線量率を評価する。

2. 評価方法

キュリオンからのスカイシャイン線によるシールド中操室での線量率及びサリーからの スカイシャイン線によるシールド中操室での線量率を各々評価し、それらを合算すること により、全体でのシールド中操室での線量率を評価する

3. 評価結果

3.1 キュリオンからのスカイシャイン線による影響評価

キュリオンからのスカイシャイン線による影響を,MCNPコードを用いて評価する。評価 モデルを図1及び図2に示す。

図1 セシウム吸着塔のモデル

図2 仮保管施設のモデル

3.2 サリーからのスカイシャイン線による影響評価

サリーからのスカイシャイン線による影響を、QAD-CGGP2R およびG33-GP2Rを用いて 評価する。評価モデルを図3に示す。

図3 セシウム吸着塔のモデル

3.3 合算での評価

(1) 線量率

シールド中操室での線量率について、キュリオンによる線量率、および、サリーによる 線量率を表1に示す。ただし、キュリオンについては208体での線量率評価値を示す。

吸着塔	保管場所	体数(体)	シールド中操
			(μ Sv/h)
キュリオン	仮保管施設1(150m)	208	5
サリー	仮保管施設1(150m)	20	0.56
	仮保管施設2(300m)	20	0.11

表1 各吸着塔の線量率

(2) 保管体数

仮保管施設1(シールド中操から150mの位置)、および、仮保管施設2(シールド中操から300mの位置)での現在想定している保管体数を表2に示す。

表2	各施設での想定保管体数	
114		

	仮保管	ទ施設1	仮保管施設2
	キュリオン	サリー	サリー
ケース1	384	_	20
ケース2	344	20	20

(3) 評価方法

上記(1)の線量率と、上記(2)の保管体数に基づき、合計の線量率を評価した。なお、合算 方法は以下の考えに従った。

[仮保管施設1からの線量率]

=[キュリオン線量率]÷[208体]×[キュリオン想定体数]+[サリー線量率] [合計線量率]=[仮保管施設からの線量率]+[仮保管施設2からの線量率]

3.4 評価結果

シールド中操室での合計線量率を表3に示す。

	シールド中操線量率(µSv/h)
ケース1	9.4
ケース2	9.0

表3 シールド中操での合計線量率

以 上

使用済セシウム吸着塔一時保管施設からの放射線による制御室の線量評価

使用済セシウム吸着塔一時保管施設に保管される使用済セシウム吸着塔は高濃度の放射 性物質を内包していることから,それらが放射線源となり周辺で作業を行う作業員に与え る被ばくの影響(スカイシャイン)を評価した。

1. 評価条件

評価にあたっては、セシウム吸着装置及び第二セシウム吸着装置の使用済セシウム吸着 塔の形状と遮へいとして保管する容器(ボックスカルバート)をモデル化し、QAD-CGGP2R および G33-GP2R, MCNP を用いて計算を行った。(図1~3)

また、評価点については水処理設備制御室位置を設定した(図4)。

図1;セシウム吸着塔評価モデル図(縦断面)

(東西方向)

図2;ボックスカルバート評価モデル図(縦断面)

図3;第二セシウム吸着塔評価モデル図

2. 評価結果

上記の条件を踏まえて評価した結果,水処理設備制御室では、2.4×10⁻¹µSv/hr 程度の放射 線線量率となることが確認された。

また,保管施設の周辺では,ボックスカルバート外側で10mSv/hr 程度,第二セシウム吸着塔外側で1mSv/hr 程度,土のう内側で10mSv/hr 程度,土のう外側で0.1μSv/hr 程度の放射線線量率となることが確認された(図5)。

以上

図5 使用済セシウム吸着塔一時保管施設 周辺の線量評価結果

添付資料-8

廃スラッジー時保管施設の崩壊熱評価

廃スラッジ貯蔵施設に貯蔵されるスラッジの崩壊熱については,これまでの水処理設備 の運転実績を踏まえて,セシウム吸着装置 – 凝集沈殿除染装置の順列での処理を想定して 評価を行った。

別添に示す評価フローに基づいて評価した結果,廃スラッジの発熱密度は表 1 の通りと 評価された。

評価項目	評価結果	備考			
廃スラッジ量	90 (m ³)	廃スラッジ貯蔵施設内に設置される貯槽 1 基あたりの容量			
放射能濃度	$3.4 \times 10^{8} (Bq/mL)$				
発熱密度	3.8×10 ⁻⁵ (W/mL)				

表1: 廃スラッジの発熱密度の評価結果

*;廃スラッジ貯蔵施設内に設置される貯槽1基あたりの容量

この発熱密度を踏まえて崩壊熱量を算出し,貯槽表面からの放熱及びふく射による除熱 量と崩壊熱量が平衡に達する温度を評価した。その結果を表2に示す。

評価項目	評価結果	備考
発熱密度	3.8×10 ⁻⁵ (W/mL)	
貯槽容量	90 (m ³)	
崩壊熱量	3.42 (kW)	
放熱面積	100 (m ²)	
熱伝達係数	5.46 (W/m^2K)	自然対流による熱伝達とふく射による熱伝 達から算出
雰囲気温度	40 (°C)	機器発熱等を考慮した夏季のセル給気温度 に対応するセル排気温度より設定
崩壊熱量と除熱量が 平衡となる貯槽温度	46.3 (°C)	

表2;崩壊熱量と放熱量が平衡となる貯槽温度の評価結果(貯槽1基あたり)

以上の結果から,崩壊熱量と除熱量が平衡となる貯槽温度は雰囲気温度より数℃程度の 上昇で平衡になると評価され,廃スラッジから発生する崩壊熱は自然放熱(貯槽表面から の放熱及びふく射による除熱)で除去することができるものと確認された。

以上

図 スラッジ崩壊熱算定の流れ

添付資料-9

廃スラッジー時保管施設の遮へい設計

廃スラッジー時保管施設に保管される廃スラッジから放出される放射線について建屋外 表面で1mSv/hr以下となるよう建屋要求壁厚を評価する。

1. 評価条件

評価にあっては,発生する廃スラッジの元となる廃液に対して,ORIGEN 計算値をもと に想定される組成を求め,核種ごとにγ線実効線量率に対する比率を算出し,寄与率の高 いものを評価対象核種として選定した。選定された核種及び放射能濃度,線源強度は表1 に示す通り。遮へい体はコンクリートであり,その密度は 2.1g/cm³ とした。

評価モデルは、90m³のスラッジ貯槽を円柱で模擬し、線源となるスラッジ貯槽と建屋壁 との距離を保守的に 50cm とした。(図1)

また,スラッジ貯槽のほかにスラッジが内包される機器として移送配管が建屋内にある ため,その配管を対象とした評価も行う。建屋内の配管の口径はいくつかの種類があるこ とから,線源として保守的になるよう 100A 配管で 1m 長さとし,配管と建屋壁との距離を 保守的に 10cm とした。(図2)

核種	⁸⁹ Sr, ⁹⁰ Y, ⁹⁵ Zr, ⁹⁵ Nb, ¹⁰³ Ru, ¹⁰⁶ Rh, ¹²⁵ Sb, ¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs, ¹³⁷ mBa, ¹⁴⁰ Ba, ¹⁴⁰ La, ¹⁴⁴ Pr
上澄液放射能濃度(合計)	$5.4 \times 10^4 (\text{Bq/cm}^3)$
スラッジ放射能濃度(合計)	$1.1 \times 10^9 (\text{Bq/cm}^3)$
上澄液線源強度(合計)	1.2×10^4 (MeV/sec)
スラッジ線源強度(合計)	7.0×10^8 (MeV/sec)

表1:選定された核種及び放射能濃度,線源強度

図1;廃スラッジー時保管施設 建屋外壁評価モデル

図2;配管遮へい評価モデル

2. 評価結果

上記の条件を踏まえて評価した結果,貯槽1基に対して壁外表面の線量率が1.0mSv/hr 以下を満足する壁厚は径方向・軸方向ともに85cmであるが,実際には複数の貯槽が並ぶ ことから,余裕を考慮して必要な壁厚を100cmと評価した。遮へい厚さと壁外表面の線量 率の関係を図3,4に示す。

また,配管に対する遮へいについては,壁外表面の線量率が 1.0mSv/hr 以下を満足する 壁厚は 70cm であるが,保守的な評価として複数の移送配管内にスラッジが移送されるこ とを考慮して必要な壁厚を 80cm と評価した。遮へい厚さと壁外表面の線量率の関係を図 5に示す。

図3;スラッジ貯槽周りのコンクリート遮へい厚と壁外表面の線量率の関係(径方向)

図4;スラッジ貯槽周りのコンクリート遮へい厚と壁外表面の線量率の関係(軸方向)

図5;配管周りのコンクリート遮へい厚と壁外表面の線量率の関係

以上

高濃度スラッジ貯槽施設建屋の耐震性に関する検討結果(スラッジ棟建屋)

- I. Bクラス施設としての評価
 - 1. 評価方針

スラッジ棟建屋は、地上1階建で平面が 24.8m (NS) ×63.6m (EW) の鉄筋コン クリート造の建物である。基礎底面からの高さは 12.39mであり、地上高さは 11.09 mである。

基礎スラブは厚さ 1.5mのべた基礎である。基礎スラブは、厚さ 2.8m~3.8mの改 良地盤を介して、N 値 20 以上の地盤に支持させる。

建屋の地震時の水平力は、耐震壁で負担する。なお、建屋内壁には開口が多いた め外壁のみを耐震上有効な耐震壁とみなす。

耐震壁の評価は、地上1階の層せん断力係数として 0.3 を採用した場合の該当部位 のせん断応力に対して行う。但し、耐震壁の設計用せん断力は、本建物の構造計算 をNS、EW 方向ともに平成 19 年国土交通省告示第 593 号の構造計算(ルート1)と するため、層せん断力係数 0.3 に相当する地震力に、耐力壁せん断力の割増し率 2.0

(同告示による)を乗じて求める。耐震性の評価は、耐震壁の応力度を短期許容せ ん断応力度と比較することによって行うこととする。その際、地震時のせん断力は すべて鉄筋が負担するものとする。

スラッジ棟建屋の評価手順を図-1.1に示す。

図-1.1 建屋の耐震安全性評価手順

2. 検討に用いる層せん断力の設定

層せん断力係数を 0.3 とした場合の層せん断力係数一覧を表-2.1 に示す。評価に用いる材料の許容応力度を表-2.2 および表-2.3 に示す。

表-2.1 層せん断力係数一覧

0.P. (m)	W _i (kN)	地震層せん断力係数 W _i 1.5・C _i (K) kN)		設計用地類 (×10	震力(S _B)) ⁴ kN)
(111)			EW	NS	EW
45.49~34.6	74904	0.30		2	.25

表-2.2 評価に用いるコンクリートの許容応力度

(単位:N/mm²)

动制甘油改立		短期	
設計基準強度	圧 縮	引張り	せん断
$F_{c}=30$	20	_	1.18

表-2.3 評価に用いる鉄筋の許容応力度

(単位:N/mm²)

计符括粘	短	期
<u></u>	引張り及び圧縮	せん断補強
SD345	345	345

3. 耐震安全性評価結果

NS 方向と EW 方向は設計用地震力が同じであり、壁量の少ない NS 方向について 検討する。

検討により求められた耐震壁のせん断応力度をもとに、地震時のせん断力をすべ て鉄筋が負担するものとして求めた鉄筋の応力度を、鉄筋の短期許容せん断応力度 と比較して表-3.1 に示す。

表-3.1 耐震壁のせん断による鉄筋応力度

方向	耐震壁のせん断	鉄筋のせん断	鉄筋の短期許容
	応力度(N/mm ⁻)	応刀度(N/mm⁻)	せん断応力度(N/mm⁻)
NS 方向	1.16	323	345

これより、耐震壁の鉄筋に生じるせん断応力度は、短期許容応力度以下となっており、耐震安全性は確保されている。

1. 解析評価方針

スラッジ棟建屋について、基準地震動Ssによる地震力に対し、崩壊しないことを 確認する。

解析モデルは、基礎及び地上階について機器を含む建屋全域をNS方向、EW方向とも1軸質点系モデルとする。

耐震壁の評価は、地震応答解析により得られた該当部位のせん断応力に対して、 鉄筋コンクリート耐震壁の終局せん断応力と比較することによって行う。また、地 震応答解析により得られたせん断ひずみについても確認を行うこととする。

スラッジ棟建屋の地震応答解析の評価手順を、図-1.1に示す。

図-1.1 スラッジ棟建屋の地震応答解析の評価手順

2. 解析に用いる入力地震動

スラッジ棟建屋への入力地震動は、「福島第一原子力発電所 『発電用原子炉施設に関する 耐震設計審査指針』の改訂に伴う耐震安全性評価結果 中間報告書」(原管発官19第603 号 平成20年3月31日付け)にて作成した解放基盤表面レベルに想定する基準地震動Ss-1、 Ss-2及びSs-3を用いることとする。

地震応答解析に用いる入力地震動の概念図を図-2.1 に示す。このスラッジ棟建屋の解析モデ ルは建屋-地盤相互作用を考慮したスウェイ・ロッキングモデルである。モデルに入力する地 震動は、一次元波動論に基づき、解放基盤表面レベルに想定する基準地震動 Ss に対する地盤 の応答として評価する。このうち、解放基盤表面位置(O.P. -196.0m)における基準地震動 Ss-1、 Ss-2 及び Ss-3 の加速度波形について、図-2.2 に示す。

図-2.1 地震応答解析に用いる入力地震動の概念図

図-2.2 解放基盤表面位置における地震動の加速度時刻歴波形(水平方向)

3. 地震応答解析モデル

基準地震動 Ss に対するスラッジ棟建屋の地震応答解析は、「2. 解析に用いる入力地震動」 で算定した入力地震動を用いた動的解析による。 (1) 水平方向の地震応答解析モデル

水平方向の地震応答解析モデルは、図-3.1 に示すように、建屋を曲げ変形とせん断変形 をする質点系とし、地盤を等価なばねで評価した建屋-地盤連成系モデルとする。建屋-地盤連成系としての効果は地盤ばねによって評価される。解析に用いるコンクリートの物 性値を表-3.1 に、建屋解析モデルの諸元を表-3.2 及び表-3.3 に示す。

地盤定数は、水平成層地盤と仮定し、地震時のせん断ひずみレベルを考慮して定めた。 解析に用いた地盤定数を表-3.4~表-3.6 に示す。

水平方向の解析モデルにおいて、基礎底面地盤ばねについては、「JEAG 4601-1991」に示 された手法を参考にして、成層補正を行ったのち、振動アドミッタンス理論に基づいて、 スウェイおよびロッキングばね定数を近似的に評価する。

地盤ばねは振動数に依存した複素剛性として得られるが、図-3.2 に示すようにばね定数 (Kc)として実部の静的な値を、また、減衰係数(Cc)として建屋-地盤連成系の1次 固有振動数に対応する虚部の値と原点を結ぶ直線の傾きを採用することにより近似する。

図-3.1 スラッジ棟建屋 地震応答解析モデル(NS方向・EW方向)

図-3.2 地盤ばねの近似

表-3.1 地震応答解析に用いるコンクリートの物性値

材料	設計基準強度	ヤング係数	せん断弾性係数	減衰定数
	Fc (N/mm ²)	E(N/mm ²)	G (N/mm ²)	h (%)
コンクリート	30	2.44×10 ⁴	1.02×10^{4}	5

	千月 (1)1)	回転慣性重量	$(\times 10^6 \text{ kN} \cdot \text{m}^2)$
	里重(KN)	NS 方向	EW 方向
O.P. 44.85 m	O.P. 44.85 m 74904		25.3
O.P. 33.85 m	108739	5.59	36.7

表-3.2 質点重量及び回転慣性重量

表-3.3 せん断断面積及び断面二次モーメント

	せん断断面	ī積(m ²)	断面二次モー	メント (m ⁴)
	NS 方向	EW 方向	NS 方向	EW 方向
O.P. 44.85 m∼	20.0	105.5	4205	52200
O.P. 34.6 m	38.8	105.5	4285	53300

		c 油油店	D油油店	应由	ポアリレ	初期せん断	加加		Ss-1 _H 地震即	寺
標高 0.P. (m)	地層	5	F 奴述授 Vp (m/s)	γ (g/cm ³)	ボノフク 比 v	弹性係数 G ₀ (N/mm ²)	初 期 減衰定数 h ₀ (%)	剛性 低下率 G/G ₀	せん断 弾性係数 G (N/mm ²)	減衰 定数 h (%)
33.1	改良地盤	315	1606	1.59	0.480	158	3	0.55	87	7
30.3	段丘堆積物	315	1606	1.59	0.480	158	3	0.55	87	7
1 0	砂岩	380	1679	1.82	0.473	262	3	0.63	165	8
-10.0	泥岩	450	1736	1.68	0.464	341	3	0.77	263	3
10.0	泥岩	500	1740	1.74	0.455	436	3	0.77	336	3
-80.0	泥岩	560	1794	1.79	0.446	563	3	0.77	434	3
-108.0	泥岩	600	1861	1.82	0.442	653	3	0.75	490	3
-190.0	基盤	700	1895	1.89	0.421	924	_	_	924	_

表-3.4 地盤定数 (Ss-1_H地震時)

5-159

		c 油油店	D油油店	密由	ポアソン	初期せん断	加加		Ss-2 _H 地震即	寺
標高 0. P. (m)	地層	S仮速度 Vs (m/s)	P 波速度 Vp (m/s)	α」及 γ (g/cm ³)	ボデック 比 v	弹性係数 G ₀ (N/mm ²)	初期 減衰定数 h ₀ (%)	剛性 低下率 G/G ₀	せん断 弾性係数 G (N/mm ²)	減衰 定数 h (%)
33.1	改良地盤	315	1606	1.59	0.480	158	3	0.54	85	7
30.3	段丘堆積物	315	1606	1.59	0.480	158	3	0.54	85	7
1 0	砂岩	380	1679	1.82	0.473	262	3	0.64	168	8
-10.0	泥岩	450	1736	1.68	0.464	341	3	0.79	269	3
10.0	泥岩	500	1740	1.74	0.455	436	3	0.78	340	3
-80.0	泥岩	560	1794	1.79	0.446	563	3	0.81	456	3
-108.0	泥岩	600	1861	1.82	0.442	653	3	0.81	529	3
-196.0	基盤	700	1895	1.89	0.421	924	_	_	924	_

表-3.5 地盤定数 (Ss-2_H地震時)

5-160

		c 油油市	D油油店	应由	ポアリレ	初期せん断	加田	;	Ss-3 _H 地震即	寺
標高 0.P. (m)	地層	5	F 奴述授 Vp (m/s)	γ (g/cm ³)	ボノフク 比 v	弹性係数 G ₀ (N/mm ²)	初 期 減衰定数 h ₀ (%)	剛性 低下率 G/G ₀	せん断 弾性係数 G (N/mm ²)	減衰 定数 h (%)
33.1	改良地盤	315	1606	1.59	0.480	158	3	0.56	88	7
30.3	段丘堆積物	315	1606	1.59	0.480	158	3	0.56	88	7
1 0	砂岩	380	1679	1.82	0.473	262	3	0.66	173	7
-10.0	泥岩	450	1736	1.68	0.464	341	3	0.79	269	3
10.0	泥岩	500	1740	1.74	0.455	436	3	0.77	336	3
-80.0	泥岩	560	1794	1.79	0.446	563	3	0.73	411	3
-108.0	泥岩	600	1861	1.82	0.442	653	3	0.77	503	3
-196.0	基盤	700	1895	1.89	0.421	924	_	_	924	_

表-3.6 地盤定数 (Ss-3_H地震時)

5-161

4. 地震応答解析結果

地震応答解析により求められた NS 方向、EW 方向の最大応答加速度を図-4.1 および図-4.2 に示す。

図-4.1 最大応答加速度(NS 方向)

図-4.2 最大応答加速度(EW方向)

5. 耐震安全性評価結果

地震応答解析により得られたせん断応力を、鉄筋コンクリート壁の終局せん断応 カと併せて表 5.1 に示す。これより、地震応答解析による応答せん断応力は鉄筋コ ンクリート耐震壁の終局せん断応力を下回っている。

また、地震応答解析により得られたせん断ひずみを、壁のひずみの許容限界目安 値と併せて表 5.2 に示す。せん断ひずみは「原子力発電所耐震設計技術指針(JE AG4601-1987)」に基づく許容限界の目安値($\gamma=2.0\times10^{-3}$)に対して十分な安 全裕度を有している。

以上のことから、Ss 地震に対する耐震安全性は確保されているものと評価した。

	N	S 方向	EW 方向		
	せん断応力 ^{*1} (N/mm ²)	終局せん断応力 ^{*2} (N/mm ²)	せん断応力 ^{*1} (N/mm ²)	終局せん断応力 ^{*2} (N/mm ²)	
O.P. 44.85 ∼O.P. 34.6	1.74	4.42	0.58	4.27	

表 5.1 せん断応力

注記*1: Ss-1_H、Ss-2_H、Ss-3_Hの応答の最大値を示す。

注記*2: JEAG4601-1987に基づき、鉄筋コンクリート耐震壁のスケルト ンカーブの終局時せん断応力 τ_uを示す。

表 5.2 せん断ひずみ度

	NS 方向 ^{*1} (×10 ⁻³)	EW 方向 ^{*1} (×10 ⁻³)	許容限界の目安値(×10 ⁻³)
O.P. 44.85 ∼O.P. 34.6	0.171	0.057	2.0

注記*1: Ss-1_H、Ss-2_H、Ss-3_Hの応答の最大値を示す。

高濃度スラッジ貯槽施設建屋の耐震性に関する検討結果(ユーティリティ建屋)

- I. Bクラス施設としての評価
 - 1. 評価方針

設備棟建屋は、地上1階建で平面が 12.0m×65.0mの鉄骨造の建物である。基礎底面からの高さは 7.4mであり、地上高さは 6.6mである。

基礎スラブは厚さ 1.0mのべた基礎である。基礎スラブは、厚さ 3.3mの改良地盤 を介して、N 値 20 以上の地盤に支持させる。

建屋の地震時の水平力に対して、NS 方向は純ラーメン構造、EW 方向はブレース 構造とする。

耐震性の評価は、地上1階の層せん断力係数として 0.3 を採用した場合の該当部位 の応力に対して行う。但し、断面算定に用いる地震荷重時応力は、余裕を見て設計 用地震力に対する応力の 1.0/0.3 倍とする。(層せん断力係数 1.0 に相当)

設備棟建屋の評価手順を図-1.1 に示す。

図-1.1 建屋の耐震安全性評価手順

2. 検討に用いる層せん断力の設定

層せん断力係数を 0.3 とした場合の層せん断力係数一覧を表-2.1 に示す。評価に用いる材料 の許容応力度を表-2.2 に示す。

O.P. (m)	W _i (kN)	地震層せ 1.5・(ん断力係数 C _i (K)	設計用地震力(S _B) (×10 ² kN)		
		NS	EW	NS	EW	
41.0~34.6	2560	0.30		0.30 7.68		

表-2.1 層せん断力係数一覧

表-2.2 構造用鋼材の許容応力度

(単位:N/mm²)

	板厚	材料	基準強度 F	許容応力度
構造用鋼材	$t \leq 40 \text{ mm}$	SS400	235	「鋼構造設計規準」に従っ
	$t \leq 40 \text{ mm}$	SM490A SN490B	325	て左記Fの値により求め る。

3. 耐震安全性評価結果

NS 方向については、スパン方向の大梁及び柱を線材置換し、柱脚部にはその固定度を考慮 した回転ばねを付したモデルにより部材応力を評価する。

EW 方向については、桁行方向の大梁、柱及びブレースを線材置換し、柱脚をピンとしたモ デルにより部材応力を評価する。なお、ブレースは引張力に対してのみ有効とする。

検討により求められた鉄骨部材の応力を、短期許容応力度と比較して表-3.1に示す。

部材	応力 (N/mm ²)		短期許容応力度 (N/mm ²)	応力/許容応力度比	
大梁	NS	55.5 N/mm ² (曲げ)	250 N/mm ² (曲げ)	0.22	
	NIC	69.8 N/mm ² (曲げ)	214 N/mm ² (曲げ)	0.34	
	113	3.85 N/mm ² (軸力(圧縮))	292 N/mm ² (軸力(圧縮))	(細力と曲りの組み合わせ)	
11	EW 11.7 I (軸力	105.2 N/mm ² (曲げ)	325 N/mm ² (曲げ)	0.36	
		11.7 N/mm ² (軸力(圧縮))	292 N/mm ² (軸力(圧縮))	(軸力と曲りの組み合わせ)	
ブレース	EW	149 N/mm ² (引張)	235 N/mm ² (引張)	0.64	

表-3.1 鉄骨部材の応力と短期許応力度

これより、鉄骨部材に生じる応力は、短期許容応力度以下となっており、耐震安全性は確保されている。

Ⅱ. 基準地震動 Ss に対する評価

1. 解析評価方針

設備棟建屋について、基準地震動Ssによる地震力に対し、崩壊しないことを確認する。 解析モデルは、基礎及び地上階について機器を含む建屋全域をNS方向、EW方向とも1軸質 点系モデルとする。

鉄骨部材の評価は、地震応答解析により得られた該当部位の応力に対して、鉄骨部材の終局 耐力と比較することによって行う。終局耐力は、地震応答解析により得られた層間変形角も考 慮して算定することとする。但し、部材応力が鋼材の短期許容応力度以下である場合は、終局 耐力との比較を省略する。

設備棟建屋の地震応答解析の評価手順を、図-1.1に示す。

図-1.1 設備棟建屋の地震応答解析の評価手順

2. 解析に用いる入力地震動

設備棟建屋への入力地震動は、「福島第一原子力発電所 『発電用原子炉施設に関する耐震 設計審査指針』の改訂に伴う耐震安全性評価結果 中間報告書」(原管発官19第603号 平 成20年3月31日付け)にて作成した解放基盤表面レベルに想定する基準地震動 Ss-1、Ss-2 及び Ss-3を用いることとする。

地震応答解析に用いる入力地震動の概念図を図-2.1 に示す。この設備棟建屋の解析モデル は建屋-地盤相互作用を考慮したスウェイ・ロッキングモデルである。モデルに入力する地震 動は、一次元波動論に基づき、解放基盤表面レベルに想定する基準地震動 Ss に対する地盤の 応答として評価する。このうち、解放基盤表面位置(0.P. -196.0m)における基準地震動 Ss-1、 Ss-2 及び Ss-3 の加速度波形について、図-2.2 に示す。

図-2.1 地震応答解析に用いる入力地震動の概念図

(Ss-1H)

(Ss-2H)

(Ss-3H)

図-2.2 解放基盤表面位置における地震動の加速度時刻歴波形(水平方向)

3. 地震応答解析モデル

基準地震動 Ss に対する設備棟建屋の地震応答解析は、「2. 解析に用いる入力地震動」で算 定した入力地震動を用いた動的解析による。

(1) 水平方向の地震応答解析モデル

水平方向の地震応答解析モデルは、図-3.1及び図-3.2に示すように、建屋を曲げ変形 とせん断変形をする質点系とし、地盤を等価なばねで評価した建屋-地盤連成系モデルと する。建屋-地盤連成系としての効果は地盤ばねによって評価される。解析に用いる鋼材 の物性値を表-3.1に、建屋解析モデルの諸元を表-3.2~表-3.5に示す。

地盤定数は、水平成層地盤と仮定し、地震時のせん断ひずみレベルを考慮して定めた。 解析に用いた地盤定数を表-3.6~表-3.8に示す。

水平方向の解析モデルにおいて、基礎底面地盤ばねについては、「JEAG 4601-1991」に示 された手法を参考にして、成層補正を行ったのち、振動アドミッタンス理論に基づいて、 スウェイおよびロッキングばね定数を近似的に評価する。

地盤ばねは振動数に依存した複素剛性として得られるが、図-3.3 に示すようにばね定数(Kc)として実部の静的な値を、また、減衰係数(Cc)として建屋-地盤連成系の1 次固有振動数に対応する虚部の値と原点を結ぶ直線の傾きを採用することにより近似する。

図-3.1 設備棟建屋 地震応答解析モデル(NS 方向)

図-3.2 設備棟建屋 地震応答解析モデル (EW 方向)

図-3.3 地盤ばねの近似

表-3.1 地震応答解析に用いる鋼材の物性値

材料	基準強度	ヤング係数	せん断弾性係数	減衰定数
	F (N/mm ²)	E (N/mm ²)	G (N/mm ²)	h (%)
構造用鋼材	325	2.05 $\times 10^{5}$	7.90 $\times 10^{4}$	2

表-3.2 質点重量及び回転慣性重量(NS方向)

	重量 (kN)	回転慣性重量(×10 ⁴ kN·m ²)
0.P. 40.5 m	2560	3.08
0.P. 34.1 m	25360	34. 8

表-3.3 質点重量及び回転慣性重量(EW方向)

	重量 (kN)	回転慣性重量(×10 ⁴ kN·m ²)
0.P. 40.5 m	2170	76.4
0.P. 39.3 m	313	14. 5
0. P. 36. 965 m	414	19. 1
0. P. 34.1 m	25023	903. 0

表-3.4 せん断断面積及び断面二次モーメント(NS方向)

	せん断断面積*1 (×10 ⁻² m ²)
0.P. 40.5 m~0.P. 34.6 m	0.94

注記*1: 建屋と水平剛性が等価な鋼材のせん断断面積。

表-3.5 せん断断面積及び断面二次モーメント(EW方向)

	せん断断面積*1 (×10 ⁻² m ²)
0.P. 40.5 m \sim 0.P. 39.3 m	5.48
0. P. 39. 3 m \sim 0. P. 36. 965 m	5.29
0. P. 36. 965 m \sim 0. P. 34. 6 m	5. 29

注記*1: 建屋と水平剛性が等価な鋼材のせん断断面積。

		c 油油市	D油油店	家由	ポアリレ	初期せん断	加加	Ś	Ss-1 _H 地震即	÷
標高 0.P. (m)	地層	S仮速度 Vs (m/s)	P 仮速度 Vp (m/s)	密度 γ (g/cm ³)		弹性係数 G ₀ (N/mm ²)	初 期 減衰定数 h ₀ (%)	剛性 低下率 G/G ₀	せん断 弾性係数 G (N/mm ²)	減衰 定数 h (%)
33.6	改良地盤	315	1606	1.59	0.480	158	3	0.55	87	7
30.3	段丘堆積物	315	1606	1.59	0.480	158	3	0.55	87	7
1.0	砂岩	380	1679	1.82	0.473	262	3	0.63	165	8
-10.0	泥岩	450	1736	1.68	0.464	341	3	0.77	263	3
10.0	泥岩	500	1740	1.74	0. 455	436	3	0. 77	336	3
-80.0	泥岩	560	1794	1.79	0.446	563	3	0.77	434	3
-108.0	泥岩	600	1861	1.82	0. 442	653	3	0.75	490	3
-190.0	基盤	700	1895	1.89	0. 421	924	_	_	924	_

表-3.6 地盤定数(Ss-1_H地震時)

		の波涛市	D油油由	应由	ポアソレ	初期せん断	211 世日		Ss-2 _H 地震即	寺
標高 0.P. (m)	地層	S 仮速度 Vs (m/s)	P波速度 Vp (m/s)	密度 γ (g/cm ³)	ホアフラ 比 v	弾性係数 G ₀ (N/mm ²)	初 期 減衰定数 h ₀ (%)	剛性 低下率 G/G ₀	せん断 弾性係数 G (N/mm ²)	減衰 定数 h (%)
33.6	改良地盤	315	1606	1.59	0.480	158	3	0.54	85	7
30.3	段丘堆積物	315	1606	1.59	0.480	158	3	0.54	85	7
1.0	砂岩	380	1679	1.82	0.473	262	3	0.64	168	8
-10.0	泥岩	450	1736	1.68	0.464	341	3	0.79	269	3
10.0	泥岩	500	1740	1.74	0. 455	436	3	0. 78	340	3
-80.0	泥岩	560	1794	1.79	0.446	563	3	0.81	456	3
-108.0	泥岩	600	1861	1.82	0. 442	653	3	0.81	529	3
-196.0	基盤	700	1895	1.89	0.421	924	_	_	924	_

表-3.7 地盤定数(Ss-2_H地震時)
標高 0. P. (m)	地層	S波速度 Vs (m/s)	P波速度 Vp (m/s)	密度 γ (g/cm ³)	ポアソン 比 v	初期せん断 弾性係数 G ₀ (N/mm ²)	初期 減衰定数 h ₀ (%)	Ss-3 _H 地震時		
								剛性 低下率 G/G ₀	せん断 弾性係数 G (N/mm ²)	減衰 定数 h (%)
$ \begin{array}{r} 33.6\\ 30.3\\ 24.1\\ 1.9\\ -10.0\\ \end{array} $	改良地盤	315	1606	1.59	0.480	158	3	0.56	88	7
	段丘堆積物	315	1606	1.59	0.480	158	3	0.56	88	7
	砂岩	380	1679	1.82	0.473	262	3	0.66	173	7
	泥岩	450	1736	1.68	0.464	341	3	0.79	269	3
	泥岩	500	1740	1.74	0. 455	436	3	0.77	336	3
-80.0	泥岩	560	1794	1.79	0.446	563	3	0.73	411	3
-108.0	泥岩	600	1861	1.82	0. 442	653	3	0.77	503	3
-196.0	基盤	700	1895	1.89	0.421	924	_	_	924	_

表-3.8 地盤定数(Ss-3_H地震時)

4. 地震応答解析結果

地震応答解析により求められた NS 方向、EW 方向の最大応答加速度を図-4.1 および図-4.2 に示す。

図-4.1 最大応答加速度(NS 方向)

図-4.2 最大応答加速度(EW方向)

5. 耐震安全性評価結果

地震応答解析により得られた部材応力を、鋼材の短期許容せん断応力度と併せて 表 5.1 に示す。これより、地震応答解析による応力は短期許容応力度を下回ってい る。

以上のことから、Ss 地震に対する耐震安全性は確保されているものと評価した。

部 位 方向		応力 (N/mm²)	短期許容応力度 (N/mm ²)	応力/許容応力度比	
大梁	NS	120 N/mm ² (曲げ)	250 N/mm ² (曲げ)	0.48	
	NS	151 N/mm ² (曲げ)	214 N/mm ² (曲げ)	0.73 (軸力と曲げの 組み合わせ)	
<u>t):</u>		6.31 N/mm² (軸力 (圧縮))	292 N/mm ² (軸力(圧縮))		
11	EW	146 N/mm ² (曲げ)	325 N/mm ² (曲げ)	0.50 (動力と曲げの	
		16.0 N/mm ² (軸力 (圧縮))	292 N/mm ² (軸力(圧縮))	(細力と曲りの) 組み合わせ)	
ブレース	EW	208 N/mm ² (引張)	235 N/mm ² (引張)	0.88	

表-5.1 鉄骨部材の応力と短期許応力度