2.13 使用済燃料乾式キャスク仮保管設備

- 2.13.1 基本設計
- 2.13.1.1 設置の目的

使用済燃料輸送容器保管建屋(以下,「キャスク保管建屋」という。)には現在(平成 24年12月時点)9基(中型4基,大型5基)の使用済燃料乾式貯蔵容器(以下,「乾式 貯蔵キャスク」という。)にて408体の使用済燃料を貯蔵している。しかしながら,キ ャスク保管建屋は継続して使用することが困難な状況にあることから,9基の乾式貯蔵 キャスクをキャスク保管建屋から搬出し,使用済燃料乾式キャスク仮保管設備(以下, 「キャスク仮保管設備」という。)に保管することを目的とする。

また,使用済燃料共用プール(以下,「共用プール」という。)に、1~4 号機原子炉 建屋内の使用済燃料プールに貯蔵中の使用済燃料及び新燃料、5,6 号機原子炉建屋内の 使用済燃料プールに貯蔵中の使用済燃料及び新燃料を除く炉内燃料(合計 5,936 体)の 受け入れを計画している。この受け入れ準備として共用プールの空き容量を確保するた め、共用プールに貯蔵中で健全性が確認された使用済燃料を乾式貯蔵キャスク及び使用 済燃料輸送貯蔵兼用容器(以下,「輸送貯蔵兼用キャスク」という。また,乾式貯蔵キ ャスクと輸送貯蔵兼用キャスクを総じて「乾式キャスク」という。)に装填し、キャス ク仮保管設備に保管することを目的とする。

2.13.1.2 要求される機能

- (1) 原則,「発電用軽水型原子炉施設に関する安全設計審査指針」指針 49 から 50 に適合 すること。
- (2) 「原子力発電所内の使用済燃料の乾式キャスク貯蔵について」を参照すること。
- (3) 適切と考えられる設計用地震力に耐えられる設計であること。
- (4) 乾式貯蔵キャスクの落下防止対策,乾式貯蔵キャスク相互の衝突防止等の適切な対策 が講じられていること。
- (5) 被災した既設乾式貯蔵キャスク(9基)については、乾式貯蔵キャスクとして必要な 機能(除熱,密封,遮へい,臨界防止機能及び構造強度)が確保されていることを確 認するとともに、収納されている使用済燃料の健全性を確認すること。
- 2.13.1.3 設計方針

キャスク仮保管設備は、乾式キャスク及びこれを収納するキャスク仮保管構築物、揚 重機、監視装置、障壁等で構成し、使用済燃料が核分裂性物質及び核分裂生成物等を内 包し、放射線を発生し、崩壊熱を伴うことを考慮し、周辺公衆及び放射線業務従事者の 安全を守る観点から、以下に示すとおり、除熱、遮へい、密封及び臨界防止の安全機能 を有する設計とするとともに、必要な構造強度を有する設計とする。

(1) 除熱機能

乾式キャスク及びキャスク仮保管構築物について、使用済燃料の健全性及び安全機 能を有する構成部材の健全性が維持できるように、使用済燃料の崩壊熱を適切に除去 できる設計とする。

(2) 密封機能

乾式キャスクについて,周辺公衆及び放射線業務従事者に対し,放射線被ばく上の 影響を及ぼすことのないよう,使用済燃料が内包する放射性物質を適切に閉じ込める 設計とする。

(3) 遮へい機能

乾式キャスク及びキャスク仮保管構築物について,周辺公衆及び放射線業務従事者 に対し,放射線被ばく上の影響を及ぼすことのないよう,使用済燃料の放射線を適切 に遮へいする設計とする。

(4) 臨界防止機能

乾式キャスク及びキャスク仮保管構築物について,想定されるいかなる場合にも, 使用済燃料が臨界に達することを防止できる設計とする。

(5) 構造強度

乾式キャスク及びキャスク仮保管構築物について,除熱機能,密封機能,遮へい機 能,臨界防止機能を維持するために必要な構造強度を有する設計とする。

(6) 落下防止対策

キャスク仮保管設備は,乾式キャスクの落下防止及び乾式キャスク相互の衝突防止 等の適切な対策を講ずる。

(7) 耐震性

キャスク仮保管設備は、基準地震動 Ss を考慮しても、(1)~(4)に示す安全機能が維持される設計とする。

- 2.13.1.4 供用期間中に確認する項目
- (1) 乾式キャスクの表面温度に異常がないこと
- (2) 乾式キャスクの蓋間圧力に異常がないこと
- 2.13.1.5 主要な機器
- (1) 乾式キャスク

キャスク仮保管設備において,乾式キャスクは既存設計のものを使用する。乾式キャ スクは,貯蔵容器本体,蓋部,バスケット等で構成され,これらの部材は,設計貯蔵期 間*における放射線照射影響,腐食,クリープ,疲労,応力腐食割れ等の経年変化に対 して十分信頼性を有する材料を選定し,その必要とされる強度,性能を維持し,必要な 安全機能を失うことのないように設計されている。

また, 乾式キャスクには, 使用済燃料プールまたは共用プールで所定の期間以上冷却

され、かつ運転中のデータ、シッピング検査等により健全であることを確認した使用済 燃料を使用済燃料プール内あるいは共用プール内で装填し、排水後内部にはヘリウムガ スを封入する。ヘリウムガスは、冷却媒体であるとともに燃料被覆管の腐食を防止する。 ※:設計貯蔵期間は、乾式貯蔵キャスク:40年、輸送貯蔵兼用キャスク:50年である。

(2) コンクリートモジュール

仮保管する乾式キャスク1基毎にこれを覆うコンクリートモジュールを設置する。 壁面下部に給気口を、上部に排気口を設けることで、乾式キャスクからコンクリート モジュール内空気に伝達された使用済燃料の崩壊熱をモジュール内の自然対流により 大気へ拡散する。

(3) 監視装置

キャスク仮保管設備には、乾式キャスクの一次蓋、二次蓋間の圧力を監視すること により密封機能を監視する密封監視装置と、乾式貯蔵キャスク表面の温度を監視する ことにより乾式貯蔵キャスクの除熱機能を監視する表面温度監視装置を設置する。 又、過度の放射線レベル上昇が確認できるエリア放射線モニタを設置する。

(4) クレーン

キャスク仮保管設備内で乾式キャスク及びコンクリートモジュールの据付ができる クレーンを設置する。乾式キャスクの落下防止対策として、ワイヤーロープ、ブレー キを2重化し、電源喪失時には直ちにブレーキが作動し、ドラムの空転による荷の落 下を防止する設計とする。

(5) 電源

キャスク仮保管設備の電源は,所内共通M/C1A及び1Bからそれぞれ受電して いる多核種除去設備変圧器盤(A)及び(B)の2系統より受電しており,いずれか らも受電可能な構成である。

- 2.13.1.6 自然災害対策等
- (1) 津波

キャスク仮保管設備は,発電所構内の高台(約 OP. 39.7m)に位置するグラウンドに設置することから,津波の影響を受けることはない。

(2) 火災

火災の発生が考えられる箇所について,火災の早期検知につとめるとともに,消火 器を設置することで初期消火を可能にし,火災により安全性を損なうことのないよう にする。

- 2.13.1.7 構造強度及び耐震性
- (1) 構造強度
 - a. 乾式キャスク及び支持架台 乾式キャスク及び支持架台については、JSME 設計・建設規格の分類に基づく設計と する。
 - b. コンクリートモジュール
 コンクリートモジュールについては、建築基準法に基づく設計とする。
 - c. クレーン

クレーンについては、クレーン構造規格に基づく設計とする。

d. コンクリート基礎 キャスク支持架台に作用する力を支持するとともに、これを固定する固定ボルトの

引抜き力が許容引抜き力を下回り、基礎の傾斜が許容傾斜量を下回る設計とする。

- (2) 耐震性
 - a. 乾式キャスク及び支持架台 乾式キャスクについては、基準地震動 Ss に対し、乾式キャスクの安全機能を維持す るために必要な構造強度を有する設計とする。

支持架台については,基準地震動 Ss に対し,乾式キャスクを落下・転倒させない設計とする。

b. コンクリートモジュール

基準地震動 Ss に対し,建築基準法及び国土交通省告示に基づくとともに,倒壊等により,乾式貯蔵キャスクの安全機能に波及的影響を与えない設計とする。

c. クレーン

基準地震動 Ss に対し,JSME 設計・建設規格に基づくとともに,転倒・倒壊・逸走等 により,乾式キャスクの安全機能に波及的影響を与えない設計とする。

d. コンクリート基礎

キャスク支持架台に作用する力を支持するとともに、これを固定する固定ボルトの 引抜きに抵抗すること、基礎の傾斜によりクレーンの転倒、倒壊などが生じない設計 とする。

2.13.2 基本仕様

2.13.2.1 主要仕様

(1) 乾式キャスク仮保管設備

項目	仕様					
エリア	約 96m×約 80m					
保管対象物	乾式貯蔵キャスク	輸送貯蔵兼用キャスク				
保管容量	20 基	30 基				

表2.13-1 乾式キャスク仮保管設備仕様

(2) 乾式キャスク

項目	乾式貯蔵キャスク(中型)	乾式貯蔵キャスク(大型)			
重量 (t)	** 06	公 石 11日			
(燃料を含む)	承9.90	示り 115			
全長 (m)	約 5.6	約 5.6			
外径 (m)	約 2.2	約 2.4			
収納体数(体)	37	52			
基数 (基)	4 (既設)	5 (既設)			
	8(増設)	3(増設)			
	8×8 燃料(燃焼度 30,000MWd/t 以下)				
	新型 8×8 燃料(燃焼度 33,500MWd/t 以下)				
収納可能燃料	新型 8×8 ジルコニウムライナ燃料(燃焼度 36,500MWd/t 以下)				
	冷却期間4年以上(既設9基)				
	冷却期間 13 年以上(増設 11 基)				

表2.13-2 乾式貯蔵キャスク仕様

項目	輸送貯蔵兼用キャスクA	輸送貯蔵兼用キャスクB
重量(t)	約 110	約 110
(燃料を含む)	秋り 119 	示5 119
全長 (m)	約 5.4	約 5.3
外径 (m)	約 2.5	約 2.5
収納体数(体)	69	69
基数 (基)	3	0
	8×8 燃料	新型 8×8 ジルコニウムライナ燃料
	平均燃焼度 26,000MWd/t 以下	平均燃焼度 34,000MWd/t 以下
	最高燃焼度 29,000MWd/t 以下	最高燃焼度 40,000MWd/t 以下
	冷却期間 18 年以上	冷却期間 18 年以上
四約司合約約約※		
4又邢门中] 月日783年十二	新型8×8燃料,	
	新型 8×8 ジルコニウムライナ燃料	
	平均燃焼度 34,000MWd/t 以下	
	最高燃焼度 40,000MWd/t 以下	
	冷却期間 18 年以上	

表2.13-3 輸送貯蔵兼用キャスク仕様

※燃焼度や燃料タイプに応じて、収納物の配置制限を行う

(3) コンクリートモジュール

表2.	$1 \ 3 - 4$	コンクリー	トモジュール仕様
-----	-------------	-------	----------

ľ	頁目	仕様				
彳	马称	コンクリート	コンクリートモジュール			
保管	対象物	乾式貯蔵キャスク	輸送貯蔵兼用キャスク			
数量		20 基	30 基			
	長手	約 7300mm	約 7100mm			
主要	短手	約 4680mm	約 4680mm			
行法	高さ	約 4000mm	約 4000mm			
	板厚	約 200mm	約 200mm			
構造		鉄筋コンク	リート構造			

項目	仕様
型式	門型クレーン
数量	1 基
定格荷重	主巻 150t 補巻 20t
揚程	主巻 9.0m 補巻 11.3m

表2.13-5 クレーン仕様

(5) 監視装置

表2.13-6 圧力・温度監視装置仕様

項目	仕様	
名称	蓋間圧力検出器	温度検出器
検出器の個数	2個/基	1個/基
計測対象	蓋間圧力	外筒表面温度
取付箇所	二次蓋	外筒表面
計測範囲	50~500kPa abs.	-20∼160°C

表2.13-7 放射線監視装置仕様

項目	仕様
名称	エリア放射線モニタ
基数	4 基注 1)
取付箇所	設備敷地内
計測範囲	$10^{-1}\mu\mathrm{Sv/h}{\sim}10^{5}\mu\mathrm{Sv/h}$

注1) 4 基の内1 基は将来増設予定。

- 2.13.3 添付資料
 - 添付資料-1 設備概略図
 - 添付資料-2 評価の基本方針
 - 添付資料-3 構造強度及び耐震性について
 - 添付資料-4 安全評価について
 - 添付資料-5 安全対策について

設備概略図

図 1-1 キャスク仮保管設備の構内位置

図 1-2 キャスク仮保管設備配置概略図(単位:m)

図 1-4 輸送貯蔵兼用キャスクの構造図例 (輸送貯蔵兼用キャスクA)

評価の基本方針

1 設計方針

1.1 基本的安全機能

本設備は、乾式キャスク及びこれを収納するコンクリートモジュール、支持架台、ク レーン、監視装置等で構成され、本文の設計方針に示される除熱、遮へい、密封及び臨 界防止の安全機能を設計とするとともに、必要な構造強度を有する設計であることを確 認する。

1.2 乾式キャスクの安全機能について

本設備で保管する乾式キャスクは,既存設計のものを使用する。乾式キャスクの安全 機能に関しては,以下の図書にて評価されている。

- (1) 乾式貯蔵キャスク
 - 沸騰水型原子力発電所 使用済燃料の乾式キャスク貯蔵施設について(平成5年7 月株式会社東芝 TLR-053 改訂1)
 - ② 沸騰水型原子力発電所 使用済燃料の乾式キャスク貯蔵施設の安全設計で使用する 解析コードについて(平成5年4月株式会社東芝 TLR-054)
 - ③ 福島第一原子力発電所 第4号機工事計画認可申請書本文及び添付書類(平成6年3 月14日申請,東京電力株式会社)
 - ④ 福島第一原子力発電所 第6号機工事計画認可申請書本文及び添付書類(平成6年3 月14日申請,東京電力株式会社)
 - ⑤ 福島第一原子力発電所 第4号機工事計画認可申請書本文及び添付書類(平成22年 10月22日申請,東京電力株式会社)
 - ⑥ 福島第一原子力発電所 第5号機工事計画認可申請書本文及び添付書類(平成22年 10月22日申請,東京電力株式会社)
 - ⑦ 福島第一原子力発電所 第6号機工事計画認可申請書本文及び添付書類(平成22年 10月22日申請,東京電力株式会社)

(2)輸送貯蔵兼用キャスク

- ① 使用済燃料中間貯蔵施設における金属製乾式キャスクについて(NEO-2569CB型) (平成 21 年 5 月 株式会社オー・シー・エル OCL-TR-001-改 1)
- ② 使用済燃料中間貯蔵施設における金属製乾式キャスクについて(HDP-69B型)
 (平成21年5月 日立GEニュークリア・エナジー株式会社 HLR-110訂1)
- ③ 核燃料輸送物設計承認申請書(NEO-2569CB型)
 (平成 22 年 8 月 23 日申請 東京電力株式会社)

④ 核燃料輸送物設計承認申請書(HDP-69B型)

(平成 22 年 8 月 23 日申請 東京電力株式会社)

- ⑤ 使用済燃料貯蔵施設に関する設計及び工事の方法の認可申請書本文及び添付資料の一部補正(平成22年8月リサイクル燃料貯蔵株式会社)
- ⑥ 使用済燃料貯蔵施設に関する設計及び工事の方法の認可申請書本文及び添付資料の一部補正(平成22年12月リサイクル燃料貯蔵株式会社)

2 安全設計・評価方針

表 2-1 に評価すべき各安全機能に関する既存の評価内容と本設備での安全設計・評価の 方針を示す。

また,乾式キャスクの各部の材料は1.2項に示す図書等に示している規格材料または規格材料に相当する材料を用いる。

規格材料に相当する材料を用いる場合には,規格に定められた試験若しくはより保守的 な試験によって所定の仕様を有することを確認することを基本とし,その他の方法で確認 する場合には,試験データを比較評価することによって試験結果が基準に対して裕度を確 保できていることを確認する。

規格材料に相当する材料は、以下の部材に用いる。所定の仕様を有することを確認する 方法及び確認結果について別紙-1に示す。

・輸送貯蔵兼用キャスクA

胴(胴本体,フランジ,底板,トラニオンボス),一次蓋,二次蓋 確認した結果,規格材料に相当する材料を使用して問題ないことを確認している。

項目	中期安全確保の考え方	評価対象	乾式貯蔵キャスク					輸送貯蔵兼用キャスク
		Li Liberty (4 - 4 -	既存評価を引用	新評価実施	評価方針	既存評価を引用	新評価実施	評価方針
除熱機能	乾式キャスク及びキャス ク仮保管構築物について 使用済燃料の健全性及び 安全機能を有する構成部	燃料被覆管	0	_	以下の確認をもって評価条件が既存評価と同等であると言える為,既存 評価を引用して評価を行う。 ・保管中のコンクリートモジュール内の温度が45℃以下となること。	_	0	既存評価における評価条件は以下事項に相違がある為,改めて解析評価を実施する。 ・保管中の姿勢が異なる。(既存評価での乾式キャスクの姿勢は縦置きであるが, キャスク仮保管設備では横置きの姿勢となる)
	材の健全性が維持できる ように、使用済燃料の崩壊 熱を適切に除去できる設 計とする。	乾式キャスク	0	_	以下の確認をもって評価条件が既存評価と同等であると言える為,既存 評価を引用して評価を行う。 ・保管中のコンクリートモジュール内の温度が45℃以下となること。	_	0	既存評価における評価条件は以下事項に相違がある為,改めて解析評価を実施する。 ・保管中の姿勢が異なる。(既存評価での乾式キャスクの姿勢は縦置きであるが, キャスク仮保管設備では横置きの姿勢となる)
		コンクリートモ ジュール (キャスク仮保管 構築物)	_	0	既存評価における評価条件は以下事項に相違がある為,改めて解析評価を実施する。 ・保管中の乾式キャスク周辺環境温度が異なる。(既存評価ではキャスク 保管建屋内の評価) なお,評価は設計発熱量の大きい大型キャスクを代表キャスクとする。	_	0	既存評価における評価条件は以下事項に相違がある為、改めて解析評価を実施す る。 ・保管中の乾式キャスク周辺環境が異なる。(既存評価ではキャスク保管建屋内の 評価) 尚,設計発熱量は同等であるが、躯体温度評価の観点からコンクリート壁面との 距離が小さいタイプAを代表キャスクとする。
密封機能	乾式キャスクについて,周 辺公衆及び放射線従事者 に対し,放射線上の影響を 及ぼすことのないよう,使 用済燃料が内包する放射 性物質を適切に閉じ込め る設計とする。	乾式キャスク	0	_	既存評価における評価条件と同等であると言える為,既存評価を引用し て評価を行う。	0	_	既存評価における評価条件は以下事項に相違があるが、本設備の設計条件が既存 評価の評価条件に包絡されることを確認し、既存評価を引用して評価を行う。 ・キャスク内部温度及びシール部温度
<u></u> 遮へい機 能	乾式キャスク及びキャス ク仮保管構築物について, 周辺公衆及び放射線従事 者に対し,放射線被ばく上 の影響を及ぼすことのな いよう,使用済燃料の放射 線を適切に遮へいする設 計とする。	乾式キャスク	0	_	既存評価における評価条件と同等であると言える為、既存評価を引用して評価を行う。	0	_	既存評価における評価条件と同等であると言える為,既存評価を引用して評価を 行う。
臨界防止 機能	乾式キャスク及びキャス ク仮保管構築物について, 想定されるいかなる場合 にも使用済燃料が臨界に 達することを防止できる 設計とする。	乾式キャスク	0	_	既存評価においてはキャスク配列,バスケット内の燃料配置等最も厳し い状態を想定し評価しており,本設備での条件と比較して,十分安全側 であることから,既存評価を引用して評価を行う。	0	_	既存評価においてはキャスク配列,バスケット内の燃料配置等最も厳しい状態を 想定し評価おり,本設備での条件と比較して,十分安全側であることから,既存 評価を引用して評価を行う。

表 2-1 キャスク仮保管設備安全評価の基本方針

項目	項目 中期安全確保の考え方				乾式貯蔵キャスク			輸送貯蔵兼
			既存評価を引用	新評価実施	評価方針	既存評価を引用	新評価実施	
構造強度	乾式キャスク及びキャス	乾式キャスク	0	_	以下の確認をもって評価条件が既存評価と同等であると言える為、既存	0	0	評価条件が既存評価の
	ク仮保管構築物について,				評価を引用して評価を行う。			評価条件が既存評価の
	除熱機能, 密封機能, 遮へ				・本設備における設計事象の荷重条件が既存評価における設計事象の荷			
	い機能, 臨界防止機能を維				重条件に包絡すること。			
	持するために必要な構造							
	強度を有する設計とする。							
耐震性	キャスク仮保管設備は,基	乾式キャスク	—	0	本設置場所における設計用地震力と既存評価で用いた設計用地震力の比	—	0	本設置場所における詞
	準地震動 Ss を考慮して				率が、既存評価の余裕率より小さいことを確認する。			
	も, 5.2.1~5.2.4 に示す	支持架台	—	0	本設置場所における設計用地震力により評価を実施する。	—	0	本設置場所における詞
	安全機能が維持されてい							
	ることを確認する。							
		支持架台固定具		0	本設置場所における設計用地震力により評価を実施する。	_	0	本設置場所における語
		コンクリートモ		0	本設置場所における設計用地震力により評価を実施する。	_	0	本設置場所における語
		ジュール						
		クレーン	—	0	本設置場所における設計用地震力により評価を実施する。	_	_	(乾式貯蔵キャスクと
異常時の	安全評価において想定す	乾式キャスク	—	0	本設備の異常事象の抽出を行い、評価を実施する。	_	0	本設備の異常事象の排
評価	べき異常事象として今後							
	抽出される各事象を考慮							
	しても 5.2.1~5.2.4 に示							
	す安全機能が維持されて							
	いることを確認する。							

使用キャスク

評価方針

の評価条件と同一のものは既存評価を引用して評価を行い、 の評価条件と異なるものは新たに評価を実施する。

設計用地震力により評価を実施する。

設計用地震力により評価を実施する。

設計用地震力により評価を実施する。

設計用地震力により評価を実施する。

と共用)

由出を行い,評価を実施する。

規格材料に相当する材料が所定の仕様を有することを確認する方法と結果について

1. はじめに

規格材料に相当する材料を用いる場合には,規格に定められた試験若しくはより保守的な試 験によって所定の仕様を有することを確認することを基本とし,その他の方法で確認する場合 には,試験データを比較評価することによって試験結果が基準に対して裕度を確保できている ことを確認した。以下に確認方法及び結果を示す。

2. 規格材料に相当する材料を使用する部材

規格材料に相当する材料は、以下の部材に用いる。

・輸送貯蔵兼用キャスクA

胴(胴本体、フランジ、底板、トラニオンボス)、一次蓋、二次蓋

3. 確認方法

2. 項に示す材料には使用済燃料貯蔵施設規格金属キャスク構造規格(JSME S FA1-2007)(以下,「金属キャスク規格」という。)で金属キャスクに使用できる材料とされている ASME 規格 材料(ASME SA350 LF5 Class1)を使用する設計としている。キャスクに使用する材料について は、材料試験(化学分析,硬度試験,引張試験,シャルピー衝撃試験)を行って所定の仕様 を満足することを確認する。

ここでは、規格材料に相当する材料の仕様を確認する方法を示す。

(1) 規格に定められた試験による確認方法

2. 項に示す材料の材料試験の内,化学分析及び硬度試験は適用規格(ASME SA-350 (以下,「材料規格」という。))に定められた試験方法により実施し,基準を満足することを確認する。

また,胴本体とトラニオンボスに関する材料規格の引張試験についても,材料規格 に定められた試験方法により試験を実施し,基準を満足することを確認する。(表 2-2 分類①参照)

(2) 規格に定められた試験よりも保守的な試験による確認方法

- a. 胴本体とトラニオンボスに関する材料規格のシャルピー衝撃試験
 胴本体とトラニオンボスに関する材料規格のシャルピー衝撃試験について、材料
 規格で定められた試験方法で実施していないが、より保守的な方法で試験を実施していることを確認し、基準を満足することを確認する。(表 2-2 分類②-a 参照)
- b. 金属キャスク規格で求められている破壊靱性要求に係るシャルピー衝撃試験
 2. 項に示す材料の材料試験の内,金属キャスク規格で求められている破壊靱性

要求に係るシャルピー衝撃試験は、金属キャスク規格で定められた試験方法で実施 していないが、より保守的な方法で試験を実施していることを確認し、基準を満足 することを確認する。(表 2-2 分類②-b 参照)

(3)試験データの比較評価による確認方法

2. 項に示す材料の材料試験の内, 胴本体, トラニオンボス以外(フランジ, 底板, 一次蓋及び二次蓋)に関する材料規格のシャルピー衝撃試験と引張試験は, 材料規格で 定められた試験方法で実施していないが, 方法の違いによる影響が小さいことを確認 し, 基準に対して裕度を確保できていることを確認する。(表 2-2 分類③参照)

要求元	試験 項目	試験 温度	試験片 採取位置	試験片 採取方向	試験片形状 試験要領	分類	
	ASME ASME SA-350 (材料 規格) ピー	会泪	胴本体, トラニオンボス :1/4T×T	主鍛造方向	ASTM A370	1	
ASME SA-350		里価	胴本体, トラニオンボス以外 :1/4T×1/4T ^{*1}	主鍛造方向	ASTM A370	3	
(材料 規格)		50.4°C	胴本体, トラニオンボス :1/4T×T	主鍛造方向に直角※2	ASTM A370	2-a	
衝撃 試験	JJ. 4 C	胴本体, トラニオンボス以外 :1/4T×1/4T ^{*1}	主鍛造方向に直角※2	ASTM A370	3		
JSME	SME FAI シャル	-17°C	胴本体 :1/4T×T	主鍛造方向に直角	ASTM A370 ^{**3}	(2)-b	
S FAI (破壊 昭性 要求)	ピー 衝撃	-170	胴本体, トラニオンボス以外 :1/4T×1/4T	主鍛造方向に直角	ASTM A370 ^{**3}	2)-b	
	試験	試験	試験	−25°C	トラニオンホ [*] ス : 1/4T×T	主鍛造方向に直角	ASTM A370 ^{**3}

表 2-2 シャルピー衝撃試験等の要求事項の整理

〔JSME:日本機械学会,ASME:米国機械工学会〕

※1:「1/4T×T」が要求事項(Tは半径方向板厚,部材外表面からの距離,半径方向×軸方向で表記) ※2:「主鍛造方向」が要求事項

※3:「JIS」が要求事項

- 4. 確認結果
 - (1) 規格に定められた試験による確認結果

3. (1)項に示した規格に定められた試験によって確認するとしたところについて, 所定の基準を満足することを確認した。

(2) 規格に定められた試験よりも保守的な試験による確認結果

a. 胴本体とトラニオンボスに関する材料規格のシャルピー衝撃試験

3. (2)a. 項に示した胴本体とトラニオンボスに関する材料規格のシャルピー衝撃 試験について, 鍛造材料の性質として, 主鍛造方向に平行方向(鍛伸方向)よりも 主鍛造方向に直角(鍛伸と直角方向)の方がシャルピー値は低くなり, 今回の実施 内容(主鍛造方向に直角)が安全側となっていることを文献調査により確認した。(図 2-1 参照)

図 2-1 試験片採取方向の違いによるシャルピー値の比較⁽¹⁾

b. 金属キャスク規格で求められている破壊靱性要求に係るシャルピー衝撃試験

3. (2)b. 項に示した金属キャスク規格で求められている破壊靱性要求に係るシャ ルピー衝撃試験について、金属キャスク規格の求めている JIS 規格で試験した場合 と、今回実施している ASTM 規格で試験した場合について、試験結果を総合的に比較 すると、JIS 規格より ASTM 規格の方が、4%程度安全側の評価となることを文献調査 により確認した。(図 2-2 参照)

図 2-2 ISO 規格(JIS 規格と類似)と ASTM 規格の衝撃試験結果の比較⁽²⁾

(3) 試験データの比較評価による確認結果

3.(3)項に示した材料規格に定められた試験方法で実施していないシャルピー衝撃 試験と引張試験について,試験データを比較評価して,試験結果が基準に対して裕度 を確保していることを確認した。(図 2-3~2-5 参照)

図 2-3 吸収エネルギーデータ(-59.4℃) -シャルピー衝撃試験結果-

ーシャルピー衝撃試験結果-

5. 引用文献

以下の文献を引用している。

- (1) 社団法人 日本鍛造協会, "鍛造技術講座 製造技術編", (平成4年6月).
- (2) Fink, D. A., "Quantitative Comparison and Evaluation of Various Notch Machining Methods and How They Affect ASTM E23 and ISO R442 Testing Equipment Results", Charpy Impact Test:Factors and Variables, ASTM STP 1072, John M. Holt, American Society for Testing and Materials, Philadelphia, 1990.

3 耐震設計方針

(1) 耐震設計の基本方針

キャスク仮保管設備は、本文「設計方針」に基づき、基準地震動 Ss に対し、設備の 設計方針に示される除熱機能、密封機能、遮へい機能、臨界防止機能等の安全機能が維 持されていることを確認する。

(2) 対象設備と構造計画

キャスク仮保管設備は、乾式キャスク、支持架台、コンクリートモジュール、クレー ン、並びにコンクリート基礎から構成される。

これらの設備のうち,乾式キャスクは,使用済燃料を収納し,除熱,密封,遮へい, 臨界防止等の基本的安全機能を有する。このことから基準地震動 Ss に対する評価は, 乾式キャスクの健全性維持の観点から,次の設備を対象に実施する。

- ① 乾式貯蔵キャスク及び支持架台
- ② 輸送貯蔵兼用キャスク及び支持架台
- ③ コンクリートモジュール
- ④ クレーン
- ⑤ コンクリート基礎
- 表 3-1 に各設備の構造計画の概要と概略図を示す。

主要設備	構造計画の概要	概略構造図
王要設備 ①乾式貯蔵キャスク及び支持 架台	構造計画の概要 乾式貯蔵キャスクは横置きで、トラニオン を介し4つの支持脚柱を持つ支持架台で 支持され、支持架台は固定ボルトと基礎ボ ルトで基礎に固定される。	
②輸送貯蔵兼用キャスク及び 支持架台	輸送貯蔵兼用キャスクは横置きで,トラニ オンを介し鋼製の支持架台で支持され,支 持架台は,アンカーボルトで埋め込み金物 に固定される。埋め込み金物は,アンカー ボルトで基礎から立ち上げたコンクリー ト基礎部に固定される。	下部側 上部側 支持架台 「 アンカーボルト 「 フンクリート基礎部 埋め込み金物

表 3-1 主要設備の構造計画

主要設備	構造計画の概要	概略構造図
③コンクリートモジュール	コンクリートモジュールの平面寸法は,約 7.3m×約4.7m又は約7.1m×約4.7mで あり,高さは約4mある。コンクリートモ ジュールは,厚さ200mmの鉄筋コンクリー ト製パネルで構成され,各パネルは金物に て連結され,基礎とは固定用金物を介して 固定ボルトで固定される。	
④クレーン	クレーンはスパン約 19mの門型クレーン で、定格荷重は約 150 トンである。 クレーンは、4 つの支持脚、車輪を介して、 レール上を走行する。	

主要設備	構造計画の概要	概略構造図		
⑤コンクリート基礎	基礎は, N-S 方向 80m, E-W 方向約 96m, 厚さ 0.8m (一部 1.0m, 1.8m)の鉄筋コン クリート基礎である。 基礎は,埋め込まれる固定ボルトや固定金 具を介して,①乾式キャスク及び支持架台 並びに,②コンクリートモジュールを固定 する。また,③クレーンのレールを固定す る。			

Ⅲ-2-13-添 2-14

(3)設計用地震力

各機器の耐震設計に用いる設計用地震力は、以下より算定する。

項目	機器等	摘要
(1) 基準地震動	Ss	
(2)設計用地震動	基準地震動 Ss-1:	0.P196m の基盤
	(水平)最大加速度振幅 450gal,約 81 秒間	(Vs=約 700m/s)を
	(鉛直)最大加速度振幅 300gal,約 81 秒間	解放基盤表面とし
	基準地震動 Ss-2:	て定義する。
	(水平)最大加速度振幅 600gal,約 60 秒間	
	(鉛直)最大加速度振幅 400gal,約 60 秒間	
	基準地震動 Ss-3:	
	(水平)最大加速度振幅 450gal,約 26 秒間	
	(鉛直)最大加速度振幅 300ga1,約 26 秒間	
(3)動的解析の方法	時刻歴応答解析法	
	応答スペクトル法	

(4) 運転状態と地震動の組合せに対する供用状態

運転状態と地震動の組合せに対応する供用状態は以下とする。

運転状態と地震動の組合せ	供用状態
I ^{注 1)} +Ss	D(IVAS)注2)

- 注 1)「運転状態 I」とは、通常運転の運転状態をいい、乾式キャスクの場合は、取り扱い時及び本設備での機器の通常の保管時の状態で「設計事象 I」に読み替える。
- 注 2)「原子力発電所耐震設計技術指針」において規定される許容応力状態(「設計・建設 規格」の許容状態 D 相当)

基準地震動 Ss による荷重を運転状態 I により生じる荷重と組み合わせた状態で,保管を行っている使用済燃料に過大な影響が生じないよう許容応力を定めるものとするが,本設備の 乾式キャスクに対する機能維持の基本的な考え方は以下とする。

設備区分	基準地震動 Ss に対する機能維持			
乾式キャスク	乾式キャスクの安全機能を維持するために			
	必要な構造強度を有すること。			
支持架台	基準地震動 Ss に対し、乾式キャスクを落			
	下・転倒させないこと。			
コンクリートモジュール	基準地震動 Ss に対し, コンクリートモジュ			
	ールの倒壊等により、乾式キャスクの安全			
	機能に影響を与えないこと。			
クレーン	クレーンの倒壊、転倒等により、乾式キャ			
	スクの安全機能に影響を与えないこと。			
コンクリート基礎	支持架台に作用する力を支持するととも			
	に、これを固定する固定ボルトの引き抜き			
	に抵抗すること。			
	基礎の傾斜により、クレーンの転倒、倒壊			
	などが生じないこと。			

(5) 地盤の応答解析による設計用地震力の算定

1)解析概要

本検討では基礎-地盤連成系の2次元FEM応答解析を行い,基礎上面での応答波の応答 スペクトルの作成,設計用地震力の算定を行う。解析プログラムはSuper-FLUSH/2Dを用いる。

2) 解析に用いる検討用地震動

検討用地震動は、「福島第一原子力発電所『発電用原子炉施設に関わる耐震設計審査指針』 の改訂に伴う耐震安全性評価結果 中間報告書」(平成20年3月31日 東京電力株式会社) にて作成した解放基盤表面で定義される基準地震動 Ss を用いる。解放基盤表面位置 (0.P.-196.0m)における基準地震動 Ss-1、Ss-2、Ss-3の加速度時刻歴波形を図 3-1~3 に示 す。 Ss-1(水平)-450gal

Ss-1-(鉛直) 300gal

図 3-1 基準地震動加速度時刻歷波形 (Ss-1)

Ss-2(水平)-600gal

図 3-2 基準地震動加速度時刻歷波形 (Ss-2)

Ss-3(鉛直)-300gal

図 3-3 基準地震動加速度時刻歷波形 (Ss-3)

3) 地震応答解析モデル

地震応答解析モデルは図 3-4,5のように,基礎-地盤連成系モデルとする。地盤応答解析に 用いる地盤定数の設定結果を表 3-2 に示す。また,コンクリート基礎を除く各層のモデル化に おいては,地盤の非線形性を考慮する。図 3-6 に各層の動的変形特性を示す。

図 3-4 解析モデルの概要(N-S 方向)

地層名	層標高	各地層厚	湿潤密度 <i>ρ</i>	せん断弾性 せん間 係数 速度 G ₀ V:	せん断波	強度特性		
					速度 Vs	С	φ	
	上端	下端	(m)	(t/m^3)	(kN/m^2)	(m/sec)	(N/mm ²)	(°)
	0P(m)	0P(m)	()	(0, 111)	(11.) 11.)	(111, 500)	(21)	
コンクリート基礎	39.800	38.800	1.000	2.679	10, 420, 000	1972	-	-
埋戻し土	39. 700	35.800	3.900	1.8	72, 600	201	0	30
改良地盤	38.800	35.800	3.000	1.8	380, 000	459	_	_
段丘堆積物	35.800	29.026	6.774	1.59	158,000	315	0.039	24.7
T3 部層 中粒砂岩層	29.026	25. 215	3.811	1.84	210, 000	338	0.098	38.6
T3 部層 泥質部	25. 215	18. 837	6.378	1.71	427,000	500	1.5	0
T3 部層 互層部	18.837	8.694	10.143	1.76	302, 000	414	0.098	38.6
T3 部層 泥質部	8.694	6.109	2.585	1.71	427,000	500	1.5	0
T3 部層 中粒砂岩層	6.109	4.754	1.355	1.84	210,000	338	0.098	38.6
T3 部層 泥質部	4.754	1.693	3.061	1.71	427, 000	500	1.5	0
T3 部層 粗粒砂岩層	1.693	1.128	0.565	1.84	210,000	338	0.098	38.6
T3 部層 泥質部	1.128	-24.980	26.108	1.71	427,000	500	1.5	0
T2 部層	-24. 980	-118.400	93. 420	深度依存 1.76~ 1.80	深度依存 334,000~ 635,000	深度依存 436~594	深度依存 1.131~ 1.839	0
T1 部層	-118.400	-185.880	67.480	1.79	667,000	610	1.62	0
先富岡層	-185.880	-196.000	10.120	1.88	954, 000	712	1.8	0
解放基盤面	-196.000	_	_	1.88	954, 000	712	1.8	0

表 3-2 解析用地盤定数

出典:「福島第一原子力発電所 原子炉設置変更許可申請書」(平成5年4月)等

図 3-6(1) 埋戻土層の動的変形特性

図 3-6(2) 改良地盤の動的変形特性

図 3-6(3) 段丘堆積物の動的変形特性

図 3-6(4) T3 部層中粒砂岩層の動的変形特性

図 3-6 (5) T3 部層泥質部の動的変形特性

図 3-6(6) T3 部層互層部の動的変形特性

図 3-6 (7) T2 部層の動的変形特性

図 3-6 (8) T1 部層の動的変形特性

Ⅱ-2-13-添 2-27

図 3-6(9) 先富岡層の動的変形特性

4)設計用地震力の算定

地盤表面における地震波の加速度応答の包絡スペクトル(Ss-1~Ss-3)を図 3-7~15 に示 す。設計用地震力は、床応答スペクトルを周期軸方向に±10%拡幅したスペクトルを用いて算 定する。

図 3-7 加速度応答包絡スペクトル Ss-H (水平 NS) (h=1%)

図 3-8 加速度応答包絡スペクトル Ss-H (水平 NS) (h=2%)

図 3-9 加速度応答包絡スペクトル Ss-H (水平 NS) (h=5%)

図 3-10 加速度応答包絡スペクトル Ss-H (水平 EW) (h=1%)

図 3-11 加速度応答包絡スペクトル Ss-H (水平 EW) (h=2%)

図 3-12 加速度応答包絡スペクトル Ss-H (水平 EW) (h=5%)

-

図 3-13 加速度応答包絡スペクトル Ss-V (鉛直) (h=1%)

図 3-14 加速度応答包絡スペクトル Ss-V (鉛直) (h=2%)

図 3-15 加速度応答包絡スペクトル Ss-V (鉛直) (h=5%)

設計用地震力の算定に用いるコード(Super-FLUSH/2D)について 参考資料

(1) 概要

Super-FLUSH/2Dは,主に地盤-構造物連成系の相互作用解析を行う二次元有限要素プログラムである。

(2)機能

Super-FLUSH/2Dは、解析に際して以下の機能を有している。 ①面外方面へのエネルギの逸散を考慮した疑似三次元解析を行うことができる。 ②側方の十分な拡がりを持った成層構造の地盤を表せる。 ③歪依存による土の非線形特性を考慮できる。

(3) 使用実績

原子力発電環境整備機構の「地層処分施設の耐震性評価」にて用いられている。

耐震安全性解析に用いるコード (NASTRAN) について

(1) 概要

NASTRAN コードは 1968 年アメリカ航空宇宙局(NASA)で開発され, 1971 年に米国 MacNeal-Schwendler Corporation(MSC 社)から発売された有限要素法に基づく構造解析等 の汎用解析コード(MSCNastran)であり,航空宇宙,自動車,造船,重機械,原子力機器, 土木・建設など重工業を中心に広く受け入れられている。輸送キャスクでは固有振動解析 に利用されている。

(2) 機能

NASTRAN コードは固有振動解析に際して以下の機能を有している。

 ①ある固有振動範囲の設定、あるいは必要固有値個数を設定すればその範囲の多くの固 有振動及び必要固有値個数に対応する固有振動を求めることができる。
 ②各振動モードに対する刺激係数、有効質量を算出できる。

③引張等の初期応力があれば、この初期応力を考慮した固有振動解析ができる。

④スペクトルモード解析の入力データとして固有振動解析結果をそのまま利用できる。

⑤使用要素は一次元~三次元の多くの要素が適用できる。

⑥質量は集中質量,分布質量が適用できる。

(3) 解析フロー

NASTRAN コードの固有振動解析フローを図 3-16 に示す。

(4) 使用実績

NASTRAN コードは、これまで多くの固有振動解析に対し使用実績がある。

(5) 検証方法

理論値との比較による検証が実施されていることを確認。

図 3-16 NASTRAN コードの固有振動解析フロー図

耐震安全性解析に用いるコード (ABAQUS) について

(1) 概要

ABAQUS コードは米国Hibbitt, Karlsson&Sorensen, Inc (KHS 社) で開発された有限要素法 に基づく応力・座屈解析等の汎用解析コードであり、輸送キャスクの応力解析等に広く 利用されている。

(2) 機能

ABAQUS コードは、応力解析に際して以下の機能を有している。

①定常・非定常の弾性・弾塑性のいずれの解も得ることができる。

②材料特性として時間依存, 歪の履歴依存並びに等方性・異方性等を考慮することがで きる。

③モデルの形状は一次元~三次元,また連続体についても取り扱うことができる。
 ④伝熱解析結果をそのまま境界条件として熱応力解析に用いることが可能である。
 ⑤荷重条件として集中荷重,分布荷重,モーメント,加速度力(慣性力),圧力,遠心力,

コリオリカ等が取り扱える。また、これら条件の時間依存、線形変化に対しても対応 可能である。

- (3) 解析フローABAQUS コードの解析フローを図 3-17 に示す。
- (4) 使用実績

ABAQUS コードは、これまで多くの固有振動解析に対し使用実績がある。

(5) 検証方法

理論値との比較による検証が実施されていることを確認。

図 3-17 ABAQUS コードの解析フロー図

- 1 構造強度
- 1.1 乾式キャスクの構造強度
- (1) 乾式貯蔵キャスク
- 1) 評価方針

本設備で保管する乾式貯蔵キャスク及び支持架台は、既存設計のものを使用し、乾式貯 蔵キャスクの安全機能に関しては、添付資料-2「評価の基本方針」で記載している既 存評価書にて評価されている。

乾式貯蔵キャスク及び支持架台の構造強度については,既存評価の結果を基に,乾式貯 蔵キャスクの構造強度が本設置場所での保管に適合していることを確認する。

- 2) 主な構成部材と適用基準
- 主な構成部材

乾式貯蔵キャスク及び支持架台の構造強度設計は,要求される安全機能を維持するため,次の構造部材について評価する。

A. キャスク容器

乾式貯蔵キャスクのうち,放射性物質を閉じ込めるための圧力バウンダリを構成す るものであって,胴板,底板,一次蓋,一次蓋締付けボルト,貫通孔蓋板及び貫通孔蓋 板締付けボルトをいう。

B. バスケット

乾式貯蔵キャスクの容器内に配置され、使用済燃料を収納し、かつ燃料間距離を保 つことにより、燃料の支持機能及び臨界防止機能を併せ持つものであって、バスケット プレート、バスケットサポート及びバスケットサポート取付けボルトをいう。

C. トラニオン

乾式貯蔵キャスクの取扱い時及び仮保管時の支持のため、吊上げ及び固定に使用さ れるものであって、トラニオン及びトラニオン締付けボルトをいう。

D. 二次蓋

乾式貯蔵キャスクの密封監視のために圧力空間を保持するための部材である。

E. 支持架台

乾式貯蔵キャスクの仮保管時にトラニオンを支持する構造であり,乾式貯蔵キャスク 全体を支持するものであって,支持架台,固定ボルト及び基礎ボルトをいう。なお,基 礎ボルトについては,本設備において新たに設置するため,本評価から除き,耐震性に ついての説明書に記載する。

② 適用基準と規格

乾式貯蔵キャスクの構造強度設計における適用基準と規格を構造部材ごとに表 1.1-1

に示す。

表 1.1-1 乾式貯蔵キャスクの構造強度に係る適用基準・規格

機器	設計・建設規格機器区分	構造強度 評価方法	考え方
キャスク容器	クラス3容器	クラス1 容器の 規定を準用	放射性物質を貯蔵する観点から,使用済燃料プールや使用済樹脂貯蔵タンク等と同様にJSME設計・建設規格の区分の定義からクラス3容器に区分されるものと考える。しかしながら,構造強度評価方法については,熱荷重や取扱い時の衝撃荷重等の各種の荷重の作用が想定されることから応力解析により発生応力を求めて評価することが必要であり,構造強度評価手法は「解析による設計」の考え方が採用されているJSME設計・建設規格のクラス1容器に準じることとする。
バスケット	ノンクラス	炉心支持構造物の規 定を準用	バスケットは、使用済燃料ラックと同様に JSME 設計・建設規格の区分の定義に当 てはまらないと考える。しかしながら、使用済燃料を直接支持する部材であるため、 構造強度評価手法は JSME 設計・建設規格の炉心支持構造物に準じることとする。 なお、バスケット材料として使用するアルミニウム合金(A6061P)及びボロン添加ア ルミニウム合金(B-A0)は、「使用済燃料貯蔵施設規格 金属キャスク構造規格(2007 年版) JSME S FA1-2007」の規定に準じてバスケット材料として A6061P 及び B-A0 を使用すると共に、材料と強度評価手法の整合の観点から、バスケットは構造規格 に準じた評価手法による強度評価も行う。
トラニオン	クラス3支持構造物	クラス 1 支持構造物 の規定を準用	トラニオンはキャスク容器を支持することから,JSME 設計・建設規格の区分の定 義からクラス3支持構造物に区分されるものと考える。しかしながら,乾式貯蔵キ ャスク全体を支持するため,キャスク容器との整合をとり,構造強度評価手法は JSME 設計・建設規格のクラス1支持構造物に準じることとする。
二次蓋	ノンクラス	クラス3容器の 規定を準用	JSME 設計・建設規格に該当する機器区分はないものと考える。しかしながら、乾 式貯蔵キャスクの貯蔵時の密封監視のために圧力空間を保持するための部材であ り、二次蓋及び一次蓋の蓋間内が正圧となる。したがって、構造強度評価手法はク ラス3容器の規定に準じることとする。
支持架台	クラス3支持構造物	クラス 1 支持構造物 の規定を準用	支持架台は、トラニオンと同様にキャスク容器を支持することから、JSME 設計・ 建設規格の区分の定義からクラス3支持構造物に区分されるものと考えられる。し かしながら、保管時にトラニオンを支持するため、トラニオンとの整合をとり、構 造強度評価手法はJSME 設計・建設規格のクラス1支持構造物に準じることとする。

- 3) 既存評価書における構造強度評価方法
- ① 設計条件

乾式貯蔵キャスク及び支持架台の構造評価に当たっての荷重を以下に示す。

A. 圧力による荷重

乾式貯蔵キャスク各部の内面及び外面が受ける最高使用圧力,取り扱い時及び貯蔵 時に受ける圧力並びに試験圧力による荷重をいう。

既存評価における乾式貯蔵キャスクの最高使用圧力を以下に示す。

キャスク容器:1.6 MPa

- 二次蓋: 0.4 MPa
- B. 機械的荷重

自重,衝撃荷重及びその他の付加荷重をいう。機械的荷重の主なものは以下の通 りである。

- a. 自重による荷重
- b. ボルト締付け力
- c. 運搬時荷重
- d. 吊上げ荷重
- e. 衝擊荷重
- C. 熱荷重

乾式貯蔵キャスクに生じる温度変化,温度こう配による荷重であって,熱解析の 結果から得られるものをいう。

既存評価において用いる各構造部材の最高使用温度を以下に示す。

キャスク容器:170℃ バスケット :225℃ トラニオン :170℃ 支持架台 :50℃

② 評価方法

乾式貯蔵キャスク及び支持架台の構造解析フローを図 1.1-1 に,主な構造部材の応力評価箇所を図 1.1-2(1)~(4)に示す。

A. キャスク容器

キャスク容器の胴,底板及び蓋部等の構造強度は,想定される圧力荷重,機械的荷重, 熱荷重をもとに、キャスク容器の実形状をモデル化し、構造解析コード ABAQUS を用い て胴,底板、一次蓋、一次蓋締付けボルト等の応力評価を行う。

ABAQUS による解析は、圧力荷重、機械的荷重及び熱荷重によって生じる形状の不連続の効果を含む応力の解析及び温度分布計算に使用する。

B. バスケット

バスケットの構造強度評価は、想定される機械的荷重、熱荷重をもとにバスケットの

実形状をモデル化し、構造解析コード ABAQUS 及び応力評価式を用いて応力評価を行う。 ABAQUS による解析は、荷重によって生じる形状の不連続の効果を含む応力の解析及び 温度分布計算に使用する。

C. トラニオン

トラニオンの構造強度評価は想定される機械的荷重及び熱荷重を基に,応力評価式を用いて行う。

D. 二次蓋

二次蓋の構造強度評価は想定される機械的荷重及び熱荷重を基に,応力評価式を用いて 行う。

E. 支持架台

支持架台の構造強度評価は想定される機械的荷重及び熱荷重を基に,応力評価式を用い て行う。

図 1.1-1 乾式貯蔵キャスク及び支持架台の構造強度評価フロー

図 1.1-2(1) キャスク容器の応力評価箇所(全体断面図)

図 1.1-2(2) バスケットの応力評価箇所

図 1.1-2 (3) トラニオンの応力評価箇所

a) 支持架台の応力評価箇所

b)上部脚柱詳細

図 1.1-2(4) 支持架台の応力評価箇所

③ 設計事象と荷重の組み合わせ

乾式貯蔵キャスクの構造強度評価において考慮する設計事象を表 1.1-2 に示す。 既存評価における選定事象は以下の通りである。

[設計事象 I]

・貯蔵

- ・乾式貯蔵キャスクの吊上げ、吊下げ、移動
- ・事業所内運搬

[設計事象Ⅱ]

・コンクリート基礎への支持架台付きでの衝突

また,各設計事象においてキャスク容器,バスケット,トラニオン,二次蓋及び支持架 台の設計上考慮すべき荷重の種類とその組合せを表 1.1-3(1)~(5)に示す。(地震時を除 く)

設計 事象	定義	解記	既存評価における 選定事象
Ι	乾式貯蔵キャスクの 通常の取扱い時及び 貯蔵時の状態をい う。	貯蔵状態及び計画的な取扱い状 態。	 ・貯蔵 ・乾式貯蔵キャ スクの吊上げ,吊 下げ,移動 ・事業所内運搬
П	設計事象Ⅰ,設計事 象Ⅲ,設計事象Ⅳ及 び試験状態以外の状 態をいう。	乾式貯蔵キャスクの寿命程度の 期間中に予想される取扱い機器 の単一故障,単一誤動作等の事 象によって,乾式貯蔵キャスク が通常貯蔵状態あるいは通常取 扱い状態から外れるような状態 をいう。	 ・乾式貯蔵キャ スクの異常着床 ・乾式貯蔵キャ スクのキャスク 支持架台への衝 突
Ш	乾式貯蔵キャスク又 はその取扱い機器等 の故障,異常な作動 等により,貯蔵又は 計画された取扱いの 停止が緊急に必要と される状態をいう。	発生頻度が十分低い事象によっ て引き起こされる状態をいう。 すなわち,設計事象IIでいう機 器の単一故障,運転員の単一誤 操作等によって引き起こされる もののうち,その発生頻度が十 分に低いと考えられるものを分 類する。	
IV	乾式貯蔵キャスクの 安全設計上想定され る異常な事態が生じ ている状態をいう。	発生頻度が極めて低く,乾式貯 蔵キャスクの寿命中に起こると は考えられない事象によって引 き起こされる状態をいうが,万 一発生した場合の設計の妥当性 を確保するために特に設けたも のをいう。	
試 験 状 態	耐圧試験によりキャ スク容器に最高使用 圧力を超える圧力が 加えられている状態 をいう。		 ・耐圧試験 (製造時)

表 1.1-2 乾式貯蔵キャスクの設計事象

(JSME S FA1-2007 使用済燃料貯蔵施設規格 金属キャスク構造規格による)

設計事象	荷 重荷重時	圧力による荷重	自重による荷重	ボルト初期締付け力	運搬時荷重	吊上げ荷重	への衝突) (基礎コンクリート	熱荷重	備考
設計条件	設計時	$\bigcirc^{1)}$	\bigcirc	\bigcirc	$\bigcap^{2)}$	$\bigcirc^{2)}$	$\bigcirc^{2)}$		
1		-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	貯 蔵 時	0	0	0		0		0	
	貯 蔵 時 運 搬 時	00	3)	0	0			0	
Ι	貯蔵時運搬時吊上げ時	0	3) 3)	0	0	0		0	
I	 貯蔵時 運搬時 吊上げ時 搬出前作業及び 燃料取出し作業時 	0000	3) 3)	0 0 0	0	0		0 0 0	
І	 貯蔵時 運搬時 吊上げ時 搬出前作業及び 燃料取出し作業時 衝撃荷重作用時 		3) 3) 3)	0 0 0 0	0	0	0	0 0 0 0	

表 1.1-3(1) キャスク容器の設計上考慮すべき荷重の種類とその組合せ

注1)最高使用圧力

注2) 運搬時荷重,吊上げ荷重及び衝撃荷重は同時に作用しないので,最大荷重を用いて評価する。 注3) 本状態での自重による荷重は,運搬時荷重,吊上げ荷重及び衝撃荷重に含まれる。 注4) 最高使用圧力の1.5倍の圧力

設計事象	荷 重	自重による荷重	運搬時荷重	吊上げ荷重	トイの衝突) (基礎コンクリー	熱荷重	備考
設計条件	設計時	0	$\bigcirc^{1)}$	$\bigcirc^{1)}$	$\bigcirc^{1)}$		
	貯 蔵 時	\bigcirc				\bigcirc	
Ι	運搬時	2)	0			0	
Ι	運搬時 吊上げ時	2) 2)	0	0		0	

表 1.1-3(2) バスケットの設計上考慮すべき荷重の種類とその組合せ

注1) 運搬時荷重,吊上げ荷重及び衝撃荷重は同時に作用しないので,最大荷重 を用いて評価する。

注2)本状態での自重による荷重は,運搬時荷重,吊上げ荷重及び衝撃荷重に含 まれる。

設計事象	荷 重荷重時	自重による荷重	運搬時荷重	吊上げ荷重	トへの衝突) (基礎コンクリー	¹⁾ 熱 荷 重	備考
	貯 蔵 時	0				0	
Ι	運搬時	2)	0			0	
	吊上げ時	2)		0		0	
П	衝擊荷重作用時	2)			0	0	

表1.1-3(3) トラニオンの設計上考慮すべき荷重の種類とその組合せ

注 1) 乾式貯蔵キャスクにおける温度変化により生じる荷重をいう。ただ し、キャスク容器の熱膨張により生じる荷重に限る。

注 2) 本状態での自重による荷重は,運搬時荷重,吊上げ荷重及び衝撃荷 重に含まれる。

設計事象	荷 重荷重時	圧力による荷重	ガスケットからの荷重	自重による荷重	運搬時荷重	吊上げ荷重	の衝突) の衝突)	熱荷重	備考
Ι	貯蔵時	0	0	0					

表 1.1-3(4) 二次蓋の設計上考慮すべき荷重の種類とその組合せ

表 1.1-3 (5) 支持架台の設計上考慮すべき荷重の種類とその組合せ

④ 評価結果

既存評価の評価結果から規程を満足していることが確認されている。評価結果については参考資料に示す。

注 1) 乾式貯蔵キャスクにおける温度変化により生じる荷重をいう。ただし, キャスク容器の熱膨張により生じる荷重に限る。

4) 本設備での評価

表 1.1-4(1)~(4)に本仮保管設備での荷重条件と既存評価との比較を示す。 なお、二次蓋については圧力による荷重等により評価されるが、既存評価と本仮置設備で の評価でこれらの荷重条件に変更がないため、既存評価と差異はない。

以上から,本仮保管設備での荷重条件は既存評価における荷重条件に包絡されることか ら,本仮保管設備の乾式貯蔵キャスクの構造強度は規定を満たす。

		キ	ヤスク仮保管設	備		既存評価(1Fキャスク工	認)
設計 事象	代表 事象 ^{注1)}	包絡され る事象	荷重条件	評価結果	代表事象	包絡される 事象	荷重条件	備考
設計 条件	設計時	_	運搬時と 同じ	既存評価と同じ荷重 条件	設計時		運搬時と 同じ	設計時のうち,運搬時荷 重,吊上げ荷重及び衝撃荷 重の中で荷重条件が最も 厳しいのは運搬時荷重
	貯蔵時	_	圧力, 自重, ボルト, 熱	既存評価と同じ荷重 条件	貯蔵時	_	圧力, 自重, ボルト, 熱	設計事象 I のうち大半の 期間を占める代表的事象
Ι	運搬時	・仮保管設 備 内 で の 吊 上 げ	圧力, ボルト, 運搬 ^{注2)} , 熱	既存評価と同じ荷重 条件	運搬時	 ・取扱い時(原子 炉建屋内での吊 上げ) ・真空乾燥時 ・取扱い時(保管 建屋内での吊上 げ) 	圧力, ボルト, 運搬 ^{注2)} , 熱	荷重条件が最も厳しいため、代表事象は運搬時
п	基礎 コン クリート への 架台 付き 衝突		圧力, ボルト, 衝撃, 熱	「3.2 異常事象の評価」 の結果から,運搬時の 荷重条件に包絡 ^{注3)}	異常着床 キャスク支 持架台への 衝突 (保管建屋 内)	- キャスク支持架台 への衝突(原子炉 建屋内)	 圧力,ボルト, 熱,衝撃^{注4)} 圧力,ボルト, 熱,衝撃^{注4)} 	ー 板厚の薄い胴板が衝突す る保管建屋内での事象が 代表事象
試験 状態	試験時	—	圧力 ^{注5)} , 自重,ボルト	既存評価と同じ荷重 条件	試験時	_	圧力 ^{注5)} ,自 重,ボルト	_

表1.1-4(1) 既存評価との荷重条件の比較(キャスク容器)

注1) 本事象について応力解析を行う。

注2) 運搬時の荷重は上方向 2G,下方向 3G(自重を考慮),前後方向 2G,左右方向 1G

注3) 「3.2 異常事象の評価」の結果より衝撃荷重は中型乾式貯蔵キャスクで2.75G,大型乾式貯蔵キャスクで2.63Gとなり,運搬時の下方向 荷重3Gに包絡される。

注4) 衝撃荷重は2Gであり、自重を含む。

注5) クラス3容器の試験圧力である最高使用圧力の1.5倍の圧力

		キ	ャスク仮保管設	備	既存評価(1Fキャスク工認)			
設計 事象	代表 事象 ^{注1)}	包絡され る事象	荷重条件	評価結果	代表 事象	包絡される 事象	荷重条件	備考
設計 条件	設計時	_	運搬時と 同じ	既存評価と同じ荷重 条件	設計時	_	運搬時と 同じ	設計時のうち,運搬時荷 重,吊上げ荷重及び衝撃荷 重の中で荷重条件が最も 厳しいのは運搬時荷重
	貯蔵時	_	自重, 熱	既存評価と同じ荷重 条件	貯蔵時	_	自重, 熱	設計事象 I のうち大半の 期間を占める代表的事象
I	運搬時	 ・仮保管設 備内での の吊上 げ 	運搬 ^{注2)} ,熱	既存評価と同じ荷重 条件	運搬時	 ・取扱い時(原子 炉建屋内での吊 上げ) ・真空乾燥時 ・取扱い時(保管 建屋内での吊上 げ) 	運搬 ^{注2)} ,熱	荷重条件が最も厳しいため、代表事象は運搬時
					異常着床		熱, 衝撃 ^{注4)}	—
П	基礎 コン クリート への 架台 付き 衝突	_	熱,衝擊	「3.2 異常事象の評価」 の結果から,運搬時の 荷重条件に包絡 ^{注3)}	キャスク支 持架台への 衝突 (保管建屋 内)	キャスク支持架台 への衝突(原子炉 建屋内)	熱, 衝擊 ^{注4)}	板厚の薄い胴板が衝突す る保管建屋内での事象が 代表事象

表 1.1-4(2)既存評価との荷重条件の比較(バスケット)

注1) 本事象について応力解析を行う。

注2) 運搬時の荷重は上方向 2G,下方向 3G(自重を考慮),前後方向 2G,左右方向 1G

注3) 「3.2 異常事象の評価」の結果より衝撃荷重は大型乾式貯蔵キャスクで2.636,中型乾式貯蔵キャスクで2.756となり,運搬時の下方向 荷重36に包絡される。

注4) 衝撃荷重は2Gであり,自重を含む。

		+	ヤスク仮保管設	備		既存評価(1 F キャスク工	認)
設計 事象	代表 事象 ^{注1)}	包絡され る事象	荷重条件	評価結果	代表 事象	包絡される 事象	荷重条件	備考
	貯蔵時		自重, 熱	既存評価と同じ荷重 条件	貯蔵時	_	自重, 熱	設計事象 I のうち大半の 期間を占める代表的事象
I	運搬時		運搬 ^{注2)} ,熱	既存評価と同じ荷重 条件	運搬時	 ・取扱い時(原子 炉建屋内での吊 上げ) ・真空乾燥時 ・取扱い時(保管 建屋内での吊上 げ) 	運搬 ^{注2)} ,熱	荷重条件が最も厳しい事象
	吊上げ時		熱, 吊上げ ^{注3)}	既存評価と同じ荷重 条件	吊上げ時	_	熱, 吊上げ ^{注3)}	
	甘花林コンノ				異常着床	_	_	トラニオンに支持機能が 働かない状態
П	[~] クリート への架台 付き衝突	_	熱,衝撃	「3.2 異常事象の評価」 の結果から、運搬時の 荷重条件に包絡 ^{注4)}	キャスク支 持架台への 衝突 (保管建屋 内)			この荷重条件は運搬時に 包絡

表 1.1-4(3) 既存評価との荷重条件の比較(トラニオン)

注1) 本事象について応力解析を行う。

注2) 運搬時の荷重は上方向 2G,下方向 3G(自重を考慮),前後方向 2G,左右方向 1G

注3) 吊上げ荷重は 1.32G であり, 自重を含む。

注4) 「3.2 異常事象の評価」の結果より衝撃荷重は中型乾式貯蔵キャスクで2.75G,大型乾式貯蔵キャスクで2.63Gとなり,運搬時の下 方向荷重3Gに包絡される。

		キ	ャスク仮保管設	備		既存評価(1Fキャスクエ	認)
設計 事象	代表 事象 ^{注1)}	包絡され る事象	荷重条件	評価結果	代表 事象	包絡される 事象	荷重条件	備考
Ι	貯蔵時		自重,熱	既存評価と同じ荷重 条件	貯蔵時	_	自重,熱	設計事象 I のうち大半の 期間を占める代表的事象

表 1.1-4(4) 既存評価との荷重条件の比較(支持架台)

注1) 本事象について応力解析を行う。

参考資料

福島第一原子力発電所第6号機 工事計画認可申請書本文及び添付資料 福島第一原子力発電所第4号機 工事計画認可申請書本文及び添付資料 における応力計算結果の抜粋(地震時を除く)

1. 乾式貯蔵キャスク(大型) (出典:福島第一原子力発電所第6号機 工事計画認可申請書本文及び添付資料 Ⅳ-3-2 使用済燃料乾式貯蔵容器の応力計算書)

1.1 キャスク容器(1/2)

(応力値の単位:N/mm²)

部位	材 料	設計事象	一次一般胆	漠応力強さ	一次局部腿	模応力強さ	一次 一次曲げ	膜+ 応力強さ	一次+二)	欠応力強さ
			計算値	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力
		設計時	7	120	17	181	19	181		_
胴 板	GLF1相当	Ι, Π		_		—			42	362
		試験時	8	162	5	244	11	244		
		設計時	1	120	15	181	29	181		
一次蓋	GLF1相当	Ι, Π				—			29	362
		試験時	1	162	20	244	37	244		
		設計時	3	120	8	181	9	181		
底板	GLF1相当	Ι, Π				—			17	362
		試験時	3	162	6	244	12	244		
		設計時	7	133	33	200	49	200		
貫通孔蓋板	SUS304	Ι, Π				—			58	401
		試験時	8	135	33	203	49	203		
		設計時	16	120		—	17	181		
密封シール部	GLF1相当	Ι, Π				—			15	181
		試験時	10	162		_	10	181	10	181
		設計時	19	56		—	19	84		
ボス溶接部	SUS304L	Ι, Π		_	_	—	_	_	54	168
		試験時	1	57	_	_	1	85	_	_
ガンマ線遮へ		設計時	9	60	_	_	9	90	_	—
い体取付けボ	SUS304	Ι, Π	_	—	_	—	_	-	99	181
ルト溶接部		試験時	3	67			3	101		_

キャスク 家哭 (2/2)

キャスク容器 (2/2))				(応力値の単	i位:N/mm²)
部位	材 料	設計事象	平均引	張応力	平均引張応力+ 曲げ応力	
			計算値	許容応力	計算值	許容応力
一次蓋締付け	CDI 1	設計時	89	216		
ボルト	GDLI	Ι, Π	93	433	123	650
貫通孔蓋板	CDI 1	設計時	199	216		_
締付けボルト	ADLI	Ι, Π	234	433	306	650

許容応力は設計・建設規格による。

	1.2	バスケット(1/2	2)
--	-----	-----------	----

(応力値の単位:N/mm²)

	立下 人士	++ */	扔斗市在	一次一般膜応力強さ			一次膜+一次曲げ応力強さ			- 次+二次応力強さ			
	고만 여러	12 12	权 司 尹 豕	計算値	許容点	5力 ¹⁾	計算值	許容点	5力 ¹⁾	計算值	許容点	5力 ¹⁾	
ſ	N74 1		設計時	5	33	33	8	49	49	_		—	
	パスケット プレート	A6061P及 びB-Al	А6061РД 7КВ-40 I П	тп	п				_	_	11	99	
			1, 11							9 2)		49 ²⁾	
	バスケット サポート	SUS304	設計時	6	126	126	6	189	189			_	
			SUS304	Ι, Π			_		_		6	378	378

バスケット(2/2)

(応力値の単位・N/mm²)

部 位	材料	材料	材料	材料	材料	材料	材料	材料	材料	材料	材料	材料	材料	材料	材料	1料 設計事象	一次	一般膜応力	強さ	一次膜-	+一次曲げ点	な力強さ	一次膜	+二次膜応	力強さ	(一次	+二次)膜 曲げ応力強さ	応力+ <u>-</u>
			計算値	許容応	达力 ¹⁾	計算值	許容局	达力 ¹⁾	計算值	許容」	达力 ¹⁾	計算値	許容点	5力 ¹⁾														
バスケットサ	SUS204	設計時	72	126	126	_	—	—		_	—		_	—														
ボルト	505304	Ι, Π	_	—	—		—	—	77	125	125	77	166	166														

注1)設計・建設規格に基づく許容応力値を左側に、構造規格に基づく許容応力値を右側に示す。 注2)応力強さのサイクルにおける応力の最大値を評価。

1.3 トラニオン(1/3)

トラニオン(1/3)													(応力値の単	单位:N/mm²)
				一次応力										
部位	材料	設計事象	引張	:応力	圧縮	応力	せん圏	新応力	曲げ	応力	支圧	応力	組合せ	せ応力
			計算値	許容応力	計算值	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力
トラニオン	SUS630	Ι	10	390	10	389	88	225	188	390	37	732	242	390

トラニオン(2/3)									(応力値の単	单位:N/mm²)	
						一次+二	二次応力				
部位	材料	設計事象	設計事象	引張・周	E縮応力	せん幽	所応力	曲げ	応力	支圧	応力
			計算値	許容応力	計算値	許容応力	計算値	許容応力	計算值	許容応力	
トラニオン	SUS630	Ι	20	1172	99	676	188	1172	37	1098	

トラニオン(3/3)

					一次	応力		· · ·
部位	材 料	設計事象	引張応力		せん断応力		組合せ応力	
			計算值	許容応力	計算値	許容応力	計算值	許容応力
トラニオン 締付けボルト	GBL1	Ι	233	324	85	249	275	324

(応力値の単位:N/mm²)

許容応力は設計・建設規格による。

1.4 二次蓋

(厚さの単位:mm)

部位	材料	設計事象	設計厚さ	必要厚さ
平板	SUSF304	Ι	90.00	71.81
月同	SUSF304	Ι	57.00	3.05

許容応力は設計・建設規格による。

1.5 支持架台

:) 又村朱百			(応力値の単	位:N/mm ²)			
	立7.1七	++ #cl	机乱声色	一次応力1)				
	고마미국	1/1 1/1		計算值	許容応力			
	支持架台	炭素鋼 (SS400)	Ι	11	141			

許容応力は設計・建設規格による。

注1) 圧縮,曲げ,せん断による組合せ応力
2. 乾式貯蔵キャスク(中型) (出典:福島第一原子力発電所第4号機 工事計画認可申請書本文及び添付資料 Ⅳ-3-2 使用済燃料乾式貯蔵容器の応力計算書)

2.1 キャスク容器(1/2)

(応力値の単位:N/mm²)

部 位	材 料	設計事象	一次一般胆	莫応力強さ	一次局部胆	莫応力強さ	一次一次曲げ	膜+ 応力強さ	一次+二?	欠応力強さ
		計算値	許容応力	計算値	許容応力	計算值	許容応力	計算値	許容応力	
		設計時	6	120	10	181	13	181	_	_
胴 板	GLF1相当	Ι, Π						_	36	362
		試験時	7	162	4	244	10	244	_	
		設計時	1	120	13	181	24	181	_	_
一次蓋	GLF1相当	Ι, Π	_		_	—	_	—	24	362
		試験時	1	162	17	244	28	244	_	—
		設計時	2	120	12	181	14	181	—	
底板	GLF1相当	GLF1相当 Ⅰ, Ⅱ	_		_		_	—	16	362
		試験時	3	162	5	244	9	244	_	_
		設計時	9	133	33	200	50	200		—
貫通孔蓋板	SUS304	Ι, Π		—		—	_	—	58	401
		試験時	10	135	33	203	50	203	_	—
		設計時	16	120	_	—	17	181	—	—
密封シール部	GLF1相当	Ι, Π	_		_		_	—	15	181
		試験時	9	162		—	9	181	9	181
バスケットサ		設計時	60	60			60	90		—
ポート取付け	SUS304	Ι, Π	_			—	_	—	142	181
ボルト溶接部		試験時	4	67	_	_	4	101	_	_
ガンマ線遮へ		設計時	9	60	_	_	9	90	_	_
い体取付けボ	SUS304	Ι, Π	—	_	—	—	—	—	97	181
ルト溶接部		試験時	3	67	—	—	3	101	—	—

キャスク容器(2/2)

(広力値の単位・N/m	m^2)

	,					
部位	材 料	設計事象	平均引	張応力	平均引張応力+ 曲げ応力	
			計算値	許容応力	計算値	許容応力
一次蓋締付け	CDI 1	設計時	84	216		_
ボルト	GDL I	Ι, Π	88	433	113	650
貫通孔蓋板締	CDI 1	設計時	198	216		_
付けボルト	GDL1	Ι, Π	230	433	299	650

許容応力は設計・建設規格による。

2.2 バスケット(1/2)

(応力値の単位:N/mm²)

立7 人士	++ +×L	約 乳乳毒布	一次一般膜応力強さ			一次膜+一次曲げ応力強さ			一次+二次応力強さ		
	12 12	权 司 尹 豕	計算値	計算值 許容応力 ¹⁾		計算值	許容応力1)		計算值	許容」	5力 ¹⁾
×74 1		設計時	5	33	33	9	49	49			—
ハスケット プレート	バスケット A6061P及 プレート TKB-A0	тп						_	9	99	—
	O D Me	1, 11							8 2)		49 ²⁾
バスケット	CUC204	設計時	6	126	126	6	189	189			—
サポート 505	303304	Ι, Π		_	—		—	—	6	378	378

バスケット(2/2)

(応力値の単位・N/mm²)

部 位	材料	設計事象	一次一般膜応力強さ		一次膜+一次曲げ応力強さ			一次膜+二次膜応力強さ			(一次+二次) 膜応力+ 曲げ応力強さ			
			計算値	許容応	达力 ¹⁾	計算値	許容点	达力 ¹⁾	計算値	許容応	5力 ¹⁾	計算値	許容点	5力 ¹⁾
バスケットサ	CUC 204	設計時	85	126	126	_	_	—		—	—	_	_	_
ボルト	303304	Ι, Ш		_	_	_	_	_	89	125	125	89	166	166

注1)設計・建設規格に基づく許容応力値を左側に、構造規格に基づく許容応力値を右側に示す。

注2)応力強さのサイクルにおける応力の最大値を評価。

2.3 H	・ラニオン(1/3)
-------	------------

Ⅲ-2-13-添 3-25

トラニオン(1/3)													(応力値の単	i位:N/mm ²)
部位	材料	設計事象	引張	応力	圧縮	応力	せん幽	所応力	曲げ	応力	支圧	応力	組合せ	せ応力
			計算値	許容応力	計算値	許容応力	計算值	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力
トラニオン	SUS630	Ι	9	390	9	389	74	225	157	390	37	732	202	390

トラニオン(2/3)									(応力値の単	单位:N/mm²)		
				一次+二次応力								
部位	材料	設計事象	引張・E	引張・圧縮応力		引張・圧縮応力 せん断応力		所応力	曲げ	応力	支圧	応力
			計算値	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力		
トラニオン	SUS630	Ι	17	1172	83	676	157	1172	37	1098		

$h = \pm \frac{1}{2} (3/3)$

								- <u>197</u> . 18/ 11111 /			
			一次応力								
部 位 材料 請		設計事象	引張	応力	せん圏	所応力	組合せ応力				
			計算值	許容応力	計算值	許容応力	計算值	許容応力			
トラニオン 締付けボルト	GBL1	Ι	194	324	71	249	230	324			

(広力値の単位・N/mm²)

許容応力は設計・建設規格による。

2.	4	二次蓋

(厚さの単位:mm)

部位	材料	設計事象	設計厚さ	必要厚さ
平板	SUSF304	Ι	90.00	64.18
胴	SUSF304	Ι	57.00	3.00

許容応力は設計・建設規格による。

2.5 支持架台

5 支持架台			(応力値の単	i位:N/mm²)
本7.(士	++ */	扒斗車角	一次,	芯力 ¹⁾
고마미고	171 177	议 司 尹 豕	計算值	許容応力
支持架台	炭素鋼 (SS400)	Ι	9	141

許容応力は設計・建設規格による。

注1)圧縮,曲げ,せん断による組合せ応力

(1) 概要

ABAQUS コードは米国 Hibbitt, Karlsson&Sorensen, Ins. (HKS 社)で開発された有限要素法に基づく応力・座屈解析等の汎用解析コードであり,輸送キャスクの応力解析等に広く利用されている。

(2)機能

ABAQUS コードは、応力解析に際して以下の機能を有している。

- ① 定常,非定常の弾性,非弾性のいずれの解も得ることができる。
- ② 材料特性として時間依存, 歪の履歴依存及びに等方性・異方性等を考慮することができる。
- ③ モデルの形状は一次元~三次元,又は連続体についても取り扱うことができる。
- ④ 伝熱解析結果をそのまま境界条件として熱応力解析に用いることが可能である。
- ⑤ 荷重条件として集中荷重,分布荷重,モーメント,加速度力(慣性力),圧力,遠心力及びコリオリカ等が取り扱える。また,これらの条件の時間依存,線形変化に対しても対応可能である。
- (3)解析フローABAQUS コードの解析フローを図 1.1-3 に示す。
- (4) 使用実績 ABAQUS コードは、これまで多くの応力解析に対し使用実績がある。
- (5)検証方法理論値との比較による検証が実施されていることを確認している。

図 1.1-3 ABAQUS コードの応力解析フロー図

- (2) 輸送貯蔵兼用キャスク A
- 1) 評価方針

本設備で保管する輸送貯蔵兼用キャスクAは,既存設計のものを使用する。従って,輸送貯 蔵兼用キャスクAの構造評価は,基本的に既存評価の結果を基に評価し,既存評価の結果を参 考とできない内容については新たに評価を実施し,本設置場所での保管に適合していることを 確認する。

- 2) 主な構成部材と適用基準
- ① 主な構成部材

輸送貯蔵兼用キャスクの構造強度設計は,要求される安全機能を維持するため,次の構造部材について評価する。

A. キャスク容器

輸送貯蔵兼用キャスクAのうち,放射性物質を閉じ込めるための圧力バウンダリを構成する ものであって,胴,底板,フランジ,一次蓋,一次蓋締付けボルト,カバープレート及びカ バープレート締付けボルトをいう。

B.バスケット

輸送貯蔵兼用キャスクAの容器内に配置され、使用済燃料を収納し、かつ燃料間距離を保つ ことにより、燃料の支持機能及び臨界防止機能を併せ持つものであって、バスケットプレー トをいう。

バスケットの応力解析は、バスケットプレートについて行っている。

C. トラニオン

輸送貯蔵兼用キャスクAの取扱い及び仮保管時の支持のため、吊上げ及び固定に使用される ものであって、トラニオンをいう。

トラニオンについて応力解析を行っている。

D. 二次蓋

輸送貯蔵兼用キャスクAの密封監視のための圧力空間を保持するための部材であると同時 に、一次蓋と二次蓋で多重の閉じ込め構造を形成し、一次蓋と同等の閉じ込め性能を要求さ れる部材である。

② 適用基準と規格

輸送貯蔵兼用キャスクAの構造強度設計には「使用済燃料貯蔵施設規格金属キャスク構造規格(JSME S FA1-2007)」を適用する。

3) 既存設計における構造強度評価方法

輸送貯蔵兼用キャスクAの強度評価にあたり、既存設計における評価方法を示す。

① 設計条件

輸送貯蔵兼用キャスクAの構造評価にあたっての荷重を以下に示す。

A. 圧力による荷重

輸送貯蔵兼用キャスクA各部の内面及び外面が受ける最高使用圧力,取り扱い時及び貯蔵時 に受ける圧力並びに試験圧力による荷重をいう。

既存評価における輸送貯蔵兼用キャスクAの最高使用圧力を以下に示す。

キャスク容器:1.5 MPa

二次蓋 : 0.31 MPa

- B. 機械的荷重
 - 自重, 衝撃荷重及びその他の付加荷重をいう。機械的荷重の主なものは以下の通りである。
 - a. 自重による荷重
 - b. ボルト締付け力
 - c. 吊上げ荷重
 - d. 衝擊荷重
- C.熱荷重

輸送貯蔵兼用キャスクAに生じる温度変化,温度こう配による荷重であって,熱解析の結果から得られるものをいう。

既存評価書における各構造部材の最高使用温度を以下に示す。

キャスク容器:130℃

- バスケット :170℃
- トラニオン :110℃
- 二次蓋 :100℃
- ② 評価方法

輸送貯蔵兼用キャスクAの構造解析フローを図1.1-4に,主な構造部材の応力評価箇所を図 1.1-5(1),(2)に示す。

A. キャスク容器

キャスク容器の胴,底板及び蓋部等の構造強度は,想定される圧力荷重,機械的荷重,熱 荷重をもとに、キャスク容器及び二次蓋の実形状をモデル化し、構造解析コードABAQUSを用 いて、胴,底板、フランジ、一次蓋及び一次蓋締付けボルト等の応力評価を行う。

ABAQUSによる解析は、圧力荷重、機械的荷重及び熱荷重によって生じる形状の不連続の効果を含む応力の解析及び温度分布計算に使用する。

B.バスケット

バスケットの構造強度評価は、想定される機械的荷重、熱荷重をもとにバスケットの実形 状をモデル化し、構造解析コードABAQUS及び応力評価式を用いて応力評価を行う。

C.トラニオン

トラニオンの構造強度評価は想定される機械的荷重及び熱荷重を基に、応力評価式を用い

て評価を行う。

D. 二次蓋

二次蓋の構造強度評価は、キャスク容器の構造強度評価と同時に構造解析コードABAQUSにより計算し、二次蓋及び二次蓋締付けボルトの応力評価を行う。

図 1.1-4 輸送貯蔵兼用キャスク A の構造強度評価フロー

図 1.1-5(1) キャスク容器の応力評価箇所(全体断面図)

図 1.1-5(2) バスケットの応力評価箇所

③ 設計事象と荷重の組み合せ

既存評価書における輸送貯蔵兼用キャスクAの設計事象と選定事象を表1.1-5に示す。 設計事象Ⅰ及びⅡにおける選定事象は以下のとおりである。

[設計事象 I]

- ・貯蔵時
- ・吊上げ、吊下げ、移動
- [設計事象Ⅱ]
 - ・支持脚への衝突
 - ・貯蔵架台への衝突

また,各設計事象においてキャスク容器及び二次蓋,バスケット,トラニオンの設計上考慮すべき荷重の種類とその組合せを表 1.1-6(1)~(3)に示す。(地震時を除く)

設計 事象	定義	解說	選定事象
Ι	輸送貯蔵兼用キャスク	輸送貯蔵兼用キャスクの計画的な	・貯蔵
	の通常の取扱い時及び	取扱い状態。	・吊上げ、吊下げ、移
	運搬時の状態をいう。		動
П	設計事象 I, 設計事象	輸送貯蔵兼用キャスクの寿命程度	・支持脚への衝突
	Ⅲ,設計事象IV及び試	の期間中に予想される取扱い機器	・貯蔵架台への衝突
	験状態以外の状態をい	の単一故障,単一誤動作等の事象に	
	う。	よって, 輸送貯蔵兼用キャスクが通	
		常取扱い状態から外れるような状	
		態をいう。	
III	輸送貯蔵兼用キャスク	発生頻度が十分低い事象によって	
	又はその取扱い機器等	引き起こされる状態をいう。すなわ	
	の故障,異常な作動等	ち,設計事象Ⅱでいう機器の単一故	
	により、計画された取	障,運転員の単一誤操作等によって	
	扱いの停止が緊急に必	引き起こされるもののうち,その発	
	要とされる状態をい	生頻度が十分に低いと考えられる	
	う。	ものを分類する。	
IV	輸送貯蔵兼用キャスク	発生頻度が極めて低く、輸送貯蔵兼	
	の安全設計上想定され	用キャスクの寿命中に起こるとは	
	る異常な事態が生じて	考えられない事象によって引き起	
	いる状態をいう。	こされる状態をいうが、万一発生し	
		た場合の設計の妥当性を確保する	
		ために特に設けたものをいう。	
試験	耐圧試験により、キャ		・耐圧試験
状態	スク容器に最高使用圧		(製造時)
	力を超える圧力が加え		
	られている状態をい		
	う。		

表 1.1-5 既存評価書における輸送貯蔵兼用キャスク A の設計事象

設計事象供	;用状態 評	圧力による荷重	自重による荷重	ボルト初期締付け力	吊上げ荷重	衝撃荷重	熱荷重	
設計条件	設計条件	設計時注1)	0	注4)	0	0	0	_
_	A ^{注2)}	通常貯蔵時	0	0	0	_	_	0
I		吊上げ時	0	注4)	0	0	_	0
П	B ^{注2)}	衝擊荷重作用時	0	注4)	0	_	0	0
試験状態	試験状態	試験時	○注3)	0	0	_	_	_

表 1.1-6(1) キャスク容器及び二次蓋の設計上考慮すべき荷重の種類とその組合せ

注1) 最高使用圧力に対する評価条件で、供用状態A及びBの一次応力評価を代表する事象

注2) 評価事象の中で、他の評価事象に包絡される事象や荷重条件については評価を省略する。

注3) 耐圧試験圧力(最高使用圧力により定められる圧力)とする。

注4) 本状態での自重による荷重は、衝撃荷重又は吊上げ荷重の慣性力による荷重に含まれる。

供用設計事象		自重による荷重	吊上げ荷重	衝擊荷重	熱荷重	
設計条件	設計条件	設計時 ^{注1)}	注2)	0	0	_
	А	貯 蔵 時	0		_	0
		吊上げ時	注2)	0	_	0
П	В	衝擊荷重作用時	注2)	_	0	0

表 1.1-6(2) バスケットの設計上考慮すべき荷重の種類とその組合せ

注1) 供用状態A及びBの一次応力評価を代表する事象

注2) 本状態での自重による荷重は、衝撃荷重又は吊上げ荷重の慣性力による荷 重に含まれる。

供用設計事象	月状態	荷 重 評価事象	自重による荷重	固縛荷重	吊上げ荷重	衝撃荷重	熱荷 重 ^{注1)}
Ţ	А	貯 蔵 時	0	0	_	_	0
I		吊上げ時	注2)	_	0	_	0
П	В	衝擊荷重作用時	注2)	_	_	0	0

表1.1-6(3) トラニオンの設計上考慮すべき荷重の種類とその組合せ

注1) キャスク容器の熱膨張により生じる応力に限る。

注2) 本状態での自重による荷重は、衝撃荷重又は吊上げ荷重の慣性力による荷重に含 まれる。

④ 評価結果

既存評価の評価結果から規程を満足していることが確認されている。

4) 本設備での評価

表 1.1-7(1)~(3)に本仮保管設備での荷重条件と既存評価との比較を示す。このことから以下のことが言える。

- ①キャスク容器(二次蓋含む)の設計条件,運搬時(設計事象Ⅰ),搬送台車架台への衝突時(設計事象Ⅱ)の評価加速度は既存評価書で包絡される。吊上げ時(設計事象Ⅰ)の評価加速度は後述の5)で行う「支持架台への衝突時(設計事象Ⅱ)」の解析で用いる加速度に包絡される。
- ②バスケットの設計条件,運搬時(設計事象Ⅰ),搬送台車架台への衝突時(設計事象Ⅱ)の評価加速度は既存評価書で包絡される。吊上げ時(設計事象Ⅰ)の評価加速度は後述の
 5)で行う「支持架台への衝突時(設計事象Ⅱ)」の解析で用いる加速度に包絡される。
- ③トラニオンの運搬時(設計事象I),搬送台車架台への衝突時(設計事象Ⅱ)の評価加速 度は既存評価書で包絡される。吊上げ時(設計事象I)の評価加速度は後述の5)で行う「支 持架台への衝突時(設計事象Ⅱ)」の解析で用いる加速度に包絡される。

以上の包絡性の説明及び本設備において最も厳しい荷重条件として、「支持架台への衝突 (設計事象Ⅱ)」について応力解析を実施する。評価対象は、キャスク容器、二次蓋、バス ケット及びトラニオンの各部とする。

なお,キャスク容器(二次蓋含む)の設計条件(最高使用圧力)及び試験状態は既存評価書 により包絡する。

設計			キャスク仮	保管設備	参考(既存評価書)				
事象	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表 事象	包絡され る事象	荷重条件	備考	
設計 条件	設計条件	_	圧力 ^{注1)} , ボルト, 衝撃 ^{注2)}	 ・最高使用圧力における縦姿勢における 衝撃荷重負荷時の評価は既存評価書で 包絡する。 ○(既存評価書で包絡) 	設計時	_	圧力 ^{注1)} , ボルト, 衝撃 ^{注3)}	設計事象Ⅰ及びⅡの 中で荷重条件が最も 厳しいのは貯蔵架台 への衝突時	
吊上げ	모 니/관랴	吊上げ時 貯蔵時	圧力、ボル		荷重条件,支持条件が同じ「キャスク支 持架台への衝突(設計事象Ⅱ)」の評価	貯蔵時	_	圧力,ボル ト,自重, 熱	設計事象 I のうち大 半の期間を占める代 表的事象
	中工10時		下, 市工り ^一 ⁴⁾ , 熱	で包絡する。 ○ (設計事象Ⅱで包絡)	吊上げ時	_	圧力,ボル ト,吊上げ ^注 ⁵⁾ ,熱	荷重条件が最も厳し いのは吊上げ時	
I	運搬時 —	_ 圧力, ボル 熱, 運搬 ^{注(}		ルト, _{注6)} 核燃料輸送物設計承認申請書のうち,一 般の試験条件 0.3m 落下に包絡する。 〇(既存評価書で包絡)	一般の試験 条件 0.3m 頭 部垂直落下	_	圧力,ボル ト,熱,落 下時荷重 ^注 ⁷⁾	_	
			圧力,ボルト, 熱,運搬 ^{注6)}		一般の試験 条件 0.3m 底 部垂直落下	_	圧力,ボル ト,熱,落 下時荷重 ^注 ⁷⁾	_	
					 一般の試験 条件 0.3m 水平落下 	_	圧力,ボル ト,熱,落 下時荷重 ^注 ⁷⁾	_	

表 1.1-7(1) 既存評価との比較と評価方法(キャスク容器及び二次蓋)

設計事象		キャスク仮保管設備					参考 (既存評価書)			
	代表事象	包絡される事象	荷重条件	本設備での評価方法(包絡性含む)	代表 事象	包絡され る事象	荷重条件	備考		
П	支持架台へ の衝突時	輸送架台 への衝突 時	圧力, ボルト, 衝撃 ^{注8)} , 熱	他事象の包絡及び本設備の設計事象Ⅰ及 びⅡにおける最も厳しい荷重条件として 解析評価する。 ◎(応力解析を実施)	_	_	_	_		
	搬送台車架 台への衝突 時		圧力, ボルト,	既存評価における「支持脚への衝突時」	支持脚への 衝突時	_	圧力, ボル ト, 衝撃 ^注 ⁹⁾ , 熱	_		
		衝擊 ^{注2)} ,熱	○(既存評価書で包絡)	貯蔵架台へ の衝突時	_	圧力, ボル ト, 衝撃 ^注 ³⁾ , 熱	荷重条件が最も厳し いのは,貯蔵架台へ の衝突時			
試験 状態	試験時	_	圧力 ^{注9)} , 自重, ボルト	既存評価と同じ荷重条件 〇(既存評価書で包絡)	試験時	_	圧力 ^{注 10)} , 自重, ボル ト	_		

表 1.1-7(1) 既存評価との比較と評価方法(キャスク容器及び二次蓋)

◎:解析を実施。 ○:既存評価又は他の評価事象で包絡

注1) キャスク容器内圧は最高使用圧力。

注2) 衝撃荷重は縦姿勢下方向2.33Gであり、自重を含む。

注3) 衝撃荷重は縦姿勢下方向5Gであり,自重を含む。

注4) 吊上げ荷重は横姿勢下方向1.32Gであり,自重を含む。

注5) 吊上げ荷重は縦姿勢下方向1.3Gであり、自重を含む。

注 6) 運搬時荷重は上方向 2G,下方向 3G (自重を含む),前後方向 2G,左右方向 1G である。

注7) 頭部垂直落下荷重は25.1G,底部垂直落下荷重は25.1G,水平落下荷重は18.2Gである。

注8) 衝撃荷重は横姿勢下方向3Gであり、自重を含む。

注9) 衝撃荷重は縦姿勢下方向2.5Gであり、自重を含む。

注10) 最高使用圧力の1.25倍の圧力。

設計			キャスク仮保管認	2備	参考(既存評価書)			
事象	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表事象	包絡される 事象	荷重条件	備考
設計 条件	設計条件	_	衝擊注1)	 ・縦姿勢における衝撃荷重負荷時の 一次応力に対する評価は既存評価 書の「貯蔵架台への衝突時(設計事 象Ⅱ)」で包絡する。 ○(既存評価書で包絡) 	設計時	_	衝擊注2)	_
	吊上げ時	貯蔵時	吊上げ ^{注 3)} , 熱	荷重条件,支持条件が同じ「キャス ク支持架台への衝突(設計事象Ⅱ)」 の評価で包絡する。 ○(設計事象Ⅱで包絡)	貯蔵架台へ の衝突時	・貯蔵時 ・吊上げ時	衝擊 ^{注2)} ,熱	設計事象Ⅱの 条件に包絡さ れる
Ι	運搬時	_	熱, 運搬 ^{注4)}	核燃料輸送物設計承認申請書のう ち,一般の試験条件 0.3m 落下に包 絡する。 ○(既存評価書で包絡)	 一般の試験条 件 0.3m 頭部垂 直落下 一般の試験条 件 0.3m 底部垂 直落下 一般の試験条 件 0.3m 底部垂 本平落下 	_	 圧力,ボル ト,熱,洋 下時荷重^{注5)} 圧力,ボル ト,熱,落 下時荷重^{注5)} 圧力,ボル ト,熱,落 下時荷重^{注5)} 	_

表 1.1-7(2)既存評価の比較と評価方法 (バスケット)

設計 事象		キャスク仮保管設備				参考(既存評価書)			
	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表 事象	包絡される 事象	荷重条件	備考	
П	支持架台への 衝突時 ^{注6)}	輸送架台へ の衝突時	衝擊 ^{注7)} ,熱	他事象の包絡及び本設備の設計事 象Ⅰ及びⅡにおける最も厳しい荷 重条件として評価する。 ◎(応力解析を実施)	_	_	_	_	
	搬送台車架台 への衝突時	_	衝擊 ^{注1)} ,熱	既存評価と同じ荷重条件 〇(既存評価書で包絡)	貯蔵架台へ の衝突時	 ・支持脚への 衝突時 	衝擊 ^{注2)} ,熱	_	

表 1.1-7(2) 既存評価の比較と評価方法 (バスケット)

◎:解析を実施。 ○:既存評価又は他の評価事象で包絡

注1) 衝撃荷重は縦姿勢下方向2.33Gであり,自重を含む。

注2) 衝撃荷重は縦姿勢下方向 5G であり, 自重を含む。

注3) 吊上げ荷重は横姿勢下方向1.32Gであり、自重を含む。

注4) 運搬時荷重は上方向2G,下方向3G(自重を含む),前後方向2G,左右方向1Gである。

注 5) 頭部垂直落下荷重は 25.1G,底部垂直落下荷重は 25.1G,水平落下荷重は 18.2G である。

注 6) 長期荷重(自重)に対する評価を含む。

注7) 衝撃荷重は横姿勢下方向 3G であり, 自重を含む。

設計			キャスク仮保管設	備	参考(既存評価書)			
事象	代表事象	包絡される事象	荷重条件	本設備での評価方法(包絡性含む)	代表 事象	包絡される事象	荷重条件	備考
				荷重条件、支持条件が同じ「キャ スク支持架台への衝空(設計事象)	貯蔵時	_	自重, ボルト, 熱	_
I	吊上げ時	貯蔵時	吊上げ ^{注1)} ,熱	 II)」の評価で包絡する。 ○(設計事象Ⅱで包絡) 	吊上げ時	_	吊上げ ^{注2)} ,熱	荷 重条件 が 最 も 厳 しいため,代表事象 を吊上げ時とする。
	運搬時	_	運搬 ^{注3)} ,熱	核燃料輸送物設計承認申請書の うち,通常の輸送条件に包絡され る。 ○(既存評価書で包絡)	運搬時	_	運搬 ^{注3)} ,熱	_
п —	支持架台への 衝突時	輸送架台へ の衝突時	衝擊 ^{注4)} ,熱	本設備の設計事象Ⅱにおける最 も厳しい荷重条件として評価す る。 ◎(応力解析を実施)	_	_	_	_
	搬送台車架台 への衝突時	_	衝撃 ^{注5)} ,熱	既存評価と同じ荷重条件 ○(既存評価書で包絡)	支持脚への 衝突時	・貯蔵架台 への衝突	衝擊 ^{注6)} ,熱	荷重条件が最も厳 しいため,代表事象 を支持脚への衝突 時とする。

表 1.1-7(3) 既存評価の比較と評価方法(トラニオン)

◎:解析を実施。 ○:既存評価又は他の評価事象で包絡

注1) 吊上げ荷重は横姿勢下方向1.32Gであり、自重を含む

注 2) 縦姿勢下方向 1.3G であり, 自重を含む。

注3) 運搬時荷重は上方向2G,下方向3G(自重を含む),前後方向2G,左右方向1Gである。

注4) 横姿勢下方向 3G であり,自重を含む。

注5) 衝撃荷重は縦姿勢下方向2.33Gであり,自重を含む。

注6) 衝撃荷重は縦姿勢下方向2.5Gであり,自重を含む。

Ⅲ-2-13-添 3-44

- 5) 支持架台への衝突時の評価(設計事象II) 以下に支持架台への衝突時の応力解析結果を示す。
- 計算条件
- A. 解析事象
 - 「支持架台のへ衝突時」

キャスクの支持架台への設置に作業員の誤操作によりクレーンの下降速度でトラニオンがトラ ニオン受台に着床する事象をいう。着床時の衝突荷重(加速度:自重を含む)は,「3.2 異常事象 の評価」での評価に余裕をみて 3G とする。

B. 最高使用温度

各機器の最高使用圧力及び最高使用温度は添付資料-4「1.1.乾式キャスクの除熱機能 (2)輸送貯蔵兼用キャスクAの除熱機能」の解析結果に基づき,以下とする。

私 1.1 0 取间区//II工/I及O取间区//i皿及						
キャスク容器	最高使用圧力	1.5 MPa				
	最高使用温度	130 °C				
	最高使用圧力	0.31 MPa				
	最高使用温度	90 °C				
バスケット	最高使用温度	170 °C				
トラニオン	最高使用温度	100 °C				

表 1.1-8 最高使用圧力及び最高使用温度

② 解析方法

A. 解析手順

a. キャスク容器及び二次蓋

キャスク容器の応力解析は、想定される圧力荷重、機械的荷重及び熱荷重を基に、キャスク容器の実 形状をモデル化し、解析コードである ABAQUS を用いて行う。

なお、二次蓋についてもキャスク容器と同様に評価を行う。

b.バスケット

バスケットの応力解析は、想定される機械的荷重及び熱荷重を基に、バスケットの実形状をモデル化し、解析コードである ABAQUS を用いて行う。

c.トラニオン

トラニオンの応力解析は、想定される機械的荷重及び熱荷重を基に応力評価式を用いて行う。

B.解析結果

表 1.1-9 に支持架台への衝突時の主な応力評価結果を示す。

支持架台への衝突時において輸送貯蔵兼用キャスク A は金属キャスク構造規格に定められた許容応 力を満足している。

評価部位	部位	計算値	許容応力
キャスク容器	胴,フランジ,底板	81	370
	一次蓋	24	370
	一次蓋密封シール部	40	184
	一次蓋締付けボルト	367	901
二次蓋	二次蓋	31	382
	二次蓋密封シール部	39	184
	二次蓋締付けボルト	410	925
バスケット	バスケットプレート	13	174
トラニオン	トラニオン	154	394

表 1.1-9 支持架台の衝突時の応力評価結果

(単位:MPa)

6) 評価結果

5)に示したとおり、「支持架台への衝突時」(設計事象II)において輸送貯蔵兼用キャスクAの各評価部位(キャスク容器、二次蓋、バスケット、トラニオン)は金属キャスク構造規格に定められた許容応力を満足する。

従って,表1.1-7に示す「支持架台の衝突時」で包絡する各設計事象は、いずれも輸送貯蔵兼用キャスクAの構造強度の規程を満足し、輸送貯蔵兼用キャスクAは、本設備で要求される構造強度を有している。

- (3) 輸送貯蔵兼用キャスク B
- 1) 評価方針

本設備で保管する輸送貯蔵兼用キャスクBは,既存設計のものを使用する。従って,輸送貯 蔵兼用キャスクBの構造評価は,基本的に既存評価の結果を基に評価し,既存評価の結果を参 考とできない内容については新たに評価を実施し,本設置場所での保管に適合していることを 確認する。

- 2) 主な構成部材と適用基準
- ① 主な構成部材

輸送貯蔵兼用キャスクの構造強度設計は,要求される安全機能を維持するため,次の構造部材について評価する。

A. キャスク容器

輸送貯蔵兼用キャスクBのうち,放射性物質を閉じ込めるための圧力バウンダリを構成する ものであって,胴,底板,一次蓋,一次蓋締付けボルト,カバープレート及びカバープレー ト締付けボルトをいう。

B.バスケット

輸送貯蔵兼用キャスクBの容器内に配置され、使用済燃料を収納し、かつ燃料間距離を保つ ことにより、燃料の支持機能及び臨界防止機能を併せ持つものであって、バスケットプレー トをいう。

バスケットの応力解析は、バスケットプレートについて行っている。

C. トラニオン

輸送貯蔵兼用キャスクBの取扱い及び仮保管時の支持のため、吊上げ及び固定に使用される ものであって、トラニオンをいう。

トラニオンについて応力解析を行っている。

D. 二次蓋

輸送貯蔵兼用キャスクBの密封監視のための圧力空間を保持するための部材であると同時 に、一次蓋と二次蓋で多重の閉じ込め構造を形成し、一次蓋と同等の閉じ込め性能を要求さ れる部材である。

② 適用基準と規格

輸送貯蔵兼用キャスクBの構造強度設計には「使用済燃料貯蔵施設規格金属キャスク構造規格(JSME S FA1-2007)」を適用する。

3) 既存設計における構造強度評価方法

輸送貯蔵兼用キャスク B の強度評価にあたり,既存設計における評価方法を示す。

① 設計条件

輸送貯蔵兼用キャスクBの構造評価にあたっての荷重を以下に示す。

A. 圧力による荷重

輸送貯蔵兼用キャスクB各部の内面及び外面が受ける最高使用圧力,取扱い時及び貯蔵時に 受ける圧力並びに試験圧力による荷重をいう。

既存評価における輸送貯蔵兼用キャスクBの最高使用圧力を以下に示す。

キャスク容器:1.0 MPa

二次蓋 : 0.4 MPa

- B. 機械的荷重
 - 自重, 衝撃荷重及びその他の付加荷重をいう。機械的荷重の主なものは以下の通りである。
 - a. 自重による荷重
 - b.ボルト締付け力
 - c. 吊上げ荷重
 - d.衝擊荷重
- C.熱荷重

輸送貯蔵兼用キャスクBに生じる温度変化,温度こう配による荷重であって,熱解析の結果から得られるものをいう。

既存評価書における各構造部材の最高使用温度を以下に示す。

キャスク容器:150℃

- バスケット :260℃
- トラニオン :130℃
- 二次蓋 :110℃
- ② 評価方法

輸送貯蔵兼用キャスクBの構造解析フローを図1.1-6に,主な構造部材の応力評価箇所を図 1.1-7(1),(2)に示す。

A. キャスク容器

キャスク容器の胴,底板及び蓋部等の構造強度は,想定される圧力荷重,機械的荷重,熱 荷重をもとに、キャスク容器及び二次蓋の実形状をモデル化し、構造解析コードABAQUSを用 いて、胴,底板、一次蓋及び一次蓋締付けボルト等の応力評価を行う。

ABAQUSによる解析は、圧力荷重、機械的荷重及び熱荷重によって生じる形状の不連続の効果を含む応力の解析及び温度分布計算に使用する。

B.バスケット

バスケットの構造強度評価は,想定される機械的荷重,熱荷重をもとに応力評価式を用い て応力評価を行う。

C.トラニオン

トラニオンの構造強度評価は想定される機械的荷重及び熱荷重を基に,応力評価式を用いて評価を行う。

D. 二次蓋

二次蓋の構造強度評価は、キャスク容器の構造強度評価と同時に構造解析コードABAQUSにより計算し、二次蓋及び二次蓋締付けボルトの応力評価を行う。

図 1.1-6 輸送貯蔵兼用キャスク B の構造強度評価フロー

図 1.1-7(1) キャスク容器の応力評価箇所(全体断面図)

図 1.1-7(2) バスケットの応力評価箇所

③ 設計事象と荷重の組合せ

既存評価書における輸送貯蔵兼用キャスクBの設計事象と選定事象を表1.1-10に示す。 設計事象I及びⅡにおける選定事象は以下のとおりである。

[設計事象 I]

- ・貯蔵時
- ・吊上げ、吊下げ、移動
- [設計事象Ⅱ]
 - ・支持脚への衝突
 - ・貯蔵架台への衝突

また,各設計事象においてキャスク容器及び二次蓋,バスケット,トラニオンの設計上考慮すべき荷重の種類とその組合せを表 1.1-11(1)~(3)に示す。(地震時を除く)

設計 事象	定義	解說	選定事象
Ι	輸送貯蔵兼用キャスク	輸送貯蔵兼用キャスクの計画的な	・貯蔵
	の通常の取扱い時及び	取扱い状態。	・吊上げ、吊下げ、移動
	運搬時の状態をいう。		
П	設計事象 I, 設計事象	輸送貯蔵兼用キャスクの寿命程度	・支持脚への衝突
	Ⅲ,設計事象IV及び試	の期間中に予想される取扱い機器	・貯蔵架台への衝突
	験状態以外の状態をい	の単一故障、単一誤動作等の事象に	
	う。	よって, 輸送貯蔵兼用キャスクが通	
		常取扱い状態から外れるような状	
		態をいう。	
Ш	輸送貯蔵兼用キャスク	発生頻度が十分低い事象によって	
	又はその取扱い機器等	引き起こされる状態をいう。すなわ	
	の故障,異常な作動等	ち,設計事象Ⅱでいう機器の単一故	
	により、計画された取	障,運転員の単一誤操作等によって	
	扱いの停止が緊急に必	引き起こされるもののうち、その発	
	要とされる状態をい	生頻度が十分に低いと考えられる	
	う。	ものを分類する。	
IV	輸送貯蔵兼用キャスク	発生頻度が極めて低く, 輸送貯蔵兼	
	の安全設計上想定され	用キャスクの寿命中に起こるとは	
	る異常な事態が生じて	考えられない事象によって引き起	
	いる状態をいう。	こされる状態をいうが、万一発生し	
		た場合の設計の妥当性を確保する	
		ために特に設けたものをいう。	
試験	耐圧試験により、キャ		・耐圧試験
状態	スク容器に最高使用圧		(製造時)
	力を超える圧力が加え		
	られている状態をい		
	う。		

表 1.1-10 既存評価書における輸送貯蔵兼用キャスク B の設計事象

荷 重 設計事象 供用状態 評価事象				自重による荷重	ボルト初期締付け力	吊上げ荷重	衝撃荷重	熱荷重
設計条件	設計条件	設計時注1)	0	注4)	0	0	0	_
I	A ^{注2)}	通常貯蔵時	0	0	0	_	_	0
		吊上げ時	0	注4)	0	0	_	0
П	B ^{注2)}	衝擊荷重作用時	0	注4)	0	_	0	0
試験状態	試験状態 試験状態 試験時		○注3)	0	0	_	_	_

表 1.1-11(1) キャスク容器及び二次蓋の設計上考慮すべき荷重の種類とその組合せ

注1) 最高使用圧力に対する評価条件で、供用状態A及びBの一次応力評価を代表する事象

注2) 評価事象の中で、他の評価事象に包絡される事象や荷重条件については評価を省略する。

注3) 耐圧試験圧力(最高使用圧力により定められる圧力)とする。

注4) 本状態での自重による荷重は、衝撃荷重又は吊上げ荷重の慣性力による荷重に含まれる。

荷 重 供用 設計事象 評価事象				吊上げ荷重	衝撃荷重	熱荷重
設計条件	設計条件	設計時 ^{注1)}	注2)	0	0	_
	А	貯 蔵 時	0		_	0
		吊上げ時	注2)	0	_	0
П	В	衝擊荷重作用時	注2)	_	0	0

表 1.1-11(2) バスケットの設計上考慮すべき荷重の種類とその組合せ

注1) 供用状態A及びBの一次応力評価を代表する事象

注2) 本状態での自重による荷重は、衝撃荷重又は吊上げ荷重の慣性力による荷 重に含まれる。

供用設計事象	月状態	荷 重 評価事象	自重による荷重	固縛荷重	吊上げ荷重	衝撃荷重	熱荷 重 ^{注1)}
I	А	貯 蔵 時	0	0	_	_	0
		吊上げ時	注2)	_	0	_	0
П	В	衝擊荷重作用時	注2)	_	_	0	0

表 1.1-11(3) トラニオンの設計上考慮すべき荷重の種類とその組合せ

注1) キャスク容器の熱膨張により生じる応力に限る。

注2) 本状態での自重による荷重は、衝撃荷重又は吊上げ荷重の慣性力による荷重に含 まれる。

④ 評価結果

既存評価の評価結果から規定を満足していることが確認されている。

4) 本設備での構造評価

表 1.1-12(1)~(3)に本仮保管設備での荷重条件と既存評価との比較を示す。このことから 以下のことが言える。

- ①キャスク容器(二次蓋含む)の設計条件,運搬時(設計事象Ⅰ),搬送台車架台への衝突時(設計事象Ⅱ)の評価加速度は既存評価書で包絡される。吊上げ時(設計事象Ⅰ)の評価加速度は後述の5)で行う「支持架台への衝突時(設計事象Ⅱ)」の解析で用いる加速度に包絡される。
- ②バスケットの設計条件,運搬時(設計事象Ⅰ),搬送台車架台への衝突時(設計事象Ⅱ)の評価加速度は既存評価書で包絡される。吊上げ時(設計事象Ⅰ)の評価加速度は後述の
 5)で行う「支持架台への衝突時(設計事象Ⅱ)」の解析で用いる加速度に包絡される。
- ③トラニオンの運搬時(設計事象Ⅰ),搬送台車架台への衝突時(設計事象Ⅱ)の評価加速 度は既存評価書で包絡される。吊上げ時(設計事象Ⅰ)の評価加速度は後述の5)で行う「支 持架台への衝突時(設計事象Ⅱ)」の解析で用いる加速度に包絡される。

以上の包絡性の説明及び本設備において最も厳しい荷重条件として、「支持架台への衝突 (設計事象Ⅱ)」について応力解析を実施する。評価対象は、キャスク容器、二次蓋、バス ケット及びトラニオンの各部とする。

なお,キャスク容器(二次蓋含む)の設計条件(最高使用圧力),試験状態及びトラニオン の吊り上げ時の荷重条件は既存評価書により包絡する。

設計	キャスク仮保管設備					参考(既存評価書)				
事象	代表事象	包絡される事象	荷重条件	本設備での評価方法(包絡性含む)	代表事象	包絡され る事象	荷重条件	備考		
設計 条件	設計条件	_	圧力 ^{注1)} , ボルト, 衝撃 ^{注2)}	 ・最高使用圧力における縦姿勢における 衝撃荷重負荷時の評価は既存評価書で 包絡する。 ○(既存評価書で包絡) 	設計時	_	圧力 ^{注1)} , ボルト, 衝撃 ^{注3)}	設計事象Ⅰ及びⅡの 中で荷重条件が最も 厳しいのは貯蔵架台 への衝突時		
Ι	吊上げ時	貯蔵時	圧力,ボル 庁蔵時 ⁴⁾ ,熱	荷重条件,支持条件が同じ「キャスク支 持架台への衝突(設計事象Ⅱ)」の評価 で包絡する。 ○(設計事象Ⅱで包絡)	貯蔵時	_	圧力, ボル ト, 自重, 熱	設計事象 I のうち大 半の期間を占める代 表的事象		
					吊上げ時	_	圧力,ボル ト,吊上げ ^注 ⁵⁾ ,熱	荷重条件が最も厳し いのは吊上げ時		
	運搬時	運搬時 — 圧力,オ 熱,運搬		核燃料輸送物設計承認申請書のうち,一 般の試験条件 0.3m 落下に包絡する。 ○(既存評価書で包絡)	一般の試験 条件 0.3m 頭 部垂直落下	_	圧力,ボル ト,熱,落 下時荷重 ^注 ⁷⁾	_		
			 		一般の試験 条件 0.3m 底 部垂直落下	_	圧力,ボル ト,熱,落 下時荷重 ^注 ⁷⁾	_		
				 一般の試験 条件 0.3m 水平落下 	_	圧力,ボル ト,熱,落 下時荷重 ^注	_			

表 1.1-12(1) 既存評価との比較と評価方法(キャスク容器及び二次蓋)

設計 事象	キャスク仮保管設備					参考(既存評価書)			
	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表事象	包絡され る事象	荷重条件	備考	
П	支持架台へ の衝突時	輸送架台 への衝突 時	圧力, ボルト, 衝撃 ^{注8)} , 熱	他事象の包絡及び本設備の設計事象Ⅰ及 びⅡにおける最も厳しい荷重条件として 解析評価する。 ◎(応力解析を実施)	_	_	_	_	
	搬送台車架 台への衝突 時	_ 圧力,ボ 衝撃 ^{注2)} ,	圧力, ボルト,	既存評価における「支持脚への衝突時」	支持脚への 衝突時	_	圧力, ボル ト, 衝撃 ^注 ⁹⁾ , 熱	_	
			衝撃 ^{注2)} ,熱	○(既存評価書で包絡)	貯蔵架台へ の衝突時	_	圧力, ボル ト, 衝撃 ^注 ³⁾ , 熱	荷重条件が最も厳し いのは,貯蔵架台へ の衝突時	
試験 状態	試験時	_	圧力 ^{注9)} , 自重,ボルト	既存評価と同じ荷重条件 〇(既存評価書で包絡)	試験時	_	圧力 ^{注10)} , 自重,ボル ト	_	

表 1.1-12(1) 既存評価との比較と評価方法(キャスク容器及び二次蓋)

◎:解析を実施。 ○:既存評価又は他の評価事象で包絡

注1) キャスク容器内圧は最高使用圧力。

注2) 衝撃荷重は縦姿勢下方向2.33Gであり,自重を含む。

注3) 衝撃荷重は縦姿勢下方向5Gであり、自重を含む。

注4) 吊上げ荷重は横姿勢下方向1.32Gであり、自重を含む。

注5) 吊上げ荷重は縦姿勢下方向1.3Gであり,自重を含む。

注6) 運搬時荷重は上方向2G,下方向3G(自重を含む),前後方向2G,左右方向1Gである。

注7) 頭部垂直落下荷重は30.0G,底部垂直落下荷重は30.0G,水平落下荷重は20.0Gである。

注8) 衝撃荷重は横姿勢下方向3Gであり,自重を含む。

注9) 衝撃荷重は縦姿勢下方向2.5Gであり,自重を含む。

注10) 最高使用圧力の1.25倍の圧力。
設計			キャスク仮保管認	设備	参考(既存評価書)			
事象	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表 事象	包絡される 事象	荷重条件	備考
設計 条件	設計条件	_	衝擊注1)	 ・縦姿勢における衝撃荷重負荷時の 一次応力に対する評価は既存評価 書の「貯蔵架台への衝突時(設計事象Ⅱ)」で包絡する。 ○(既存評価書で包絡) 	設計時	l	衝擊注2)	_
	吊上げ時	貯蔵時	吊上げ ^{注 3)} , 熱	荷重条件,支持条件が同じ「キャス ク支持架台への衝突(設計事象Ⅱ)」 の評価で包絡する。 ○(設計事象Ⅱで包絡)	貯蔵架台へ の衝突時	・貯蔵時 ・吊上げ時	衝擊 ^{注2)} ,熱	設計事象Ⅱの 条件に包絡さ れる
Ι	I 運搬時 —	圧力,ボルト, 熱,運搬 ^{注4)}	核燃料輸送物設計承認申請書のう ち,一般の試験条件 0.3m 落下に包 絡する。	 一般の試験条 件 0.3m 頭部垂 直落下 一般の試験条 件 0.3m 底部垂 	_	 圧力,ボル ト,熱,落 下時荷重^{注5)} 圧力,ボル ト,熱,落 	_	
				○ (既存評価書で包絡)	直落下 一般の試験条 件 0.3m 水平落下	_	<u>下時荷重⁴⁻⁵⁾</u> 圧力,ボル ト,熱,落 下時荷重 ²⁴⁵⁾	_

表 1.1-12(2)既存評価の比較と評価方法 (バスケット)

設計		キャスク仮保管設備				参考(既存評価書)			
事象	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表事象	包絡される 事象	荷重条件	備考	
П	支持架台への 衝突時 ^{注6)}	輸送架台へ の衝突時	衝撃 ^{注7)} , 熱	他事象の包絡及び本設備の設計事 象Ⅰ及びⅡにおける最も厳しい荷 重条件として評価する。 ◎(応力解析を実施)	_	_	_	_	
	搬送台車架台 への衝突時	_	衝擊注1),熱	既存評価と同じ荷重条件 〇(既存評価書で包絡)	貯蔵架台へ の衝突時	 ・支持脚への 衝突時 	衝擊 ^{注2)} ,熱	_	

表 1.1-12(2)既存評価の比較と評価方法 (バスケット)

◎:解析を実施。 ○:既存評価又は他の評価事象で包絡

注1) 衝撃荷重は縦姿勢下方向2.33Gであり、自重を含む。

注2) 衝撃荷重は縦姿勢下方向 5G であり, 自重を含む。

注3) 吊上げ荷重は横姿勢下方向1.32Gであり、自重を含む。

注4) 運搬時荷重は上方向2G,下方向3G(自重を含む),前後方向2G,左右方向1Gである。

注 5) 頭部垂直落下荷重は 30.0G,底部垂直落下荷重は 30.0G,水平落下荷重は 20.0G である。

注 6) 長期荷重(自重)に対する評価を含む。

注7) 衝撃荷重は横姿勢下方向3Gであり,自重を含む。

設計		キャスク仮保管設備			参考(既存評価書)			
事象	代表事象	包絡される 事象	荷重条件	本設備での評価方法(包絡性含む)	代表 事象	包絡される事象	荷重条件	備考
				荷重条件、支持条件が同じ「キャ	貯蔵時	_	自重, ボルト, 熱	_
I	吊上げ時	貯蔵時	吊上げ ^{注1)} ,熱	 II)」の評価で包絡する。 ○(設計事象Ⅱで包絡) 	吊上げ時	_	吊上げ ^{注2)} ,熱	荷 重 条 件 が 最 も 厳 しいため,代表事象 を 吊上げ時とする。
	運搬時	_	運搬 ^{注3)} ,熱	核燃料輸送物設計承認申請書のうち,通常の輸送条件に包絡される。○(既存評価書で包絡)	運搬時	_	運搬 ^{注3)} ,熱	_
п	支持架台への 衝突時	輸送架台へ の衝突時	衝擊 ^{注4)} ,熱	本設備の設計事象Ⅱにおける最 も厳しい荷重条件として評価す る。 ◎(応力解析を実施)	_	_	_	_
11	搬送台車架台 への衝突時	_	衝擊 ^{注5)} ,熱	既存評価と同じ荷重条件 〇 (既存評価書で包絡)	支持脚への 衝突時	・貯蔵架台 への衝突	衝擊 ^{注6)} ,熱	荷重条件が最も厳 しいため,代表事象 を支持脚への衝突 時とする。

表 1.1-12(3) 既存評価の比較と評価方法(トラニオン)

◎:解析を実施。 ○:既存評価又は他の評価事象で包絡

注1) 吊上げ荷重は横姿勢下方向1.32Gであり、自重を含む

注 2) 縦姿勢下方向 1.3G であり,自重を含む。

注 3) 運搬時荷重は上方向 2G,下方向 3G(自重を含む),前後方向 2G,左右方向 1G である。

注4) 横姿勢下方向 3G であり,自重を含む。

注5) 衝撃荷重は縦姿勢下方向2.33Gであり、自重を含む。

注 6) 衝撃荷重は縦姿勢下方向 2.5G であり,自重を含む。

- 5) 支持架台への衝突時の評価(設計事象II) 以下に支持架台への衝突時の応力解析結果を示す。
- ① 計算条件
- A. 解析事象
 - 「支持架台の衝突時」

キャスクの支持架台への設置に作業員の誤操作によりクレーンの下降速度でトラニオンがトラニオン受台に着床する事象をいう。着床時の衝突荷重(加速度:自重を含む)は,「3.2 異常事象の評価」での評価に余裕をみて 3G とする。

B. 最高使用温度

各機器の最高使用圧力及び最高使用温度は添付資料-4「1.1.乾式キャスクの除熱機能 (3)輸送貯蔵兼用キャスクBの除熱機能」の解析結果に基づき,以下とする。

双1.1 15 取间及用江归及O取间及用皿及						
キャスク容器	最高使用圧力	1.0 MPa				
	最高使用温度	150 °C				
	最高使用圧力	0.4 MPa				
	最高使用温度	110 °C				
バスケット	最高使用温度	260 °C				
トラニオン	最高使用温度	130 °C				

表 1.1-13 最高使用圧力及び最高使用温度

② 解析方法

A. 解析手順概要

a. キャスク容器及び二次蓋

キャスク容器の応力解析は、想定される圧力荷重、機械的荷重及び熱荷重を基に、キャス ク容器の実形状をモデル化し、解析コードである ABAQUS を用いて行う。

なお、二次蓋についてもキャスク容器と同様に評価を行う。

b.バスケット

バスケットの応力解析は,想定される機械的荷重及び熱荷重を基に,応力評価式を用いて 行う。

c.トラニオン

トラニオンの応力解析は,想定される機械的荷重及び熱荷重を基に応力評価式を用いて行う。

B.解析結果

表 3.5.1-14 に支持架台への衝突時の主な応力評価結果を示す。

支持架台への衝突時において輸送貯蔵兼用キャスクは金属キャスク構造規格に定められた 許容応力を満足している。

表 1.1-14 支持架台の衝突時の応力評価結果

(単位:	MPa)
------	------

評価部位	部位	計算值	許容応力
キャスク容器	胴	34	366
	底板	38	366
	一次蓋	56	366
	一次蓋密封シール部	58	183
	一次蓋締付けボルト	336	831
二次蓋	二次蓋	34	474
	二次蓋密封シール部	37	183
	二次蓋締付けボルト	279	847
バスケット	バスケットプレート	12	219
トラニオン	トラニオン	133	394

6) 評価結果

5)に示したとおり、「支持架台への衝突時」(設計事象II)において輸送貯蔵兼用キャスク Bの各評価部位(キャスク容器,二次蓋,バスケット,トラニオン)は金属キャスク構造規格 に定められた許容応力を満足する。

従って,表1.1-12 に示す「支持架台の衝突時」で包絡する各設計事象は、いずれも輸送貯 蔵兼用キャスクの構造強度の規定を満足し、輸送貯蔵兼用キャスクBは、本設備で要求される 構造強度を有している。

- (4) 輸送貯蔵兼用キャスク用支持架台
- 1) 評価方針

本設備で使用する輸送貯蔵兼用キャスク用支持架台の構造評価について記載する。

輸送貯蔵兼用キャスク用支持架台は新設計であるため,新たに評価を実施し,本設置場所 での保管に適合していることを確認する。

- 2) 主な構成部材と適用基準
- ① 主な構成部材

輸送貯蔵兼用キャスク用支持架台は鋼製支持架台,埋め込み金物,基礎ボルト,コンクリート支持架台により構成される。

② 適用基準

輸送貯蔵兼用キャスク用支持架台は原子力発電所耐震設計技術規程[JEAC4601-2008]及び, 発電用原子力設備規格 設計・建設規格 2005 年版 (2007 年追補版含む) [JSME S NC1-2005/2007] を適用する。

3)構造強度の評価方法

輸送貯蔵兼用キャスク用支持架台の強度評価における評価方法を示す。

設計条件

輸送貯蔵兼用キャスク用支持架台の構造評価に当っての機械荷重を以下に示す。

- A. 自重による荷重
- B. キャスクによる荷重
- ② 評価方法

輸送貯蔵兼用キャスク用支持架台の構造解析フローを図1.1-8に,主な構造部材の応力評価 箇所を図1.1-9に示す。

鋼製支持架台,基礎ボルト,コンクリート支持架台について想定される機械荷重を基に,応 力評価式を用いて応力評価を行う。

図 1.1-8 輸送貯蔵兼用キャスク用支持架台の構造強度評価フロー

図 1.1-9 輸送貯蔵兼用キャスク用支持架台の応力評価箇所

③ 設計事象と荷重の組合せ

輸送貯蔵兼用キャスク用支持架台の設計事象と選定事象は以下の通りである。

[設計事象 I]

・貯蔵時

4) 輸送貯蔵兼用キャスク用支持架台の貯蔵時の評価(設計事象 I)

以下に貯蔵時の輸送貯蔵兼用キャスク用支持架台の応力評価結果を示す。

- ① 計算条件
- A. 解析事象
 - 「貯蔵時」

キャスクが支持架台に設置されている計画的な取り扱い状態をいう。

- ② 解析方法
- A. 解析手順概要

輸送貯蔵兼用キャスク用支持架台の応力解析は,想定される機械荷重を基に,応力評価式を 用いて行う。

B. 荷重計算

図 1.1-10 に示す鋼製支持架台1 脚に作用するキャスク自重(F_W, F_W)は次式で表される。

$$F_{WU} = \frac{P_{W}}{2} \cdot \frac{b}{(a+b)}$$
$$F_{WL} = \frac{P_{W}}{2} \cdot \frac{a}{(a+b)}$$

 $P_{W} = W \cdot g$

- ここで,
- F_{wu} :鋼製支持架台1脚(上部側)に作用するキャスク自重(N)
- F_{wl}:鋼製支持架台1脚(下部側)に作用するキャスク自重(N)
- Pw:キャスク自重 (N)
- a : キャスク重心から上部トラニオン軸心までの距離(mm)
- b : キャスク重心から下部トラニオン軸心までの距離(mm)
- ₩:キャスク設計質量(kg)
- g : 重力加速度 (m/s²)
- C. 応力評価
- a.鋼製支持架台(評価断面①)

図 1.1-11 において自重により鋼製支持架台(評価断面①)に発生する圧縮応力(σ_c)は次

式で表される。

$$\sigma_{\rm c} = \frac{F_{\rm W}}{B \cdot t}$$

ここで,

Fw:図1.1-10に示す自重の設計用値(N)

B : 図 1.1-11 に示す評価断面の幅 (mm)

t : 図 1.1-11 に示すトラニオン受部の板厚(mm)

b.鋼製支持架台(評価断面②)

図 1.1-12 において自重により鋼製支持架台(評価断面②)に発生する圧縮応力

(σ_c) は次式で表される。

$$\sigma_{c} = \frac{F_{W}}{B_{1} \cdot t_{1} + 2 \cdot B_{2} \cdot t_{2}}$$

図 1.1-12 において自重により鋼製支持架台(評価断面②)に発生する最大曲げ応力(σ_{b1} , σ_{b2})は次式で表される。

$$\sigma_{b1} = \frac{F_{W} \cdot (L_{1} - t_{1}/2)}{I} \cdot L_{1} \quad (トラニオン受側)$$

$$\sigma_{b2} = \frac{F_{W} \cdot (L_{1} - t_{1}/2)}{I} \cdot L_{2} \quad (リブ側)$$

図 1.1-12 において自重により鋼製支持架台(評価断面②)に発生する組合せ応力 (σ_{T1} , σ_{T2}) は次式で表される。

$$\sigma_{T1} = \sigma_{c} + \sigma_{b1}$$
 (トラニオン受側)
 $\sigma_{T2} = \sigma_{c} - \sigma_{b2}$ (リブ側)

ここで,

- F_w:図 1.1-10 に示す自重(F_{wn}, F_{wn})の設計用値(N)
- B₁:図1.1-12に示すトラニオン受部の幅(mm)
- B₂:図1.1-12に示すリブの幅(mm)
- t₁:図1.1-12に示すトラニオン受部の板厚(mm)
- t₂:図1.1-12に示すリブの板厚(mm)
- L₁:図1.1-12に示す中立軸からトラニオン受け端部までの距離(mm)
- L₂:図1.1-12に示す中立軸からリブ端部までの距離(mm)
- I : 図 1.1-12 に示す断面の中立軸に関する断面二次モーメント (mm⁴)

c.鋼製支持架台(評価断面③)

図 1.1-13 において自重により基礎ボルトから引張力を受けて発生する曲げ応力

Ⅱ-2-13-添 3-69

 (σ_{bb}) , コンクリート支持架台から圧縮力を受けて発生する曲げ応力 (σ_{bc}) は次式で表される。

$$\sigma_{bb} = \frac{T \cdot L_1}{B \cdot t^2 / 6}$$
$$\sigma_{bc} = \frac{\sigma_{cc} \cdot L_2^2 / 2}{t^2 / 6}$$
$$T = \sigma_{tb} \cdot A_m$$

ここで,

σ_{tb}:図1.1-13に示す基礎ボルトに発生する本荷重条件下における引張応力(N/mm²)
 σ_{cc}:図1.1-13に示すコンクリートに発生する本荷重条件下における圧縮応力(N/mm²)
 T:図1.1-13に示す基礎ボルトに発生する本荷重条件下における引張力(N)

t : 図 1.1-13 に示す鋼製支持架台底板の板厚 (mm)

 B :図 1.1-13 に示す基礎ボルトから引張力を受けて発生する曲げ応力の評価断面幅 (mm)
 L₁:図 1.1-13 に示す基礎ボルトから引張力を受けて発生する曲げモーメントのモーメント アーム長さ (mm)

L₂:図1.1-13に示すコンクリートから圧縮力を受ける長さ(mm)

A_m:基礎ボルト呼び径断面積 (mm²)

図 1.1-13 において自重により, 基礎ボルトから引張力を受けて発生するせん断応力(τ_b), コンクリート支持架台から圧縮力を受けて発生するせん断応力(τ_c)は次式で表される。

$$\tau_{b} = \frac{T}{B \cdot t}$$
$$\tau_{c} = \frac{\sigma_{cc} \cdot L_{2}}{t}$$

ここで、各記号は上記と同様である。

図 1.1-13 において自重により,基礎ボルトから引張力を受けて発生する組合せ応力(σ_{Tb}), コンクリート支持架台から圧縮力を受けて発生する曲げ応力(σ_{Tb})は次式で表される。

$$\sigma_{\rm Tb} = \sqrt{\sigma_{\rm bb}^2 + 3 \cdot \tau_{\rm b}^2}$$
$$\sigma_{\rm Tc} = \sqrt{\sigma_{\rm bc}^2 + 3 \cdot \tau_{\rm c}^2}$$

d. 基礎ボルト

図 1.1-14 において自重により基礎ボルトに発生する引張応力(σ₁)は,鉄筋コンクリート 構造計算規準・同解説(2010 年版)より次式で表される。

$$\sigma_{t} = \sigma_{cc} \cdot \mathbf{n} \cdot \frac{(\mathbf{D} - \mathbf{d}_{t} - \mathbf{X}_{n})}{\mathbf{X}_{n}} \cdot \frac{\mathbf{A}_{b}}{\mathbf{A}_{m}}$$
$$\sigma_{cc} = \mathbf{N} \cdot \mathbf{X}_{n} / \mathbf{S}_{n}$$
$$\mathbf{S}_{n} = [\mathbf{X}_{n1}^{2} / 2 - \mathbf{n} \cdot \mathbf{P}_{t} \cdot (1 - \mathbf{d}_{t1} - \mathbf{X}_{n1})] \cdot \mathbf{b} \cdot \mathbf{D}^{2}$$

Ⅱ-2-13-添 3-70

$$\begin{split} I_{n} &= [X_{n1}^{3} / 3 + n \cdot P_{t} \cdot (1 - d_{t1} - X_{n1})^{2}] \cdot b \cdot D^{3} \\ X_{n1} &= X_{n} / D \\ d_{t1} &= d_{t} / D \\ P_{t} &= a_{t} / (b \cdot D) \\ a_{t} &= A_{b} \cdot N_{b} \end{split}$$

- ここで,
- σ_{cc}:図1.1-14に示すコンクリートの最大圧縮応力(N/mm²)
- n : ヤング係数比(=15)
- D : 図 1.1-14 に示す断面高さ (mm)
- b : 図 1.1-14 に示す断面幅 (mm)
- d_t : 図 1.1-14 に示す引張側ボルトに関する距離(mm)
- d_{t1}:引張側ボルトに関する係数(-)
- X_n : 図 1.1-14 に示す中立軸距離を表し,次式を満足する値 (mm)

 $X_n - D/2 + e = I_n/S_n$

ただし, e:図1.1-14に示す鉛直力偏心距離(mm)

- X_{n1} :中立軸比 (-)
- N : 図 1.1-14 に示す鉛直力であり、自重の設計用値(N)
- a_t : 有効ボルト総断面積 (mm²)
- P_t : 引張鉄筋比(-)
- A_b : 基礎ボルト有効断面積 (mm²)
- A_m : 基礎ボルト呼び径断面積 (mm²)
- N_b: : 有効引張側ボルト本数(本)
- S_n: 有効等価断面一次モーメント (mm³)
- I_n : 有効等価断面二次モーメント (mm⁴)

e.コンクリート支持架台

コンクリート支持架台の下端に発生する荷重は表 1.1-15 の通りである。これらの荷重を用いて後述する 1.4 コンクリート基礎の構造強度と同様に評価を行う。

			NS方向			EW方向	
		鉛直力	水平力	モーメント	鉛直力	水平力	モーメント
		(kN)	(kN)	(kN ⋅ m)	(kN)	(kN)	(kN · m)
	キャフク	320.00	0.00	105.00	320.00	0.00	0.00
三 期	チャヘク	1	1	—	1	—	—
衣 州	ペデスタル	35.22	0.00	0.00	35.22	0.00	0.00
	合計	355.22	0.00	105.00	355.22	0.00	0.00
	キャフク	320.00	154.00	105.00	320.00	148.00	68.90
短期	イヤヘジ	1	Ι	182.49	-	_	175.38
	ペデスタル	35.22	10.56	5.68	35.22	10.56	5.68
	合計	355.22	164.56	293.17	355.22	158.56	249.96

表 1.1-15 コンクリート支持架台下端における荷重

図 1.1-10 鋼製支持架台に作用する荷重

図 1.1-11 計算モデル図(設計事象 I,評価断面①)

図 1.1-12 計算モデル図(設計事象 I,評価断面②)

図 1.1-13 計算モデル図(設計事象 I,評価断面③)

図 1.1-14 計算モデル図(設計事象 I,基礎ボルト)

③ 解析結果

表 1.1-16 に貯蔵時の評価結果を示す。

貯蔵時の輸送貯蔵兼用キャスク用支持架台は許容応力を満足している。

部位		応力の種類	計算値	許容応力
	評価断面①	圧縮	10 N/mm^2	186 N/mm^2
		圧縮	5 N/mm^2	187 N/mm^2
御制士士	評価断面2	曲げ	9 N/mm^2	188 N/mm^2
刺殺又行		組合せ	9 N/mm^2	188 N/mm^2
不口		曲げ	87 N/mm^2	188 N/mm^2
	評価断面③	せん断	10 N/mm^2	108 N/mm^2
		組合せ	89 N/mm^2	188 N/mm^2
基礎ボルト		引張	20 N/mm^2	226 N/mm^2

表 1.1-16(1) 鋼製支持架台の評価 (タイプA)

表 1.1-16(2) 鋼製支持架台の評価 (タイプB)

部位		応力の種類	計算値	許容応力
	評価断面①	圧縮	10 N/mm^2	186 N/mm^2
		圧縮	5 N/mm^2	187 N/mm^2
御制士士	評価断面2	曲げ	8 N/mm^2	188 N/mm^2
		組合せ	9 N/mm^2	188 N/mm^2
木口		曲げ	68 N/mm^2	188 N/mm^2
	評価断面③	せん断	8 N/mm^2	108 N/mm^2
		組合せ	69 N/mm^2	188 N/mm^2
基礎ボルト		引張	20 N/mm^2	226 N/mm^2

				ペデスタル				
項目			記号	単位	長期		短期	
				NS方向	EW方向	NS方向	EW方向	
	曲げモ	ーメント	Md	(kN · m)	105	0	293	250
断面力	軸力		Nd	(kN)	355	355	355	355
	せん断	力	Vd	(kN)	0	0	165	159
		圧縮応力度	σc	(N/mm^2)	1.24	0.29	3.68	1. 52
	コンクリート	許容曲げ圧縮応力度	σca	(N∕mm²)	9.00	9.00	13.50	13.50
		$\sigma c / \sigma ca \leq 1.0$			0.14	0.03	0. 27	0.11
		判定			OK	OK	OK	OK
		引張応力度	σs	(N/mm^2)	14	4	93	24
成五座	会生 合生	許容引張応力度	σsa	(N/mm^2)	196	196	294	294
心力反	亚大用刀	σs∕σs	a ≦ 1.0		0. 07	0. 02	0.32	0. 08
		判	定		OK	OK	OK	OK
		せん断応力度	τ	(N/mm^2)	0.000	0.000	0. 202	0. 180
		許容せん <mark>断応力度</mark>	τa	(N/mm^2)	0. 450	0. 450	0.675	0.675
		τ/τ	a ≦ 1.0		0.00	0.00	0.30	0.27
		判	定		OK	OK	OK	OK

表 1.1-16(3) コンクリート支持架台の評価

- 1.2 コンクリートモジュールの構造強度
- (1) 乾式貯蔵キャスク用コンクリートモジュール
- 1) 評価方針

本設備で使用する乾式貯蔵キャスク用コンクリートモジュールが,建築基準法に基づく規 定を満たしていることを確認する。

2) 乾式貯蔵キャスク用コンクリートモジュールの構成

コンクリートモジュールの概略図を図 1.2-1 に示す。

コンクリートモジュールは長辺側板3枚,短辺側板2枚,天板3枚のコンクリート製パネ ルで構成されている。それぞれのパネルは金物とボルトにより連結されている。

(単位:mm)

図 1.2-1 コンクリートモジュール概略図

3) 解析モデル

許容応力度設計及び各荷重に対する検討には3次元 FEM モデルを採用し,解析コードとして NASTRAN を用いる。

FEM モデルとして、コンクリートモジュールの PC 板(側板及び天板)及び接合部の金物は 板厚一様な平板要素でモデル化する。PC 板と金物の接合部はボルト位置で同一変位とし、基 礎とベースプレートの接合部はアンカーボルト位置で拘束する。解析モデルを図 1.2-2 に示 す。

図 1.2-2 コンクリートモジュールの解析モデル

4) 許容応力度

許容応力度を以下のように定める。材料の許容応力度は建築基準法・同施行令に定める値 とし、表 1.2-1 に示す。

话桁	長期	朔	短期		
1里大只	引張及び圧縮	せん断補強	引張及び圧縮	せん断補強	
SD295A 及び B	195	195	295	295	

表 1.2-1 鉄筋の許容応力度 (N/mm²)

5) 応力計算

① 応力評価点

応力評価点はSRSS法により求められる各部材応力の中から最大応力となる部材を抽出して 評価を行う。評価箇所は図 1.2-3 に示す箇所とする。

図 1.2-3 応力評価箇所

応力評価箇所名称

- ① 天板パネル
- ② 側板パネル

② 荷重条件

コンクリートモジュールの強度評価においては建築基準法施行令第82条より表1.2-2の荷 重組合せに基づき評価を行う。なお、地震時の荷重に関しては2.3(1)にて別途評価を行って おり、基準地震動 Ss において倒壊しないことを確認している。また、積雪時、暴風時の荷重 は地震時の荷重に包絡されることから、ここでは常時の荷重のみ評価する。

A. 固定荷重

固定荷重は,鉄筋コンクリートで24kN/m³,鋼材で77kN/m³とし算定する。また,コンク リートの厚さは200mmとする。仕上げは ON/m^2 とする。

B. 積載荷重

積載荷重は0 N/m²とする。

C. 積雪荷重

建築基準法施行令第 86 条,平成 12 年建設省告示第 1455 号,福島県建築基準法施行細則より設定する。

D. 風圧力

コンクリートモジュールに作用する風圧力は,建築基準法施行令第87条及び平成12年 建設省告示第1454号により算定する。

力の種類	荷重及び外力につい て想定する状態	本設計
長期に生ずる力	常時	G + P
	積雪時※1	G + P + S
短期に生ずる力	暴風時※1	G + P + W
	地震時※2	G + P + K

表 1.2-2 荷重組合せ

ただし、G:固定荷重、P:積載荷重、S:積雪荷重、W:風圧力によって生ずる力、K:地震力

- ※1 積雪荷重と風圧力の荷重の組合せに関する構造強度の評価は、2.3(1)の耐震性の評価 に包絡される。
- ※2 地震時の荷重の組合せに関する評価は、2.3(1)の耐震性の評価にて行う。

③ 応力評価

A. 天板パネル(①) (図 1.2-4 参照)

天板 PC 板 t = 200, 鉄筋: SD295A (Lσt = 195 N/mm²) D10@200 (長辺方向 上筋, 短辺方向 上下筋) D10: 断面積 A = 71 mm² D13@200(長辺方向 下筋) D13:断面積 A = 127 mm² d = 150mm, j = 131mm 長期許容曲げモーメント(鉄筋コンクリート構造計算規準・同解説より) $M_a = a_t \cdot f_t \cdot j$ ⇒ $f_t = \frac{M_a}{a_t \cdot j}$ $f_t \varepsilon_{\sigma t}$, $M_a \varepsilon M_d$ に置き換え,鉄筋の引張応力度を算定する。 設計曲げモーメント 最大曲げモーメント 8270 Nmm/mm → 1m 辺りに換算すると Md = 8.27kNm $\sigma_t = \frac{M_d}{a_t \cdot i} = \frac{8.27 \times 10^6}{127 \times 5 \times 131} = 99.5 \text{ N/mm}^2$ 検定値 $f_t / \sigma_t = 195 / 99.5 = 1.96 > 1.0 \cdot \cdot \cdot 0 K$ 接合プレート ſ⊐ 曲げモーメント 上面図 $Md = 8270 \text{ Nmm/mm} \times 1000 \text{mm}$ = 8.27 kNm [] Π [] Q_ 評価対象 天板パネル τíπ, 側面図 □D-<\□ `排気口 コーナー接合プレート - 給気口

図 1.2-4 天板パネル

B. 側板パネル(2) (図 1.2-5 参照)

側板 PC 版 t = 200, 鉄筋: SD295A (L σ t = 195 N/mm²) D10@200 (縦筋・横筋, 内外共) D10: 断面積 A = 71 mm² D13 (開口部及び外周部の補強筋) D13: 断面積 A = 127 mm² d = 150mm, j = 131mm 長期許容曲げモーメント (鉄筋コンクリート構造計算規準・同解説より) $M_a = a_t \cdot f_t \cdot j$ $\Rightarrow f_t = \frac{M_a}{a_t \cdot j} f_t \& \sigma t, M_a \& M_d$ に置き換え,鉄筋の引張応力度を算定する。 設計曲げモーメント 最大曲げモーメント 7374 Nmm/mm → 500mm 辺りに換算すると Md = 3.69 kNm $\sigma_t = \frac{M_d}{a_t \cdot j} = \frac{3.69 \times 10^6}{(127 + 71 + 127) \times 131} = 86.7 \text{ N/mm}^2$

検定値

図 1.2-5 側板パネル

④ 評価結果

評価結果を表 1.2-3 に示す。

	項目	計算値	許容値	評価結果
\bigcirc	天板パネル	99. 5	195	ΟK
2	側板パネル	86.7	195	ΟK

表 1.2-3 評価結果(N/mm²)

以上よりコンクリートモジュールは建築基準法に基づく規定を満たしている。

- (2) 輸送貯蔵兼用キャスク用コンクリートモジュール
- 評価方針
 本設備で使用する輸送貯蔵兼用キャスク用コンクリートモジュールが、建築基準法に基づく規定を満たしていることを確認する。

 輸送貯蔵兼用キャスク用コンクリートモジュールの構成 コンクリートモジュールの概略図を図1.2-6に示す。 コンクリートモジュールは長辺側板3枚,短辺側板2枚,天板3枚のコンクリート製パネ ルで構成されている。それぞれのパネルは金物とボルトにより連結されている。

(単位:mm)

図 1.2-6 コンクリートモジュール概略図

3) 解析モデル

許容応力度設計及び各荷重に対する検討には3次元 FEM モデルを採用し,解析コードとして NASTRAN を用いる。

FEM モデルとして、コンクリートモジュールの PC 板(側板及び天板)及び接合部の金物は 板厚一様な平板要素でモデル化する。PC 板と金物の接合部はボルト位置で同一変位とし、基 礎とベースプレートの接合部はアンカーボルト位置で拘束する。解析モデルを図 1.2-7 に示 す。

図 1.2-7 コンクリートモジュールの解析モデル

4) 許容応力度

許容応力度を以下のように定める。材料の許容応力度は建築基準法・同施行令に定める値 とし、表 1.2-4 に示す。

括 粘石	長期		短期		
1里大只	引張及び圧縮	せん断補強	引張及び圧縮	せん断補強	
SD295A 及び B	195	195	295	295	

表 1.2-4 鉄筋の許容応力度 (N/mm²)

- 5) 応力計算
- ① 応力評価点

応力評価点はSRSS法により求められる各部材応力の中から最大応力となる部材を抽出して 評価を行う。評価箇所は図1.2-8に示す箇所とする。

図 1.2-8 応力評価箇所

応力評価箇所名称

- ① 天板パネル
- ② 側板パネル

② 荷重条件

コンクリートモジュールの強度評価においては建築基準法施行令第82条より表1.2-5の荷 重組合せに基づき評価を行う。なお、地震時の荷重に関しては2.3(2)にて別途評価を行っ ており、基準地震動Ssにおいて倒壊しないことを確認している。また、積雪時、暴風時の荷 重は地震時の荷重に包絡されることから、ここでは常時の荷重のみ評価する。

A. 固定荷重

固定荷重は,鉄筋コンクリートで24kN/m³,鋼材で77kN/m³とし算定する。また,コンク リートの厚さは200mmとする。仕上げは ON/m^2 とする。

B. 積載荷重

積載荷重は0 N/m²とする。

C. 積雪荷重

建築基準法施行令第 86 条,平成 12 年建設省告示第 1455 号,福島県建築基準法施行細則より設定する。

D. 風圧力

コンクリートモジュールに作用する風圧力は,建築基準法施行令第87条及び平成12年 建設省告示第1454号により算定する。

力の種類	荷重及び外力につい て想定する状態	本設計
長期に生ずる力	常時	G + P
	積雪時※1	G + P + S
短期に生ずる力	暴風時※1	G + P + W
	地震時※2	G + P + K

表 1.2-5 荷重組合せ

ただし、G:固定荷重、P:積載荷重、S:積雪荷重、W:風圧力によって生ずる力、K:地震力

- ※1 積雪荷重と風圧力の荷重の組合せに関する構造強度の評価は、2.3(2)の耐震性の評価 に包絡される。
- ※2 地震時の荷重の組合せに関する評価は、2.3(2)の耐震性の評価にて行う。

③ 応力評価

A. 天板パネル(①) (図 1.2-9 参照)

天板 PC 板 t = 200, 鉄筋: SD295A (Lσt = 195 N/mm²) D10@200 (長辺方向 上筋, 短辺方向 上下筋) D10: 断面積 A = 71 mm² D13@200(長辺方向 下筋) D13:断面積 A = 127 mm² d = 150mm, j = 131mm長期許容曲げモーメント(鉄筋コンクリート構造計算規準・同解説より) $M_a = a_t \cdot f_t \cdot j$ ⇒ $f_t = \frac{M_a}{a_t \cdot j}$ $f_t \varepsilon_{\sigma t}$, $M_a \varepsilon M_d$ に置き換え,鉄筋の引張応力度を算定する。 設計曲げモーメント 最大曲げモーメント 8118Nmm/mm → 1m 辺りに換算すると Md = 8.12kNm $\sigma_{t} = \frac{M_{d}}{a_{t} \cdot j} = \frac{8.12 \times 10^{6}}{127 \times 5 \times 131} = 97.7 \text{ N/mm}^{2}$ 検定値 $f_t / \sigma_t = 195 / 97.7 = 2.00 > 1.0 \cdot \cdot \cdot 0K$ ・接合プレート ſ⊐ 上面図 曲げモーメント $Md = 8118 Nmm/mm \times 1000mm$ [] Π = 8.12 kNm [] Q_ <u>را</u>ے 評価対象 天板パネル <u>UM</u> 側面図 m>-<n 1.... `排気口 コーナー接合プレート 給気口

図 1.2-9 天板パネル

B. 側板パネル(②) (図 1.2-10 参照)

側板 PC 版 t = 200, 鉄筋: SD295A (Lσt = 195 N/mm²) D10@200(縦筋・横筋,内外共)D10:断面積 A = 71 mm² D13 (開口部及び外周部の補強筋) D13: 断面積 A = 127 mm² d = 150mm, j = 131mm 長期許容曲げモーメント(鉄筋コンクリート構造計算規準・同解説より) $M_a = a_t \cdot f_t \cdot j$ ⇒ $f_t = \frac{M_a}{a_t \cdot i}$ $f_t \varepsilon_{\sigma t}$, $M_a \varepsilon M_d$ に置き換え,鉄筋の引張応力度を算定する。 設計曲げモーメント 最大曲げモーメント 7151 Nmm/mm → 500mm 辺りに換算すると Md = 3.58 kNm $\sigma_{t} = \frac{M_{d}}{a_{t} \cdot j} = \frac{3.58 \times 10^{6}}{(127 + 71 + 127) \times 131} = 84.1 \text{ N/mm}^{2}$ 検定値 f_t / σ_t = 195 / 84.1 = 2.32 > 1.0 · · · OK 上面図 ď Π [] Π []

④ 評価結果

評価結果を表 1.2-6 に示す。

	項目	計算値	許容値	評価結果
\bigcirc	天板パネル	97.7	195	ΟK
2	側板パネル	84.1	195	ΟK

表 1.2-6 評価結果(N/mm²)

以上よりコンクリートモジュールは建築基準法に基づく規定を満たしている。

- 1.3 クレーンの構造強度
- (1) 評価方針

本設備で使用するクレーンの構造強度がクレーン構造規格(平成7年12月26日 労働省告 示第134号)に基づく規定を満たしていることを確認する。

(2) 構造強度評価の概要

評価対象とするクレーンの主要仕様を表 1.3-1 に、概要図を図 1.3-1 に示す。

項目	仕様
型式	門形クレーン
主卷定格	150ton
補卷定格	20ton
スパン	19m

表 1.3-1 クレーンの仕様

構造強度評価においては以下の荷重に関して考慮する。

- 垂直動荷重:定格荷重に吊具の質量を加えた荷重がクレーンに作用することによって 生じる力。
- 垂直静荷重:クレーンを構成する部分のうち,垂直動荷重に含まれない部分の質量によって生じる力。
- 水平動荷重:クレーンの走行,横行,若しくは旋回に伴う慣性力,又は遠心力によって 生じる力。
 - 熱荷重:温度変化により部材の伸縮が妨げられることによって生ずる力。当該クレ ーンは熱伸縮を拘束する構造でないため、熱荷重は生じない。

風荷重:クレーンが風を受けることにより生ずる力。

地震荷重:垂直静荷重の二十パーセントに相当する水平荷重。

衝突荷重:クレーンが緩衝装置に衝突したときに生ずる力。

図 1.3-1 クレーン全体図

- (3) クレーン各部の応力評価
- 1) 評価対象部位の形状

評価対象箇所を図 1.3-2 に示す。また評価対象部位の形状を図 1.3-3,4 に示す。

図 1.3-2 応力評価対象箇所

2) 発生応力と許容応力

クレーン構造規格に基づき算出したクレーン各部に発生する応力と許容応力の比較を表 1.3-2に示す。

	材料	応力の組合せ注1)	算出応力	許容応力	評価結果
	.6.1.1.1		(N/mm^2)	(N/mm^2)	
		構造規格第11条1項第1号	69	182	0. K.
ナ は ガーゴ		構造規格第 11 条 1 項第 2 号	70	209	0. K.
本体力・ク	SM490A	構造規格第11条1項第3号	62	236	0. K.
이다기		構造規格第11条1項第4号	58	236	0. K.
		構造規格第11条1項第5号	28	236	0. K.
	SM490A	構造規格第11条1項第1号	66	158	0. K.
+++++		構造規格第11条1項第2号	67	181	0. K.
		構造規格第11条1項第3号	59	205	0. K.
에릭스		構造規格第11条1項第4号	55	205	0. K.
		構造規格第11条1項第5号	27	205	0. K.
		構造規格第11条1項第1号	15	127	0. K.
岡川肤印		構造規格第11条1項第2号	16	146	0. K.
	SS400	構造規格第11条1項第3号	14	165	0. K.
		構造規格第11条1項第4号	11	165	0. K.
		構造規格第11条1項第5号	12	165	0. K.

表 1.3-2 クレーン各部応力の評価結果

注1:構造規格における応力の組合せは以下の通り。

第1号:衝撃係数及び作業係数を乗じた垂直動荷重,作業係数を乗じた垂直静荷重,作業係数を乗じた水平動荷重並びに熱荷重の組合せ

- 第2号:衝撃係数及び作業係数を乗じた垂直動荷重,作業係数を乗じた垂直静荷重,作業係数を乗じた水平動荷重,熱荷重並びにクレーンの作動時における風荷重の組合せ
- 第3号:垂直動荷重,垂直静荷重,熱荷重及び地震荷重の組合せ
- 第4号:垂直動荷重,垂直静荷重,熱荷重及び衝突荷重の組合せ

第5号:垂直静荷重,熱荷重及びクレーンの停止時における風荷重の組合せ

(4) 評価結果

以上から当該クレーンの構造強度はクレーン構造規格に基づく規定を満たしている。

- 1.4 コンクリート基礎の構造強度
- (1) 評価方針

長期及び短期荷重時のコンクリート基礎に対する要求性能は、キャスク支持架台に作用 する力を支持するとともに、これを固定する固定ボルトの引抜き力が許容引抜き力を下回 ること、及び、基礎の傾斜が許容傾斜量を下回ることである。ここでは、コンクリート基 礎の構造強度評価を行い、基礎が要求性能を有していることを確認する。

評価の方法は,長期及び短期荷重時に対する梁モデルによる構造計算を行い,コンクリート基礎の応力度の照査,地盤改良体強度の照査,地盤の支持力度の照査を行うこととする。

- (2) 評価方法の概要
- 1) 構造図面

図1.4-1~図1.4-4にキャスク配置図,基礎構造図及び地盤改良断面図を示す。

図 1.4-1 キャスク配置図(単位:mm)

図 1.4-2 基礎平面図(単位:mm)

2-2 断面 (EW 方向)

図 1.4-3 基礎断面図(単位:mm)

2-2 断面 (EW 方向)

図 1.4-4 地盤改良断面図(単位:mm)

2) 検討フロー

コンクリート基礎の構造強度の検討フローを図1.4-5に示す。

図 1.4-5 キャスク仮保管設備コンクリート基礎の構造強度の検討フロー

3) 準拠規準

コンクリート基礎の検討は、以下の法規及び規準類に準拠して行う。

- ① 原子力発電所耐震設計技術規程 JEAC4601-2008 (社) 日本電気協会
- ② 乾式キャスクを用いる使用済み燃料中間貯蔵建屋の基礎構造の設計に関する技術規程 JEAC4616-2009 (社)日本電気協会
- ③ コンクリート標準示方書 設計編(2007) (社) 土木学会
- ④ コンクリート標準示方書 構造性能照査編(2002) (社)土木学会
- ⑤ 原子力発電所屋外重要土木構造物の耐震設計に関する安全性照査マニュアル(1992) (社) 土木学会
- ⑥ 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル (2005)
 - (社) 土木学会
- ⑦ 道路橋示方書·同解説 I 共通編 IV下部構造編 (社)日本道路協会(平成14年)
- ⑧ 道路橋示方書·同解説 I 共通編 V 耐震設計編 (社)日本道路協会(平成 14 年)
- 4) 評価方法

構造強度の評価方法を表 1.4-1 に示す。

評価対象	評価方法	準拠規準
鉄筋コンクリート	コンクリート及び鉄筋の発生応力度が許容応力度を下回る ことを確認する。	4
改良地盤	改良地盤に作用する地盤反力度,せん断応力度が,改良地 盤の許容圧縮応力度,許容せん断応力度を下回ることを確 認する。	2
支持地盤	改良体下面に作用する地盤反力度が,許容地盤反力度を下 回ることを確認する。	②及び⑦
基礎の沈下	クレーンレール部基礎の沈下に伴うレールの傾斜が許容値 を下回ることを確認する。	_

表 1.4-1 構造強度の評価方法

5) 使用材料及び許容応力度

使用材料の物性値及び設計強度を表 1.4-2 及び表 1.4-3 に示す。

表 1.4-2 コンクリートの材料定数,許容応力度及び鉄筋の許容応力度

コンクリートの材料定数

	記号	単位	
ヤング係数	E	(N∕mm²)	2.50×10^4
単位体積重量	Ŷ	(kN∕m ³)	24.0

コンクリートの許容応力度

	記号	単位	長期	短期
設計基準強度	σck	(N∕mm²)	24.	00
許容圧縮応力度	σca	(N∕mm²)	9.00	13.50
許容せん断応力度	τ a1	(N∕mm²)	0.450	0.675

鉄筋の許容応力度

	記号	単位	長期	短期
鋼材の種類			SD	345
許容引張応力度	σsa	(N∕mm²)	196	294
鉄筋径			D13~	~D32

表1.4-3 改良地盤,支持地盤の物性値,許容応力度並びにクレーンレールの許容傾斜量

改良地盤の物性,許容応力度

	記号	単位	長期	短期
変形係数	E	(kN∕m²)	329	900
許容圧縮応力度	fsc	(N∕mm²)	110	220
許容せん断応力度	fss	(N∕mm²)	22	44

支持地盤の許容支持力度

	記号	単位	長期	短期
許容支持力度	qa	(kN∕m²)	666	531

クレーンの許容傾斜量

	記号	単位	長期	短期
許容傾斜量	i	1	1/800	

※「鋼構造設計規準-許容応力度設計法-,2005改定,(社)日本建築学会」より

(3)本設備の設計荷重とコンクリート基礎のモデル化

1) 設計荷重

設計で考慮する荷重を以下に示す。

・鉛直荷重 (VL)

コンクリート基礎自重による鉛直方向の荷重で,基礎及びペデスタルの鉛直荷重を対象とする。表 1.4-4 に鉛直荷重を示す。

表 1.	. 4-4	鉛直荷重

		奥行き方向幅	部材高	鉛直荷重
		(m)	(m)	(kN∕m)
レール支持梁(EW方向)	レール部スラブ	3.50	1.80	151
NS方向スラブ	レール部スラブ	8.30	1.80	359
	キャスク部スラブ	8.30	1.00	199
	キャスク部スラブ	8.30	0.80	159
	ペデスタル	1.50 × 0.72 × 1.185		70
	キャスク部スラブ	5.17	1.00	132
EW方向スラブ	キャスク部スラブ	5.17	0.80	111
	ペデスタル	1.50 × 0.7	2 × 1.185	70

注)ペデスタルの鉛直荷重は2脚当りを示す。

・クレーン荷重(CL)

クレーンによる荷重を表 1.4-5 に示す。

表	1.	4 - 5	クレー	-ン荷重
1	+ •	10	/ *	V 101 44

(1輪当り) 走行車輪荷重 走行給電側 反走行給電側 走行方向 横行方向 状態 フック寄り 鉛直方向 横行方向 鉛直方向 走行方向 (NS方向) (EW方向) (UD方向) (NS方向) (EW方向) (UD方向) (kN) (kN) (kN) (kN) (kN) (kN) 長期 定格荷重(150t) 走行給電側 622 62 93 262 26 39 短期 定格荷重(150t) 走行給電側 743 86 86 142 17 17

注)基礎天端の荷重を示す。

・キャスク荷重(CAL)

キャスクによる荷重を表 1.4-6 に示す。

表 1.4-6 キャスク荷重

貯蔵キャスク

1基当たり

	項目	単位	長期	短期
	鉛直力	(kN)	1280	1280
NS方向	水平力	(kN)	0	307
	モーメント	(kN⋅m)	0	453
	鉛直力	(kN)	1280	1280
EW方向	水平力	(kN)	0	307
	モーメント	(kN·m)	88	540

輸送貯蔵兼用キャスク

モーメント

1脚当たり 長期 短期 鉛直力 (kN) 320 320 NS方向 水平力 (kN) 0 154 105 モーメント $(kN \cdot m)$ 105 鉛直力 (kN) 320 320 EW方向 水平力 (kN) 0 148 69

 $(kN \cdot m)$

0

・モジュール荷重(MJL)

モジュールによる荷重を表 1.4-7 に示す。

表 1.4-7 モジュール荷重

貯蔵キャスク 1					
	記号	単位	NS方向	EW方向	
長期	V	(kN)	576	576	
	Н	(kN)	0	0	
结期	V	(kN)	576	576	
应刑	Н	(kN)	-138	138	

輸送貯蔵兼用キャスク				1基当たり
	記号	単位	NS方向	EW方向
 上	V	(kN)	565	566
大 労	Н	(kN)	0	0
佐吉 甘田	V	(kN)	565	565
应刑	Н	(kN)	-136	136

・地震荷重(K)

コンクリート基礎の短期荷重における設計震度は、一般産業施設(原子力施設の耐震設計上の重要度分類におけるCクラス相当)として、準拠規準①より以下の値とする。

 $K_{\rm H} = 0.3$

なお, 鉛直震度は考慮しない。

〔参考〕準拠規準①より抜粋		
5.3.1 設計用地震力		
屋外重要土木構造物に用いる設計用地震力は、以下に示す2つの	地震力とす	る。
 構造物の基本設計に用いる静的地震力 		
屋外重要土木構造物の基本設計に用いる静的水平地震力は,	以下に示す	設計水平
震度(K _H)によることを原則とする。		
表 5.3.1-1 設計震度		
地盤の種類	$K_{ m H}$	
原子炉建屋基礎地盤とほぼ同等の地盤	0.2	
原子炉建屋基礎地盤より軟質で震度の増幅が予想される地盤	0.3	
② 構造物の詳細設計に用いる地震動 屋外重要土木構造物の詳細設計に用いる地震動は、基準地震 震動及び鉛直方向地震動)に基づくものとする。	ξ動Ss (水	平方向地

・風荷重(WL)

コンクリート基礎に対しては,風荷重は考慮しない(コンクリート基礎が扁平な形状であり 大部分が地中構造物のため)。

・積雪荷重 (SL)

短期事象では地震時が支配的であることから、積雪時の検討は省略する。

2) コンクリート基礎のモデル化

コンクリート基礎は梁バネモデルにより解析する。検討モデルは荷重と基礎形状の特性により,表1.4-8に示す3タイプについてモデル化する。

表	1.	4-8	検討タイ	プ
1	т.	1 0	コペロコノ エ	/

検討タイプ	考慮する設備荷重	形状特性
レール支持梁(EW方向)	クレーン	幅3.5m, 厚1.8mの一定形状
NS方向基礎	キャスク、クレーン、モジュール	厚1.8m, 1.0m, 0.8m
EW方向基礎	キャスク、モジュール	厚1.0m, 0.8m

3タイプの検討位置を図 1.4-6 に、解析モデルを表 1.4-9 に示す。

図 1.4-6 検討モデル(単位:mm)

表 1.4-9 検討タイプの形状とモデル図

(単位:mm)

3) 荷重の組合せ

荷重組合せを表 1.4-10 に示す。

表 1.4-10 コンクリート基礎の荷重組合せ

レール支持梁(EW方向)

想定する状態	許容応力度	荷重組合せ内容	
常時	長期	VL+CL	
地震時 短期		VL+CL+K(EW)	

NS方向基礎

想定する状態 許容応力度		荷重組合せ内容	
常時長期		VL+CL+CAL+MJL	
地震時 短期		VL+CL+CAL+MJL+K(NS)	

EW方向基礎

想定する状態	許容応力度	荷重組合せ内容
常時	長期	VL+CAL+MJL
地震時	短期	VL+CAL+MJL+K(EW)

4) クレーン及びキャスク・モジュールの載荷ケース

載荷ケース別のクレーン及びキャスク・モジュールの載荷位置を表1.4-11~1.4-14に示す。

表 1.4-12 クレーンの載荷位置 (NS 方向基礎)

表 1.4-13 キャスク及びモジュールの載荷位置 (NS 方向基礎)

表 1.4-14 キャスク及びモジュールの載荷位置 (EW 方向基礎)

5) 載荷ケースの組合せ

クレーン及びキャスク・モジュールの載荷ケースの組合せを表 1.4-15~表 1.4-17 に示す。

	組合せケース	クレーン	キャスク・モジュール
	ケース1	クレーン 1	-
E	ケース 2	クレーン 2	-
文期	ケース 3	クレーン 3	-
为	ケース 4	クレーン 4	-
	ケース 5	クレーン 5	-
	ケース 6	クレーン 1	-
右司	ケース 7	クレーン 2	-
四期	ケース 8	クレーン 3	-
77	ケース9	クレーン 4	_
	ケース 10	クレーン 5	_

表 1.4-15 載荷ケースの組合せ(レール支持梁(EW 方向))

表 1.4-16 載荷ケースの組合せ (NS 方向基礎)

	ぬみせた フ		キャスク・モジュール		
			<u>キャフク-エジュール 1</u>	イヤベン・センユール	
	<u> </u>		キャスク・モンユールト		
		クレーン 1	キャスク・モンユールと		
			キャスク・モンユール 3		
			キャスク・モンユール4		
			キャスク・モンユール 5		
			キャスク・モンユールト		
		5U_~~	キャスク・モンユール2		
	<u> </u>	10 22	キャスク・モジュールイ		
E	ス 9		キャスク・モンユールキ	お式貯蔵キャスクと塗	
加	ケース 11		キャスク・モジュール・1		
77]	ス 11		キャスク・モンユールー		
		5U-12	キャスク・モンユール2		
	ケース 14		キャスク・モジュールイ		
	ケース 15		キャスク・モジュール5		
	ス 15		キャスク・モンユール 5		
	ス 10		キャスク・モンユールー		
	ケース 18	51,->,4	キャスク・モジュール。		
	ケース 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	キャスク・モンユール 3		
	ケース 19		キャスク・モンユールキ	お式貯蔵キャスクと塗	
	ケース 21		キャスク・モジュール・1		
	ケース 22		キャスク・モジュールク		
	ケース 23	クレーン 1	キャスク・モジュール3		
	ケース 24	10 21	キャスク・モジュール4	ちず貯蔵キャスクク基	
	ケース 25		キャスク・モジュール5	お式貯蔵キャスクな	
	ケース 26		キャスク・モジュール1		
	<u>ケース 27</u>		キャスク・モジュールク		
	ケース 28	クレー ン 2	キャスク・モジュール3		
	ケース 29	10 22	キャスク・モジュールイ		
梪	ケース 30		キャスク・モジュール5	ちず貯蔵キャスクなし	
期	ケース 31		キャスク・モジュール1	おれい (イバン 60)	
	ケース 32		キャスク・モジュールク	おれり歳 ((ハノ) - 金) 制とり 歳 水川 ((ハノ) - 金)	
	ケース 33	クレーン 3	キャスク・モジュール3	乾式貯蔵キャスク4基	
	ケース 34		キャスク・モジュール4	ちちちん しん しん しょう	
	ケース 35		キャスク・モジュール5	ちちちん しん	
	ケース 36		キャスク・モジュール1	乾式貯蔵キャスク4 基+輸送貯蔵兼田キャスク4 基	
	ケース 37		キャスク・モジュールク	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク9基	
	ケース 38	クレーン 4	キャスク・モジュール3	乾式貯蔵キャスク4基	
	ケース 39		キャスク・モジュール4	<u>乾式</u> 貯蔵キャスク2基	
	ケース 40	1	キャスク・モジュール5	乾式貯蔵キャスクなし	

	組合せケース	クレーン		キャスク・モジュール
	ケース1	-	キャスク・モジュール1	乾式貯蔵キャスク6基+輸送貯蔵兼用キャスク2基
	ケース 2	_	キャスク・モジュール 2	乾式貯蔵キャスク6基
E	ケース 3	_	キャスク・モジュール3	乾式貯蔵キャスク5基
云期	ケース 4	_	キャスク・モジュール 4	乾式貯蔵キャスク4基
777	ケース 5	_	キャスク・モジュール5	乾式貯蔵キャスク3基
	ケース 6	_	キャスク・モジュール 6	乾式貯蔵キャスク2基
	ケース 7	_	キャスク・モジュール 7	乾式貯蔵キャスク1基
	ケース 8	-	キャスク・モジュール1	乾式貯蔵キャスク6基+輸送貯蔵兼用キャスク2基
	ケース 9	_	キャスク・モジュール 2	乾式貯蔵キャスク6基
右司	ケース 10	_	キャスク・モジュール3	乾式貯蔵キャスク5基
短期	ケース 11	_	キャスク・モジュール 4	乾式貯蔵キャスク4基
州	ケース 12	-	キャスク・モジュール5	乾式貯蔵キャスク3基
	ケース 13	_	キャスク・モジュール6	乾式貯蔵キャスク2基
	ケース 14	_	キャスク・モジュール7	乾式貯蔵キャスク1基

表 1.4-17 載荷ケースの組合せ(EW 方向基礎)

6) 設計断面力

検討タイプ別に,全ての組合せケースの最大値(負の値は最小値)を抽出し,設計断面力 とする。

7) 荷重図

代表例として,検討タイプ別に下側鉄筋の決定ケースとなった組合せケースの荷重図を図 1.4-7~図1.4-9に示す。

図 1.4-7 荷重図 (レール支持梁 (EW 方向))

(4) 構造強度の評価

構造強度の評価は次式に示すように応力度が許容応力度を下回ることを確認する。

曲げ応力度の照査

```
\begin{array}{ll} \sigma \ c & \leq \sigma \ ca \\ \sigma \ s & \leq \sigma \ sa \end{array}
```

ここに,

 σc:
 コンクリートの曲げ圧縮応力度 (N/mm²)

 σca:
 コンクリートの許容曲げ圧縮応力度 (N/mm²)

 σs:
 鉄筋の引張応力度 (N/mm²)

 σsa:
 鉄筋の許容引張応力度 (N/mm²)

せん断応力度の照査

 $\tau \quad \leq \tau \; a$

ここに, τ: コンクリートのせん断応力度 (N/mm²) τa: コンクリートの許容せん断応力度 (N/mm²)

断面検討結果を表 1.4-18~表 1.4-20 に示す。 断面検討の結果,応力度が許容応力度以下であることを確認した。

項目			記号	単位	レール支持梁
±7 ±+	部材幅		b	(mm)	3500
<u>ወ</u> ስፈላ	部材高		h	(mm)	1800
		位置	d	(mm)	525
	1620日	鉄筋			D25
	「权日	本数		(本)	24.00
		鉄筋量	As	(cm^2)	121.61
		位置	d	(mm)	866
	2段目	鉄筋			D25
		本数		(本)	6.00
建位		鉄筋量	As	(cm^2)	30.40
业大用力	3段目	位置	d	(mm)	1658
		鉄筋			D32
		本数		(本)	24.00
		鉄筋量	As	(cm^2)	190.61
		鉄筋			D22
	┿╋	ピッチ		(mm)	—
		鉄筋本数		(本)	4.000
		配置間隔	Ss	(mm)	450

表 1.4-18 断面検討結果 (レール支持梁 (EW 方向))

	引張鉄筋	項目	記号	単位	長期	短期
		決定ケース			ケース5	ケース10
	L /Bil	曲げモーメント	Md	(kN∙m)	-1838	-1409
	上凤	軸力	Nd	(kN)	-142	-131
設計		せん断力	Vd	(kN)	7	9
計	下側	決定ケース			ケース2	ケース7
画		曲げモーメント	Md	(kN∙m)	3175	2777
山力	「頂」	軸力	Nd	(kN)	47	43
		せん断力	Vd	(kN)	169	162
	せん断力最大	決定ケース			ケース2	ケース8
		せん断力	Vd	(kN)	748	814

引張鉄筋	項目		記号	単位	長期	短期
		圧縮応力度	σο	(N∕mm²)	2.43	1.87
	コンクリート	許 容曲げ 圧縮応 力度	σ ca	(N∕mm²)	9.00	13.50
	1299-F	$\sigma c \neq \sigma ca \leq 1.0$			0. 27	0.14
⊢ /Bil		判定			OK	OK
工则		引張応力度	σs	(N∕mm²)	123	95
	金生合生	許容引張応力度	σsa	(N∕mm²)	196	294
	或大用刀	σs∕σsa	≦ 1.0		0.63	0.32
		判定			OK	OK
	コンクリート	圧縮応力度	σc	(N∕mm²)	3.10	2.71
		許 容曲げ 圧縮応 力度	σca	(N∕mm²)	9.00	13.50
		$\sigma c / \sigma ca \leq 1.0$			0.34	0.20
下個		判定			OK	OK
ניאר ד		引張応力度	σs	(N∕mm²)	109	95
	從故	許容引張応力度	σsa	(N∕mm²)	196	294
	亚大用刀	σs∕σsa	≦ 1.0		0.56	0.32
		判定			OK	OK
		引張応力度	τ	(N∕mm²)	0. 147	0. 160
+	十人、座丘	許容引張応力度	τα	(N∕mm²)	0.450	0. 675
	270回	τ / τ а 🖆	≦ 1.0		0.33	0.24
		判定	-		OK	OK

図 1.4-10 NS 方向基礎検討位置図

表 1.4-19 断面検討結果 (NS 方向基礎)

	項目		記号	単位	レール部スラブ	スラブA	スラブB
亦차	部材幅		b	(mm)	4380	7280	5760
ካኮባላ	部材高		h	(mm)	1650	850	650
		位置	d	(mm)	350	350	100
	162日	鉄筋			D25	D25	D25
		本数		(本)	58.000	48.000	38.000
_	/•	鉄筋量	As	(cm^2)	293.89	243. 22	192.55
	아파며	位置	d	(mm)	1540	740	540
建故		鉄筋			D32	D25	D32
或 大用刀		本数		(本)	29.000	48.000	38.000
		鉄筋量	As	(cm^2)	230.32	243. 22	301.80
		鉄筋			D16	D16	D16
	++ / ₩5	ピッチ		(mm)	600	600	600
	での町	鉄筋本数		(本)	13.833	13.833	13.833
		配置間隔	Ss	(mm)	900	600	600

	己语姓族	引張鉄筋 項目	합면	畄位	長期			短期		
	うじ反政府の	項日	記方	中位	レール部スラブ	スラブA	スラブB	レール部スラブ	スラブA	スラブB
		決定ケース			ケース 5	ケース 7	ケース11	ケース34	ケース27	ケース31
上側	曲げモーメント	Md	(kN∙m)	-934	-1501	-1338	-187	-1388	-1070	
	軸力	Nd	(kN)	-116	-56	-16	-695	-466	-117	
		せん断力	Vd	(kN)	643	45	28	268	74	78
同日		決定ケース			ケース18	ケース13	ケース17	ケース34	ケース33	ケース37
副	下側	曲げモーメント	Md	(kN∙m)	3570	2622	2471	3573	2216	1931
<u></u>	1° INI	軸力	Nd	(kN)	128	80	119	-391	-516	-486
		せん断力	Vd	(kN)	633	406	988	752	1151	1016
せん断力最大	부 / 종ナ교ナ	決定ケース			ケース9	ケース7	ケース16	ケース31	ケース33	ケース36
	せん断力	Vd	(kN)	913	1167	1047	926	1151	1053	

引張鉄	т	īА	휘문	畄位	長期			短期		
筋位置	- <u></u>	8 H	記方	中位	レール部スラブ	スラブA	スラブB	レール部スラブ	スラブA	スラブB
		圧縮応力度	σc	(N∕mm²)	0.73	4.74	4.30	0.00	4. 50	3.43
		許容曲げ圧縮応力度	σca	(N∕mm²)	9.00	9.00	9.00	13.50	13.50	13.50
	1299-1	σc∕σca	≦ 1.0		0.08	0.53	0.48	0.00	0.33	0.25
⊢ /Bil		判定			OK	OK	OK	OK	OK	OK
上侧		引張応力度	σs	(N∕mm²)	29	144	145	39	146	119
	<i>全</i> 性 存在	許容引張応力度	σsa	(N∕mm²)	196	196	196	294	294	294
	亚大月刀	σs∕σsa	≦ 1.0		0.15	0.73	0.74	0.13	0.50	0.40
		判定			OK	OK	OK	OK	OK	OK
		圧縮応力度	σc	(N∕mm²)	2.86	4. 98	7. 21	2.68	4.17	5.53
		許容曲げ圧縮応力度	σca	(N∕mm²)	9.00	9.00	9.00	13.50	13.50	13.50
	1299-1	σc⁄σca	≦ 1.0		0.32	0.55	0.80	0.20	0.31	0.41
下個		判定			OK	OK	OK	OK	OK	OK
下侧		引張応力度	σs	(N∕mm²)	106	149	174	119	136	146
	<i>全</i> 性 存在	許容引張応力度	σsa	(N∕mm²)	196	196	196	294	294	294
	亚大月刀	σs∕σsa	≦ 1.0		0.54	0.76	0.89	0.40	0.46	0.50
		判定			OK	OK	OK	OK	OK	OK
		せん断応力度	τ	(N∕mm²)	0.082	0.217	0.267	0.083	0.214	0.268
l .	+ く) 昨日	許容せん断応力度	τa	(N∕mm²)	0.450	0.450	0.450	0.675	0.675	0.675
(τ∕τа	≦ 1.0		0.18	0.48	0.59	0.12	0.32	0.40
		判定			OK	OK	OK	OK	OK	OK

※ 1段目の鉄筋量は長期上引張が最も厳しくなる部材における値を示す。

図 1.4-11 EW 方向基礎検討位置図

表 1.4-20 断面検討結果(EW 方向基礎)

	項目		記号	単位	スラブC	スラブD
亦材	部材幅		b	(mm)	4.003	4.504
61 (ID	部材高		h	(mm)	800	1000
		位置	d	(mm)	275	525
	162日	鉄筋			D25	D25
	1 段日	本数		(本)	24.000	30.000
		鉄筋量	As	(cm^2)	121.61	152.01
	2段目	位置	d	(mm)	661	866
建故		鉄筋			D25	D22
亚 天 用刀		本数		(本)	26.000	30.000
		鉄筋量	As	(cm^2)	131.74	116.13
		鉄筋			D16	D16
	++ 4、账	ピッチ		(mm)	600	600
		鉄筋本数		(本)	8.617	8.617
		配置間隔	Ss	(mm)	600	600

	己居姓族	百日	히묘	畄仂	長	期	短期	
	ラーカ東東大用力	項日	867 부산		スラブC	スラブD	スラブC	スラブD
		決定ケース			ケース1	ケース 5	ケース9	ケース11
	F (Bil	曲げモーメント	Md	(kN∙m)	-730	-1000	-453	-674
=0.	上侧	軸力	Nd	(kN)	0	0	-979	-947
設計		せん断力	Vd	(kN)	5	2	13	4
		決定ケース			ケース 1	ケース 7	ケース8	ケース14
一面	下側	曲げモーメント	Md	(kN∙m)	907	1930	927	1524
山力		軸力	Nd	(kN)	3	2	-562	-100
~ ~		また新士	VЧ	(kN)	468	20	450	5
			Vu	(((())))	-00	00	100	9
	また新せ船大	決定ケース	Vu	((()))	+00 ケース 1	ケース 7	100 ケース8	。 ケース14

引張鉄	та	īн	히모	畄仂	長	:期	短期	
筋位置		4 H	記方	中位	スラブC	スラブD	スラブC	スラブD
		圧縮応力度	σc	(N∕mm²)	4.19	5.85	2.88	4. 92
		許容曲げ圧縮応力度	σca	(N∕mm²)	9.00	9.00	13.50	13.50
	1760-k	$\sigma c / \sigma ca \leq 1.0$			0.47	0.65	0.21	0.36
⊢ /Bil		判定			OK	OK	OK	OK
上的		引張応力度	σs	(N∕mm²)	130	160	136	171
	分析存在	許容引張応力度	σsa	(N∕mm²)	196	196	294	294
	<u></u>	σs∕σsa	≦ 1.0		0.66	0.82	0.46	0. 58
		判定			OK	OK	OK	OK
	コンクリート	圧縮応力度	σc	(N∕mm²)	3.75	4.88	3.79	3.85
		許容曲げ圧縮応力度	σca	(N∕mm²)	9.00	9.00	13.50	13.50
		σc⁄σca	≦ 1.0		0.42	0.54	0.28	0.29
下個		判定			OK	OK	OK	OK
下頂		引張応力度	σs	(N∕mm²)	113	163	135	131
	余 开 存在	許容引張応力度	σsa	(N∕mm²)	196	196	294	294
	亚大 月刀	σs∕σsa	≦ 1.0		0.58	0.83	0.46	0.45
		判定			OK	OK	OK	OK
	せん断応力」		τ	(N/mm^2)	0. 207	0.144	0. 229	0.121
↓	+ / .₩₽	許容せん断応力度	τa	(N/mm^2)	0.450	0.450	0.675	0.675
		τ∕та	≦ 1.0		0.46	0.32	0.34	0. 18
		判定			OK	OK	OK	OK

- (5) 改良地盤の構造強度に対する検討
- 1) 検討方針

検討は「JEAC 4616-2009」に準拠し、長期及び短期荷重により発生する荷重に対して許容 応力度を満足することを確認する。

改良地盤の許容応力度は,改良地盤の設計圧縮強度,圧縮応力度及びせん応力度に対する 安全率に基づき設定する。

支持地盤の許容支持力度は、支持地盤の極限支持力度に対する安全率に基づき設定する。

2)検討モデル

改良地盤の範囲は、コンクリート基礎下面から 0.P.+35.80mまでである。図 1.4-12 に地盤 改良平面図、図 1.4-13 に 1-1 断面を示す。

図 1.4-13 1-1 断面(単位:mm)

3) 改良地盤に生じる地盤反力度に対する検討

改良地盤に生じる地盤反力度に対する検討は,改良地盤に発生する最大地盤反力度(梁バ ネモデルにより算出するバネ反力度)が改良地盤の許容圧縮応力度を下回ることを確認する。

qmax $\leq f_{sc}$

ここに,

安全率の検討結果を表 1.4-21 に示す。検討結果より改良地盤に発生する最大地盤反力度が 改良地盤の許容圧縮応力度を下回ることを確認した。

	最大地盤反力度		改良地盤の 許容圧縮応力度	検定値	和中
		qmax	_f _{sc} , sf _{sc}	qmax∕f _{SC} ≦1.0	刊化
		(kN/m^2)	(kN/m^2)		
	長期	104	110	0.95 < 1.0	OK
レル文行未	短期	119	220	0.54 < 1.0	OK
NS七向フラブ	長期	84	110	0.76 < 1.0	OK
мзлыхуу	短期	97	220	0.44 < 1.0	OK
EW方向スラブ	長期	72	110	0.65 < 1.0	OK
	短期	72	220	0.33 < 1.0	OK

表 1.4-21 改良地盤の地盤反力度に対する検討結果 (基礎下面)

4) 改良地盤に生じるせん断応力に対する検討

改良地盤に生じるせん断応力に対する検討は,改良地盤に発生する最大せん断応力度が許 容せん断応力度を下回ることを確認する。

$$\tau_{max} \leq f_{SS}$$

 $\tau_{max} = \kappa \cdot \tau$
 $f_{SS} = 1/5 \cdot f_{SC}$
ここに、
 $\tau_{max}: 最大せん断応力度 (kN/m2)$
 $f_{SS}: 改良地盤の許容せん断応力度 (kN/m2)$
 $\kappa : 形状係数 (\kappa = 1.2)$
 $\tau : 平均せん断応力度 (kN/m2)$
 $f_{SC}: 改良地盤の許容圧縮応力度 (kN/m2)$
 $f_{SC}: 改良地盤の許容圧縮応力度 (kN/m2)$
 $長期 Lf_{SC} = 110 (kN/m2)$
 $短期 sf_{SC} = 220 (kN/m2)$
 $L f_{SS} = 1/5 \cdot 110 = 22 (kN/m2)$
 $s f_{SS} = 1/5 \cdot 220 = 44 (kN/m2)$

長期 $\tau = 0.046 \text{ (kN/m}^2)$ $\tau_{\text{max}} = 0.046 \times 1.2 = 0.055 \text{ (kN/m}^2)$ 短期 $\tau = 12.1 \text{ (kN/m}^2)$ $\tau_{\text{max}} = 12.1 \times 1.2 = 14.5 \text{ (kN/m}^2)$

せん断応力度の検討結果を表 1.4-22 に示す。検討結果より改良地盤に発生する最大せん断 応力度が許容せん断応力度を下回ることを確認した。

表 1.4-22 改良地盤のせん断応力度に対する検討結果

	最大せん断応力度 て _{max}	許容せん断応力度 _L f _{ss} , _s f _{ss}	検定値	判定
	(kN∕m ²)	(kN∕m ²)	τ max∕f _{ss} ≦1.0	
長期	0.055	22	0.003 < 1.0	OK
短期	14.5	44	0.33 < 1.0	OK

5) 支持力の検討

改良地盤直下の支持地盤については,改良体下面に作用する設計地盤反力度が許容支持力 度を下回ることを確認する。

qmax \leq qa

ここに,

- qmax:
 最大地盤反力度(kN/m²)
 長期 qmax= 96.7 (kN/m²)

 短期 qmax=102.1 (kN/m²)
 - qa:支持地盤の許容支持力度(kN/m²)長期qa=666 (kN/m²)短期qa=531 (kN/m²)

支持力の検討結果を表 1.4-23 に示す。検討結果より改良体下面に作用する設計地盤反力度 が許容支持力度を下回ることを確認した。

表 1.4-23	支持力に対す	-る検討結果
----------	--------	--------

	設計地盤反力度 qmax	支持地盤の 許容支持力度 qa	検定値	判定
	(kN)	(kN)	qmax∕qa≦1.0	
長期	96.7	666	0.15 < 1.0	OK
短期	102.1	531	0.19 < 1.0	OK

6) 基礎の沈下に対する検討

レール支持梁において,梁の傾斜量が許容値を下回ることを確認する。傾斜量は梁モデルの隣接格点の沈下差を要素長で除して求める。基礎の沈下の検討結果を表 1.4-24 に示す。検討結果より梁の傾斜量が許容値を下回ることを確認した。

表 1.4-24 基礎の沈下に対する検討結果

	傾斜量	許容傾斜量	判定
長期	1/1031	1/800	OK

2 耐震性

- 2.1 乾式キャスクの耐震性
- (1) 乾式貯蔵キャスク
- 1) 評価方針

本設備で使用する乾式貯蔵キャスクは,添付資料-2「評価の基本方針」で記載して いる既存評価書で確認した設計で製作するもので,既存評価書にてキャスク保管建屋に おける基準地震動S₂に対する耐震性が確認されている。

本設備での保管にあたっては設置場所が異なることから、本設置場所における基準地 震動 Ss による地震動に対し、既存評価の結果を用いて余裕率の範囲にあることを確認 する。

2) 評価方法

既存評価に基づく乾式貯蔵キャスクの耐震性の評価手順を図 2.1-1 に示す。 評価は既存設計からの耐震安全性評価で用いている応答倍率法を参考に,既存評価書 の設計震度と本設置場所での設計震度の応答比を求め,余裕率と比較することで耐震安 全性評価を行う。

図 2.1-1 乾式貯蔵キャスクの耐震性評価フロー

3) 固有周期の算定

支持架台に設置された乾式貯蔵キャスクの固有周期の算定モデルは、既存評価と同様である。以下に乾式貯蔵キャスクの固有周期についての計算方法及び計算結果を示す。

- 固有周期の計算条件
 - A. 乾式貯蔵キャスクは、横置きで支持される。
 - B. 乾式貯蔵キャスクの自重(内部を含む)は、4 個のトラニオンを介してキャスク支 持架台に固定される。
 - C. 二次蓋は二次蓋締付けボルトでキャスク容器に固定される。
 - D. キャスク支持架台は固定ボルトで固定具に固定される。固定具は基礎ボルトで基礎 に固定される。

概略構造図を図 2.1-2 に示す。なおキャスク容器とは、胴板、底板、一次蓋、一次蓋 締付けボルト、貫通孔蓋板及び貫通孔蓋板締付けボルトで構成される。

- 固有周期の計算方法
 - A. 設定条件
 - a. 自重及び鉛直方向地震力に対しては、キャスク支持架台の4本の脚柱で支える。
 - b. キャスク容器軸方向水平地震力に対しては、キャスク支持架台の2本の脚柱で支 える。
 - c. キャスク容器軸直角方向水平地震力に対しては、キャスク支持架台の4本の脚柱 で支える。
 - B. 計算モデル及び計算方法
 - a. キャスク容器及びキャスク支持架台をはりでモデル化する。
 - b. キャスク容器のはりは、その質量(内部のバスケット、使用済燃料等を含む)と 等価質量となるはり要素を用いる。
 - c. キャスク支持架台の脚柱下部を固定端とする。
 - d. 計算コードとして NASTRAN を用いる。
 - e. 計算モデルは図 2.1-3 とする。なお、計算モデルは既存評価と同様である。

③ 固有周期

固有周期の算定結果を表 2.1-1 に示す。

表 2.1-1 保管時の乾式貯蔵キャスクの固有周期

方 向	固有周期		
キャスク容器軸方向	0.048		
キャスク容器軸直角方向	0.045		
キャスク容器鉛直方向	0.013		

大型キャスク(単位:s)

中型キャスク(単位:s)

方 向	固有周期		
キャスク容器軸方向	0.043		
キャスク容器軸直角方向	0.035		
キャスク容器鉛直方向	0.012		

計算モデル及び乾式貯蔵キャスク,支持架台の仕様が既存評価書と同じことから,固 有周期は,既存評価と同様である。

図 2.1-2 乾式貯蔵キャスクの概略構造図

	部材名称		部材名称				
0	キャスク容器本体 (等原質器の開けれ更要)	6	下部脚柱				
		1	上部軸方向水平はり				
2	り キャスク容器本体 (剛はり要素,質量なし)		下部軸方向水平はり				
3	トラニオン取付部	9	軸直角方向水平はり				
4	トラニオン	0	脚柱補強垂直材				
5	上部脚柱	0	脚柱補強斜材				

(単位:mm)

	h_1	h_2	h ₃	b_1	b_2	ℓ_1	ℓ_2	ℓ_3	H _{VG}
大型	200	1000	1380	1301	1007	4250	1480	1290	1600
中型	200	1030	1380	1218	902	4250	1480	1290	1600

図 2.1-3 固有周期解析モデル
4) 本設備での設計震度

「3) 固有周期の算定」で求めた固有周期から、乾式貯蔵キャスクの耐震性の評価に 用いる設計用地震力を定める。

乾式貯蔵キャスクの固有周期は全て 0.05sec 以下であることから,乾式貯蔵キャスク は剛体と見なすことができる。従って設計用地震力は 1.2ZPA とする。表 2.1-2 に Ss の 1.2ZPA を示す。

	12 2.1 2 35 07 1.	ZZI A
	1.2ZPA(水平)	1.2ZPA(鉛直)
Ss	0.79G	0.49G

表 2.1-2 Ss の 1.2ZPA

- 5) 耐震性評価
- 設計震度の比較

「4) 本設備での設計震度」で算出した本設置場所の設計水平及び鉛直震度と既存評価における設計水平及び鉛直震度を表 2.1-3 に示す。

項目	既存評価	本設置場所			
基準地震動	S_2	Ss			
水平震度 Ch	0.55G	0.79G			
鉛直震度 Cv	0.23G	0.49G			

表 2.1-3 既存評価との設計震度の比較

② 耐震性の評価

前項で示した設計震度の比較から,応答倍率法により本設置場所における乾式貯蔵キ ャスクの耐震性を評価する。

また応答比の算出方法は種々あるが,ここではより安全側の評価となるように応答比 βを以下のように定める。

$$\beta = \max\left(\frac{C_{H1}}{C_{H0}}, \frac{C_{V1}}{C_{V0}}\right)$$

 C_{H0} :既存の評価で用いた水平震度 C_{H1} :新たな評価で用いる水平震度 C_{V0} :既存の評価で用いた鉛直震度 C_{V1} :新たな評価で用いる鉛直震度 既存評価書で用いている設計震度と本評価で用いる設計震度の値から上式で算定した 応答比は 2.130 である。

参考資料より既設評価における余裕率は全ての部位で 2.130 を上回っており,本設置 場所においても耐震安全性を確保できる。 1 基準地震動 S₂

1-1 乾式貯蔵キャスク 大型(6号機)

基準地震動 S ₂								
水平方向	鉛直方向							
設計加速度	設計加速度							
C _H =0.55G	C _v =0.23G							

(1)キャスク容器

出典

(平成 22 年 10 月 22 申請,東京電力株式会社) Ⅳ−3−2 使用済燃料乾式貯蔵容器の応力計算

福島第一原子力発電所 第6号機工事計画認可申請書及び添付資料

(単位	Ζ:Ν/	mm^2
-----	------	--------

部位	材料	設計事象	一次一般膜応力強さ		余裕率	一次 一次曲げ	一次膜+ 一次曲げ応力強さ		一次+二	二次応力	余裕率
			計算値	許容応力		計算値	許容応力		計算値	許容応力	
胴板	GLF1 ¹⁾	I +S ₂	6	251	41.8	8	377	47.1	12	362	30.2
一次蓋	GLF1 ¹⁾	I +S ₂	1	251	251.0	27	377	14.0	2	362	181.0
底板	GLF1 ¹⁾	I +S ₂	2	251	125.5	7	377	53.9	4	362	90.5
貫通孔蓋板	SUS304	I +S ₂	7	276	39.4	49	414	8.4	2	401	200.5
密封シール部	GLF1 ¹⁾	I +S $_2$	11	181	16.5	11	181	16.5	5	181	36.2
ボス溶接部	SUS304L	I +S $_2$	5	125	25.0	5	188	37.6	9	168	18.7
ガンマ線遮へい体 取付ボルト 溶接部	SUS304	I +S ₂	3	125	41.7	3	188	62.7	7	181	25.9

注 1)GLF1 相当材は GLF1 として表記する。

(キャスク容器)

(単位	:	N/mm^2)
-----	---	------------

部位	材料	設計事象	平均引	張応力	余裕率	平均引張応力 +曲げ応力		余裕率
			計算値	許容応力		計算値	許容応力]
一次蓋 締付けボルト	GBL1	I +S ₂	81	649	8.0	106	649	6.1
貫通孔蓋板 締付ボルト	GBL1	I +S ₂	199	649	3.3	265	649	2.4

(2)バスケット

(単位:N/mm²)

立合	オナギル	設計事象	一涉	x 一般膜応力	強さ	令状态	一次膜	力強さ	全松索	
目的正	12, 12	以 口 尹 豕	計算值 許容応力 1)		示伯平	計算値	許容」	芯力 ¹⁾	示伯牛	
バスケット プレート	A6061P 及び B-A1	I +S $_2$	2	65	65	32.5	3	98	98	32.7
バスケット サポート	SUS304	I +S ₂	2	266	266	133.0	2	400	400	200.0
バスケット サポート 取付ボルト	SUS304	I +S ₂	18	266	266	14.8	18	400	400	22. 2

注1)設計・建設規格に基づく許容応力値を左側に、構造規格に基づく許容応力値を右側に示す。

(3)	\mathbb{F}	ラ	二	オ	ン
(-)	•				

(単位:N/mm²)

部位 材料			一次応力										
	設計事象	引張	応力		圧縮応力		令公家	せん断応力		令公家			
			計算値	許容応力	示俗平	計算値	許容応力	示伯平	計算値	許容応力	示旧中		
トラニオン	SUS630	I+S ₂	6	586	97.7	6	583	97.2	17	338	19.9		

部位 材料			一次応力											
	設計事象	曲げ	曲げ応力 会 が 恋		支圧応力		令讼索	組合せ応力		令讼索				
			計算値	許容応力	示怕平	計算値	許容応力	示俗平	計算値	許容応力	示伯平			
トラニオン	SUS630	I +S ₂	21	586	27.9	37	1098	29.7	35	586	16.7			

部位 材料 設計事象			一次+二次応力										
	設計事象	引張・圧縮応力		合讼应	せん断応力		令讼索	曲げ応力		令状态			
			計算値	許容応力	示俗平	計算値	許容応力	示俗平	計算値	許容応力	示伯平		
トラニオン	SUS630	I+S ₂	22	1172	53.3	23	676	29.4	29	1172	40.4		

部位 材料	オオ劣し	設計事象	引張応力		令状态	せん断応力		令讼恋	組合せ応力		令讼索
	17] 17-1		計算値	許容応力	示附竿	計算値	許容応力	示俗罕	計算値	許容応力	示俗竿
トラニオン 締付ボルト	GBL1	I +S $_2$	71	584	8.2	28	449	16.0	86	584	6.8

(4)	二次蓋

(単位:N/mm²)

部位	材料	設計事象	一次膜+ 一次曲げ応力強さ		余裕率	一次+二	余裕率	
			計算値	許容応力		計算値	許容応力	
二次蓋	SUSF304	$I + S_2$	25	372	14.9	8	301	37.6

立[[合]	オナギル	迎針車免	平均引	令讼索	
다[) [다	19,14	以 同 尹 豕	計算值1)	許容応力	示伯平
二次蓋 締付ボルト	GBL1	I +S ₂	157	346	2.2

注1)曲げ応力を含んだ計算値

1-2 乾式貯蔵キャスク 中型(4,5号機)

基準地震動 S ₂								
水平方向 設計加速度	鉛直方向 設計加速度							
C _H =0.55G	C _v =0.23G							

福島第一原子力発電所 第4号機工事計画認可申請書及び添付資料 (平成22年10月22申請,東京電力株式会社) Ⅳ-3-2 使用済燃料乾式貯蔵容器の応力計算

(1)キャスク容器

(単位:N/mm²)

部位	材料	設計事	一次一般膜応力強さ		余裕率	一次膜+ 一次曲げ応力強さ		余裕率	一次+二次応力		余裕率
		豕	計算値	許容応力		計算値	許容応力		計算値	許容応力	
胴板	GLF1 ¹⁾	I +S ₂	5	251	50.2	7	377	53.9	10	362	36.2
一次蓋	GLF1 ¹⁾	I +S ₂	1	251	251.0	22	377	17.1	2	362	181.0
底板	GLF1 ¹⁾	I +S ₂	2	251	125.5	6	377	62.8	4	362	90. 5
貫通孔蓋板	SUS304	I +S ₂	9	276	30.7	50	414	8.3	2	401	200.5
密封シール部	GLF1 ¹⁾	I +S ₂	12	181	15.1	14	181	12.9	5	181	36.2
バスケットサポー ト取付ボルト 溶接部	SUS304L	I +S ₂	15	125	8.3	15	188	12.5	30	181	6.0
ガンマ線遮へい体 取付ボルト 溶接部	SUS304	I +S ₂	3	125	41.7	3	188	62.7	6	181	30.2

出典

注 1)GLF1 相当材は GLF1 として表記する。

(キャスク容器)

(里位:N/mm ²)	
-------------------------	--

部位	材料	設計事象	平均引	張応力	余裕率	平均引張応力 +曲げ応力		余裕率
			計算値	許容応力		計算値	許容応力	1
一次蓋 締付けボルト	GBL1	I +S ₂	78	649	8.3	99	649	6.6
貫通孔蓋板 締付ボルト	GBL1	I +S ₂	198	649	3.3	263	649	2.5

(2)バスケット

(単位:N/mm²)

立心	オナギル	設計車免	一次	一次一般膜応力強さ			一次膜	+一次曲げ応	力強さ	令欲恋
目的正	12, 12	以 口 尹 豕	計算値	·算值 許容応力 ¹⁾		示伯平	計算値	許容」	芯力 ¹⁾	示伯牛
バスケット プレート	A6061P 及び B-A1	I +S $_2$	2	65	65	32.5	3	98	98	32.7
バスケット サポート	SUS304	I +S ₂	2	266	266	133.0	2	400	400	200
バスケット サポート 取付ボルト	SUS304	I +S ₂	21	266	266	12.7	21	400	400	19.0

注1)設計・建設規格に基づく許容応力値を左側に、構造規格に基づく許容応力値を右側に示す。

(3)	\mathbb{F}	ラ	二	オ	ン
(-)	•				

(単位:N/mm²)

部位 材				一次応力									
	材料	設計事象	引張	引張応力		圧縮応力		令公家	せん聞	新応力	令讼态		
			計算値	許容応力	小田十	計算値	許容応力	示伯平	計算値	許容応力	小伯十		
トラニオン	SUS630	I +S ₂	5	586	117.2	5	583	116.6	14	338	24.1		

部位 材:		設計事象		一次応力									
	材料		曲げ	ず応力 会 公 恋		支圧応力		令讼索	組合せ応力		令状态		
			計算値	許容応力	小田十	計算値	許容応力	示俗平	計算値	許容応力	入()有" "		
トラニオン	SUS630	$I + S_2$	18	586	32.6	37	1098	29.7	30	586	19.5		

部位 材料		材料 設計事象		一次+二次応力								
	材料		引張・周	E縮応力	令讼态	せん	断応力	令公家	曲げ	ず応力 全松落		
			計算値	許容応力	示位于	計算値	許容応力	示伯平	計算値	許容応力	示怕平	
トラニオン	SUS630	$I + S_2$	19	1172	61.7	19	676	35.6	24	1172	48.8	

部位	大大平川	凯卦重角	引張	応力	令讼索	せん	断応力	令状态	組合せ	せ応力	令讼索
	材料		計算値	許容応力	示竹竿	計算値	許容応力	示俗罕	計算値	許容応力	示附竿
トラニオン 締付ボルト	GBL1	I +S ₂	60	584	9.7	24	449	18.7	72	584	8.1

(4)	二次蓋

(単位:N/mm²)

部位	材料	設計事象	<u>ー</u> 渉 一次曲げ		余裕率	一次+二	次応力	余裕率
			計算値	許容応力		計算値	許容応力	
二次蓋	SUSF304	$I + S_2$	19	372	19.6	7	301	43.0

立[[合]	オナギル	迎針車免	平均引	張応力	令讼索
다[) [다	19,14	以 同 尹 豕	計算值1)	許容応力	示怕平
二次蓋 締付ボルト	GBL1	I +S ₂	151	346	2.3

注1)曲げ応力を含んだ計算値

(2) 輸送貯蔵兼用キャスクA

1) 評価方針

キャスク仮保管設備における輸送貯蔵兼用キャスクAの基準地震動Ssに対する耐震強 度を確認する。

2) 固有周期の算定

以下に輸送貯蔵兼用キャスクAの固有周期について計算方法及び計算結果を示す。

- 固有周期の計算条件
 - A. 輸送貯蔵兼用キャスクAは、横置きで支持される。
 - B. 輸送貯蔵兼用キャスクAの自重(内部を含む)は、4個のトラニオンを介してキャ スク支持架台に固定される。
 - C. 二次蓋は二次蓋締付けボルトでキャスク容器に固定される。
 - D. 鋼製支持架台は基礎ボルトでコンクリート支持架台に固定され、コンクリート支持 架台は基礎と一体の構造となっている。概略構造図を図 2.1-4 に示す。
- ② 固有周期の計算方法
 - A. 設定条件
 - a. 自重及び鉛直方向地震力に対して、キャスク支持架台の4本の脚柱で支える。
 - b. キャスク容器軸方向水平地震力に対して、キャスク支持架台の2本の脚柱で支える。
 - c. キャスク容器軸直角方向水平地震力に対して,キャスク支持架台の4本の脚柱で 支える。
 - B. 計算モデル及び計算方法
 - a. キャスク容器及びキャスク支持架台をはりでモデル化する。
 - b. キャスク容器のはりは、その質量(内部のバスケット、使用済燃料等を含む)と 等価質量となるはり要素を用いる。
 - c. コンクリート支持架台の下部を固定端とする。
 - d. 計算コードとして NASTRAN を用いる。
 - e. 計算モデルは図 2.1-5 とする。
- ③ 固有周期

固有周期の算定結果を表 2.1-4 に示す。

方 向	固有周期
キャスク容器軸方向	0.049
キャスク容器軸直角方向	0.043
キャスク容器鉛直方向	0.020

表 2.1-4 保管時の輸送貯蔵兼用キャスク A の固有周期

(単位:s)

図 2.1-4 輸送貯蔵兼用キャスク A の概略構造図

図 2.1-5 固有周期解析モデル

3) 設計震度

「2) 固有周期の算定」で求めた固有周期から,添付資料-2「3 耐震設計方針」に基づき,輸送貯蔵兼用キャスクAの耐震性の評価に用いる設計用地震力を定める。

輸送貯蔵兼用キャスクAの固有周期は全て0.05sec以下であることから,輸送貯蔵兼 用キャスクAは剛体とみなすことができる。従って設計用地震力は1.2ZPAとする。表 2.1-5にSsの1.2ZPAを示す。

42.1 5 55 V) 1.221 K									
	1.2ZPA(水平)	1.2ZPA(鉛直)							
Ss	0.79G	0.49G							

表 2.1-5 Ss の 1.2ZPA

- 4) 解析条件
- ① 荷重の組合せ

Ss 地震時の評価において、キャスク容器及び二次蓋、バスケット、トラニオンの設計 上考慮すべき荷重の種類とその組合せを表 2.1-6(1)~(3)に示す。

設計事象	荷 重 評 価 事 象	圧力による荷重	自重による荷重	ボルト初期締付け力	熱荷重	地震荷重
I + S s	S s 地震力が作用する場合	0	0	0	注)	0

表 2.1-6(1) キャスク容器及び二次蓋の設計上考慮すべき荷重の種類とその組合せ

注) 密封シール部及び密封蓋締付けボルトの応力評価に当たっては,熱荷重を 考慮する。

表 2.1-6(2) バスケットの設計上考慮すべき荷重の種類とその組合せ

表 2.1-6(3) トラニオンの設計上考慮すべき荷重の種類とその組合せ

設計事象	荷 重 評 価 事 象	自重による荷重	熱荷重	地震荷重
I + S s	S s 地震力が作用する場合	0	0	0

注) キャスク容器の熱膨張により生じる応力に限る。

② 最高使用圧力と温度

各機器の最高使用圧力及び最高使用温度を表 2.1-7 に示す。 なお,各部最高使用温度は,添付資料-4「1.1.乾式キャスクの除熱機能(2)輸送貯蔵 兼用キャスク A の除熱機能」の算定結果に基づく。

よ、マカ広明	最高使用圧力	1.5 MPa
キャスク谷畚	最高使用温度	130 °C
	最高使用圧力	0.31 MPa
	最高使用温度	90 °C
バスケット	最高使用温度	170 °C
トラニオン	最高使用温度	100 °C

表 2.1-7 最高使用圧力及び最高使用温度

③ 解析箇所

応力解析箇所を図 2.1-6,7 に示す。

図 2.1-6 キャスク容器等の応力解析箇所 Ⅱ-2-13-添 3-147

図 2.1-7 バスケットの応力解析箇所

Ⅱ-2-13-添 3-148

④ 物性値

A. キャスク容器及び二次蓋

熱応力計算に使用する材料の物性値を表 2.1-8 に示す。なお、熱応力計算に使用する 物性値はその温度依存性を考慮する。

内圧及び機械的荷重による応力計算に使用する物性値は,温度分布計算で得られた温度を各部ごとに設定し,これに対応した値を用いる。なお,常温は20℃とする。

B. バスケット

熱応力計算に使用する材料の物性値を表 2.1-9 に示す。なお、熱応力計算に使用する 物性値はその温度依存性を考慮する。

機械的荷重による応力計算に使用する物性値は,最高使用温度に対する値を用いる。 なお,常温は20℃とする。

C. トラニオン

熱応力計算に使用する材料の物性値を表 2.1-10 に示す。

機械的荷重による応力計算に使用する物性値は,最高使用温度に対する値を用いる。 なお,常温は20℃とする。

構成部材	材料	温度 (℃)	縦弾性係数 (MPa)	平均熱膨張係数 (×10 ⁻⁶ mm/(mm・℃))	ポアソン比 (一)
胴 フランジ 底板 一次蓋 一次蓋締付けボルト 二次蓋 二次蓋締付けボルト	低合金鋼 (ASME SA350 LF5 Class1) (SNB23-2)	20 50 75 100 125 150 175 200	(31 d) 192000 189000 188000 186000 185000 184000 182000 182000 180000	(**10 mm) (mm C)) 11. 14 11. 40 11. 62 11. 82 12. 00 12. 21 12. 37 12. 54	0.3

表 2.1-8 熱応力計算に使用する材料の物性値(キャスク容器及び二次蓋)

表 2.1-9 熱応力計算に使用する材料の物性値(バスケット)

╆╪┍┾╤╓┾┾	++*	温度	縦弾性係数*1	平均熱膨張係数*1	ポアソン比	
博 成	材科	(°C)	(MPa)	$(\times 10^{-6} \text{ mm/(mm \cdot °C)})$	(-)	
		20	71200	21.7		
		50	70000	22.6		
		75	68500	23.0		
	アルミニウム	100	67000	23.4		
バスケット		125	67000	23.6	0.0	
プレート	百金	150	65000	23.9	0.3	
		175	64000	24.3		
		200	62000	24.4		
		225	59500	24.7		
		250	57000	25.0		

*1事例規格参照

表 2.1-10 熱応力計算に使用する材料の物性値(トラニオン)

構成部材	材 料	温度 (℃)	縦弾性係数 (MPa)	平均熱膨張係数 (×10 ⁻⁶ mm/(mm・℃))
トラニオン	ステンレス鋼 (SUS630 H1150)	100	190000	11. 10

5) 解析

- ① 解析手順
 - (1) キャスク容器及び二次蓋

キャスク容器の応力解析フローを図 2.1-8 に示す。

キャスク容器の応力解析は、想定される圧力荷重、機械的荷重及び熱荷重を基に、 キャスク容器の実形状をモデル化し、解析コードである ABAQUS 及び応力評価式を用 いて行う。

なお、二次蓋についてもキャスク容器と同様に評価を行う。

(2) バスケット

バスケットの応力解析フローを図 2.1-9 に示す。

バスケットの応力解析は、想定される機械的荷重及び熱荷重を基に、バスケットの 実形状をモデル化し、解析コードである ABAQUS 及び応力評価式を用いて行う。

(3) トラニオン

トラニオンの応力解析フローを図 2.1-10 に示す。

トラニオンの応力解析は,想定される機械的荷重及び熱荷重を基に応力評価式を用いて行う。

図 2.1-8 キャスク容器及び二次蓋の応力解析フロー図

図 2.1-9 バスケットの応力解析フロー図

図 2.1-10 トラニオンの応力解析フロー図

応力の評価

A. キャスク容器及び二次蓋

a. 一次応力

一次蓋,一次蓋締付けボルト,フランジ,胴,底板,二次蓋及び二次蓋締付けボルトの応力計算は,解析コード ABAQUS により行う。

水平方向加速度及び鉛直方向加速度として次の値を用いる。鉛直方向加速度について は、プラスの方向と自重の加速度と組み合わせて考慮する。

 $G_1 = C_H \cdot G$ $G_2 = (1 + C_V) \cdot G$ (軸方向水平地震力+鉛直方向地震力+自重の場合)

ここで, C_H:水平方向設計震度(=0.79)

C_V: 鉛直方向設計震度(=0.49)

$$G_3 = C_H \cdot G$$

 $G_2 = (1 + C_V) \cdot G$
(軸直角方向水平地震力+鉛直方向地震力+自重の場合)

- ここで、C_H:水平方向設計震度(=0.79)
 C_V:鉛直方向設計震度(=0.49)
- b. 一次+二次応力
- (a) 密封シール部を除く、一次蓋、フランジ、胴、底板及び二次蓋 応力計算の方法は、a. と同様である。ただし、荷重条件は地震力のみとして計算を行 い、振幅を考慮して最大値を2倍して求める。
- (b) 密封シール部,一次蓋締付けボルト及び二次蓋締付けボルト 応力計算の方法は,a.と同様である。ただし,荷重条件として熱荷重を含める。
- c. 平均支圧応力
- (a) 底板

バスケット底面との接触部である底板に発生する平均支圧応力(σ_p)は次式で計算する。

$$\sigma_{p} = \frac{m_{G} \cdot G_{1}}{A}$$

ここで, G₁:a.と同じ m_G:バスケット及び燃料の質量(kg) A:底板の接触面積(mm²) (b) 一次蓋

バスケット上面との接触部である一次蓋に発生する平均支圧応力(σ_p)は底板の平 均支圧応力と同じ式で計算する。

ただし, m_G,G₁:(a)と同じ

A: 一次蓋の接触面積 (mm²)

- B. バスケット
- a. 一次応力, 一次+二次応力

応力計算は解析コード ABAQUS により行う。

最大応力が発生するのは,軸直角方向水平地震と鉛直方向地震が作用する場合で,水 平方向加速度及び鉛直方向加速度として次の値を用いる。

 G_2 , G_3

G₃:A. a. と同じ

b. 平均支圧応力

最大応力が発生するのはバスケット底板で,軸方向水平地震と鉛直方向地震が作用す る場合である。

水平方向(軸方向)加速度により発生する応力(σ_x)は、次式で計算する。

$$\sigma_{x} = \frac{\mathbf{m} \cdot \mathbf{G}_{1}}{\mathbf{A}}$$

ここで、G₁:A.a.と同じ m:バスケットの合計質量(kg) A:バスケット底板の接触面積(mm²)

- C. トラニオン
- a. 一次応力
- (a) 圧縮応力

軸直角方向水平地震力+鉛直方向地震力+自重が作用する場合に図 2.1-6 に示す上部 トラニオンの評価点③及び下部トラニオンの評価点④に最大応力が発生する。圧縮応力 (σ_c)は、次式で計算する。

$$\sigma_{\rm C} = \frac{F_{\rm m}}{A}$$
$$F_{\rm m} = \frac{m}{2} \cdot G_3$$

ここで、G₃:A. a. と同じ
 F_m:地震力によりトラニオンに作用する荷重(N)
 m :金属キャスクの質量(kg)
 A :評価点の断面積(mm²)

(b) せん断応力

軸方向水平地震力+鉛直方向地震力+自重が作用する場合に、図2.1-6 に示す下部ト ラニオンの評価点②に最大応力が発生する。せん断応力(τ)は、次式で計算する。

$$\tau = \frac{F_{m}}{A}$$
$$F_{m} = \sqrt{\left(\frac{m}{2} \cdot G_{1}\right)^{2} + \left(\frac{m}{4} \cdot G_{2}\right)^{2}}$$

ここで, G₁:A. a. と同じ

G₂:A.a.と同じ F_m:地震力によりトラニオンに作用する荷重(N) m :(a)と同じ A :評価点の断面積(mm²)

(c) 曲げ応力

軸方向水平地震力+鉛直方向地震力+自重が作用する場合に図2.1-6に示す下部トラ ニオンの評価点②に最大応力が発生する。曲げ応力(σ_b)は,次式で計算する。

$$\sigma_{\rm b} = \frac{M}{Z}$$
$$M = F_{\rm m} \cdot L$$

ここで, M :曲げモーメント (N・mm)

- Z :評価点の断面係数 (mm³)
- L :評価点と荷重作用位置との距離(mm)
- F_m:(b) と同じ
- (d) 組合せ応力
- イ. せん断応力と曲げ応力

軸方向水平地震力+鉛直方向地震力+自重が作用する場合に図 2.1-6 に示す下部トラニオンの評価点②に最大応力が発生する。せん断応力(τ)と曲げ応力(σ_b)との組合せ応力(σ_T)は、次式で計算する。

$$\sigma_{\rm T} = \sqrt{\sigma_{\rm b}^2 + 3 \cdot \tau^2}$$

- ここで,τ :(b) と同じ σ_b:(c) と同じ
- b. 一次+二次応力
- (a) 引張·圧縮応力

軸直角方向水平地震力+鉛直方向地震力+自重が作用する場合に、図2.1-6 に示す上部トラニオンの評価点③及び下部トラニオンの評価点④に最大応力が発生する。

地震力のみにより発生する引張応力は0である。一方,地震力のみにより発生する圧縮応力はa.(a)で計算された圧縮応力と同じ値である。

したがって,地震力のみによって発生する引張・圧縮応力による応力範囲は a. (a)で 計算された値と同じ値となる。

(b) せん断応力

軸方向水平地震力+鉛直方向地震力+自重が作用する場合に、図2.1-6 に示す下部ト ラニオンの評価点②に最大応力が発生する。地震力のみによるせん断応力(τ)の全振 幅は、次式で計算する。

$$\tau = \frac{F_{m}}{A}$$
$$F_{m} = 2 \cdot \sqrt{\left(\frac{m}{2} \cdot G_{1}\right)^{2} + \left(\frac{m}{4} \cdot G_{2}\right)^{2}}$$

ここで、 $G_2 = C_v \cdot G$

G₁:A. a. と同じ F_m:地震力によりトラニオンに作用する荷重(N) C_v:A. a. と同じ m:a. (b)と同じ A:a. (b)と同じ

(c) 曲げ応力

軸方向水平地震力+鉛直方向地震力+自重が作用する場合に、図2.1-6 に示す下部ト ラニオンの評価点②に最大応力が発生する。地震力のみによる曲げ応力(σ_b)の全振 幅は、次式で計算する。

$$\sigma_{\rm b} = \frac{M}{Z}$$
$$M = F_{\rm m} \cdot L$$

ここで, M:曲げモーメント (N・mm) Z, L:a. (c)と同じ F_m:(b) と同じ

6) 解析結果

応力計算結果を表 2.1-11~表 2.1-14 に示す。いずれの機器も許容応力を満足している。

表 2.1-11(1) 計算結果(キャスク容器)

(単位:MPa)

立(7	莅	** *1	許容応力	一次一般肌	莫応力強さ	一次膜+一次	曲げ応力強さ	一次+二次応力強さ	
이디	<u>111.</u>	12 17	区分	計算値	許容応力	計算値	許容応力	計算値	許容応力
— 沙	太 蓋	低合金鋼	供用状態 D (IVAS)	2	251	23	377	8	370
刖	可	低合金鋼	供用状態 D (I VAS)	8	251	23	377	58	370
底	板	低合金鋼	供用状態 D (I VAS)	3	251	7	377	15	370
フラ	ンジ	低合金鋼	供用状態 D (I VAS)	—	_	5	377	12	370
一次 畫シー	蓋密封 ル部	低合金鋼	供用状態 D (IVAS)	_	_	15	184	40	184

表 2.1-11(2) 計算結果(キャスク容器)

(単位:MPa)

立 広	大才 - 半 1.	許容応力	平均支	圧応力			
前,小小	12 17	区分	計算値	許容応力 377			
底板	低合金鋼	供用状態 D(IVAS)	1	377			
一次蓋	- 次 蓋 低合金鋼		1	377			

表 2.1-11(3) 計算結果(キャスク容器)

(単位:MPa)

			許容応力	平均引	平均引張応力		平均引張応力+曲げ応力	
日の	117		区分	計算値	許容応力	計算値	許容応力	
一次蓋締付けボルト		低合金鋼	供用状態 D(IVAS)	304	902	369	902	

表 2.1-12(1) 計算結果(二次蓋)

(単位:MPa)

	立 広		大大 - 半 1.	許容応力	一次一般膜応力強さ		一次膜+一次	曲げ応力強さ	一次+二次応力強さ	
신다 이국	121 127	区分	計算値	許容応力	計算値	許容応力	計算値	許容応力		
	二次	語	低合金鋼	供用状態 D (I VAS)	6	251	29	377	11	382
	二次 蓋 シー/	密封	低合金鋼	供用状態 D(IVAS)	_	_	14	189	38	184

表 2.1-12(2) 計算結果(二次蓋)

(単位:MPa)

\\ 7	14	++ wi	許容応力	平均引張応力		平均引張応力+曲げ応力		
自り	11/		区分	計算値	許容応力	許容応力 計算値 許容応		
二次蓋締付けボルト		低合金鋼	供用状態 D(IVAS)	303	926	410	926	

表 2.1-13(1) 計算結果(バスケット)

(単位:MPa)

部位	材料	許容応力	一次一般周	茣応力強さ	一次一般膜+一次曲げ応力強さ		
고마 이미		区分	計算値	許容応力	計算値	許容応力	
バスケット プレート	アルミニウム合金	供用状態 D (IVAS)	5	117	21	175	

表 2.1-13(2) 計算結果(バスケット)

(単位:MPa)

	部位	** **1	許容応力	一次+二沙	、応力強さ	平均支圧応力		
		12, 17	区分	計算値	許容応力	計算値	許容応力	
	バスケット プレート	アルミニウム合金	供用状態 D (I VAS)	35	174	1	174	

Ⅱ-2-13-添 3-162

表 2.1-14(1) 計算結果(トラニオン)

(単位:MPa)	(単位	: MPa)	
----------	-----	--------	--

		許容応力 区分	一次応力								
部位	材 料		圧縮応力		せん断応力		曲げ応力		垂直応力とせん断 応力の組合せ		
			計算値	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力	
トラニオン	ステンレス鋼	供用状態 D(I VAS)	18	577	50	341	72	592	113	592	

表 2.1-14(2) 計算結果(トラニオン)

(単位:MPa)

							1 1 1	,
					一次+二	二次応力		
部 位 材 料		料 瓦分	引張・圧縮応力		せん断応力		曲げ応力	
			計算值	許容応力	計算値	許容応力	計算値	許容応力
トラニオン	ステンレス鋼	供用状態 D(IVAS)	18	1184	75	683	109	1184

Ⅱ-2-13-添 3-163

(3) 輸送貯蔵兼用キャスクB

1) 評価方針

キャスク仮保管設備における輸送貯蔵兼用キャスクBの基準地震動Ssに対する耐震強 度を確認する。

2) 固有周期の算定

以下に輸送貯蔵兼用キャスクBの固有周期について計算方法及び計算結果を示す。

- 固有周期の計算条件
 - A. 輸送貯蔵兼用キャスクBは、横置きで支持される。
 - B. 輸送貯蔵兼用キャスク B の自重(内部を含む)は、4 個のトラニオンを介してキャ スク支持架台に固定される。
 - C. 二次蓋は二次蓋締付けボルトでキャスク容器に固定される。
 - D. 鋼製支持架台は基礎ボルトでコンクリート支持架台に固定され、コンクリート支持 架台は基礎と一体の構造となっている。概略構造図を図 2.1-11 に示す。
- 固有周期の計算方法
 - A. 設定条件
 - a. 自重及び鉛直方向地震力に対して、キャスク支持架台の4本の脚柱で支える。
 - b. キャスク容器軸方向水平地震力に対して、キャスク支持架台の2本の脚柱で支える。
 - c. キャスク容器軸直角方向水平地震力に対して,キャスク支持架台の4本の脚柱で 支える。
 - B. 計算モデル及び計算方法
 - a. キャスク容器及びキャスク支持架台をはりでモデル化する。
 - b. キャスク容器のはりは、その質量(内部のバスケット、使用済燃料等を含む)と 等価質量となるはり要素を用いる。
 - c. コンクリート支持架台の下部を固定端とする。
 - d. 計算コードとして NASTRAN を用いる。
 - e. 計算モデルは図 2.1-12 とする。
- ④ 固有周期

固有周期の算定結果を表 2.1-15 に示す。

	(単位:s)
方 向	固有周期
キャスク容器軸方向	0.045
キャスク容器軸直角方向	0.041
キャスク容器鉛直方向	0.018

表 2.1-15 保管時の輸送貯蔵兼用キャスク B の固有周期

	ļ		В
<u>ط</u>			
			キャスク支持架台
		_	
7//			
輸送貯蔵兼用キャスク B			
)	
-=	()		キャスク支持架台
	$\langle /$	J	
		/	

図 2.1-11 輸送貯蔵兼用キャスク B の概略構造図

図 2.1-12 固有周期解析モデル

3) 設計震度

「2) 固有周期の算定」で求めた固有周期から、添付資料-2「3 耐震設計方針」に基 づき,輸送貯蔵兼用キャスクBの耐震性の評価に用いる設計用地震力を定める。

輸送貯蔵兼用キャスクBの固有周期は全て0.05sec以下であることから、輸送貯蔵兼 用キャスク B は剛体とみなすことができる。従って設計用地震力は 1.2ZPA とする。表 2.1-16にSsの1.2ZPAを示す。

表 2.1-16 Ss の 1.2ZPA						
	1.2ZPA(水平)	1.2ZPA(鉛直)				
Ss	0.79G	0. 49G				

- 4) 解析条件
- 荷重の組合せ

Ss 地震時の評価において、キャスク容器及び二次蓋、バスケット、トラニオンの設計 上考慮すべき荷重の種類とその組合せを表 2.1-17(1)~(3)に示す。

設計事象 評	荷 重 価 事 象	圧力による荷重	自重による荷重	ボルト初期締付け力	熱荷重	地震荷重
I + S s S s S	地震力が作用する場合	0	0	0	注)	0

表 2.1-17(1) キャスク容器及び二次蓋の設計上考慮すべき荷重の種類とその組合せ

注) 密封シール部及び密封蓋締付けボルトの応力評価に当たっては,熱荷重を 考慮する。

表 2.1-17(2) バスケットの設計上考慮すべき荷重の種類とその組合せ

表 2.1-17(3) トラニオンの設計上考慮すべき荷重の種類とその組合せ

注) キャスク容器の熱膨張により生じる応力に限る。

② 最高使用圧力と温度

各機器の最高使用圧力及び最高使用温度を表 2.1-18 に示す。

なお,各部最高使用温度は,添付資料-4「1.1 乾式キャスクの除熱機能(3)輸送貯蔵 兼用キャスクBの除熱機能」の算定結果に基づく。
キャスク容器	最高使用圧力	1.0 MPa
	最高使用温度	150 °C
	最高使用圧力	0.4 MPa
	最高使用温度	110 °C
バスケット	最高使用温度	260 °C
トラニオン	最高使用温度	130 °C

表 2.1-18 最高使用圧力及び最高使用温度

③ 解析箇所

応力解析箇所を図 2.1-13, 14 に示す。

①、②はトラニオンの評価点を示す

図 2.1-13 キャスク容器等の応力解析箇所

図 2.1-14 バスケットの応力解析箇所

④ 物性値

A. キャスク容器及び二次蓋

熱応力計算に使用する材料の物性値を表 2.1-19 に示す。なお,熱応力計算に使用する 物性値はその温度依存性を考慮する。

内圧及び機械的荷重による応力計算に使用する物性値は,温度分布計算で得られた温度を各部ごとに設定し,これに対応した値を用いる。なお,常温は20℃とする。

B. バスケット

熱応力計算に使用する材料の物性値を表 2.1-20 に示す。なお,熱応力計算に使用する 物性値はその温度依存性を考慮する。

機械的荷重による応力計算に使用する物性値は,最高使用温度に対する値を用いる。 なお,常温は20℃とする。

C. トラニオン

熱応力計算に使用する材料の物性値を表 2.1-21 に示す。

機械的荷重による応力計算に使用する物性値は,最高使用温度に対する値を用いる。 なお,常温は20℃とする。

L# _\> -> 7 + +	***	温度	縦弾性係数	平均熱膨張係数	ポアソン比
		(°C)	(MPa)	$(\times 10^{-6} \text{ mm/(mm} \cdot ^{\circ}\text{C}))$	(-)
		20	203000	9.73	
		50	201000	10.10	
Ш		75	200000	10.39	
加広ち	炭素鋼	100	198000	10.69	0.2
」」 広 彼 二 次 茎	(GLF1)	125	196000	11.00	0. 5
八盘		150	195000	11. 28	
		175	193000	11.56	
		200	191000	11.85	
		20	202000	9.73	
	炭素鋼	50	200000	10.10	
		75	198000	10.39	0.2
		100	197000	10.69	
低部中性子	(SGV480)	125	195000	11.00	0. 5
		150	193000	11.28	
		175	192000	11.56	
		200	190000	11.85	
		20	192000	11.14	
		50	189000	11.40	
		75	188000	11.62	
一次蓋締付けボルト	低合金鋼	100	186000	11.82	0.0
二次蓋締付けボルト	(SNB23-3)	125	185000	12.00	0.3
		150	184000	12.21	
		175	182000	12.37	
		200	180000	12.54	

表 2.1-19 熱応力計算に使用する材料の物性値(キャスク容器及び二次蓋)

╆╪┍┾┯╖┾┾	++*	温度	縦弾性係数*1	平均熱膨張係数*1	ポアソン比
博 成前約	材料	(°C)	(MPa)	$(\times 10^{-6} \text{ mm/(mm \cdot °C)})$	(-)
		20	216000	15.22	
		50	216000	15.52	
		75	214000	15.88	
		100	212000	16.24	
	ポッン活力	125	210000	16.24	
バスケット	ホロン称加	150	208000	16.24	0.0
プレート	人 「 ノ レ 人 動 权 (D CUC204D 1)	175	206000	16.43	0.3
	(B-505304P-1)	200	204000	16.63	
		225	202000	16.83	
		250	200000	17.02	
		275	199000	17.12	
		300	197000	17.22	

表 2.1-20 熱応力計算に使用する材料の物性値(バスケット)

*1事例規格参照

表 2.1-21	熱応力計算に使用する材料の物性値	(トラニオン)
2 C - C - C - C		

構成部材	材料	温度 (℃)	縦弾性係数 (MPa)	平均熱膨張係数 (×10 ⁻⁶ mm/(mm・℃))
トラニオン	ステンレス鋼 (SUS630 H1150)	130	188000	11.25

5) 解析

- ① 解析手順
 - (1) キャスク容器及び二次蓋

キャスク容器の応力解析フローを図 2.1-15 に示す。

キャスク容器の応力解析は、想定される圧力荷重、機械的荷重及び熱荷重を基に、 キャスク容器の実形状をモデル化し、解析コードである ABAQUS 及び応力評価式を用 いて行う。

なお、二次蓋についてもキャスク容器と同様に評価を行う。

(2) バスケット

バスケットの応力解析フローを図 2.1-16 に示す。

バスケットの応力解析は,想定される機械的荷重及び熱荷重を基に,応力評価式を 用いて行う。

(3) トラニオン

トラニオンの応力解析フローを図 2.1-17 に示す。

トラニオンの応力解析は,想定される機械的荷重及び熱荷重を基に応力評価式を用いて行う。

図 2.1-15 キャスク容器及び二次蓋の応力解析フロー図

図 2.1-16 バスケットの応力解析フロー図

図 2.1-17 トラニオンの応力解析フロー図

応力の評価

A. キャスク容器及び二次蓋

a. 一次応力

一次蓋,一次蓋締付けボルト,胴,底板,底部中性子遮へい材カバー,二次蓋及び二 次蓋締付けボルトの応力計算は,解析コード ABAQUS により行う。

水平方向加速度及び鉛直方向加速度として次の値を用いる。鉛直方向加速度について は、プラスの方向と自重の加速度と組み合わせて考慮する。

 $G_1 = C_H \cdot G$ $G_2 = (1 + C_V) \cdot G$ (軸方向水平地震力+鉛直方向地震力+自重の場合)

ここで, C_H:水平方向設計震度(=0.79)

C_V: 鉛直方向設計震度(=0.49)

$$G_3 = C_H \cdot G$$

 $G_2 = (1 + C_V) \cdot G$
(軸直角方向水平地震力+鉛直方向地震力+自重の場合)

ここで, C_H:水平方向設計震度 (=0.79)

C_V: 鉛直方向設計震度(=0.49)

- b. 一次+二次応力
- (a) 密封シール部を除く,一次蓋,胴,底板,底部中性子遮へい材カバー及び二次蓋 応力計算の方法は,a.と同様である。ただし,荷重条件は地震力のみとして計算を行 い,振幅を考慮して最大値を2倍して求める。
- (b) 密封シール部,一次蓋締付けボルト及び二次蓋締付けボルト 応力計算の方法は,a.と同様である。ただし,荷重条件として熱荷重を含める。
- c. 平均支圧応力

胴とバスケット側面との接触部に発生する平均支圧応力(σ_p)は次式で計算する。

$$\sigma_{p} = \frac{m_{G} \cdot G_{2}}{A}$$

ここで, G₂:a.と同じ

m_G:バスケットプレート及び燃料の質量(kg)

A: 胴の接触面積(mm²)

- B. バスケット
- a. 地震力が鉛直方向と軸直角方向に作用する場合
- (a) 一次一般膜応力 最大応力が発生するのはバスケットプレート端部(図2.1-14①部)である。 鉛直方向加速度により発生する一次一般膜応力(σ_x)は次式で計算する。 $\sigma_x = \frac{m_A \cdot G_2}{A_1}$ ここで G_2 :A.a. と同じ m_A :使用済燃料とバスケットプレート等の合計質量(kg) A_1 :バスケットプレートの断面積(mm²)
- (b) 一次一般膜+一次曲げ応力 最大応力が発生するのはバスケットプレート格子端部(図 2.1-14 ②部)である。 水平方向加速度により発生する一次一般膜応力(σ_y)は次式で計算する。

$$\sigma_y = \frac{m_A \cdot G_3}{A_1}$$

ここでG₃:A.a.と同じ

 m_{A} :使用済燃料とバスケットプレート等の合計質量(kg) A_{1} :バスケットプレートの断面積(mm^{2})

鉛直方向加速度により発生する一次曲げ応力(σ,)は次式で計算する。

$$\sigma_{y} = \frac{M}{Z}$$

$$M = \frac{m_{B} \cdot G_{2} \cdot l_{p}}{12 \cdot \frac{l_{W}}{2}}$$
ここでG₂: A.a. と同じ
M: バスケットプレート格子端部の単位幅当たりの曲げモーメント(N・mm/mm)
Z: バスケットプレートの単位幅当たりの断面係数(mm³/mm)
m_B: 使用済燃料, 伝熱プレート及びバスケットプレートの合計質量(kg)
lp:バスケットプレートの内のり(mm)

1w:バスケットプレートのキャスク容器軸方向長さ(mm) ただし、バスケットプレート同士の嵌合のため切欠きがあり、実際の 荷重負荷面の長さを 1w/2 とする。

鉛直方向加速度によりバスケットプレート格子端部(図 2.1-14 ②部)に発生する 平均せん断応力(τ_{xv})は,次式で計算する。

$$\tau_{xy} = \frac{m_B \cdot G_2}{2 \cdot \frac{A_1}{2}}$$

ここで G_2 : A. a. と同じ m_B : 使用済燃料, 伝熱プレート及びバスケットプレートの合計質量(kg) A_1 :バスケットプレートの断面積(mm²)

(c) 平均せん断応力

バスケットプレート格子端部 (図 2.1-14 ②部) に発生する平均せん断応力(σ_s) は次式で計算する。

$$\sigma_{s} = \frac{m_{B} \cdot G_{2}}{2 \cdot \frac{A_{1}}{2}}$$

ここでG₂: A.a. と同じ

 m_{B} :使用済燃料,伝熱プレート及びバスケットプレートの合計質量(kg) A_{1} :バスケットプレートの断面積(mm^{2})

(d) 平均支圧応力

バスケットプレート端部 (図 2.1-14 ①部) に発生する平均支圧応力(σ_p)は次式 で計算する。

 $\sigma_P = \frac{m_A \cdot G_2}{A_1}$

ここでG₂:A.a.と同じ

 m_{A} :使用済燃料とバスケットプレート等の合計質量(kg) A_{1} :バスケットプレートの断面積(mm^{2})

(e) 圧縮応力

バスケットプレート端部 (図 2.1-14 ①部) に発生する圧縮応力(σ_c)は次式で計 算する。

$$\sigma_{c} = \frac{m_{A} \cdot G_{2}}{A_{1}}$$
ここでG₂: A. a. と同じ
m_A:使用済燃料とバスケットプレート等の合計質量(kg)
A₁:バスケットプレートの断面積(mm²)

b. 地震力が鉛直方向と軸水平方向に作用する場合

(a) 一次一般膜応力 最大応力が発生するのはバスケットプレート端部(図2.1-14①部)である。 鉛直方向加速度により発生する一次一般膜応力(σ_x)は次式で計算する。 $\sigma_x = \frac{m_A \cdot G_2}{A_1}$ ここで、 G_2 :A.a. と同じ m_A :使用済燃料とバスケットプレート等の合計質量(kg) A_1 :バスケットプレートの断面積(mm²) 水平方向加速度により発生する一次一般膜応力(σ_z)は次式で計算する。 $\sigma_z = \rho \cdot l_W \cdot G_1$ ここで、 G_1 :A.a. と同じ

 ρ :バスケットプレートの密度(kg/mm³) 1_w :バスケットプレートの全長(mm)

(b) 一次一般膜+一次曲げ応力 最大応力が発生するのはバスケットプレート格子端部(図 2.1-14 ②部)である。 鉛直方向加速度により発生する一次曲げ応力(σ_y)は次式で計算する。

$$\sigma_{y} = \frac{M}{Z}$$
$$M = \frac{m_{B} \cdot G_{2} \cdot l_{p}}{12 \cdot \frac{l_{W}}{2}}$$

11

ここでG₂: A.a. と同じ

M:バスケットプレート格子端部の単位幅当たりの曲げモーメント(N・mm/mm)

Z:バスケットプレートの単位幅当たりの断面係数(mm³/mm)

 m_B :使用済燃料,伝熱プレート及びバスケットプレートの合計質量(kg) lp:バスケットプレートの内のり(mm)

1w:バスケットプレートのキャスク容器軸方向長さ(mm)

ただし,バスケットプレート同士の嵌合のため切欠きがあり,実際の 荷重負荷面の長さを1w/2とする。

水平方向加速度により発生する一次一般膜応力(σ_z)は次式で計算する。

 $\sigma_z = \rho \cdot l_W \cdot G_1$

ここで,
$$G_1$$
:A.a.と同じ
 ρ :バスケットプレートの密度(kg/mm³)
 1_w :バスケットプレートの全長(mm)

鉛直方向加速度により発生するバスケットプレート格子端部 (図 2.1-14 ②部)

に発生する平均せん断応力(τ_{xx})は次式で計算する。

$$\tau_{xy} = \frac{m_B \cdot G_2}{2 \cdot \frac{A_1}{2}}$$

- ここで G_2 : A.a. と同じ m_B : 使用済燃料, 伝熱プレート及びバスケットプレートの合計質量(kg) A_1 :バスケットプレートの断面積(mm²)
- (c) 平均せん断応力

バスケットプレート格子端部(図 2.1-14 ②部)に発生する平均せん断応力(σ_s) は次式で計算する。

$$\sigma_{s} = \frac{m_{B} \cdot G_{2}}{2 \cdot \frac{A_{1}}{2}}$$

ここで G_2 : A. a. と同じ m_B : 使用済燃料, 伝熱プレート及びバスケットプレートの合計質量(kg) A_1 :バスケットプレートの断面積(mm²)

(d) 平均支圧応力

バスケットプレート端部(図 2.1-14 ①部)に発生する平均支圧応力(σ_p)は次式 で計算する。

$$\sigma_P = \frac{m_A \cdot G_2}{A_1}$$

ここで G_2 :A.a.と同じ m_A :使用済燃料とバスケットプレート等の合計質量(kg) A_1 :バスケットプレートの断面積(mm²)

(e) 圧縮応力

バスケットプレート端部(図 2.1-14 ①部)に発生する圧縮応力(σ_c)は次式で計 算する。

$$\sigma_C = \frac{m_A \cdot G_2}{A_1}$$

- ここでG₂:A. a. と同じ m_A:使用済燃料とバスケットプレート等の合計質量(kg) A₁:バスケットプレートの断面積(mm²)
- C. トラニオン
- a. 地震力が鉛直方向と軸直角方向に作用する場合
- (a) 一次応力
- イ. せん断応力
 最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点①である。
 鉛直方向加速度により発生するせん断応力(τ)は、次式で計算する

$$\tau = \frac{F_{m}}{A}$$
$$F_{m} = \frac{m_{2} \cdot G_{2}}{A}$$

ここで、G₂: A. a. と同じ F_m: 地震力によりトラニオンに作用する荷重(N) m₂: 保管時における金属キャスクの質量(kg) A :評価点①の断面積(mm²)

ロ. 曲げ応力

最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点②である。 鉛直方向加速度により発生する曲げ応力(σ_b)は次式で計算する。

$$\sigma_b = \frac{M}{Z}$$
$$M = F_m \cdot L$$

ここで, F_m:イ. と同じ

Z:評価点②の断面係数(mm³)

- L:評価点②と荷重作用位置との距離(mm)
- ハ. 圧縮応力

最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点②である。 水平方向加速度により発生する圧縮応力(σ_c)は,次式で計算する。

$$\sigma_c = \frac{F_m}{A}$$
$$F_m = \frac{m_2 \cdot G_3}{2}$$

ここで, G₃:A.a.と同じ

F_m:地震力によりトラニオンに作用する荷重(N)

- m₂:保管時における金属キャスクの質量(kg)
- A :評価点2の断面積 (mm^2)
- ニ. 組合せ応力
- I. せん断応力と曲げ応力

最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点①である。 せん断応力(τ)と曲げ応力(σ_b)との組合せ応力(σ_T)は、次式で計算する。 $\sigma_T = \sqrt{\sigma_b^2 + 3 \cdot \tau^2}$

ここで, τ:イ. と同じ

σ_b:ロ. と同じ

ただし,Z:評価点①の断面係数(mm³)

L:評価点①と荷重作用位置との距離(mm)

- (b) 一次+二次応力
- イ. せん断応力

地震力によるせん断応力(τ)の全振幅は、(a) イ. で求めたせん断応力(τ)の2倍と する。

ロ. 曲げ応力

地震力による曲げ応力(σ_b)の全振幅は、(a) ロ. で求めた曲げ応力(σ_b)の 2 倍とする。

ハ. 圧縮応力

地震力による圧縮応力(σ_{o})は左右方向荷重により作用し、左右方向が反転した場合、 対向する別のトラニオンで荷重を受ける。地震力による圧縮応力(σ_{o})の最大値は、(a) ハ. で求めた圧縮応力(σ_{o})と同様である。

- b. 地震力が鉛直方向と軸水平方向に作用する場合
- (a) 一次応力
- イ. せん断応力

 \boldsymbol{L}

最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点①である。 水平方向加速度及び鉛直方向加速度により発生するせん断応力(τ)は、次式で計算す

る

$$\tau = \frac{r_m}{A}$$
$$F_m = \frac{m_2\sqrt{4G_1^2 + G_2^2}}{4}$$

ここで、F_m:地震力によりトラニオンに作用する荷重(N)
 m₂:保管時における金属キャスクの質量(kg)
 A:評価点①の断面積(mm²)

ロ. 曲げ応力

最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点②である。 水平方向加速度及び鉛直方向加速度により発生する曲げ応力(σ_b)は次式で計算する。

$$\sigma_{b} = \frac{M}{Z}$$

 $M = F_{m} \cdot L$
ここで、 F_{m} :イ.と同じ
 Z :評価点②の断面係数(mm³)
L:評価点②と荷重作用位置との距離(mm)

- ハ. 組合せ応力
- I. せん断応力と曲げ応力 最大応力が発生する箇所は図 2.1-13 に示す下部トラニオンの評価点①である。 せん断応力(τ)と曲げ応力(σ_b)との組合せ応力(σ_T)は次式で計算する。

$$\sigma_T = \sqrt{\sigma_b^2 + 3 \cdot \tau^2}$$

ここで, τ:イ. と同じ

σ_b:ロ. と同じ

ただし,Z:評価点①の断面係数(mm³)

L:評価点①と荷重作用位置との距離(mm)

- (b) 一次+二次応力
- イ. せん断応力

地震力によるせん断応力(τ)の全振幅は、(a) イ. で求めたせん断力(τ)の2倍とする。

ロ. 曲げ応力

地震力による曲げ応力(σ_b)の全振幅は、(a) ロ. で求めた曲げ応力(σ_b)の2倍とする。

6) 解析結果

応力計算結果を表 2.1-22~表 2.1-25 に示す。いずれの機器も許容応力を満足している。

表 2.1-22(1) 計算結果(キャスク容器)

(単	1	:	MPa)
\ 1		•	

サロ / 子	++ *1	許容応力	一次一般服	模応力強さ	一次膜+一次曲げ応力強さ		一次+二次応力強さ	
前 11		区分	計算値	許容応力	計算値	許容応力	計算値	許容応力
一次蓋	炭素鋼	供用状態 D(IVAS)	4	251	18	377	49	366
胴	炭素鋼	供用状態 D(IVAS)	2	251	11	377	19	366
底板	炭素鋼	供用状態 D(IVAS)	3	251	10	377	11	366
底部中性子 遮へい材 カバー	炭素鋼	供用状態 D (IVAS)	5	282	45	424	15	465
一次蓋密封シール部	炭素鋼	供用状態 D(IVAS)	_	_	13	183	59	183

表 2.1-22(2) 計算結果(キャスク容器)

(単位:MPa)

部位林	++ wi	許容応力	平均支	圧応力
	77 74	区分	計算値	許容応力
胴	炭素鋼	供用状態 D (IVAS)	2	377

表 2.1-22(3) 計算結果(キャスク容器)

(単位:MPa)

40	14	材料	許容応力	平均引張応力		平均引張応力+曲げ応力		
く日子	位		区分	計算値	許容応力	計算値	許容応力	
一次蓋締付	けボルト	低合金鋼	供用状態 D(IVAS)	243	831	345	831	

表 2.1-23(1) 計算結果(二次蓋)

(単位:MPa)

	部位	材料	許容応力	一次一般胆	莫応力強さ	一次膜+一次	曲げ応力強さ	一次+二社	欠応力強さ
			区分	計算値	許容応力	計算値	許容応力	計算値	許容応力
	二次蓋	炭素鋼	供用状態 D (I VAS)	1	286	30	429	63	474
	二次蓋密封 シール部	炭素鋼	供用状態 D (IVAS)		_	17	183	37	183

表 2.1-23(2) 計算結果(二次蓋)

(単位:MPa)

部	位	材料	許容応力	平均引	平均引張応力		平均引張応力+曲げ応力	
			区分	計算値	許容応力	計算値	許容応力	
二次蓋締住	すけボルト	低合金鋼	供用状態 D(I VAS)	245	848	273	848	

表 2.1-24(1) 計算結果(バスケット)

(単位:MPa)

如 伝	材料		一次一般周	莫応力強さ	一次一般膜+一次曲げ応力強さ		
田) 1 <u>√</u>		区分	計算値	許容応力	計算値	許容応力	
バスケット プレート	ボロン添加 ステンレス鋼板	供用状態 D (I VAS)	2	291	7	437	

Ⅲ-2-13-添 3-188

表 2.1-24(2) 計算結果(バスケット)

(単位:MPa)

6									
		材料	許容応力	平均せん断応力		平均支圧応力		圧縮応力	
	部) 1立		区分	計算値	許容応力	計算値	許容応力	計算値	許容応力
	バスケット プレート	ボロン添加 ステンレス鋼板	供用状態 D (I VAS)	1	175	2	404	2	176

表 2.1-25(1) 計算結果(トラニオン)

			一次応力							
部位	材 料	許容応力 区分	圧縮応力		せん断応力		曲げ応力		垂直応力とせん断 応力の組合せ	
			計算値	許容応力	計算値	許容応力	計算値	許容応力	計算値	許容応力
トラニオン	ステンレス鋼	供用状態 D(I VAS)	13	590	42	341	81	591	96	591

表 2.1-25(2) 計算結果(トラニオン)

(単位:MPa)

		位 材 料 許容応力 区分 一次十二次応力								
)				一次+二次応力						
)	部 位	材 料	区分	圧縮	応力	せん聞	新応力	曲げ	応力	
λ S				計算値	許容応力	計算値	許容応力	計算値	許容応力	
L))	トラニオン	ステンレス	鋼 供用状態 D(IVAS)	13	590	84	682	163	1182	

2.2 キャスク支持架台の耐震性

(1) 乾式貯蔵キャスク

1) 評価方針

本設備で使用する乾式貯蔵キャスク支持架台,固定ボルト及び基礎ボルトの耐震性について示す。

支持架台については、添付資料-2「評価の基本方針」で記載している既存評価書で基準地震動S₂に対する耐震性が確認されているが、新たに設置する固定ボルト及び基礎ボルトと同様に、本書にて基準地震動Ssに対する耐震強度を確認する。

2) 支持架台及び固定具の構成

乾式貯蔵キャスク支持架台,固定ボルト及び基礎ボルトを図 2.2-1 に示す。 乾式貯蔵キャスクは横置きでトラニオンを介し,4つの支持脚柱を持つ支持架台で支 持される。支持架台は固定ボルトと基礎ボルトで基礎に固定される。

図 2.2-1 乾式貯蔵キャスク支持架台概略構造図

- 3) 支持架台
- ① 概要

本項では,大型及び中型の乾式貯蔵キャスクの支持架台の応力計算について示す。 なお,本項で示す「応力評価箇所」「計算条件」「応力計算」は,既存評価書に基づく ものである。

- A. 記号の説明
 - 応力評価に関する記号の説明を以下に示す。

記号	記号の説明	単 位
A $_5$	支持架台の上部脚柱の断面積	mm 2
f _t	許容引張応力	N/mm 2
f _s	許容せん断応力	N/mm 2
f _c	許容圧縮応力	N/mm 2
f _b	許容曲げ応力	N/mm 2
f _p	許容支圧応力	N/mm 2
$f_{\rm t}$ $^{*1)}$	許容引張応力	N/mm 2
$f_{s}^{*1)}$	許容せん断応力	N/mm 2
$f_{\rm c}$ $^{*1)}$	許容圧縮応力	N/mm 2
$f_{\rm b} {}^{*1)}$	許容曲げ応力	N/mm 2
f_{p} $^{*1)}$	許容支圧応力	N/mm 2
G	重力加速度(=9.80665)	m/s^2
J ₅	支持架台の上部脚柱のねじり剛性係数	${ m mm}^4$
$\ell_{\rm SY}$	図 2.2-3 に示す支持架台の上部脚柱における荷重点からせん断	mm
$\ell_{\rm TY}$	中心までの距離 図 2.2-3 に示す支持架台の上部脚柱における荷重点から断面中 立軸までの距離	mm
ℓ _{TZ}	図 2.2-3 に示すトラニオン部(荷重作用点)から支持架台の脚	mm
S	柱の応力評価部位までの距離 「 其準地震動 ら」による地震力	_
t	本平地長勤35による地長力 トラーオン 一 一 小 一 如 助 柱 の 板 回	mm
U S C	- 「 ノース ン 文 即 の 工 即 仰 仁 の 彼 序 」 	ka
W S 1		ng
W _V	+ ヤイノ谷岙(内部を古む)の総貨重 図 0 0 0 に 二 ナ 士 佐加 ム の し 如 明 せ の ひ む い ま し に 明 ナ ス 吹 ア だ サ	Kg
Z _{SCX}	図2.2-3 に示す文持朱台の上部脚柱のX軸に関する断面係数	mm ^o
Z_{SCY}	図 2.2-3 に示す支持架台の上部脚柱のY軸に関する断面係数	mm ³

記号	記 号 の 説 明	単 位
σ _{bHX}	キャスク容器軸方向水平地震力により支持架台の上部脚柱に発生する曲ば広力	N/mm 2
$\sigma_{b\rm HY}$	キャスク容器軸直角方向水平地震力により支持架台の上部脚柱に発生する曲げ応力	N/mm 2
б _{со}	自重により支持架台の上部脚柱に発生する圧縮応力	N/mm 2
σ _{bo}	自重により支持架台の上部脚柱に発生する曲げ応力	N/mm 2
σ _{To}	自重により支持架台の上部脚柱に発生する組合せ応力	N/mm 2
σ _c	座屈応力	N/mm 2
$\sigma_{\rm cV}$	自重と鉛直方向地震力により支持架台の上部脚柱に発生する圧 縮応力	N/mm 2
σ _{bV}	自重と鉛直方向地震力により支持架台の上部脚柱に発生する曲 げ応力	N/mm 2
σ _{Tc}	自重のみによる圧縮応力と鉛直方向地震力による圧縮応力の合 成圧縮応力	N/mm 2
σ _{Tb}	自重のみによる曲げ応力と鉛直方向地震力による曲げ応力,水 平地震力による曲げ応力の合成曲げ応力	N/mm 2
σ_{THX}	自重,鉛直方向地震力,キャスク容器軸方向水平地震力により 支持架台の上部脚柱に発生する圧縮応力,曲げ応力及びせん断	N/mm 2
$\sigma_{\rm THY}$	応力の組合セ応力 自重,鉛直方向地震力,キャスク容器軸直角方向水平地震力に より支持架台の上部脚柱に発生する圧縮応力,曲げ応力及びせ ん断応力の組合せ応力	N/mm ²
τ _{SHX}	キャスク容器軸方向水平地震力により支持架台の上部脚柱に発生する平均せん断応力	N/mm 2
τ _{shy}	キャスク容器軸直角方向水平地震力によりキャスク支持架台の 上部脚柱に発生する平均せん断応力	N/mm 2
$ au_{\mathrm{THX}}$	キャスク容器軸方向水平地震力により支持架台の上部脚柱に加わるねじりによるせん断応力	N/mm 2
$ au_{\rm HX}$	水平地震力による平均せん断応力とねじりせん断応力の合成せん断応力	N/mm 2
Δ σ $_{\rm c}$	地震力のみによる引張・圧縮応力の応力範囲	N/mm 2
Δ σ $_{\rm b}$	地震力のみによる曲げ応力の応力範囲	N/mm 2
Δ $ au$	地震力のみによるせん断応力の応力範囲	N/mm 2
$I + S_s$	設計事象 I の仮保管時の状態において, S _s 地震力が作用した場合の許容応力状態	—

注1) f_t*, f_s*, f_o*, f_b*, f_p*: f_t, f_s, f_o, f_b, f_pの値を算出する際に 設計・建設規格 SSB-3121.1(1)における「付録材料図表 Part5 表 8 に規定する材料の設計 降伏点」とあるのを「付録材料図表 Part5 表 8 に規定する材料の設計降伏点の 1.2 倍の 値」と読み替えて算出した値。 B. 計算条件

計算条件を表 2.2-1 に示す。

2.1 (1) 3) ③より支持架台の固有周期が 0.05[s]以下であることから,支持架台は 剛であると考えられる。よって支持架台の機械的荷重である設計用地震力は乾式貯蔵キ ャスクと同様に 1.2ZPA とする。

C. 許容応力

支持架台材料の許容応力値を表 2.2-2 に示す。

D. 応力の記号と方向

応力の記号とその方向は下記のとおりである。

- σ:評価断面に垂直な方向の応力
- τ: せん断応力

- ② 応力計算
- A. 応力評価点
 支持架台の応力評価点を図 2.2-2 及び図 2.2-3 に示す。
- B. 仮保管時(S_s地震力が作用する場合)
 - a. 荷重条件 仮保管時においてS_s地震力が作用する場合の荷重は、次に示す組合せとする。

荷重の組合せ:自重+地震力

b. 計算方法

支持架台の応力計算は、以下に示す方法で計算する。

(a) 支持架台の応力

σ

支持架台の上部脚柱(図 2.2-3 参照)に発生する圧縮応力,曲げ応力,せん断応 力及びこれらの組合せ応力を計算する。

自重のみによる支持架台の上部脚柱(図 2.2-3 参照)の一次応力の圧縮応力(σ 。。),曲げ応力(σ_b。),組合せ応力(σ_T。)は次式で表される。

$$\sigma_{co} = \frac{(W_V + W_{S1}) \cdot G}{4 \cdot A_5}$$
(1)

$$_{\rm bo} = \frac{(W_{\rm V} + W_{\rm S\,1}) \cdot G \cdot \ell_{\rm T\,Y}}{4 \cdot Z_{\rm S\,C\,X}}$$
(2)

$$\sigma_{To} = \sigma_{co} + \sigma_{bo}$$
(3)

- W_v : キャスク容器 (内部を含む) の総質量
 - ・大型 115000 kg
 - ・中型 96000 kg
- W_{s1}:支持架台の上部脚柱の総質量
 - ・大型 600 kg
 - ・中型 600 kg
- A₅ : 支持架台の上部脚柱の断面積
 - ・大型 50600 mm²
 - •中型 53080 mm²
- 1_{TY}: 図 2.2-3 に示す支持架台の上部脚柱における荷重点から断面中立 軸までの距離
 - ・大型 93.6 mm
 - ・中型 116.4 mm
- Z_{scx} : 図 2.2-3 に示す支持架台の上部脚柱の X 軸に関する断面係数
 - ・大型 キャスク容器側 : 5.535×10⁶ mm³
 - キャスク容器と反対側:2.611×10⁶ mm³
 - ・中型 キャスク容器側 : 7.081×10⁶ mm³
 - キャスク容器と反対側:3.352×10⁶mm³

なお、応力計算では下記の荷重を組合せる。

①自重+鉛直方向地震力+軸方向水平地震力

②自重+鉛直方向地震力+軸直角方向水平地震力

イ. 自重+鉛直方向地震力+軸方向水平地震力の場合

(イ)一次応力

自重のみによる圧縮応力(σ_{co})と鉛直方向地震力による圧縮応力 (σ_{cV})の合成圧縮応力(σ_{Tc})

$$\sigma_{cV} = \frac{C_V \cdot (W_V + W_{S1})}{4 \cdot A_5}$$
(4)

 $\sigma_{\rm Tc} = \sigma_{\rm co} + \sigma_{\rm cV} \tag{5}$

自重のみによる曲げ応力(σ_{bo})と鉛直方向地震力による曲げ応力 (σ_{bV}),水平地震力による曲げ応力(σ_{bHX})の合成曲げ応力(σ_{Tb})

$$\sigma_{bV} = \frac{C_V \cdot (W_V + W_{S1}) \cdot \ell_{TY}}{4 \cdot Z_{SCX}}$$
(6)

$$\sigma_{bHX} = \frac{C_{H} \cdot (W_{V} + W_{S1}) \cdot \ell_{TZ}}{2 \cdot Z_{SCY}}$$
(7)

$$\sigma_{\rm Tb} = \sigma_{\rm bo} + \sigma_{\rm bV} + \sigma_{\rm bHX} \tag{8}$$

水平地震力による平均せん断応力 (τ_{SHX}) とねじりせん断応力 (τ_{THX}) の合成せん断応力 (τ_{HX})

$$\tau_{SHX} = \frac{C_H \cdot (W_V + W_{S1})}{2 \cdot A_5}$$
(9)

$$\tau_{\text{THX}} = \frac{C_{\text{H}} \cdot (W_{\text{V}} + W_{\text{S}1}) \cdot \ell_{\text{SY}} \cdot t_{\text{SC}}}{2 \cdot J_{5}}$$
(10)

$$\tau_{\rm HX} = \tau_{\rm SHX} + \tau_{\rm THX} \tag{11}$$

以上の圧縮応力 (σ_{T_c}),曲げ応力 (σ_{T_b}),せん断応力 (τ_{HX})による 組合せ応力 (σ_{THX}) は次式で表される。 $\sigma_{THX} = \sqrt{(\sigma_{T_c} + \sigma_{T_b})^2 + 3 \cdot \tau_{HX}^2}$ (12)

ここで,

- 1_{TZ}: 図 2.2-3 に示すトラニオン部(荷重作用点)から支持架台の脚 柱の応力評価部位までの距離
 - ・大型 250 mm
 - ・中型 250 mm

- ・大型 6.400×10⁶ mm³
- •中型 6.815×10⁶ mm³
- J₅ : 図 2. 2-3 に示す支持架台の上部脚柱のねじり剛性係数
 - ・大型 3.448×10⁷ mm⁴
 - •中型 3.296×10⁷ mm⁴

- 1_{sy} : 図 2.2-3 に示す支持架台の上部脚柱における荷重点からせん断 中心までの距離
 - ・大型 124.7 mm
 - ・中型 152.7 mm
- t_{sc} : トラニオン受部の上部支柱の板厚
 - ・大型 50 mm
 - ・中型 50 mm
- C_v : 鉛直方向加速度
 - ・大型 0.49 G
 - ・中型 0.49 G
- C_H :水平方向加速度
 - ・大型 0.79 G

・中型 0.79 G

(口)一次十二次応力

地震力のみによる引張・圧縮の応力範囲 (Δ σ 。),曲げの応力範囲

 $(\Delta \sigma_b)$, せん断の応力範囲 $(\Delta \tau)$, 及び座屈応力 (σ_c) は次式により 表される。なお、この部位では支圧応力、せん断座屈、曲げ座屈は生じない ので圧縮応力に対する座屈を評価する。

$$\Delta \sigma_{c} = 2 \cdot \sigma_{cV}$$
(13)
$$\Delta \sigma_{b} = 2 \cdot (\sigma_{bV} + \sigma_{bHX})$$
(14)

$$\Delta \tau = 2 \cdot \tau_{HX}$$
(15)
$$\sigma_{e} = \sigma_{Te}$$
(16)

$$\sigma_{\rm c} = \sigma_{\rm Tc}$$

ロ. 自重+鉛直方向地震力+軸直角方向水平地震力の場合

(イ)一次応力

自重のみによる応力と鉛直方向地震力による応力,軸直角方向水平地震力 による曲げ応力(σ_{bHY})を組合せた曲げ応力(σ_{Tb})及び平均せん断応力 (τ_{SHY})との組合せ応力(σ_{THY})は次式で表される。

$$\sigma_{bHY} = \frac{C_{H} \cdot (W_{V} + W_{S1}) \cdot \ell_{TZ}}{4 \cdot Z_{SCX}}$$
(17)

$$\tau_{\rm SHY} = \frac{C_{\rm H} \cdot (W_{\rm V} + W_{\rm S1})}{4 \cdot A_5} \tag{18}$$

$$\sigma_{\rm Tb} = \sigma_{\rm bo} + \sigma_{\rm bV} + \sigma_{\rm bHY} \tag{19}$$

$$\sigma_{\rm THY} = \sqrt{\left(\sigma_{\rm Tc} + \sigma_{\rm Tb}\right)^2 + 3 \cdot \tau_{\rm SHY}^2}$$
(20)

(口)一次+二次応力

地震力のみによる曲げの応力範囲 ($\Delta \sigma_{\rm b}$), せん断の応力範囲 ($\Delta \tau$) は 次式により表される。引張・圧縮の応力範囲 ($\Delta \sigma_{\rm c}$) は (13) 式による。 なお,この部位では支圧応力は生じない。座屈評価は (16) 式による。 $\Delta \sigma_{\rm b} = 2 \cdot (\sigma_{\rm bV} + \sigma_{\rm bHY})$ (21) $\Delta \tau = 2 \cdot \tau_{\rm SHY}$ (22)

- c. 計算結果 応力計算結果を表 2.2-3 に示す。
- 応力の評価
- A. 一次応力の評価
 設計事象における評価を表 2.2-3 に示す。
 表 2.2-3 より,支持架台の一次応力は,許容応力以下となる。
- B. 一次+二次応力の評価
 設計事象における評価を表 2.2-3 に示す。
 表 2.2-3 より,支持架台の一次+二次応力は,許容応力以下となる。

図 2.2-2 応力評価部位

図 2.2-3 応力評価部位(キャスク支持架台の上部脚柱)

項	目	計算条件			
機械的荷重	地 震 力	S _s 地震力 水平方向 : 0.79 G 鉛直方向 : 0.49 G			
熱 荷 重 最高使用温度		50°C			
材	料	SS400			

表 2.2-1 計算条件

			許容応力値 (N/mm ²)					
許容	広力の種類		炭素鋼 1)(支持架台)					
区分			大型	中型	<u>新</u> 宏店甘滩			
			SS400	SS400	计谷旭基毕			
		引張応力	253	253	1.5 f $_{\rm t}$ *			
	一次 応力	圧縮応力	210	211	1.5 f $_{\rm c}$ *			
		せん断応力	146	146	1.5 f $_{\rm s}$ *			
_		曲げ応力	253	253	1.5 f $_{\rm b}$ *			
I ⊥		支圧応力	346	346	1.5 f $_{\rm p}$ *			
S c		引張・圧縮応力	423	423	3 f $_{\rm t}$ $^{2)}$			
3	一次	せん断応力	244	244	3 f $_{\rm s}$ $^{2)}$			
	+ - y _k	曲げ応力	423	423	3 f $_{\rm b}$ $^{2)}$			
	二八 応力	支圧応力	346	346	1.5 f _p *			
		座屈応力	210	211	1.5f _b , 1.5f _s 又は1.5f _c			

表 2.2-2 支持構造物用材料の許容応力値

注1) 一次応力における組合せ応力評価は以下による。

 評価断面に垂直な方向の応力(σ)とせん断応力(τ)を組合 せた応力(σ_T)は、引張応力に対する許容応力値以下である こと。

$$\sigma_{\rm T} = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

② 組合せ応力評価として,評価断面に垂直な方向の応力同士での組 合せ(軸応力+曲げ応力,せん断応力を考慮しない)として下 記の評価がある。

○圧縮応力と曲げ応力との組合せが生じる場合は,次式を満足すること。

$$\frac{\mid \sigma_{c} \mid}{1.5 \cdot f_{c}^{*}} + \frac{\mid c \sigma_{b} \mid}{1.5 \cdot f_{b}^{*}} \leq 1 \quad \text{ind} \quad \frac{\mid t \sigma_{b} \mid - \mid \sigma_{c} \mid}{1.5 \cdot f_{t}^{*}} \leq 1$$

○引張応力と曲げ応力との組合せが生じる場合は,次式を満足すること。

$$\frac{|\sigma_{t}|+|_{t}\sigma_{b}|}{1.5 \cdot f_{t}^{*}} \leq 1 \quad \text{かつ} \quad \frac{|_{c}\sigma_{b}|-|\sigma_{t}|}{1.5 \cdot f_{b}^{*}} \leq 1$$
ここで、 σ_{c} : 平均圧縮応力 (N/mm²)
 σ_{t} : 平均引張応力 (N/mm²)
 $_{c}\sigma_{b}$: 圧縮側曲げ応力 (N/mm²)
 $_{t}\sigma_{b}$: 引張側曲げ応力 (N/mm²)

注2) S s 地震力のみによる応力範囲について評価。

表 2.2-3 支持架台の応力評価(仮保管時: S_s地震力が作用する場合)

				大型		中型		
部位	応ス	りの種類	計算値		許容応力	計算値		杂应片书
			ケース1 ¹⁾	ケース 2 1)		ケース1 ¹⁾	ケース 2 ¹⁾	許容応力
		引張応力			253	_		253
	一次応力	圧縮応力	9	9	210	7	7	211
		せん断応力	90	5	146	94	4	146
		曲げ応力	33	37	253	26	27	253
		組合せ応力	159	30	253	165	21	253
支持架台		支圧応力			346			346
		引張・圧縮応力	6	6	423	5	5	423
	2) //r	せん断応力	180	9	244	188	7	244
	+	曲げ応力	45	53	423	36	36	423
	二次応力	支圧応力	—	—	346	_	—	346
		座屈応力 3)	9	9	210	7	7	211

(単位:N/mm²)

注1) ケース1は自重+鉛直方向地震力+軸方向水平地震力の場合

ケース2は自重+鉛直方向地震力+軸直角方向水平地震力の場合

注2) S_s地震力のみによる応力範囲について評価

注3) 自重+地震力の最大応力で評価

- 4) 固定ボルト,基礎ボルト
- ① 概要

本項では、大型及び中型の乾式貯蔵キャスクの支持構造物のうち固定ボルト、基礎ボ ルトに関する応力計算について示す。

なお、地震時における支持架台の設計震度は大型と中型で同じであり、乾式貯蔵キャ スクの質量は大型の方が大きく(大型:115000kg、中型:96000kg)、また当該評価部位 の形状、材料等は共通であるため大型のみを検討対象とする。

- A. 形状・寸法・材料 本計算書で解析する箇所の形状・寸法・材料を図 2.2-4 に示す。
- B. 計算条件計算条件を表 2.2-4 に示す。
- C. 許容応力 解析箇所の許容応力を表 2.2-5 に示す。
- D. 応力の記号と方向応力の記号とその方向は、3) ① D 項と同じである。
- ② 応力計算
- A. 荷重条件

仮保管時においてS。地震力が作用する場合の荷重は、次に示す組合せとする。 荷重の組合せ:自重+地震力

B. 計算方法

固定ボルト,基礎ボルトの応力計算は,以下に示す方法で計算する。 なお,鉛直地震力と水平地震力を同時に考慮した荷重により,発生する応力を計算する。

- a. 固定ボルトの応力
- (a) 固定ボルトの引張応力
 - イ. 自重+鉛直方向地震力+軸方向水平地震力の場合
 - 図 2.2-6 において,最大引張応力が発生するのは支点から最も遠い固定ボルトである。支点回りのモーメントの釣合による最大引張応力(σ_{tflx})は次式で表される。

$\sigma_{\rm tfHX} = \frac{F_{\rm fX1}}{A_{\rm cr}}$	- _	
$F_{mt} = \frac{L_{fX1}}{L_{fX1}}$	M _{fTHX}	
$\sum_{i=1}^{6} N_{i}$	$_{\rm Xi} \cdot {\rm L_{fXi}}^2$	(1)
i=1		
$M_{fTHX} = \{C_{H} \cdot H_{f}$	$\mathbf{w}_{G} = (1G - C_{V}) \cdot \mathbf{L}_{fVGX} \cdot \mathbf{w}_{V} + \{C_{H} \cdot \mathbf{H}_{fSG} - (1G - C_{V}) \cdot \mathbf{L}_{fSGX} \} \cdot \mathbf{w}_{S}$	
(, w	ノ・キャスク歴号(115000 km)	
W V	: イヤハク貝里 (-113000 kg)	
W _S	: ヤヤスク 文持朱台賀重 (=15000 kg)	
C_{V}	: 新国力问晨度 (=0.49 G)	
C _H	:水平方问震度 (=0.79 G)	
G	: 重力加速度 (=9.80665 m/s ²)	
$F_{fX1} \sim F_{fX6}$: 図 2.2-6 に示す固定ボルトに発生する引張力(N)	
$A_{\rm fb}$:固定ボルト1本の呼び径断面積 (=855.3 mm ²)	
$L_{fX1} \sim L_{fX6}$: 図 2.2-6 に示す固定ボルトの各位置 (mm)	
Δ L _{fX}	: 図 2.2-6 に示す固定ボルトの間隔	
	$L_{fXi+1} = L_{fXi} - \Delta L_{fX}$	
	$\Delta L_{\rm fX}$ (=800 mm) , $L_{\rm fX1}$ (=4750 mm)	
$N_{fX1} \sim N_{fX6}$: 図 2. 2-6 に示す固定ボルトの各位置での本数(=各 2 本)	
M_{fTHX}	: 軸方向水平地震力に関する転倒モーメント(N・mm)	
$\mathrm{H}_{\mathrm{fVG}}$: 図2.2-6に示すキャスク容器の重心高さ(=1600 mm)	
H_{fSG}	:図2.2-6に示すキャスク支持架台の重心高さ(=522 mm)	
L_{fVGX}	: 図 2.2-6 に示すキャスク容器の軸方向の重心位置(=2672	2
	mm)	
L _{fSGX}	: 図 2.2-6 に示すキャスク支持架台の軸方向の重心位置	
	(=2754.9 mm)	

(1) 式の転倒モーメント(M_{fTHX})が負であれば,引張力(F_{fX1})は作用しないので,この場合は引張応力の計算は省略する。

ロ. 自重+鉛直方向地震力+軸直角方向地震力の場合

Б

図 2.2-7 において,最大引張応力が発生するのは支点から最も遠い固定ボルトである。支点回りのモーメントを片側の固定ボルトで受ける場合の最大引張応力(σ_{tfl})は次式で表される。

$$\sigma_{triffy} = \frac{\Gamma_{fY}}{A_{fb}}$$

$$F_{fY} = \frac{M_{fTHY}}{N_{fY} \cdot L_{fY}}$$

$$M_{fTHY} = \{C_{ft} \cdot H_{FVC} - (1G - C_V) \cdot L_{FVCY}\} \cdot W_V + \{C_{ft} \cdot H_{FSC} - (1G - C_V) \cdot L_{FSCY}\} \cdot W_S$$
ここで、
$$W_V : \pm キャスク質量 (=115000 kg)$$

$$W_S : \pm ャャスク支持架台質量 (=15000 kg)$$

$$C_V : 给直方向震度 (=0.49 G)$$

$$C_H : \pi \Psi \overline{D} horegineties (=9.80665 m/s^2)$$

$$F_{fY} : [22.2-7] content of a content$$

(2) 式の転倒モーメント (M_{fTHY}) が負であれば、引張力 (F_{fY}) は作用しないので、この場合は引張応力の計算は省略する。

(b)固定ボルトのせん断応力

固定ボルトのせん断応力(τ_f)は次式で表される。

$$\tau_{\rm f} = \frac{C_{\rm H} \cdot (W_{\rm V} + W_{\rm S})}{N_{\rm f} \cdot A_{\rm fm}}$$
(3)

ここで,

- C_H :水平方向震度 (=0.79 G)
- N_f : 固定ボルトの本数(=12本)
- A_{fm} : 固定ボルトの有効断面積 (=693.6 mm²)
- W_v : キャスク質量 (=115000 kg)
- W_s : キャスク支持架台質量 (=15000 kg)
- G : 重力加速度 (=9.80665 m/s²)

b. 基礎ボルトの応力

(a) 基礎ボルトの引張応力

イ.自重+鉛直方向地震力+軸方向水平地震力の場合

図 2.2-8 において,最大引張応力が発生するのは支点から最も遠い基礎ボルトである。支点回りのモーメントの釣合による最大引張応力(σ_{tallX})は次式で表される。

(4) 式の転倒モーメント(M_{aTHX})が負であれば,引張力(F_{aX1})は作用しないので,この場合は引張応力の計算は省略する。

ロ. 自重+鉛直方向地震力+軸直角方向地震力の場合

図 2.2-9 において,最大引張応力が発生するのは支点から最も遠い基礎ボルトである。支点回りのモーメントを片側の基礎ボルトで受ける場合の最大引張応力(σ_{taff})は次式で表される。

$\sigma_{\text{taHY}} = \frac{F_{\text{aY1}}}{A_{\text{ab}}}$	-
$F_{aY1} = \frac{1}{N_{aY1} \cdot L}$	$\underbrace{\overset{M_{aTHY} \cdot L_{aY1}}{_{\prime aY1}^2 + N_{aY2} \cdot L_{aY2}^2}}_{(5)}$
$\mathbf{M}_{\mathrm{aTHY}} = \{\mathbf{C}_{\mathrm{H}} \boldsymbol{\cdot} \mathbf{H}_{\mathrm{a}}$	$\mathbf{W}_{\mathrm{AVG}} - (1\mathbf{G} - \mathbf{C}_{\mathrm{V}}) \cdot \mathbf{L}_{\mathrm{aVGY}} \cdot \mathbf{W}_{\mathrm{V}} + \{\mathbf{C}_{\mathrm{H}} \cdot \mathbf{H}_{\mathrm{aSG}} - (1\mathbf{G} - \mathbf{C}_{\mathrm{V}}) \cdot \mathbf{L}_{\mathrm{aSGY}} \} \cdot \mathbf{W}_{\mathrm{S}}$
$+ \{C_{H}\}$	$[\cdot H_{aPG} - (1G - C_V) \cdot L_{aPGY}] \cdot W_P$
ここで,	
W _v	:キャスク質量(=115000 kg)
W _S	:キャスク支持架台質量(=15000 kg)
$W_{\rm P}$:固定具質量(=3000 kg)
C_{V}	:鉛直方向震度(=0.49 G)
C _H	:水平方向震度(=0.79 G)
G	:重力加速度(=9.80665 m/s²)
$F_{aY1} \sim F_{aY2}$: 図 2. 2-9 に示す基礎ボルトに発生する引張力(N)
A_{ab}	:固定ボルト1本の呼び径断面積 (=1017.9 mm ²)
$L_{aY1} \sim L_{aY2}$: 図 2. 2-9 に示す支点から基礎ボルトまでの距離
	$(L_{aY1} = 3200 \text{ mm}, L_{aY2} = 3000 \text{ mm})$
N_{aYi}	: 図 2. 2-9 に示す基礎ボルト位置(L _{aYi})での本数(=各 7 本)
M_{aTHY}	:軸直角方向水平地震力に関する転倒モーメント(N・mm)
$\mathrm{H}_{\mathrm{aVG}}$:図2.2-9に示すキャスク容器の重心高さ(=2000 mm)
H_{aSG}	: 図 2.2-9 に示すキャスク支持架台の重心高さ(=922 mm)
$\mathrm{H}_{\mathrm{aPG}}$: 図 2.2-9 に示す固定具の重心高さ(=200 mm)
L_{aVGY}	:図 2.2-9 に示すキャスク容器の軸直角方向の重心位置(=1650
	mm)
L_{aSGY}	:図2.2-9に示すキャスク支持架台の軸直角方向の重心位置(=
	1650 mm)
L_{aPGY}	: 図 2.2-9 に示すキャスク支持架台の軸直角方向の重心位置(=
	1650mm)

(5) 式の転倒モーメント(M_{aTHY})が負であれば,引張力(F_{aY1})は作用しないので,この場合は引張応力の計算は省略する。

(b) 基礎ボルトのせん断応力

基礎ボルトのせん断応力(τ_f)は次式で表される。

$$\tau_{\rm f} = \frac{C_{\rm H} \cdot (W_{\rm V} + W_{\rm S} + W_{\rm P})}{N_{\rm a} \cdot A_{\rm am}} \tag{6}$$

ここで,

- C_H :水平方向震度(=0.79 G)
- N_a : 基礎ボルトの本数 (=28本)
- A_{am}:基礎ボルトの有効断面積(=816.7 mm²)
- W_v : キャスク質量 (=115000 kg)
- W_s : キャスク支持架台質量 (=15000 kg)
- W_P :固定具質量 (=3000 kg)
- G :重力加速度 (=9.80665 m/s²)

④応力の評価

設計事象 I + S_sにおける固定ボルト及び基礎ボルトの評価を表 2.2-6 に示す。 表 2.2-6 より,各部の一次応力は許容応力以下となっている。

図 2.2-4 形状・寸法・材料

図 2.2-5 応力評価部位

図 2.2-6 自重+鉛直方向地震力+軸方向水平地震力が作用した場合の 固定ボルトの引張応力計算モデル

図 2.2-7 自重+鉛直方向地震力+軸直角方向水平地震力が作用した場合の 固定ボルトの引張応力計算モデル

図 2.2-8 自重+鉛直方向地震力+軸方向水平地震力が作用した場合の 基礎ボルトの引張応力計算モデル

図 2.2-9 自重+鉛直方向地震力+軸直角方向水平地震力が作用した場合の 基礎ボルトの引張応力計算モデル

項	目	計算条件		
機械的荷重	地 震 力	S _s 地震力 水平方向 : 0.79 G 鉛直方向 : 0.49 G		
熱 荷 重	最高使用温度	50°C		
++*1	固定ボルト	炭素鋼(S35C)		
173 747	基礎ボルト	炭素鋼(SS400)		

表 2.2-4 計算条件

表 2.2-5 許容応力

(単位:N/mm²)

立心	材料	設計事象	許容応力 (注1)	
EDJA.			引張	せん断
固定ボルト	炭素鋼 (S35C)	I + S _s	(注2)	224
基礎ボルト	炭素鋼 (SS400)		(注2)	158

⁽注1)許容応力は、次式で算出

<固定ボルト及び基礎ボルト>

許容引張応力
$$f_t = \frac{F}{2} \times 1.5$$

許容せん断応力 $f_s = \frac{F}{1.5\sqrt{3}} \times 1.5$

ただし,

F:設計基準強度 (N/mm²) F=Min[1.2S_y, 0.7S_u]

(注 2) 固定ボルト及び基礎ボルトの許容引張応力はせん断応力との組合せを考慮し, 次式で低減させる

> Min[f_{t0}, 1.4f_{t0}-1.6 τ] ここで, f_{t0} :ボルトの許容引張応力 (N/mm²) τ :ボルトに発生するせん断応力 (N/mm²)

表 2.2-6 固定ボルト及び基礎ボルトの応力評価(設計事象 I+S。)

(単位:N/mm²)

並 77人士	応力の種類	計算値		<u></u> 恋 広 古 ^(注 2)
<u>.</u> <u>u</u> rq q		ケース 1 ^(注1)	ケース 2 ^(注1)	市谷心刀
固定ボルト	引張	(注3)	26	213
	せん断	121	121	224
基礎ボルト	引張	2	19	206
	せん断	45	45	158

(注1) ケース1:自重+鉛直方向地震力+軸方向水平地震力

ケース2:自重+鉛直方向地震力+軸直角方向水平地震力

(注 2) 固定ボルト及び基礎ボルトの許容引張応力は,発生せん断応力を考慮し低減させた値

(注3)(1)式に示す転倒モーメント(M_{fTHX})が負となり,固定ボルトに引張応力が発生しない。

- (2) 輸送貯蔵兼用キャスク
- 1) 評価方針

キャスク仮保管設備における輸送貯蔵兼用キャスク用支持架台の基準地震動 Ss に対 する耐震性について示すものである。

- 2) 主な構成部材と適用基準
- ① 主な構成部材

輸送貯蔵兼用キャスク用支持架台の耐震強度は,地震時に要求される安全機能を維持 するため,鋼製支持架台,埋め込み金物,基礎ボルト,コンクリート支持架台により構 成される。

② 適用基準と規格

輸送貯蔵兼用キャスク用支持架台は原子力発電所耐震設計技術規程[JEAC4601-2008] 及び,発電用原子力設備規格 設計・建設規格 2005 年版(2007 年追補版含む)[JSME S NC1-2005/2007]を適用する。

3) 固有周期の算定

輸送貯蔵兼用キャスク用支持架台の固有周期は 2.1 乾式キャスクの耐震性(2)輸送貯蔵兼用キャスクA及び(3)輸送貯蔵兼用キャスクBの内 2)固有周期の算定と同一である。

4) 設計震度

輸送貯蔵兼用キャスク用支持架台の設計震度は 2.1 (2) 輸送貯蔵兼用キャスク A 及び(3) 輸送貯蔵兼用キャスク B の内 3) 設計震度と同一である。

- 5) 解析条件
- 荷重の組合せ

Ss 地震時の評価において,輸送貯蔵兼用キャスクの設計上考慮すべき荷重の種類と その組合せを表 2.2-7 に示す。 表 2.2-7 輸送貯蔵兼用キャスク用支持架台の設計上考慮すべき荷重の種類とその組合せ

② 解析箇所

輸送貯蔵兼用キャスク用支持架台の応力解析を行う箇所を図 2.2-10 に示す。

図 2.2-10 輸送貯蔵兼用キャスク用支持架台

- 6) 解析
- ① 解析手順

輸送貯蔵兼用キャスク用支持架台の応力解析フローを図 2.2-11 に示す。 輸送貯蔵兼用キャスク用支持架台の応力解析は,想定される機械的荷重を基に応力評 価式を用いて行う。

図 2.2-11 輸送貯蔵兼用キャスク用支持架台の応力解析フロー図

② 荷重条件の選定

貯蔵時において Ss 地震力が作用する場合の荷重は次に示す組合せとする。 自重+地震力

③ 荷重計算

図 2.2-12 に示す鋼製支持架台1脚に作用するキャスクの自重(F_{wu}, F_w)は次式で表される。

$$F_{WU} = \frac{P_W}{2} \cdot \frac{b}{(a+b)}$$
$$F_{WL} = \frac{P_W}{2} \cdot \frac{a}{(a+b)}$$

$$P_W = W \cdot g$$

ここで,

る。

F_{wu}:鋼製支持架台1脚(上部側)に作用するキャスクの自重(N)
 F_{wL}:鋼製支持架台1脚(下部側)に作用するキャスクの自重(N)
 P_w:キャスク自重(N)
 a:キャスク重心から上部トラニオン軸心までの距離(mm)
 b:キャスク重心から下部トラニオン軸心までの距離(mm)
 W:キャスク設計質量(kg)
 g:重力加速度(m/s²)

図 2. 2-12 に示す鋼製支持架台1 脚に作用する鉛直方向地震力(Fvu, Fvu)は次式で表され

$$F_{vv} = \frac{P_v}{2} \cdot \frac{b}{(a+b)}$$

$$F_{vL} = \frac{P_v}{2} \cdot \frac{a}{(a+b)}$$

$$P_v = W \cdot C_v \cdot g$$
ここで,
$$F_{vu}: 鋼製支持架台1 脚 (上部側) に作用する鉛直方向地震力(N)$$

$$F_{vL}: 鋼製支持架台1 脚 (下部側) に作用する鉛直方向地震力(N)$$

$$P_v: キャスクに作用する鉛直方向地震力(N)$$

a:キャスク重心から上部トラニオン軸心までの距離(mm)

- b:キャスク重心から下部トラニオン軸心までの距離(mm)
- ₩:キャスク設計質量(kg)

Cv:鉛直方向震度

g:重力加速度(m/s²)

図 2.2-12 に示す鋼製支持架台 1 脚に作用する軸方向水平地震力(F_{HXU}, F_{HXL}) は次式で表 される。なお、上部側のトラニオン受けには、キャスク軸方向にスライドする機構を備 えており、軸方向水平地震力は作用しない。

$$F_{HXU} = 0$$

$$F_{HXL} = \frac{P_{HX}}{2}$$

 $P_{HX} = W \cdot C_H \cdot g$

ここで,

F_{HXU}:鋼製支持架台1脚(上部側)に作用する軸方向水平地震力(N)
 F_{HXL}:鋼製支持架台1脚(下部側)に作用する軸方向水平地震力(N)
 P_{HX}:キャスクに作用する軸方向水平地震力(N)

₩:キャスク設計質量(kg)

C_H:水平方向震度

g:重力加速度(m/s²)

図 2.2-12 に示す鋼製支持架台 1 脚に作用する軸直角方向水平地震力(F_{HTU}, F_{HTL})は次式 で表される。なお、トラニオン受けには、鋼製支持架台に作用する軸直角方向荷重が、 キャスクから支持架台の方向のみ作用する機構を備えている。

$$F_{HYU} = P_{HY} \cdot \frac{b}{(a+b)}$$
$$F_{HYL} = P_{HY} \cdot \frac{a}{(a+b)}$$
$$P_{HV} = W \cdot C_{H} \cdot g$$

ここで,

F_{HYU}:鋼製支持架台1脚(上部側)に作用する軸直角方向水平地震力(N)
 F_{HYL}:鋼製支持架台1脚(下部側)に作用する軸直角方向水平地震力(N)
 P_{HY}:キャスクに作用する軸直角方向水平地震力(N)
 a :キャスク重心から上部トラニオン軸心までの距離(mm)
 b :キャスク重心から下部トラニオン軸心までの距離(mm)
 W :キャスク設計質量(kg)
 C_H:水平方向震度

g:重力加速度(m/s²)

- ④ 応力評価
- A. 自重+鉛直方向地震力+軸方向水平地震力
- a. 鋼製支持架台(評価断面①)
- (a) 一次応力

図 2.2-13 において自重のみによる圧縮応力(σ_{ew})と鉛直方向地震力による圧縮応力 (σ_{ev})の合成圧縮応力(σ_{eT})は次式で表される。

$$\sigma_{cW} = \frac{F_W}{B \cdot t}$$
$$\sigma_{cV} = \frac{F_V}{B \cdot t}$$

 $\sigma_{cT} = \sigma_{cW} + \sigma_{cV}$

図 2.2-13 において軸方向水平地震力による曲げ応力(σ_{ыX})は次式で表される。

$$\sigma_{bHX} = \frac{F_{HX} \cdot l}{t \cdot B^2 / 6}$$

図2.2-13において軸方向水平地震力による平均せん断応力(τ_m)は次式で表される。

$$\tau_{HX} = \frac{F_{HX}}{B \cdot t}$$

以上の合成圧縮応力(σ_{cT}),曲げ応力(σ_{bHX}),平均せん断応力(τ_{HX})による組合せ応力(σ_{THX})は次式で表される。

$$\sigma_{THX} = \sqrt{\left(\sigma_{cT} + \sigma_{bHX}\right)^2 + 3 \cdot \tau_{HX}^2}$$

ここで,

Fw:図 2.2-12 に示す自重の設計用値(N)

F_v:図 2.2-12 に示す鉛直方向地震力の設計用値(N)

F_{IX}:図 2.2-12 に示す軸方向水平地震力の設計用値(N)

- B:図2.2-13に示す評価断面の幅(mm)
- t:図2.2-13に示すトラニオン受部の板厚(mm)
- 1:図2.2-13に示す軸方向水平地震力に対するモーメントアーム(mm)
- (b) 一次+二次応力

地震力のみによる引張・圧縮の応力範囲($\Delta \sigma_{\rm c}$),曲げの応力範囲($\Delta \sigma_{\rm b}$),せん断の 応力範囲($\Delta \tau$),及び座屈応力($\sigma_{\rm bc}$)は次式により表される。

なお,この部位では支圧応力,せん断座屈,曲げ座屈は生じないので圧縮応力に対す る座屈応力を評価する。

 $\Delta \sigma_c = 2 \cdot \sigma_{cV}$

 $\Delta \sigma_b = 2 \cdot \sigma_{bHX}$

$$\Delta \tau = 2 \cdot \tau_{HX}$$
$$\sigma_{bc} = \sigma_{cT}$$

- b. 鋼製支持架台(評価断面②)
- (a) 一次応力

図2.2-14において自重のみによる圧縮応力(σ_{cw})と鉛直方向地震力による圧縮応力(σ_{cv})の合成圧縮応力(σ_{cr})は次式で表される。

$$\sigma_{cW} = \frac{F_W}{B_1 \cdot t_1 + 2B_2 \cdot t_2}$$
$$\sigma_{cV} = \frac{F_V}{B_1 \cdot t_1 + 2B_2 \cdot t_2}$$

$$\sigma_{cT} = \sigma_{cW} + \sigma_{cV}$$

図2.2-14において自重による曲げ応力($\sigma_{bW1}, \sigma_{bW2}$),鉛直方向地震力による曲げ応力($\sigma_{bV1}, \sigma_{bV2}$),及び軸方向水平地震力による曲げ応力($\sigma_{bHX1}, \sigma_{bHX2}$)の合成曲げ応力($\sigma_{bT1}, \sigma_{bT2}$)は次式で表される。

$$\sigma_{bW1} = \frac{F_W \cdot (L_1 - t_1/2)}{I_X} \cdot L_1 \qquad (トラニオン受側)$$

$$\sigma_{bW2} = \frac{F_W \cdot (L_1 - t_1/2)}{I_X} \cdot L_2 \qquad (リブ側)$$

$$\sigma_{bV1} = \frac{F_V \cdot (L_1 - t_1/2)}{I_X} \cdot L_1 \qquad (トラニオン受側)$$

$$\sigma_{bV2} = \frac{F_V \cdot (L_1 - t_1 / 2)}{I_X} \cdot L_2 \qquad (リブ側)$$

$$\sigma_{bHX1} = \frac{F_{HX} \cdot l}{I_{Y}} \cdot L_{3} \qquad (トラニオン受側)$$

$$\sigma_{bHX2} = \frac{F_{HX} \cdot l}{I_{Y}} \cdot L_{4} \qquad (リブ側)$$

$$\sigma_{bT1} = \sigma_{bW1} + \sigma_{bV1} + \sigma_{bHX1}$$
 (トラニオン受側)
II-2-13-添 3-224

$$\sigma_{bT2} = \sigma_{bW2} + \sigma_{bV2} + \sigma_{bHX2}$$
 (リブ側)

図2.2-14において軸方向水平地震力による平均せん断応力(τ_н)は次式で表される。

$$\tau_{HX} = \frac{F_{HX}}{B_1 \cdot t_1 + 2B_2 \cdot t_2}$$

以上の合成圧縮応力(σ_{cT}),合成曲げ応力(σ_{bT1},σ_{bT2}),平均せん断応力(τ_{HX}) による組合せ応力(σ_{THX1},σ_{THX2})は次式で表される。

$$\sigma_{THX1} = \sqrt{(\sigma_{cT} + \sigma_{bT1})^2 + 3 \cdot \tau_{HX}^2} \qquad (トラニオン受側)$$

$$\sigma_{THX2} = \sqrt{(\sigma_{cT} + \sigma_{bT2})^2 + 3 \cdot \tau_{HX}^2} \qquad (リブ側)$$

ここで,

- Fw: : 図2.2-12 に示す自重の設計用値(N)
- F_v:図2.2-12 に示す鉛直方向地震力の設計用値(N)
- F_{HX}: 図2.2-12 に示す軸方向水平地震力の設計用値 (N)
- B₁:図2.2-14に示すトラニオン受部の幅(mm)
- B₂ : 図2.2-14に示すリブの幅 (mm)
- t₁:図2.2-14に示すトラニオン受部の板厚(mm)
- t₂:図2.2-14に示すリブの板厚 (mm)
- L₁:図2.2-14に示す中立軸(X 軸)からトラニオン受け端部までのY方向距離(mm)
- L₂ : 図2.2-14に示す中立軸(X 軸)からリブ端部までのY方向距離(mm)
- L₃ : 図2.2-14に示す中立軸(Y 軸)からトラニオン受け端部までのX方向距離, L₃'及 びL₃' の大きい方の値 (mm)
- L₄:図2.2-14に示す中立軸(Y軸)からリブ端部までのX 方向距離、L₄、及びL₄、の 大きい方の値(mm)
- 1 : 図2.2-14に示す軸方向水平地震力に対するモーメントアーム (mm)
- I_x : 図2.2-14に示す断面の中立軸(X 軸)に関する断面二次モーメント (mm⁴)
- I_v:図2.2-14に示す断面の中立軸(Y 軸)に関する断面二次モーメント(mm⁴)
- (b) 一次+二次応力

地震力のみによる引張・圧縮の応力範囲($\Delta \sigma_{o}$),曲げの応力範囲($\Delta \sigma_{b1}$, $\Delta \sigma_{b2}$), せん断の応力範囲($\Delta \tau$),及び座屈応力(σ_{bc})は次式により表される。なお、この 部位では支圧応力,せん断座屈,曲げ座屈は生じないので圧縮応力に対する座屈応力を 評価する。

$$\Delta \sigma_{c} = 2 \cdot \sigma_{cV}$$

$$\Delta \sigma_{b1} = 2 \cdot (\sigma_{bV1} + \sigma_{bHX1}) \quad (トラニオン受側)$$

$$\Delta \sigma_{b2} = 2 \cdot (\sigma_{bV2} + \sigma_{bHX2}) \quad (リブ側)$$

$$\Delta \tau = 2 \cdot \tau_{HX}$$

$$\sigma_{bc} = \sigma_{cT}$$

- c. 鋼製支持架台(評価断面③)
- (a) 一次応力

図2.2-15において自重,鉛直方向地震力及び軸方向水平地震力により基礎ボルトから 引張力を受けて発生する曲げ応力(σ_{bHXb}),コンクリート支持架台から圧縮力を受けて 発生する曲げ応力(σ_{bHXc})は次式で表される。

$$\sigma_{bHXb} = \frac{T_{HX} \cdot L_1}{B \cdot t^2/6}$$

$$\sigma_{bHXc} = \frac{\sigma_{ccHX} \cdot L_2^2 / 2}{t^2 / 6}$$

$$T_{HX} = \sigma_{tbHX} \cdot A_m$$

ここで,

 σ_{tbHX} :図2.2-15に示す基礎ボルトに発生する本荷重条件下における引張応力 (N/mm²) σ_{ceHX} :図2.2-15に示すコンクリートに発生する本荷重条件下における圧縮応力 (N/mm²)

- T_{HX} : 図2.2-15に示す基礎ボルトに発生する本荷重条件下における引張力(N)
- t : 図2.2-15に示す鋼製支持架台底板の板厚(mm)
- B : 図2.2-15に示す基礎ボルトから引張力を受けて発生する曲げ応力の評価断面幅 (mm)
 - L₁ : 図2.2-15に示す基礎ボルトから引張力を受けて発生する曲げモーメントのモー メントアーム長さ (mm)
 - L₂ : 図2.2-15に示すコンクリートから圧縮力を受ける長さ (mm)
 - A_m : 基礎ボルト呼び径断面積 (mm²)

図2.2-15において自重,鉛直方向地震力及び軸方向水平地震力により基礎ボルトから 引張力を受けて発生する平均せん断応力(τ_{HXb}),コンクリート支持架台から圧縮力を 受けて発生する平均せん断応力(τ_{HXc})は次式で表される。

$$\tau_{HXb} = \frac{T_{HX}}{B \cdot t}$$
$$\tau_{HXc} = \frac{\sigma_{ccHX} \cdot L_2}{t}$$

ここで、各記号は上記と同様である。

以上の曲げ応力(σ_{bHXb} , σ_{bHXc}), 平均せん断応力(τ_{HXb} , τ_{HXc})による組合せ応力(σ_{THXb} , σ_{THXc})は次式で表される。

$$\sigma_{THXb} = \sqrt{\sigma_{bHXb}^{2} + 3 \cdot \tau_{HXb}^{2}}$$
$$\sigma_{THXc} = \sqrt{\sigma_{bHXc}^{2} + 3 \cdot \tau_{HXc}^{2}}$$

(b) 一次+二次応力

地震力のみによる曲げの応力範囲 ($\Delta \sigma_b$), せん断の応力範囲 ($\Delta \tau$) は次式により 表される。

$$\Delta \sigma_b = \sigma_{bHXb} + \sigma_{bHXc}$$

$$\Delta \tau = \tau_{HXb} + \tau_{HXc}$$

d. 埋め込み金物

自重及び鉛直方向地震力により埋め込み金物に発生する応力は微小であるためこれ らの荷重は無視する。

(a) 一次応力

自重及び鉛直方向地震力は無視する。

図2.2-16において軸方向水平地震力により発生する曲げ応力(σ_{bHX1}),軸方向水平地 震力作用点の偏心により発生する最大曲げ応力(σ_{bHX2})とその合成曲げ応力(σ_{bHX})は 次式で表される。

$$\sigma_{bHX1} = \frac{F_{HX} \cdot H/2}{4 \cdot B \cdot t^2/6}$$

$$\sigma_{bHX2} = \sigma_{bHX1} \cdot \frac{\tau_{HX2}}{\tau_{HX1}}$$

 $\sigma_{bHX} = \sigma_{bHX1} + \sigma_{bHX2}$

- ここで,
- F_{IIX}: 図2.2-12に示す軸方向水平地震力の設計用値(N)

H : 図2.2-16に示すシアプレート部の高さ (mm)

B : 図2.2-16に示すシアプレート部の幅 (mm)

t : 図2.2-16に示すシアプレート部の板厚 (mm)

τ_{IX1}:図2.2-16において軸方向水平地震力により発生する平均せん断応力 (N/mm²)

 τ_{HX2}: 図2. 2-16において軸方向水平地震力作用点の偏心により発生する最大せん断応力 (N/mm²)

図2.2-16において軸方向水平地震力により発生する平均せん断応力(τ_{HX1}),軸方向水 平地震力作用点の偏心により発生する最大せん断応力(τ_{HX2})とその合成せん断応力(τ _{HX})は次式で表される。

$$\tau_{HX1} = \frac{F_{HX}}{4 \cdot B \cdot t}$$
$$\tau_{HX2} = \frac{F_{HX} \cdot l}{I_P} \cdot r_{\max}$$

$$\tau_{HX} = \tau_{HX1} + \tau_{HX2}$$

ここで,

F_{HX}:図2.2-16に示す軸方向水平地震力の設計用値(N)

B : 図2.2-16に示すシアプレートの幅 (mm)

t : 図2.2-16に示すシアプレート部の板厚 (mm)

1 : 図2.2-16に示す軸方向水平地震力作用点から捩りせん断中心までのY 方向距離 (mm)

I_p:図2.2-16に示すシアプレートの断面二次極モーメント(mm⁴)

rmax: 図2.2-16に示す捩りせん断中心からシアプレートまでの最大距離 (mm)

以上の合成曲げ応力 (σ_{bHX}), 合成せん断応力 (τ_{HX})による組合せ応力 (σ_{THX})は次 式で表される。

$$\sigma_{THX} = \sqrt{\sigma_{bHX}^2 + 3 \cdot \tau_{HX}^2}$$

(b) 一次+二次応力

地震力のみによる曲げの応力範囲($\Delta \sigma_b$), せん断の応力範囲($\Delta \tau$)は次式により 表される。なお, この部位では圧縮応力, 支圧応力, せん断座屈, 曲げ座屈は生じない。

 $\Delta \sigma_b = 2 \cdot \sigma_{bHX}$

 $\Delta \tau = 2 \cdot \tau_{HX}$

- e. 基礎ボルト
- (a) 一次応力
 - I. 自重(-Z)+鉛直方向地震力(+Z)+軸方向水平地震力(±X)

基礎ボルトに発生する合成引張応力 ($\sigma_{\tau T}$)及び合成せん断応力 (τ_{T}) は次式で表される。

$$\sigma_{tT} = \sigma_{tV} + \sigma_{tHX}$$

$$\tau_T = \tau_{HX1} + \tau_{HX2}$$

- ここで,
- σ_{tv}:自重及び鉛直方向地震力により発生する引張応力(N/mm²)
- σ_{tHX}:軸方向水平地震力により発生する引張応力 (N/mm²)
- τ_{HX1}:軸方向水平地震力により発生する平均せん断応力 (N/mm²)
- τ_{HX2}:軸方向水平地震力作用点の偏心により発生する最大せん断応力 (N/mm²)
- イ. 自重及び鉛直方向地震力による引張応力 図2.2-17において自重及び鉛直方向地震力により基礎ボルトに発生する引張応力(σ
 - τν)は、鉄筋コンクリート構造計算規準・同解説 (2010 年版)より次式で表される。

$$\sigma_{tV} = \sigma_{CC} \cdot n \cdot \frac{(D - d_t - X_n)}{X_n} \cdot \frac{A_b}{A_m}$$

$$\sigma_{cc} = N \cdot X_n / S_n$$

$$S_n = \left\{ X_{n1}^2 / 2 - n \cdot P_t \cdot (1 - d_{t1} - X_{n1}) \right\} b \cdot D^2$$

$$I_n = \left\{ X_{n1}^3 / 3 + n \cdot P_t \cdot (1 - d_{t1} - X_{n1})^2 \right\} b \cdot D^3$$

$$X_{n1} = X_n / D$$

 $d_{t1} = d_t/D$

$$P_t = a_t / (\mathbf{b} \cdot D)$$

$$a_t = A_b \cdot N_b$$

ここで,

- σ_{cc}: 図2.2-17に示すコンクリートの最大圧縮応力 (N/mm²)
- n :ヤング係数比
- D : 図2.2-17に示す断面高さ (mm)
- b : 図2.2-17に示す断面幅 (mm)
- d_t:図2.2-17に示す引張側ボルトに関する距離(mm)
- d_{t1}:引張側ボルトに関する係数(-)
- X_n:図2.2-17に示す中立軸距離(mm)

$$X_n - D/2 + e = In/Sn$$

ただし, e: 図2.2-17に示す鉛直力偏心距離(mm)

X_{n1}:中立軸比 (-)

- N:図2.2-17に示す鉛直力であり、次式により算出した値(N)
 N=[自重の設計用値]-[鉛直方向地震力の設計用値]
- a_t: 有効ボルト総断面積 (mm²)
- P_t:引張鉄筋比(-)
- A_b: 基礎ボルト有効断面積 (mm²)
- A_m:基礎ボルト呼び径断面積(mm²)
- N_b: 有効引張側ボルト本数(本)
- S_n: 有効等価断面一次モーメント (mm³)
- I_n : 有効等価断面二次モーメント (mm⁴)
- ロ. 軸方向水平地震力による引張応力

図2.2-17において軸方向水平地震力により基礎ボルトに発生する引張応力(σ_{thx})は, 鉄筋コンクリート構造計算規準・同解説(2010 年版)より次式で表される。

$$\sigma_{tHX} = \frac{F_{HX} \cdot l_1}{I} \cdot n \cdot (d - X_n) \cdot \frac{A_b}{A_m}$$
$$\sigma_{cc} = \frac{F_{HX} \cdot l_1}{I} \cdot Xn$$
$$X_{n1} = -n \cdot P_t + \sqrt{n \cdot P_t} \cdot (2 + n \cdot P_t)$$
$$X_n = d \cdot X_{n1}$$

$$a_t = A_b \cdot N_b$$

$$P_t = a_t / (\mathbf{b} \cdot \mathbf{d})$$

ここで,

- σ_{cc}:図2.2-17に示すコンクリートの最大圧縮応力(N/mm²)
- F_{HX}:図2.2-12 に示す軸方向水平地震力の設計用値(N)
- I : 断面の断面二次モーメント (mm⁴)
- n :ヤング係数比
- 11: 軸方向水平地震力作用点から鋼製支持架台下面までのZ 方向距離(mm)
- b : 図2.2-17に示す断面幅 (mm)
- d : 図2.2-17に示す断面有効高さ(mm)
- X_n : 図2.2-17に示す中立軸距離 (mm)
- X_{n1} : 中立軸比 (-)
- a_t : 有効ボルト総断面積 (mm²)
- P_t : 引張鉄筋比(-)
- A_b : 基礎ボルト有効断面積 (mm²)
- A_m: 基礎ボルト呼び径断面積 (mm²)
- N_b: 有効引張側ボルト本数(本)
- ハ. 軸方向水平地震力により発生するせん断応力

軸方向水平地震力により基礎ボルトに発生する平均せん断応力(τ_{HX1}),及び軸方向 水平地震力作用点が図2.2-17に示す基礎ボルト重心位置から偏心していることにより 発生する最大せん断応力(τ_{HX2})は次式で表される。

$$\tau_{HX1} = \frac{F_{HX}}{A_b \cdot N_{bs}}$$

$$\tau_{HX2} = \frac{F_{HX} \cdot l_2}{I_P} \cdot r_{\max}$$

ここで,

F_{HX}:図2.2-12に示す軸方向水平地震力の設計用値(N)

- N_{bs}:図2.2-17に示す基礎ボルト本数(本)
- A_b : 図2.2-17に示す基礎ボルト有効断面積 (mm²)
- I_p: 図2.2-17に示す基礎ボルトの断面二次極モーメント (mm⁴)
- 12: 図2.2-17に示す軸方向水平地震力作用点から基礎ボルト有効断面の図心位置(捩りせん断中心)までのY 方向距離(mm)
- r_{max}:上記図心位置から基礎ボルトまでの最大距離(mm)

Ⅱ.自重(-Z)+鉛直方向地震力(-Z)+軸方向水平地震力(±X)

基礎ボルトに発生する合成引張応力 ($\sigma_{\tau\tau}$) 及び合成せん断応力 (τ_{τ}) は次式で表される。

$$\sigma_{tT} = \sigma_{tV} + \sigma_{tHX}$$

$$\tau_T = \tau_{HX1} + \tau_{HX2}$$

ここで,

- σ_{tV}:自重及び鉛直方向地震力により発生する引張応力 (N/mm²)
- σ_{tHX}:軸方向水平地震力により発生する引張応力 (N/mm²)
- τ_{HX1}:軸方向水平地震力により発生する平均せん断応力 (N/mm²)
- τ_{HX2}:軸方向水平地震力作用点の偏心により発生する最大せん断応力 (N/mm²)

イ. 自重及び鉛直方向地震力による引張応力

図 2.2-18 において自重及び鉛直方向地震力により基礎ボルトに発生する引張応力 (σ_{tv})は,鉄筋コンクリート構造計算規準・同解説(2010 年版)より次式で表される。

$$\sigma_{tV} = \sigma_{cc} \cdot n \cdot \frac{(D - d_t - X_n)}{X_n} \cdot \frac{A_b}{A_m}$$

$$\sigma_{cc} = N \cdot X_n / S_n$$

$$S_n = \left\{ X_{n1}^2 / 2 - n \cdot P_t \cdot (1 - d_{t1} - X_{n1}) \right\} b \cdot D^2$$

$$I_n = \left\{ X_{n1}^3 / 3 + n \cdot P_t \cdot (1 - d_{t1} - X_{n1})^2 \right\} b \cdot D^3$$

$$X_{n1} = X_n / D$$

$$d_{t1} = d_t / D$$

$$P_t = a_t / (b \cdot D)$$

$$a_t = A_b \cdot N_{bt}$$

$$zz \cdot \overline{c},$$

$$\sigma_{cc} : \boxtimes 2.2 - 18 \text{ i} c - \overline{s} + \overline{s}$$

Ⅱ-2-13-添 3-232

 (N/mm^2)

 $X_n: 図 2.2-18 に示す中立軸距離を表し、次式を満足する値 (mm)$ $<math>X_n - D/2 + e = I_n/S_n$

ただし, e: 図 2.2-18 に示す鉛直力偏心距離 (mm)

- X_{n1}:中立軸比 (-)
- N:図 2.2-18 に示す鉛直力であり、次式により算出した値(N)
 N=[自重の設計用値]+[鉛直方向地震力の設計用値]
- a_t: 有効ボルト総断面積 (mm²)
- P_t:引張鉄筋比(-)
- A_b:基礎ボルト有効断面積(mm²)
- A_m:基礎ボルト呼び径断面積(mm²)
- N_{bt}: 有効引張側ボルト本数(本)
- S_n: 有効等価断面一次モーメント (mm³)
- I_n:有効等価断面二次モーメント (mm⁴)
- ロ. 軸方向水平地震力により発生する引張応力

図 2.2-18 において軸方向水平地震力により基礎ボルトに発生する引張応力(σ_{tHX}) は,鉄筋コンクリート構造計算規準・同解説(2010 年版)より次式で表される。

$$\sigma_{tHX} = \frac{F_{HX} \cdot l_1}{I} \cdot n \cdot (d - X_n) \cdot \frac{A_b}{A_m}$$
$$\sigma_{cc} = \frac{F_{HX} \cdot l_1}{I} \cdot X_n$$
$$X_{n1} = -n \cdot P_t + \sqrt{n \cdot P_t} \cdot (2 + n \cdot P_t)$$
$$X_n = d \cdot X_{n1}$$
$$a_t = A_b \cdot N_b$$

$$P_t = a_t / (\mathbf{b} \cdot \mathbf{d})$$

ここで,

σ_{cc}: 図 2.2-18 に示すコンクリートの最大圧縮応力 (N/mm²)

- F_{HX}:図 2.2-12 に示す軸方向水平地震力の設計用値(N)
- I :断面の断面二次モーメント (mm⁴)
- n : ヤング係数比
- 1₁:軸方向水平地震力作用点から鋼製支持架台下面までのZ方向距離(mm)
- b : 図 2.2-18 に示す断面幅 (mm)
- d : 図 2.2-18 に示す断面有効高さ(mm)
- X_n :図 2.2-18 に示す中立軸距離 (mm)
- X_{n1} : 中立軸比 (-)
- a_t: 有効ボルト総断面積 (mm²)

- P_t : 引張鉄筋比(-)
- A_b : 基礎ボルト有効断面積 (mm²)
- A_m:基礎ボルト呼び径断面積(mm²)
- N_b: 有効引張側ボルト本数(本)
- ハ. 軸方向水平地震力により発生するせん断応力

軸方向水平地震力により基礎ボルトに発生する平均せん断応力(τ_{HX1}),及び軸方向 水平地震力作用点が図 2.2-18 に示す基礎ボルト重心位置から偏心していることによ り発生する最大せん断応力(τ_{HX2})は次式で表される。

$$\tau_{HX1} = \frac{F_{HX}}{A_b \cdot N_{bs}}$$

$$\tau_{HX2} = \frac{F_{HX} \cdot l_2}{I_P} \cdot r_{\max}$$

ここで,

F_{HX}:図 2.2-12 に示す軸方向水平地震力の設計用値(N)

N_{bs}:図 2.2-18 に示す基礎ボルト本数(本)

- A_b : 図 2.2-18 に示す基礎ボルト有効断面積 (mm²)
- I_p:図 2.2-18 に示す基礎ボルトの断面二次極モーメント(mm⁴)
- 12: 図 2.2-18 に示す軸方向水平地震力作用点から基礎ボルト有効断面の図心位置 (捩りせん断中心)までの Y 方向距離(mm)
- rmax:上記図心位置から基礎ボルトまでの最大距離(mm)
- f. コンクリート支持架台

コンクリート支持架台の下端に発生する荷重は表 2.2-7 の通りである。これらの荷重 を用いて後述する 2.5 コンクリート基礎の耐震性と同様に評価を行う。

	鉛直力	水平力	モーメント
	(kN)	(kN)	$(kN \cdot m)$
キャスク	477.00	485.00	226.00
	-	-	574.73
ペデスタル	49.41	23.10	12.43
合計	526.41	508.10	813.16

表 2.2-7 コンクリート支持架台下端における荷重

B. 自重+鉛直方向地震力+軸直角方向水平地震力

- a. 鋼製支持架台(評価断面①)
- (a) 一次応力

図 2.2-19 において自重のみによる圧縮応力(σ_{cv})と鉛直方向地震力による圧縮応力 (σ_{cv})の合成圧縮応力(σ_{cr})は次式で表される。

$$\sigma_{cW} = \frac{F_W}{B \cdot t}$$
$$\sigma_{cV} = \frac{F_V}{B \cdot t}$$

 $\sigma_{cT} = \sigma_{cW} + \sigma_{cV}$

図 2.2-19 において軸直角方向水平地震力による曲げ応力(σ_{bHY})は次式で表される。 $\sigma_{bHY} = \frac{F_{HY} \cdot l}{B \cdot t^2 / 6}$

図 2.2-19 において軸直角方向水平地震力による平均せん断応力(_{τ m})は次式で表される。

$$\tau_{HY} = \frac{F_{HY}}{B \cdot t}$$

以上の合成圧縮応力(σ_{cT}),曲げ応力(σ_{bHY}),平均せん断応力(τ_{HY})による組合せ応力(σ_{THY})は次式で表される。

$$\sigma_{THY} = \sqrt{(\sigma_{cT} + \sigma_{bHY})^2 + 3 \cdot \tau_{HY}^2}$$

ここで,

Fw:図2.2-12に示す自重の設計用値(N)

F_v:図 2.2-12 に示す鉛直方向地震力の設計用値(N)

F_m:図 2.2-12 に示す軸直角方向水平地震力の設計用値(N)

- B:図2.2-19に示す評価断面の幅(mm)
- t:図2.2-19に示すトラニオン受部の板厚(mm)
- 1:図 2.2-19 に示す軸方向水平地震力に対するモーメントアーム(mm)
- (b) 一次+二次応力

地震力のみによる引張・圧縮の応力範囲($\Delta \sigma_{\rm c}$),曲げの応力範囲($\Delta \sigma_{\rm b}$),せん断の 応力範囲($\Delta \tau$),及び座屈応力($\sigma_{\rm bc}$)は次式により表される。

なお,この部位では支圧応力,せん断座屈,曲げ座屈は生じないので圧縮応力に対す る座屈応力を評価する。

 $\Delta \sigma_c = 2 \cdot \sigma_{cV}$

 $\Delta \sigma_b = \sigma_{bHY}$

$$\Delta \tau = \tau_{HY}$$
$$\sigma_{bc} = \sigma_{cT}$$

b. 鋼製支持架台(評価断面②)

(a) 一次応力

図2.2-20において自重のみによる圧縮応力(σ_{cw})と鉛直方向地震力による圧縮応力(σ_{cv})の合成圧縮応力(σ_{cT})は次式で表される。

$$\sigma_{cW} = \frac{F_W}{B_1 \cdot t_1 + 2B_2 \cdot t_2}$$
$$\sigma_{cV} = \frac{F_V}{B_1 \cdot t_1 + 2B_2 \cdot t_2}$$

$$\sigma_{cT} = \sigma_{cW} + \sigma_{cV}$$

図2.2-20において自重による曲げ応力($\sigma_{bW1}, \sigma_{bW2}$),鉛直方向地震力による曲げ応力

(σ_{bV1}, σ_{bV2}),及び軸直角方向水平地震力による曲げ応力(σ_{bHY1}, σ_{bHY2})の合成曲げ応 力

(σ_{bT1}, σ_{bT2}) は次式で表される。

$$\sigma_{bW1} = \frac{F_W \cdot (L_1 - t_1/2)}{I_X} \cdot L_1 \qquad (トラニオン受側)$$

$$\sigma_{bW2} = \frac{F_W \cdot (L_1 - t_1/2)}{I_X} \cdot L_2 \qquad (リブ側)$$

$$\sigma_{bV1} = \frac{F_V \cdot (L_1 - t_1/2)}{I_X} \cdot L_1 \qquad (トラニオン受側)$$

$$\sigma_{bV2} = \frac{F_V \cdot (L_1 - t_1/2)}{I_X} \cdot L_2 \qquad (リブ側)$$

$$\sigma_{bHY1} = \frac{F_{HY} \cdot l}{I_X} \cdot L_1 \qquad (トラニオン受側)$$

$$\sigma_{bHY2} = \frac{F_{HY} \cdot l}{I_X} \cdot L_2 \qquad (リブ側)$$

$$\sigma_{bT1} = \sigma_{bW1} + \sigma_{bV1} + \sigma_{bHY1} \qquad (トラニオン受側)$$

$$\sigma_{bT2} = \sigma_{bW2} + \sigma_{bV2} + \sigma_{bHY2} \qquad (リブ側)$$

図2.2-20において軸直角方向水平地震力による平均せん断応力(_{て ну})は次式で表される。

$$\tau_{HY} = \frac{F_{HY}}{B_1 \cdot t_1 + 2B_2 \cdot t_2}$$

以上の合成圧縮応力(σ_{cT}),合成曲げ応力(σ_{bT1},σ_{bT2}),平均せん断応力(τ_{HY}) による組合せ応力(σ_{THY1},σ_{THY2})は次式で表される。

$$\sigma_{THY_1} = \sqrt{(\sigma_{cT} + \sigma_{bT_1})^2 + 3 \cdot \tau_{HY}^2} \qquad (トラニオン受側)$$
$$\sigma_{THY_2} = \sqrt{(\sigma_{cT} + \sigma_{bT_2})^2 + 3 \cdot \tau_{HY}^2} \qquad (リブ側)$$

ここで,

- Fw: 図2.2-12 に示す自重の設計用値(N)
- F_v:図2.2-12 に示す鉛直方向地震力の設計用値 (N)
- F_{IX}:図2.2-12 に示す軸直角方向水平地震力の設計用値(N)
- B₁:図2.2-20に示すトラニオン受部の幅(mm)
- B₂:図2.2-20に示すリブの幅 (mm)
- t₁:図2.2-20に示すトラニオン受部の板厚 (mm)
- t₂:図2.2-20に示すリブの板厚(mm)
- L₁:図2.2-20に示す中立軸(X 軸)からトラニオン受け端部までのY方向距離(mm)
- L₂:図2.2-20に示す中立軸(X 軸)からリブ端部までのY方向距離(mm)
- 1 : 図2.2-20に示す軸直角方向水平地震力に対するモーメントアーム (mm)
- I_x:図2.2-20に示す断面の中立軸(X 軸)に関する断面二次モーメント (mm⁴)
- (b) 一次+二次応力

地震力のみによる引張・圧縮の応力範囲($\Delta \sigma_{o}$),曲げの応力範囲($\Delta \sigma_{b1}, \Delta \sigma_{b2}$), せん断の応力範囲($\Delta \tau$),及び座屈応力(σ_{bc})は次式により表される。なお、この 部位では支圧応力,せん断座屈,曲げ座屈は生じないので圧縮応力に対する座屈応力を 評価する。

$$\Delta \sigma_{c} = 2 \cdot \sigma_{cV}$$

$$\Delta \sigma_{b1} = 2 \cdot \sigma_{bV1} + \sigma_{bHY1} \quad (トラニオン受側)$$

$$\Delta \sigma_{b2} = 2 \cdot \sigma_{bV2} + \sigma_{bHY2} \quad (リブ側)$$

$$\Delta \tau = \tau_{HY}$$

$$\sigma_{bc} = \sigma_{cT}$$

- c. 鋼製支持架台(評価断面③)
- (a) 一次応力

図2.2-21において自重,鉛直方向地震力及び軸直角方向水平地震力により基礎ボルトから引張力を受けて発生する曲げ応力(σ_{bHYb}),コンクリート支持架台から圧縮力を受けて発生する曲げ応力(σ_{bHYc})は次式で表される。

$$\sigma_{bHYb} = \frac{T_{HY} \cdot L_1}{B \cdot t^2/6}$$

$$\sigma_{bHYc} = \frac{\sigma_{ccHY} \cdot L_2^2 / 2}{t^2 / 6}$$

 $T_{HY} = \sigma_{tbHY} \cdot A_m$

ここで,

σ_{tbHY}:図2.2-21に示す基礎ボルトに発生する本荷重条件下における引張応力(N/mm²)
 σ_{coHY}:図2.2-21に示すコンクリートに発生する本荷重条件下における圧縮応力(N/mm²)
 T_{HY}:図2.2-21に示す基礎ボルトに発生する本荷重条件下における引張力(N)

- t : 図2.2-21に示す鋼製支持架台底板の板厚 (mm)
- B : 図2.2-21に示す基礎ボルトから引張力を受けて発生する曲げ応力の評価断面幅 (mm)
 - L_1 : 図2.2-21に示す基礎ボルトから引張力を受けて発生する曲げモーメントのモー メントアーム長さ (mm)
 - L₂ : 図2.2-21に示すコンクリートから圧縮力を受ける長さ (mm)
 - A_m : 基礎ボルト呼び径断面積 (mm²)

図2.2-21において自重,鉛直方向地震力及び軸直角方向水平地震力により基礎ボルト から引張力を受けて発生する平均せん断応力(てmb),コンクリート支持架台から圧縮

力を受けて発生する平均せん断応力(_{て Hr})は次式で表される。

$$\tau_{HYb} = \frac{T_{HY}}{B \cdot t}$$
$$\tau_{HYc} = \frac{\sigma_{ccHY} \cdot L_2}{t}$$

ここで、各記号は上記と同様である。

以上の曲げ応力(σ_{bHYb} , σ_{bHYc}), 平均せん断応力(τ_{HYb} , τ_{HYc})による組合せ応力(σ_{THYb} , σ_{THYc})は次式で表される。

$$\sigma_{THYb} = \sqrt{\sigma_{bHYb}^{2} + 3 \cdot \tau_{HYb}^{2}}$$
$$\sigma_{THYc} = \sqrt{\sigma_{bHYc}^{2} + 3 \cdot \tau_{HYc}^{2}}$$

(b) 一次+二次応力

地震力のみによる曲げの応力範囲($\Delta \sigma_{b}$), せん断の応力範囲($\Delta \tau$)は次式により 表される。なお, この部位では圧縮応力, 支圧応力, せん断座屈, 曲げ座屈は生じない。

$$\Delta \sigma_b = \sigma_{bHYb} + \sigma_{bHYc}$$

 $\Delta \tau = \tau_{\rm HYb} + \tau_{\rm HYc}$

d. 埋め込み金物

(a) 一次応力

図2.2-22において軸直角方向水平地震力により発生する曲げ応力(σ_{bHY})は次式で表 される。

$$\sigma_{bHY} = \frac{F_{HY} \cdot H/2}{(L-4\cdot t) \cdot t^2/6}$$

ここで,

F_{HV}: : 図2. 2-12 に示す軸直角方向水平地震力の設計用値(N)

H : 図2.2-22に示すシアプレート部の高さ (mm)

L : 図2.2-22に示すシアプレート部の幅 (mm)

t : 図2.2-22に示すシアプレート部の板厚 (mm)

図 2.2-22 において軸直角方向水平地震力により発生する平均せん断応力(τ_н)は次 式で表される。

$$\tau_{HY} = \frac{F_{HY}}{(L-4\cdot t)\cdot t}$$
F_{II}: 図2.2-12 に示す軸直角方向水平地震力の設計用値(N)

- L : 図2.2-22に示すシアプレート部の幅 (mm)
- t : 図2.2-22に示すシアプレート部の板厚 (mm)

以上の曲げ応力(σ_{bHY}), 平均せん断応力(τ_{HY})による組合せ応力(σ_{THY})は次式で 表される。

$$\sigma_{THY} = \sqrt{\sigma_{bHY}^{2} + 3 \cdot \tau_{HY}^{2}}$$

(b) 一次+二次応力

軸直角方向水平地震力は一方向のみ(図2.2-22に示す-Y 方向のみ)に作用し、応力の振幅は片側のみとなるため、地震力のみによる曲げの応力範囲($\Delta \sigma_b$)、せん断の応力範囲($\Delta \tau$)は次式により表される。なお、せん断座屈、曲げ座屈は生じない。

 $\Delta \sigma_b = \sigma_{bHY}$

 $\Delta \tau = \tau_{HY}$

- e. 基礎ボルト
- (a) 一次応力
- I.自重(-Z)+鉛直方向地震力(+Z)+軸方向水平地震力(-Y)
- イ. 自重, 鉛直方向地震力, 軸直角水平方向地震力による引張応力 図2. 2-23において自重, 鉛直方向地震力及び軸直角方向水平地震力により基礎ボルト に引張応力が発生するかは下記条件により定まる。
- (i) e_T<-(D/6+d_t'/3)のとき
 基礎ボルトに引張応力が発生する。
- (ii) -(D/6+d_t'/3)≦e_T<-D/6のとき
 鋼製支持架台底板の一部が圧縮となり、基礎ボルトに引張応力が発生しない。
- (iii) -D/6≦e_T<D/6のとき
 鋼製支持架台底板の全面が圧縮となり、基礎ボルトに引張応力が発生しない。
- (iv) D/6≦e_T<D/6+d_t/3のとき
 鋼製支持架台底板の一部が圧縮となり、基礎ボルトに引張応力が発生しない。
- (v) D/6+d_t/3≤e_Tのとき
 基礎ボルトに引張応力が発生する。

ただし,

 $e_T = e_N + e_M$

$$e_M = -F_{HY} \cdot l / N$$

ここで,

- D : 図2.2-23に示す断面高さ (mm)
- d_t:図2.2-23に示す引張側ボルトに関する距離(キャスクと反対側)(mm)
- d,':図2.2-23に示す引張側ボルトに関する距離(キャスク側) (mm)
- e_{T} : 合成荷重偏心距離 (mm)
- e_N:図2.2-23に示す鉛直力偏心距離(mm)
- e_M:曲げモーメント置換偏心距離(mm)
- 1 : 図2.2-23に示す軸直角方向水平地震力作用点から鋼製支持架台下面までのZ 方向 距離(mm)
- F_{III}:図2.2-23に示す軸直角方向水平地震力の設計用値(N)
- N : 図2.2-23に示す鉛直力であり、次式により算出した値(N)
 N=[自重の設計用値]-[鉛直方向地震力の設計用値]

各条件で発生する基礎ボルトの引張応力は以下に示すとおり計算する。

(i) e_T<-(D/6+d_t'/3) のとき

基礎ボルトに引張応力が発生する。図2.2-23において自重,鉛直方向地震力,軸直角 方向水平地震力により基礎ボルトに発生する引張応力(σ_{th})は,鉄筋コンクリート構 造計算規準・同解説(2010 年版)より次式で表される。

$$\sigma_{tHY} = \sigma_{cc} \cdot n \cdot \frac{(D - d_t' - X_n)}{X_n} \cdot \frac{A_b}{A_m}$$

$$\sigma_{cc} = N \cdot X_n / S_n$$

$$S_n = \left\{ X_{n1}^2 / 2 - n \cdot P_t \cdot (1 - d_{t1} - X_{n1}) \right\} b \cdot D^2$$

$$I_n = \left\{ X_{n1}^3 / 3 + n \cdot P_t \cdot (1 - d_{t1} - X_{n1})^2 \right\} b \cdot D^3$$

$$X_{n1} = X_n / D$$

$$d_{t1} = d_t^2 / D$$

$$P_t = a_t / (b \cdot D)$$

$$a_t = A_b \cdot N_{bt}^2$$

ここで,

- σ_{cc} : 図2.2-23に示すコンクリートの最大圧縮応力 (N/mm²)
 - n :ヤング係数比
 - D : 上記と同じ
 - b : 図2.2-23に示す断面幅 (mm)
 - d_t':上記と同じ
 - d_{t1}:引張側ボルトに関する係数(-)
 - X_n : 図2.2-23に示す中立軸距離を表し, 次式を満足する値 (mm)

$$\mathbf{X}_{n} - \mathbf{D} \neq 2 + |\mathbf{e}_{T}| = \mathbf{I}_{n} \neq \mathbf{S}_{n}$$

ただし, e_T:上記と同じ

- X_{n1} :中立軸比 (-)
- N : 上記と同じ
- a_t: : 有効ボルト総断面積 (mm²)
- P_t : 引張鉄筋比(-)
- A_b : 基礎ボルト有効断面積 (mm²)
- A_m : 基礎ボルト呼び径断面積 (mm²)
- N_{bt}': 有効引張側ボルト本数(本)
- S_n: 有効等価断面一次モーメント (mm³)
- I_n:有効等価断面二次モーメント(mm⁴)
- (ii) $-(D/6+d_t'/3) \le e_T < -D/6$ のとき

鋼製支持架台底板の一部が圧縮となり,基礎ボルトに引張応力が発生しないが,こ こでは、コンクリート支持架台に発生する最大圧縮応力を算出する。図2.2-23におい て自重,鉛直方向地震力,軸直角方向水平地震力によりコンクリート支持架台に発生 する最大圧縮応力(σ_{cc})は、次式で表される。

$$\sigma_{cc} = \frac{2 \cdot N}{3 \cdot b \cdot (D/2 - |e_T|)}$$

ここで, N, e_t, D, b:上記と同じ

(iii) −D/6≦e_T<D/6 のとき

鋼製支持架台底板の全面が圧縮となり、基礎ボルトに引張応力が発生しないが、こ こでは、コンクリート支持架台に発生する最大圧縮応力を算出する。図2.2-23におい て自重、鉛直方向地震力、軸直角方向水平地震力によりコンクリート支持架台に発生 する最大圧縮応力(*σ*_{cc})は、次式で表される。

$$\sigma_{cc} = \frac{N \cdot |e_T|}{b \cdot D^2 / 6} + \frac{N}{b \cdot D}$$
ここで、
N, e_t, D, b: 上記と同じ

(iv) $D/6 \le e_T < D/6 + d_t/3のとき$

鋼製支持架台底板の一部が圧縮となり,基礎ボルトに引張応力が発生しないが,こ こでは、コンクリート支持架台に発生する最大圧縮応力を算出する。図2.2-23におい て自重,鉛直方向地震力,軸直角方向水平地震力によりコンクリート支持架台に発生 する最大圧縮応力(σ_{cc})は、次式で表される。

$$\sigma_{cc} = \frac{2 \cdot N}{3 \cdot b \cdot (D/2 - |e_T|)}$$

ここで,

N, e_t, D, b:上記と同じ

(v) D/6+ $d_t/3 \leq e_T$ のとき

基礎ボルトに引張応力が発生する。図2.2-23において自重,鉛直方向地震力,軸直角 方向水平地震力により基礎ボルトに発生する引張応力(σ_{th})は,鉄筋コンクリート構 造計算規準・同解説(2010 年版)より次式で表される。

$$\sigma_{tHY} = \sigma_{cc} \cdot n \cdot \frac{(D - d_t - X_n)}{X_n} \cdot \frac{A_b}{A_m}$$

$$\sigma_{cc} = N \cdot X_n / S_n$$

$$S_n = \left\{ X_{n1}^2 / 2 - n \cdot P_t \cdot (1 - d_{t1} - X_{n1}) \right\} b \cdot D^2$$

$$I_n = \left\{ X_{n1}^3 / 3 + n \cdot P_t \cdot (1 - d_{t1} - X_{n1})^2 \right\} b \cdot D^3$$

$$X_{n1} = X_n / D$$

$$d_{t1} = d_t / D$$

$$P_t = a_t / (b \cdot D)$$

$$a_t = A_b \cdot N_{bt}$$

ここで,

- σ_{cc}:図2.2-23に示すコンクリートの最大圧縮応力 (N/mm²)
- n : ヤング係数比
- D : 上記と同じ
- b : 上記と同じ
- d_t : 上記と同じ
- d_{t1}:引張側ボルトに関する係数(-)
- X_n : 図2.2-23に示す中立軸距離を表し, 次式を満足する値 (mm)

$$X_n - D \swarrow 2 + |e_T| = In \swarrow Sn$$

ただし, e_T:上記と同じ

- X_{n1} :中立軸比 (-)
- N :上記と同じ
- a_t: : 有効ボルト総断面積 (mm²)
- P_t :引張鉄筋比(-)
- A_b : 基礎ボルト有効断面積 (mm²)
- A_m : 基礎ボルト呼び径断面積 (mm²)
- N_{bt}: 有効引張側ボルト本数(本)
- S_n: 有効等価断面一次モーメント (mm³)
- I_n:有効等価断面二次モーメント(mm⁴)
- ロ. 軸直角方向水平地震力によるせん断応力

軸直角方向水平地震力により基礎ボルトに発生する平均せん断応力(τ_н),は次式 で算出する。

$$\tau_{HY} = \frac{F_{HY}}{A_b \cdot N_{bs}}$$

ここで,

F_W:図2.2-12に示す軸直角方向水平地震力の設計用値(N)

- N_{bs}:図2.2-23に示す基礎ボルト本数(本)
- A_b : 図2.2-23に示す基礎ボルト有効断面積 (mm²)
- Ⅱ. 自重(-Z)+鉛直方向地震力(-Z)+軸直角方向水平地震力(-Y)
- イ. 自重, 鉛直方向地震力, 軸直角方向水平地震力による引張応力

図2.2-24において自重,鉛直方向地震力及び軸直角方向水平地震力により基礎ボルト に引張応力が発生するかはI項と同様に求められる。ただし,鉛直力(N)については 以下のとおりとする。

- N:図2.2-24に示す鉛直力であり、次式により算出した値(N)N=[自重の設計用値]+[鉛直方向地震力の設計用値]
- ロ. 軸直角方向水平地震力によるせん断応力

軸直角方向水平地震力により基礎ボルトに発生する平均せん断応力(τ_н),は次式 で算出する。

$$\tau_{HY} = \frac{F_{HY}}{A_b \cdot N_{bs}}$$

ここで,

- F_m:図2.2-12に示す軸直角方向水平地震力の設計用値(N)
- N_{bs}:図2.2-24に示す基礎ボルト本数(本)
- A_b : 図2.2-24に示す基礎ボルト有効断面積 (mm²)
- f. コンクリート支持架台

コンクリート支持架台の下端に発生する荷重は表 2.2-8 の通りである。これらの荷重 を用いて後述する 2.5 コンクリート基礎の耐震性と同様に評価を行う。

	鉛直力	水平力	モーメント
	(kN)	(kN)	$(kN \cdot m)$
キャスク	477.00	506.00	157.00
	-	-	599.60
ペデスタル	49.41	23.10	12.43
合計	526.41	529.10	769.04

表 2.2-8 コンクリート支持架台下端における荷重

鉛直方向地震力

軸方向水平地震力

軸直角方向水平地震力

図 2.2-14 計算モデル図(鋼製支持架台,評価断面②) [設計事象 I + S_s,自重+鉛直方向地震力+軸方向水平地震力]

基礎ボルトより引張力を 受ける場合の計算モデル

コンクリート側より圧縮力を 受ける場合の計算モデル

図 2.2-15 計算モデル図(鋼製支持架台,評価断面③) [設計事象 I + S_s,自重+鉛直方向地震力+軸方向水平地震力]

図 2.2-16 計算モデル図(埋め込み金物) [設計事象 I + S_s,(自重+鉛直方向地震力+軸方向水平地震

軸方向水平地震力により発生する 捩りせん断応力計算モデル

図 2.2-17 計算モデル図(基礎ボルト) [設計事象 I + S_s,自重(-Z)+鉛直方向地震力(+Z)+軸方向水平地震力(±X)]

軸方向水平地震力により発生する 捩りせん断応力計算モデル

図 2.2-18 計算モデル図(基礎ボルト) [設計事象 I + S_s,自重(-Z)+鉛直方向地震力(-Z)+軸方向水平地震力(±X)]

図 2.2-19 計算モデル図(鋼製支持架台,評価断面①) [設計事象 I + S , 自重+鉛直方向地震力+軸直角方向水平地震力]

図 2.2-20 計算モデル図(鋼製支持架台,評価断面②) [設計事象 I + S_s,自重+鉛直方向地震力+軸直角方向水平地震力]

基礎ボルトより引張力を 受ける場合の計算モデル

コンクリート側より圧縮力を 受ける場合の計算モデル

図 2.2-21 計算モデル図(鋼製支持架台,評価断面③) [設計事象 I + S_s,自重+鉛直方向地震力+軸直角方向水平地震力]

図 2.2-22 計算モデル図(埋め込み金物)

[設計事象 I + S_s, 自重+鉛直方向地震力+軸直角方向水平地震力]

基礎ボルトの引張応力計算モデル
 (i) e_T<-(D∕6+d_t'∕3)
 ・基礎ボルトに引張応力発生

基礎ボルトの引張応力計算モデル (ii) -(D/6+d_t'/3)≦e_T<-D/6 ・基礎ボルトに引張応力発生なし

基礎ボルトの引張応力計算モデル (iii) -D/6≦e_T<D/6 ・基礎ボルトに引張応力発生なし

基礎ボルトの引張応力計算モデル (iv) D/6≦e_T<D/6+d_t/3 ・基礎ボルトに引張応力発生なし

基礎ボルトの引張応力計算モデル (v) D/6+d_t/3≦e_T ・基礎ボルトに引張応力発生

図 2.2-23 計算モデル図(基礎ボルト) [設計事象 I + S s,自重(-Z)+鉛直方向地震力(+Z)+軸直角方向水平地震力(-Y)]

基礎ボルトの引張応力計算モデル

・基礎ボルトに引張応力発生

(i) $e_T < -(D \swarrow 6 + d_t' \swarrow 3)$

基礎ボルトの引張応力計算モデル (iii) −D/6≦e₇<D/6

・基礎ボルトに引張応力発生なし

基礎ボルトの引張応力計算モデル

・基礎ボルトに引張応力発生なし

(iv) $D \neq 6 \leq e_T < D \neq 6 + d_t \neq 3$

基礎ボルトの引張応力計算モデル (v) D/6+d_t/3≦e_T ・基礎ボルトに引張応力発生

図 2.2-24 計算モデル図(基礎ボルト)

[設計事象 I + S s, 自重(-Z)+鉛直方向地震力(-Z)+軸直角方向水平地震力(-Y)]

⑤評価結果

評価結果は表2.2-9(1)~(5)となる。

衣4.4⁻9(1)	表2.2-9(1)	鋼製支持架台の応力評領	ī(設計事象 I +Ss,	輸送貯蔵兼用キャスク	(A)
-----------	-----------	-------------	---------------	------------	-----

(単位:N/mm²)

立			の毎粨	計算值 (注)		新家内市	⇒⊽∕≖	
이며	1 <u>1</u> .			ケース1	ケース2	计谷心力	рт ІШ	
		圧縮	15	15	322	OK		
		一次内力	曲げ	37	150	326	OK	
		びルレノJ	せん断	15	16	188	OK	
	評価		組合せ	58	167	326	OK	
	断面①		引張·圧縮	10	10	564	OK	
		一次	曲げ	74	150	564	OK	
		 二次応力	せん断	30	16	324	OK	
			座屈	15	15	279	OK	
	ben Herl	海南市	圧縮	7	7	325	OK	
公园集山			曲げ	32	37	326	OK	
 · · · · · · · · · · · · · · · · · · ·		せん断	7	7	188	OK		
		組合せ	41	45	326	OK		
		引張·圧縮	5	5	564	OK		
		一次 + 二次応力	曲げ	47	32	564	OK	
			せん断	14	7	324	OK	
			座屈	7	7	280	OK	
			曲げ	276	185	326	OK	
	気石	一次応力	せん断	29	20	188	OK	
	計価		組合せ	280	188	326	OK	
	欧田③	一次	曲げ	449	337	564	OK	
		二次応力	せん断	45	33	324	OK	

(注) ケース1: 自重+鉛直方向地震力+軸方向水平地震力

ケース2:自重+鉛直方向地震力+軸直角方向水平地震力

表 2.2-9(2) 埋め込み金物,基礎ボルトの応力評価(設計事象 I+Ss,輸送貯蔵兼用キャ スク A)

(単位	•	N/mm^2)
	•	1 1/ IIIII /

立(7) 人士	応力の種類		に力の種類 計算値 ^(注1)		新広亡士 ^(注2)	評価								
고다 이다			ケース1	ケース2	計谷応力 —	рŦТПШ								
		曲げ	58	85	270	OK								
	一次応力	せん断	13	18	155	OK								
埋め込み金物	埋め込み金物	組合せ	62	90	270	OK								
一次+	一次+	曲げ	115	85	450	OK								
	二次応力	せん断	25	18	258	OK								
	冰市									引張	124	126	ケース1:196	OK
基礎ボルト ^(注3) -			144	_	ケース 2 : 333	OR								
	ひへルい ノ J	せん断	174	88	261	OK								
		070例	174	88	201	ON								

(注1) ケース1:自重+鉛直方向地震力+軸方向水平地震力

ケース2:自重+鉛直方向地震力+軸直角方向水平地震力

(注2) 基礎ボルトの許容引張応力は、発生せん断応力を考慮し低減させた値

(注3)上段の値は鉛直方向地震力が上向き(+Z方向)のときの値を示し,下段の値 は鉛直方向地震力が下向き(-Z方向)のときの値を示す

表 2.2-9(3) 鋼製支持架台の応力評価(設計事象 I+Ss,輸送貯蔵兼用キャスク B)

(単位:N/mm²)

女[7	如 位 亡士		マは苦	計算值(注)		新索片市	⇒⊽∕≖
이퍼	1 <u>1/</u> .	ルロノノい	ク相知	ケース1	ケース2	計谷応力	рі ішц
			圧縮	15	15	322	OK
		冰卡士	曲げ	37	151	326	OK
		一次応力	せん断	15	16	188	OK
	評価		組合せ	58	168	326	OK
	断面①		引張·圧縮	10	10	564	OK
		一次	曲げ	74	151	564	OK
		 二次応力	せん断	30	16	324	OK
			座屈	15	15	279	OK
		一次応力	圧縮	7	7	325	OK
公平告旧			曲げ	27	28	326	OK
刺殺すたかの	· · · · · · · · · · · · · · · · · · ·		せん断	7	7	188	OK
又付未口			組合せ	35	36	326	OK
		一次 + 二次応力	引張·圧縮	5	5	564	OK
			曲げ	37	24	564	OK
			せん断	13	7	324	OK
			座屈	7	7	280	OK
			曲げ	201	111	326	OK
		一次応力	せん断	23	13	188	OK
			組合せ	205	114	326	OK
	空国の	一次+	曲げ	347	201	564	ОК
		二次応力	せん断	38	22	324	OK

(注) ケース1: 自重+鉛直方向地震力+軸方向水平地震力

ケース2:自重+鉛直方向地震力+軸直角方向水平地震力

表 2.2-9(4) 埋め込み金物,基礎ボルトの応力評価(設計事象 I+Ss,輸送貯蔵兼用キャ スク B)

10	1	11.			/ 9\
(E	EI/	VI	٠	N/	mm4)
<u>ب</u>	H^	<u>.</u>	•	11/	иши /

部は、「たもの」		の毎粨	計算值 (注1)		<u></u> 新 索 亡 も (注 2)	⇒⊽∕≖	
그는 이다	ルロノトリンイ里安良		ケース1	ケース2	計谷応刀 —	рŢŢĮЩ	
		曲げ	66	85	270	OK	
	一次応力	せん断	14	19	155	OK	
埋め込み金物		組合せ	70	91	270	OK	
	一次+ 二次応力	曲げ	131	85	450	OK	
		せん断	28	19	258	OK	
		已進	109	79	ケース1:165	OK	
基礎ボルト ^(注3)	一次応力	力门底	129	_	ケース 2 : 332	OIX	
		せん断	193	89	961	OK	
			193	89	261	OK	

(注1) ケース1:自重+鉛直方向地震力+軸方向水平地震力

ケース2:自重+鉛直方向地震力+軸直角方向水平地震力

(注2) 基礎ボルトの許容引張応力は、発生せん断応力を考慮し低減させた値

(注3)上段の値は鉛直方向地震力が上向き(+Z方向)のときの値を示し,下段の値 は鉛直方向地震力が下向き(-Z方向)のときの値を示す

表 2.2-9(5) コンクリート支持架台の応力評価(設計事象 I+Ss)

項目		記号	単位	ケース1	ケース2
曲げ	曲げモーメン	Md	(kN•m)	813	769
	Ъ				
	曲げ耐力	Mud	$(kN \cdot m)$	2808	1048
	構造物係数	γi	_	1.00	1.00
	γi•Md/M	ud≦1.0	_	0.29	0.73
	判定		_	ОК	ОК
せん断	せん断力	Vd	(kN)	508	529
	せん断耐力	Vyd	(kN)	890	777
	構造物係数	γi	_	1.00	1.00
	γi·Vd/V	yd≦1.0	_	0. 57	0. 68
	判定		-	OK	OK

(注1) ケース1:自重+鉛直方向地震力+軸方向水平地震力 ケース2:自重+鉛直方向地震力+軸直角方向水平地震力

- 2.3 コンクリートモジュールの耐震性
- (1) 乾式貯蔵キャスク用コンクリートモジュール
- 1) 評価方針

本設備で使用する乾式貯蔵キャスク用コンクリートモジュールが,基準地震動 Ss によ り乾式貯蔵キャスクの除熱,密封,遮へい,臨界防止等の安全機能に影響を与えるよう な,倒壊等をしないことを確認する。

2) 乾式貯蔵キャスク用コンクリートモジュールの構成

コンクリートモジュールの概略図を図 2.3-1 に示す。

コンクリートモジュールは長辺側板3枚,短辺側板2枚,天板3枚のコンクリート製 パネルで構成されている。それぞれのパネルは金物とボルトにより連結されている。

(単位:mm)

図 2.3-1 コンクリートモジュール概略図

3) 解析モデル

固有値解析,許容応力度設計及び基準地震動 Ss に対する検討には 3 次元 FEM モデル を採用し,解析コードとして NASTRAN を用いる。

FEM モデルとして、コンクリートモジュールの PC 板(側板及び天板)及び接合部の金物は板厚一様な平板要素でモデル化する。PC 板と金物の接合部はボルト位置で同一変位とし、基礎とベースプレートの接合部はアンカーボルト位置で拘束する。解析モデルを図 2.3-2 に示す。

図 2.3-2 コンクリートモジュールの解析モデル

4) 固有周期の算定

コンクリートモジュールの固有周期は図 2.3-2の FEM モデルにより求める。この結果 を表 2.3-1 に示す。

	固有周期(s)
水平(長辺)	0.036
水平(短辺)	0.046
鉛直	0.053

表 2.3-1 コンクリート	、モジュールの固有周期
----------------	-------------

5) 設計用地震力

「4)固有周期の算定」において求めた固有周期と添付資料-2「3 耐震設計方針」に基づき、コンクリートモジュールの耐震性の評価に用いる設計用地震力を定める。

コンクリートモジュールの水平方向の固有周期は0.05sec 以下であることから,コン クリートモジュールの水平地震力に対しては剛体と見なすことができる。従って設計用 水平地震力は1.2ZPA とする。設計用鉛直地震力については添付資料-2「3 耐震設計方 針」の応答スペクトルから設計用地震力を定める。

本耐震評価で用いる設計用地震力を表 2.3-2 に示す。

私 2.5 Z 取时/J·坦展/J					
	水平	鉛直			
設計用加速度(mm/s²)	7800	11800			

表 2.3-2 設計用地震力

6) 許容応力

許容応力を以下のように定める。材料の許容応力度は建築基準法・同施行令及び国土 交通省告示に定める値とし、表 2.3-3~5 に示す。

種類	長期			短期		
	圧縮	引張	せん断	圧縮	引張	せん断
普通コン クリート	$\frac{1}{3}Fc$	$\frac{1}{30}Fc$	$\frac{1}{30} Fc^{\text{J}_{3}} \mathcal{O}\left(0.49 + \frac{1}{100} Fc\right) \downarrow \downarrow \top$	長期に対する2倍		2 倍

表 2.3-3 コンクリートの許容応力度 (N/mm²)

Fc=36 N/mm²とする。

表 2.3-4 鉄筋の許容応力度 (N/mm²)

插瓶	長其	9	短期		
「生大貝	引張及び圧縮	せん断補強	引張及び圧縮	せん断補強	
SD295A 及び B	195	195	295	295	

表 2.3-5 鋼材の許容応力度 (N/mm²)

鋼材	長期					短期		
	圧縮	引張	曲げ	せん断	圧縮	引張	曲げ	せん断
SS400	156.6	156.6	156.6	90.4	235	235	235	135.6

板厚≦40mmとする。

7) 応力計算

① 応力評価点

応力評価点は SRSS 法により求められる各部材応力の中から最大応力となる部材を抽 出して評価を行う。評価箇所は図 2.3-3 に示す箇所とする。

- ① じ 例 极 按 日 ハ ル ト
- ①-d 天板接合ボルト
- ①-e コーナー接合ボルト
- ② ベースプレート
- ③ 側板アンカー部はしあき
- (4) 天板パネル
- ⑤ 側板パネル
- ⑥ 側板, 天板接合プレート
- ⑦ 側板, 天板コーナー接合プレート(内側)

② 荷重条件

コンクリートモジュールの耐震安全性の評価においては建築基準法施行令第82条より表2.3-6の地震時の荷重組合せに基づき評価を行う。ただし、コンクリートモジュールには積載荷重が無いため、考慮する荷重は固定荷重と地震力のみとする。また、コンクリートモジュールの厚さは200mmと比較的薄いため温度勾配による影響は小さいと考えられ、温度応力は考慮しないものとする。

力の種類	荷重及び外力につい て想定する状態	本設計
短期に生ずる力	地震時	G + P + K

ただし、G:固定荷重、P:積載荷重、K:地震力

- ③ 応力評価
 - A. ボルト

ボルトの基準強度は平成12年建設省告示第2464号,許容応力度は建築基準法施行 令第90条及び平成12年建設省告示第1451号を用いる。

a. アンカーボルト(①-a) M20 (SS400:F=235)

せん断力 Qd=13.0 kN

引張力 Nd=26.0 kN

有効断面積 Ae = 245 mm²

·短期許容引張応力度

引張力とせん断力を同時に受けるボルトの引張応力度

(鋼構造設計規準・同解説より)

 $f_{ts} = 1.4 f_{t0} - 1.6\tau \quad \text{int} \quad f_{ts} \le f_{t0}$

 f_{ts} = 1.4×235-1.6×(13.0×10³ / 245) = 244.1 N/mm² \rightarrow 235 N/mm²

短期引張応力度

σt = Nd / Ae = 26.0 ×1000 / 245 = 107 N/mm² 検定値

 $f_{ts} / \sigma t = 235 / 107 = 2.20 > 1.0 \cdot \cdot \cdot 0K$

b. 側板柱脚ボルト(①-b) M27 (強度区分 6.8:F=420) せん断力 Qd=68.4kN 有効断面積 Ae = 459 mm² せん断応力度 $\tau = Qd$ / Ae = 68.4 × 1000 / 459 = 150 N/mm² 短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm² 検定値

$$f_s / \tau$$
 = 242.4 / 150 = 1.62 > 1.0 • • • 0K

с

. 側板接合ボルト(①-c) M20 (強度区分 6.8:F=420)
せん断力 Qd=48.5kN
有効断面積 Ae = 245 mm²
せん断応力度
$$\tau$$
 = Qd / Ae = 48.5 × 1000 / 245 = 198 N/mm²
短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm²
検定値

$$f_s / \tau$$
 = 242.4 / 198 = 1.22 > 1.0 • • • 0K

d. 天板接合ボルト(①-d) M16 (強度区分 6.8:F=420) せん断力 Qd=21.2kN 有効断面積 Ae = 157 mm² せん断応力度 $\tau = Qd$ / Ae = 21.2 × 1000 / 157 = 136 N/mm² 短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm² 検定値 $f_s / \tau = 242.4 / 136 = 1.78 > 1.0 \cdot \cdot \cdot 0K$ e. コーナー接合ボルト(①-e) M20 (強度区分 6.8:F=420)

> せん断力 Qd=37.5 kN 有効断面積 Ae = 245 mm² せん断応力度 τ = Qd / Ae = 37.5 × 1000 / 245 = 154 N/mm² 短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm² 検定値

 $f_s \ / \ \tau$ = 242.4 / 154 = 1.57 > 1.0 · · · OK

B. ベースプレート(②) t=19 (SS400:F=235)

負担幅は165mmとする。断面係数z=b×t²/6=165×19²/6=9927.5 mm³
短期許容曲げ応力度 fb = 235 N/mm²
引張時 (A. a. アンカーボルトによる 計算モデルは図2.3-4 参照)
設計曲げモーメント(2辺固定として算定)
Md = 26.0×0.0825 / 2= 1.08kNm
短期曲げ応力度

 σ b = Md / z = 1.08×10⁶ / 9927.5 = 109 N/mm² 検定値

fb / σ b = 235 / 109 = 2.16 > 1.0 • • • 0K

図 2.3-4 ベースプレート (引張時)

圧縮時 (A. a. アンカーボルトによる 計算モデルは図 2.3-5 参照)
 ボルト位置に生じる圧縮力を面荷重に置き換えて算定する。
 設計曲げモーメント(1辺固定1辺単純支持の1方向板として)

Md = (38.5 / 0.165² × 0.165×0.165²) / 8 = 0.80 kNm 短期曲げ応力度

 σ b = Md / z = 0.80×10⁶ / 9927.5 = 80.6 N/mm² 検定値

fb / σ b = 235 / 80.6 = 2.92 > 1.0 • • • 0K

図 2.3-5 ベースプレート (圧縮時)

C. 側板アンカー部はしあき(③) (図 2.3-6 参照)

図 2.3-6 側板アンカー

短期許容せん断力応力度

(建築基準法施行令第91条及び平成12年建設省告示第1450号より)

fsa = $(0.49 + \text{Fc} / 100) \times 2 = 1.70 \text{ N/mm}^2$

想定破断面積

A = 242.5 $\times \sqrt{2} \times 200 = 68589 \text{mm}^2$

せん断力応力度

 τ = Qd / (A / $\sqrt{2}$) = 65.7 $\times 1000$ / (68589 / $\sqrt{2}$) = 1.36 $\rm N/mm^2$ $\rm kcia$

fsa / τ = 1.7 / 1.36 = 1.25 > 1.0 • • • 0K

D. 天板パネル(④) (図 2.3-7 参照)

天板 PC 板 t = 200, 鉄筋: SD295A (s σ t = 295 N/mm²) D10@200 (長辺方向 上筋, 短辺方向 上下筋) D10: 断面積 A = 71 mm² D13@200 (長辺方向 下筋) D13: 断面積 A = 127 mm² d = 150mm, j = 131mm 短期許容曲げモーメント (鉄筋コンクリート構造計算規準・同解説より) $M_a = a_t \cdot f_t \cdot j$ $\Rightarrow f_t = \frac{M_a}{a_t \cdot j} f_t \varepsilon \sigma t, M_a \varepsilon M_d$ に置き換え,鉄筋の引張応力度を算定す

る。

設計曲げモーメント

最大曲げモーメント 9986 Nmm/mm → 1m 辺りに換算すると Md = 9.99kNm

$$\sigma_t = \frac{M_d}{a_t \cdot j} = \frac{9.99 \times 10^6}{127 \times 5 \times 131} = 121 \text{ N/mm}^2$$

検定値

$$f_t$$
 / σ_t = 295 / 121 = 2.44 > 1.0 · · · OK

E. 側板パネル(⑤) (図 2.3-8 参照)

側板 PC 版 t = 200 鉄筋: SD295A (sσt = 295 N/mm²)

D10@200(縦筋・横筋,内外共)D10:断面積 A = 71 mm²

D13 (開口部及び外周部の補強筋) D13: 断面積 A = 127 mm²

d = 150 mm, j = 131 mm

短期許容曲げモーメント(鉄筋コンクリート構造計算規準・同解説より)

$$M_{a} = a_{t} \cdot f_{t} \cdot f$$

 $\Rightarrow f_{t} = \frac{M_{a}}{a_{t} \cdot f} \quad f_{t} \varepsilon \sigma t, \quad M_{a} \varepsilon M_{d}$ に置き換え、鉄筋の引張応力度を算定す

る。

設計曲げモーメント

最大曲げモーメント 20484 Nmm/mm → 500mm 辺りに換算すると Md = 10.3 kNm

$$\sigma_t = \frac{M_d}{a_t \cdot j} = \frac{10.3 \times 10^6}{(127 + 71 + 127) \times 131} = 242 \text{ N/mm}^2$$

検定値

 $f_t / \sigma_t = 295 / 242 = 1.22 > 1.0 \cdot \cdot \cdot 0 K$

F. 側板, 天板接合プレート(⑥) t = 6 (SS400) (図 2.3-9 参照)
 単位幅当たりの断面係数 z = b×t² / 6 = 1×6² /6= 6mm³/mm
 設計曲げモーメント

最大曲げモーメント 136 Nmm/mm

 $\sigma b = 136 / 6 = 22.7 \text{ N/mm}^2$

検定値

fb / σ b= 235 / 22.7 = 10.4 > 1.0 • • • 0K

図 2.3-9 側板, 天板接合プレート

図 2.3-10 側板, 天板コーナー接合プレート

④ 評価結果

評価結果を表 2.3-7 に示す。

	項目	計算值	許容値	評価結果
①-a)	アンカーボルト	107	235	ΟK
①-b)	側板柱脚ボルト	150	242.4	ΟK
①-c)	側板接合ボルト	198	242.4	ΟK
①-d)	天板接合ボルト	136	242.4	ΟK
<u>(</u>]-е)	コーナーボルト	154	242.4	ΟK
2	ベースプレート (引張時)	109	235	ΟK
2	ベースプレート (圧縮時)	80.6	235	ΟK
3	側板アンカー部はしあき	1.36	1.70	OK
4	天板PC板	121	295	ΟK
(5)	側板PC板	242	295	OK
6	側板, 天板接合プレート	22.7	235	OK
\bigcirc	側板, 天板コーナー接合プレート	69.5	235	OK

表 2.3-7 評価結果(N/mm²)

以上よりコンクリートモジュールはSs地震動に対しての耐震安全性を確保できる。
- (2) 輸送貯蔵兼用キャスク用コンクリートモジュール
- 1) 評価方針

本設備で使用する輸送貯蔵兼用キャスク用コンクリートモジュールが,基準地震動 Ss により輸送貯蔵兼用キャスクの除熱,密封,遮へい,臨界防止等の安全機能に影響を与 えるような,倒壊等をしないことを確認する。

 輸送貯蔵兼用キャスク用コンクリートモジュールの構成 コンクリートモジュールの概略図を図 2.3-11 に示す。 コンクリートモジュールは長辺側板 3 枚,短辺側板 2 枚,天板 3 枚のコンクリート製 パネルで構成されている。それぞれのパネルは金物とボルトにより連結されている。

(単位:mm)

図 2.3-11 コンクリートモジュール概略図

3) 解析モデル

固有値解析,許容応力度設計及び基準地震動 Ss に対する検討には 3 次元 FEM モデル を採用し,解析コードとして NASTRAN を用いる。

FEM モデルとして、コンクリートモジュールの PC 板(側板及び天板)及び接合部の金物は板厚一様な平板要素でモデル化する。PC 板と金物の接合部はボルト位置で同一変位とし、基礎とベースプレートの接合部はアンカーボルト位置で拘束する。解析モデルを図 2.3-12 に示す。

図 2.3-12 コンクリートモジュールの解析モデル

4) 固有周期の算定

コンクリートモジュールの固有周期は図 2.3-12 の FEM モデルにより求める。この結 果を表 2.3-8 に示す。

<u>X 4.00 / / </u>	
	固有周期(s)
水平 (長辺)	0.036
水平 (短辺)	0.045
鉛直	0.052

表 2.3-8 コンクリートモジュールの固有周期

5) 設計用地震力

「4)固有周期の算定」において求めた固有周期と添付資料-2「3 耐震設計方針」に基づき、コンクリートモジュールの耐震性の評価に用いる設計用地震力を定める。

コンクリートモジュールの水平方向の固有周期は 0.05sec 以下であることから,コン クリートモジュールの水平地震力に対しては剛体と見なすことができる。従って設計用 水平地震力は 1.2ZPA とする。設計用鉛直地震力については添付資料-2「3 耐震設計方 針」の応答スペクトルから設計用地震力を定める。

本耐震評価で用いる設計用地震力を表 2.3-9 に示す。

我 2.0	5 取时用地展入	, <u>j</u>
	水平	鉛直
設計用加速度(mm/s²)	7800	11800

表 2.3-9 設計用地震力

6) 許容応力

許容応力を以下のように定める。材料の許容応力度は建築基準法・同施行令及び国土 交通省告示に定める値とし、表 2.3-10~12 に示す。

插粄			長期		短期	
作里天只	圧縮	引張	せん断	圧縮	引張	せん断
普通コン クリート	$\frac{1}{3}Fc$	$\frac{1}{30}Fc$	$\frac{1}{30} Fc^{\text{J}_{3}} \mathcal{O}\left(0.49 + \frac{1}{100} Fc\right) \downarrow \downarrow \top$	長期	に対する	2 倍

表 2.3-10 コンクリートの許容応力度 (N/mm²)

Fc=36 N/mm²とする。

表 2.3-11 鉄筋の許容応力度 (N/mm²)

话桁	長其	归	短期		
「里大貝	引張及び圧縮	せん断補強	引張及び圧縮	せん断補強	
SD295A 及び B	195	195	295	295	

表 2.3-12 鋼材の許容応力度 (N/mm²)

公園十十	長期				矢	豆期		
亚叫小기	圧縮	引張	曲げ	せん断	圧縮	引張	曲げ	せん断
SS400	156.6	156.6	156.6	90.4	235	235	235	135.6

板厚≦40mmとする。

7) 応力計算

① 応力評価点

応力評価点は SRSS 法により求められる各部材応力の中から最大応力となる部材を抽 出して評価を行う。評価箇所は図 2.3-13 に示す箇所とする。

応力評価箇所名称

- ①-a アンカーボルト
- ①-b 側板柱脚ボルト
- ①-c 側板接合ボルト
- ①-d 天板接合ボルト
- ①-e コーナー接合ボルト
- ② ベースプレート
- ③ 側板アンカー部はしあき
- (4) 天板パネル
- ⑤ 側板パネル
- ⑥ 側板, 天板接合プレート
- ⑦ 側板, 天板コーナー接合プレート(内側)

② 荷重条件

コンクリートモジュールの耐震安全性の評価においては建築基準法施行令第82条よ り表2.3-13の地震時の荷重組合せに基づき評価を行う。ただし、コンクリートモジュ ールには積載荷重が無いため、考慮する荷重は固定荷重と地震力のみとする。また、コ ンクリートモジュールの厚さは200mmと比較的薄いため温度勾配による影響は小さいと 考えられ、温度応力は考慮しないものとする。

表 2.3-13 荷重組合せ

力の種類	荷重及び外力につい て想定する状態	本設計
短期に生ずる力	地震時	G + P + K

ただし、G:固定荷重、P:積載荷重、K:地震力

- ③ 応力評価
 - A. ボルト

ボルトの基準強度は平成12年建設省告示第2464号,許容応力度は建築基準法施行 令第90条及び平成12年建設省告示第1451号を用いる。

a. アンカーボルト(①-a) M20 (SS400:F=235)

せん断力 Qd=12.5kN

引張力 Nd=25.1kN

有効断面積 Ae = 245 mm²

·短期許容引張応力度

引張力とせん断力を同時に受けるボルトの引張応力度

(鋼構造設計規準・同解説より)

 $f_{ts} = 1.4 f_{t0} - 1.6\tau \quad \text{int} \quad f_{ts} \leq f_{t0}$

 $f_{ts} = 1.4 \times 235 - 1.6 \times (12.5 \times 10^3 / 245) = 247.3 \text{ N/mm}^2 \rightarrow 235 \text{ N/mm}^2$ 短期引張応力度

 $\sigma t = Nd / Ae = 25.1 \times 1000 / 245 = 103 N/mm²$ 検定値

 $f_{ts} / \sigma t = 235 / 103 = 2.28 > 1.0 \cdot \cdot \cdot 0K$

b. 側板柱脚ボルト(①-b) M27 (強度区分 6.8:F=420) せん断力 Qd=66.1kN 有効断面積 Ae = 459 mm² せん断応力度 $\tau = Qd$ / Ae = 66.1 × 1000 / 459 = 145 N/mm² 短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm² 検定値

$$f_s / \tau$$
 = 242.4 / 145 = 1.67 > 1.0 • • • 0K

c. 側板接合ボルト(①-c) M20 (強度区分 6.8:F=420)
せん断力 Qd=47.7kN
有効断面積 Ae = 245 mm²
せん断応力度
$$\tau$$
 = Qd / Ae = 47.7 × 1000 / 245 = 195 N/mm²
短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm²
検定値

$$f_s / \tau = 242.4 / 195 = 1.24 > 1.0 \cdot \cdot \cdot 0K$$

d. 天板接合ボルト(①-d) M16 (強度区分 6.8:F=420) せん断力 Qd=20.3kN 有効断面積 Ae = 157 mm² せん断応力度 $\tau = Qd$ / Ae = 20.3 × 1000 / 157 = 130 N/mm² 短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4$ N/mm² 検定値 $f_s / \tau = 242.4$ / 130 = 1.86 > 1.0 · · · 0K

e. コーナー接合ボルト(①-e) M20 (強度区分 6.8: F=420) せん断力 Qd=37.6 kN 有効断面積 Ae = 245 mm² せん断応力度 $\tau = Qd / Ae = 37.6 \times 1000 / 245 = 154 \text{ N/mm}^2$ 短期許容せん断応力度 $f_s = \frac{F}{\sqrt{3}} = \frac{420}{\sqrt{3}} = 242.4 \text{ N/mm}^2$ 検定値 $f_s / \tau = 242.4 / 154 = 1.57 > 1.0 \cdot \cdot \cdot \text{OK}$

B. ベースプレート(②) t=19 (SS400 : F=235)

負担幅は165mmとする。断面係数z=b×t²/6=165×19²/6=9927.5 mm³
短期許容曲げ応力度 fb = 235 N/mm²
引張時 (A. a. アンカーボルトによる 計算モデルは図2.3-14参照)
設計曲げモーメント(2辺固定として算定)
Md = 25.1×0.0825 / 2= 1.04kNm
短期曲げ応力度

 σ b = Md / z = 1.04×10⁶ / 9927.5 = 105 N/mm² 検定値

fb / σ b = 235 / 105 = 2.24 > 1.0 • • • 0K

Ⅱ-2-13-添 3-283

圧縮時 (A. a. アンカーボルトによる 計算モデルは図 2.3-15 参照)
 ボルト位置に生じる圧縮力を面荷重に置き換えて算定する。
 設計曲げモーメント(1辺固定1辺単純支持の1方向板として)

Md = (37.5 / 0.165² × 0.165×0.165²) / 8 = 0.78 kNm 短期曲げ応力度

 σ b = Md / z = 0.78×10⁶ / 9927.5 = 78.6 N/mm² 検定値

図 2.3-15 ベースプレート (圧縮時)

C. 側板アンカー部はしあき(③) (図 2.3-16 参照)

図 2.3-16 側板アンカー

短期許容せん断力応力度

(建築基準法施行令第91条及び平成12年建設省告示第1450号より)

fsa = $(0.49 + Fc / 100) \times 2 = 1.70 \text{ N/mm}^2$

想定破断面積

A = 242.5× $\sqrt{2}$ ×200 =68589mm² せん断力応力度 τ = Qd / (A / $\sqrt{2}$) = 63.4×1000 / (68589 / $\sqrt{2}$) = 1.31 N/mm²

検定値

fsa / τ = 1.70/ 1.31 = 1.30 > 1.0 · · · OK

D. 天板パネル(④) (図 2.3-17 参照)

天板 PC 板 t = 200,鉄筋:SD295A (s σ t = 295 N/mm²) D10@200 (長辺方向 上筋,短辺方向 上下筋) D10:断面積 A = 71 mm² D13@200 (長辺方向 下筋) D13:断面積 A = 127 mm² d = 150mm, j = 131mm 短期許容曲げモーメント (鉄筋コンクリート構造計算規準・同解説より) $M_a = a_t \cdot f_t \cdot j$ $\Rightarrow f_t = \frac{M_a}{a_t \cdot j} f_t \varepsilon \sigma t, M_a \varepsilon M_d$ に置き換え,鉄筋の引張応力度を算定す る。 設計曲げモーメント

最大曲げモーメント 9797 Nmm/mm → 1m 辺りに換算すると Md = 9.80kNm

$$\sigma_{t} = \frac{M_{d}}{a_{t} \cdot j} = \frac{9.80 \times 10^{6}}{127 \times 5 \times 131} = 118 \text{ N/mm}^{2}$$

検定値

$$f_t$$
 / σ_t = 295 / 118 = 2.50 > 1.0 · · · OK

E. 側板パネル(⑤) (図 2.3-18 参照)

側板 PC 版 t = 200 鉄筋: SD295A (sσt = 295 N/mm²)

- D10@200(縦筋・横筋,内外共)D10:断面積 A = 71 mm²
- D13 (開口部及び外周部の補強筋) D13: 断面積 A = 127 mm²

d = 150mm, j = 131mm

短期許容曲げモーメント(鉄筋コンクリート構造計算規準・同解説より)

$$M_{a} = a_{t} \cdot f_{t} \cdot j$$

⇒ $f_{t} = \frac{M_{a}}{a_{t} \cdot j}$ $f_{t} \varepsilon \sigma t$, $M_{a} \varepsilon M_{d}$ に置き換え, 鉄筋の引張応力度を算定す

る。

最大曲げモーメント 19430Nmm/mm → 500mm 辺りに換算すると Md=9.72kNm

$$\sigma_t = \frac{M_d}{a_t \cdot j} = \frac{9.72 \times 10^6}{(127 + 71 + 127) \times 131} = 229 \text{ N/mm}^2$$

検定値

$$f_t$$
 / σ_t = 295 / 229 = 1.29 $>$ 1.0 · · · OK

F. 側板, 天板接合プレート(⑥) t = 6 (SS400) (図 2.3-19 参照)
 単位幅当たりの断面係数 z = b×t² / 6 = 1×6² /6= 6mm³/mm
 設計曲げモーメント

最大曲げモーメント 133.4 Nmm/mm

 $\sigma b = 133.4 / 6 = 22.3 \text{ N/mm}^2$

検定値

fb / σ b= 235 / 22.3 = 10.5 > 1.0 • • • 0K

図 2.3-19 側板, 天板接合プレート

Ⅱ-2-13-添 3-289

④ 評価結果

評価結果を表 2.3-14 に示す。

	項目	計算値	許容値	評価結果
(1)-a	アンカーボルト	103	235	ОK
①-b	側板柱脚ボルト	145	242.4	ΟK
①-c	側板接合ボルト	195	242.4	ΟK
①-d	天板接合ボルト	130	242.4	ΟK
<u>(</u>]-е	コーナーボルト	154	242.4	ΟK
2	ベースプレート (引張時)	105	235	ΟK
2	ベースプレート (圧縮時)	78.6	235	ΟK
3	側板アンカー部はしあき	1.31	1.70	ΟK
4	天板PC板	118	295	ΟK
5	側板PC板	229	295	ΟK
6	側板, 天板接合プレート	22. 3	235	OK
$\overline{\mathcal{O}}$	側板, 天板コーナー接合プレート	69.5	235	OK

表 2.3-14 評価結果(単位 : N/mm²)

以上よりコンクリートモジュールはSs地震動に対しての耐震安全性を確保できる。

- 2.4 クレーンの基準地震動 Ss に対する波及的影響
- (1) 評価方針

本設備で使用するクレーンが基準地震動 Ss により本クレーンが乾式キャスクの除熱,密 封,遮へい,臨界防止等の安全機能に波及的影響を与えるような倒壊,転倒,逸走等が生じ ないことを確認する。なお、当該クレーンは一般産業用施設と同等の耐震性を有する設計と し、クレーン構造規格に基づき設計を行っている。

(2) 波及的影響評価方法の概要

評価対象とするクレーンの主要仕様を表 2.4-1 に、概要図を図 2.4-1 に示す。

項目	仕様
型式	門形クレーン
主巻定格	150ton
補巻定格	20ton
スパン	19m

表 2.4-1 クレーンの仕様

クレーンの波及的影響評価フローを図2.4-2に示す。

以下の手順により基準地震動 Ss によるクレーンの波及的影響が, 乾式キャスクの安全機能に及ばないことを確認する。

- ・評価には基準地震動 Ss に基づく地表面加速度応答スペクトルを用いて行う。
- ・汎用有限要素解析コード ABAQUS を使用した三次元有限要素モデルによりクレーンの 固有周期を求める。
- ・地表面加速度応答スペクトルと固有周期により設計用加速度を定め、クレーン各部に
 発生する応力を算定し、クレーンが倒壊しないことを確認する。
- ・汎用有限要素解析コード ABAQUS を用いて,地表面時刻歴データによる非線形応答解 析を行い,クレーン本体の浮き上がり量から,クレーンが転倒しないことを確認する。
- ・クレーン本体の浮き上がり量からクレーンがレールピットから飛び出し, 逸走しない ことを確認する。

図 2.4-1 クレーン全体図

図 2.4-2 クレーンの波及的影響評価フロー

- (3) 波及的影響評価
- 1) クレーンの倒壊評価
- 固有周期の算定
- A. 固有周期の計算方法

汎用有限要素解析コード ABAQUS を使用した三次元有限要素モデルにより,各方向に関するクレーンの固有周期の評価を行う。図 2.4-3 に解析モデル図を示す。

- a. ガーダ, 剛脚及びサドル等の構造物は, 断面積, 断面二次モーメントなどの断面特性 を考慮したビーム要素でモデル化する。
- b. トロリは質量特性のみを考慮した剛体要素でモデル化する。
- c. ワイヤーロープは剛な鉛直線形ばねでモデル化する。
- d. 走行方向の水平力がクレーンに加わった場合、クレーンはレール上を滑り、クレーン 自体にはレールと走行車輪間の最大静止摩擦力以上の水平力は加わらない。このため 走行方向の固有周期の算定は行わない。
- B. 固有周期

固有周期の算定結果を表 2.4-2 に示す。

トロリ位置	本体ガーダ中央			本体	ガーダ端音	₿ ^{注記}
加振方向	走行方向 (EW方向)	横行方向 (NS方向)	鉛直方向 (UD方向)	走行方向 (EW方向)	横行方向 (NS方向)	鉛直方向 (UD方向)
固有周期 (sec)	_	0.334	0.137	_	0.331	0.096

表 2.4-2 クレーンの固有周期

注記:トロリが剛脚にもっとも近づいた位置とする。

図 2.4-3 クレーン 固有周期 解析モデル図 鳥瞰図(トロリ中央の場合)

② 本設備の設計加速度

添付資料-2「評価の基本方針」の加速度応答スペクトル及び表 2.4-2 に示した固有周期 から算定される設計用加速度を表 2.4-3 に示す。

加振方向	走行方向	横行方向	鉛直方向
	(EW方向)	(NS方向)	(UD方向)
設計用加速度 (G)	$0.15^{\pm 1}$	$2.43 \\ 0.15^{{}^{{}_{22}2}}$	${1.60^{{\pm3}}\over{1.38^{{\pm4}}}}$

表 2.4-3 クレーンの設計用加速度

- 注1: 走行方向の設計用加速度は、走行駆動輪とレールの最大静止摩擦係数により定ま る加速度とする。
- 注2:トロリに作用する横行方向の設計用加速度は、横行駆動輪と横行レールの最大静 止摩擦係数により定まる加速度とする。
- 注3:本体ガーダ中央にトロリがある場合
- 注4:本体ガーダ端部にトロリがある場合

③クレーン各部の応力評価

A. 評価対象部位の形状

評価対象箇所を図 2.4-4 に示す。また評価対象部位の形状を図 2.4-5~図 2.4-8 に示す。

図 2.4-4 応力評価部位対象箇所

B. 発生応力と許容応力

基準地震動 Ss によりクレーン各部に発生する応力と許容応力の比較を表 2.4-4 に示す。

	材料	応力の種類	算出応力 (N/mm ²)	許容応力 (N/mm ²)	評価結果
		曲げ	146	343	0. K.
本体ガーダ	SM490A	せん断	51	198	0. K.
		組合せ	148	343	0. K.
剛脚(上部)	55400	曲げ	115	280	0. K.
		圧縮	76	246	0. K.
	55400	曲げ	174	280	0. K.
((11.1.) ካላቢሮጣ		圧縮	76	246	0. K.

表 2.4-4 クレーン各部応力の評価結果

④ 評価結果

本体ガーダ、剛脚などクレーン本体に発生する応力は許容値内に留まる。このことから基 準地震動 Ss がクレーンに生じた場合、クレーン本体は倒壊しない。なお、参考としてクレー ンレールについても Ss 地震による応力評価を行ったところ、レールが湾曲するおそれがある ことが判明した。このことから次項ではクレーンが Ss 地震時にクレーンが転倒、逸走をしな いことを確認し、当該クレーンが乾式キャスクの安全性に波及的影響を及ぼさないことを確 認する。

2) クレーンの転倒評価

図 2.4-9 のモデルを用いて非線形時刻歴応答解析を行い,クレーンが転倒しないことを 確認する。

図 2.4-9 転倒評価モデル

① 地表面時刻歴データ

非線形時刻歴応答解析に用いる地表面時刻歴波形は、Ss-1~Ss-3のうち、クレーンの鉛 直方向固有周期における地表面加速度応答スペクトル値が最も大きい地震波の地表面時 刻歴データである、Ss-1の表面時刻歴波形を用いる。Ss-1の表面時刻歴波形を図 2.4-10, 図 2.4-11 に示す。

図 2.4-10 地表面時刻歷波形水平方向 Ss-1

図 2.4-11 地表面時刻歷波形鉛直方向 Ss-1

非線形時刻歴応答解析によるクレーンの浮き上がり量の時刻歴データを図2.4-12に示す。 また本解析の評価箇所各部の最大浮き上がり量を表2.4-5に示す。

図 2.4-12 車輪浮き上がり量

表 2.4-5 非線形時刻歴応答解析によるクレーン最大浮き上がり量の結果

(加振万回:鉛直	万回+横行万回,)
----------	----------	---

評価応答	評価部位	方向	番号	解析結果
	走行車輪部 Z		F1	0.5
床面-走行車輪の 浮き上がり(mm)		Z方向	F2	0.5
			F3	10.7
			F4	11.0

注記:評価点の位置を図2.4-13に示す。

(a) 正面図

図 2.4-13 非線形時刻歴応答解析における評価点記号

③ 評価結果

表 2.4-5 よりクレーンの車輪は最大で 11mm 浮き上がる。クレーンの重心の位置関係から 片側の車輪が 14,706mm 浮きあがらなければクレーンは転倒しないことから,当該クレーン は Ss 地震を受けても転倒しない。

3) クレーンの逸走評価

クレーンが逸走する条件として、クレーンの車輪が全てレールピットから飛び出すことが 挙げられる。このことから当該クレーンが Ss 地震を受けたとしても、車輪がレールピット 内に収っていることを確認する。

① レールピット高さと浮き上がり時の車輪位置の比較

2) で検討した最大の浮き上がりが生じた場合の車輪とレールピットの位置関係は図 2.4-14 のようになる。車輪の下端の高さはレールピットの底部から 121mm であり,レールピ ットの高さ 135mm を超えることはない。

(単位:mm)

図 2.4-14 車輪とレールピットの位置関係(最大浮き上がり時)

② 評価結果

レールピットの高さとクレーンが浮き上がった場合の車輪の高さを比較した結果,最大の 浮き上がりが予想される車輪においてもレールピットを超えないことが確認された。このこ とから当該クレーンはレールピットから飛び出し,逸走することはない。 4) 評価結果

基準地震動 Ss に基づく評価では以下が確認され、クレーンには倒壊、転倒、逸走が生じない結果となった。

①クレーン本体に発生する応力は、許容応力を下回る。

②地表面時刻歴データによる非線形応答解析評価により浮き上がりの評価では最大 11mm

の浮き上がりであるが、転倒が生じる浮き上がり高さまで十分な余裕がある。 ③クレーンの浮き上がりにより車輪の下端がレールピットより高くなることはない。

従って、地震時にクレーンが乾式キャスクの安全機能に影響を及ぼすことはない。

- 2.5 コンクリート基礎の耐震性
- (1) 評価方針

基準地震動 Ss 荷重時のコンクリート基礎に対する要求性能は,キャスク支持架台に作用 する力を支持するとともに,これを固定する固定ボルトの引き抜きに抵抗すること,及び, 基礎の傾斜により,クレーンの転倒,倒壊などが生じないことである。ここでは,コンク リート基礎の耐震性評価を行い,基礎が要求性能を有していることを確認する。

評価の方法は,基準地震動 Ss 荷重に対する梁モデルによる構造計算を行い,コンクリート基礎の終局限界状態の照査,地盤改良体強度の照査,地盤の支持力の照査を行うこととする。

なお、本設備の周辺に評価対象となる斜面は存在しない。

- (2) 評価方法の概要
- 1) 構造図面

図 2.5-1~図 2.5-4 にキャスク配置図,基礎構造図及び地盤改良断面図を示す。

図 2.5-1 キャスク配置図(単位:mm)

95900

57600

38100

2-2 断面 (EW 方向)

図 2.5-4 地盤改良断面図(単位:mm)

2) 検討フロー

コンクリート基礎の耐震性検討フローを図2.5-5に示す。

図 2.5-5 キャスク仮保管設備コンクリート基礎の耐震性検討フロー

3) 準拠規準

コンクリート基礎の検討は、以下の法規及び規準類に準拠して行う。

- ① 原子力発電所耐震設計技術規程 JEAC4601-2008 (社) 日本電気協会
- ② 乾式キャスクを用いる使用済み燃料中間貯蔵建屋の基礎構造の設計に関する技術規程 JEAC4616-2009 (社)日本電気協会
- ③ コンクリート標準示方書 設計編(2007) (社) 土木学会
- ④ コンクリート標準示方書 構造性能照査編(2002) (社)土木学会
- ⑤ 原子力発電所屋外重要土木構造物の耐震設計に関する安全性照査マニュアル(1992) (社) 土木学会
- ⑥ 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル(2005)(社)土木学会
- ⑦ 道路橋示方書·同解説 I 共通編 IV下部構造編 (社)日本道路協会(平成14年)
- ⑧ 道路橋示方書・同解説 I 共通編 V 耐震設計編 (社) 日本道路協会(平成 14 年)
- 4) 評価方法

耐震性の評価方法を表 2.5-1 に示す。

評価対象	評価方法	準拠規準
鉄筋コンクリート	検討用断面力が部材の終局耐力を下回ることを確認する。	3
改良地盤	改良地盤に作用する地盤反力度が,改良地盤の設計圧縮強 度,せん断抵抗に対する安全率に基づき設定した改良地盤 の許容限界を下回ることを確認する。	2
支持地盤	改良体下面に作用する鉛直荷重が、極限支持力に対する安 全率に基づき設定した支持地盤の許容限界を下回ることを 確認する。	②及び⑦

表 2.5-1 耐震性の評価方法
5) 使用材料及び許容応力度

使用材料の物性値及び設計強度を表 2.5-2 及び表 2.5-3 に示す。

表 2.5-2 コンクリートの材料定数,設計強度及び鉄筋の設計強度

コンクリートの材料定数

	記号	単位	
ヤング係数	E	(N∕mm²)	2.50×10^{4}
単位体積重量	γ	(kN∕m ³)	24.0

コンクリートの設計強度

	記号	単位	
設計基準強度	fck	(N∕mm²)	24.00
設計圧縮強度	f'cd	(N∕mm²)	18.46
設計せん断強度	τcd	(N∕mm²)	0.529

鉄筋の設計強度

	記号	単位	
鋼材の種類			SD345
降伏強度	fyd	(N∕mm²)	345.0
鉄筋径			D13~D32

表 2.5-3 改良地盤,支持地盤の物性値及び設計強度

改良地盤の物性値,設計強度

	記号	単位	
変形係数	E	(kN∕m²)	32900
圧縮強度	_{ss} f _{sc}	(N∕mm²)	548.0
せん断強度	ss T sc	(N∕mm²)	109.6

支持地盤の極限支持力度

	記号	単位	
極限支持力度	qu	(kN∕m²)	511.3

(3)本設備の設計荷重とコンクリート基礎のモデル化

- 設計荷重
 設計で考慮する荷重を以下に示す。
- ・鉛直荷重 (VL)

コンクリート基礎自重による鉛直方向の荷重で,基礎及びペデスタルの鉛直荷重を対象とする。表 2.5-4 に鉛直荷重を示す。

		奥行き方向幅	部材高	鉛直荷重
		(m)	(m)	(kN∕m)
レール支持梁(EW方向)	レール部スラブ	3.50	1.80	151
	レール部スラブ	8.30	1.80	359
NS古向フラブ	キャスク部スラブ	8.30	1.00	199
	キャスク部スラブ	8.30	0.80	159
	ペデスタル	1.50 × 0.7	2×1.185	70
	キャスク部スラブ	5.17	1.00	132
EW方向スラブ	キャスク部スラブ	5.17	0.80	111
	ペデスタル	1.50 × 0.7	2×1.185	70

表 2.5-4 鉛直荷重

・クレーン荷重(CL)

クレーンによる荷重を表 2.5-5 に示す。

表 2.5-5 クレー	ン花	計重
-------------	----	----

(1輪当り)

		r					
				走行車	輪荷重		
		走行給電側		反走行給電側			
状態	フック寄り	鉛直方向	横行方向	走行方向	鉛直方向	横行方向	走行方向
		(UD方向)	(NS方向)	(EW方向)	(UD方向)	(NS方向)	(EW方向)
		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
定格荷重(150t)	走行給電側	2470	490	185	305	490	84

注)基礎天端の荷重を示す。

注)ペデスタルの鉛直荷重は2脚当りを示す。

・キャスク荷重(CAL)

キャスクによる荷重を表 2.5-6 に示す。

乾式貯蔵キ	ャスク		1基当たり
方向	項目	単位	Ss地震時
	鉛直力	(kN)	1910
NS方向	水平力	(kN)	1010
	モーメント	(kN·m)	1490
	鉛直力	(kN)	1910
EW方向	水平力	(kN)	1010
	モーメント	(kN·m)	1620

表 2.5-6 キャスク荷重

注)基礎天端の荷重を示す。

輸送貯蔵兼用キャスク

1脚当たり

方向	項目	単位	Ss地震時
	鉛直力	(kN)	477
NS方向	水平力	(kN)	506
	モーメント	(kN·m)	157
EW方向	鉛直力	(kN)	477
	水平力	(kN)	485
	モーメント	(kN·m)	226

注)ペデスタル天端の荷重を示す。

・モジュール荷重(MJL)

モジュールによる荷重を表 2.5-7 に示す。

表 2.5-7 モジュール荷重

貯蔵キャスク				1基当たり	
	記号	単位	NS方向	EW方向	
	V	(kN)	1269	1269	
	Н	(kN)	-458	458	
	注)スラブ天端の荷 重を示す。				

輸送貯蔵兼用	用キャスク		1基当たり
記号	単位	NS方向	EW方向
V	(kN)	1246	1246
Н	(kN)	-450	450
注)スラブ天端の荷重を示す。			

・地震荷重(K)

地震震度は水平方向・鉛直方向とも応答加速度の最大値を用いて算出する。

応答加速度の最大値は以下の値となる。

水平方向	643.73(gal)
鉛直方向	395.59(gal)

コンクリート基礎の地震震度は以下の値となる。

 $K_{H} = 643.73 / 981 = 0.656$

$$K_v = 395.59 \neq 981 = 0.403$$

鉛直震度方向は下向きが支配的であり, 鉛直震度方向下向きについて検討する。

・風荷重(WL)

コンクリート基礎に対しては,風荷重は考慮しない(コンクリート基礎が扁平な形状であり 大部分が地中構造物のため)。

・積雪荷重 (SL)

Ss 地震時には積雪荷重を載荷しない。

2) コンクリート基礎のモデル化

コンクリート基礎は梁バネモデルにより解析する。検討モデルは荷重と基礎形状の特性により,表 2.5-8 に示す3タイプについてモデル化する。

表	2.	5 - 8	検討タイ	プ
1	<i>_</i> .	0 0	1/241/ 1	/

検討タイプ	考慮する設備荷重	形状特性
レール支持梁(EW方向)	クレーン	幅3.5m, 厚1.8mの一定形状
NS方向基礎	キャスク、クレーン、モジュール	厚1.8m, 1.0m, 0.8m
EW方向基礎	キャスク、モジュール	厚1.0m, 0.8m

3 タイプの検討位置を図 2.5-6 に,解析モデルを表 2.5-9 に示す。

図 2.5-6 検討モデル(単位:mm)

表 2.5-9 検討タイプの形状とモデル図

3) 荷重の組合せ

荷重組合せを表 2.5-10 に示す。

衣 4.0-10 革碇の何 电祖行で	表 2.5-10	基礎の荷重組合せ
----------------------	----------	----------

想定する状態	検討タイプ	組合せ荷重
	レール支持梁(EW方向)	VL+CL+K(H)+K(V _{下向き})
Ss地震時	NS方向基礎	VL+CL+CAL+MJL+K(H)+K(V _{下向き})
	EW方向基礎	VL+CAL+MJL+K(H)+K(V _{下向き})

4) クレーン及びキャスク・モジュールの載荷ケース

載荷ケース別のクレーン及びキャスク・モジュールの載荷位置を表2.5-11~2.5-14に示す。

表 2.5-11 クレーンの載荷位置 (レール支持梁(EW 方向))

表 2.5-12 クレーンの載荷位置 (NS 方向基礎)

キャスク・モジュール 1	乾式貯蔵キャスク 輸送貯蔵兼用キャスク 0
キャスク・モジュー ル2	
キャスク・モジュール3	
キャスク・モジュー ル4	
キャスク・モジュール5	

表 2.5-13 キャスク及びモジュールの載荷位置 (NS 方向基礎)

表 2.5-14 キャスク及びモジュールの載荷位置 (EW 方向基礎)

5) 載荷ケースの組合せ

クレーン及びキャスク・モジュールの載荷ケースの組合せを表 2.5-15~表 2.5-17 に示す。

組合せケース	クレーン	キャスク・モジュール
ケース 1	クレーン 1	-
ケース 2	クレーン 2	-
ケース 3	クレーン 3	-
ケース 4	クレーン 4	-
ケース 5	クレーン 5	_

表 2.5-15 載荷ケースの組合せ (レール支持梁 (EW 方向))

表 2.5-16 載荷ケースの組合せ (NS 方向基礎)

組合せケース	クレーン		キャスク・モジュール
ケース 1		キャスク・モジュール1	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク4基
ケース 2		キャスク・モジュール2	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク2基
ケース 3	クレーン 1	キャスク・モジュール3	乾式貯蔵キャスク4基
ケース 4		キャスク・モジュール 4	乾式貯蔵キャスク2基
ケース 5		キャスク・モジュール 5	乾式貯蔵キャスクなし
ケース 6		キャスク・モジュール1	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク4基
ケース 7		キャスク・モジュール2	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク2基
ケース 8	クレーン 2	キャスク・モジュール3	乾式貯蔵キャスク4基
ケース 9		キャスク・モジュール 4	乾式貯蔵キャスク2基
ケース 10		キャスク・モジュール 5	乾式貯蔵キャスクなし
ケース 11		キャスク・モジュール1	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク4基
ケース 12		キャスク・モジュール 2	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク2基
ケース 13	クレーン 3	キャスク・モジュール3	乾式貯蔵キャスク4基
ケース 14		キャスク・モジュール 4	乾式貯蔵キャスク2基
ケース 15		キャスク・モジュール 5	乾式貯蔵キャスクなし
ケース 16		キャスク・モジュール1	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク4基
ケース 17		キャスク・モジュール 2	乾式貯蔵キャスク4基+輸送貯蔵兼用キャスク2基
ケース 18	クレーン 4	キャスク・モジュール3	乾式貯蔵キャスク4基
ケース 19		キャスク・モジュール 4	乾式貯蔵キャスク2基
ケース 20		キャスク・モジュール 5	乾式貯蔵キャスクなし

組合せケース	クレーン		キャスク・モジュール
ケース1	-	キャスク・モジュール 1	乾式貯蔵キャスク6基+輸送貯蔵兼用キャスク2基
ケース 2	_	キャスク・モジュール 2	乾式貯蔵キャスク6基
ケース 3	-	キャスク・モジュール 3	乾式貯蔵キャスク5基
ケース 4	-	キャスク・モジュール 4	乾式貯蔵キャスク4基
ケース 5	-	キャスク・モジュール 5	乾式貯蔵キャスク3基
ケース 6	-	キャスク・モジュール 6	乾式貯蔵キャスク2基
ケース 7	-	キャスク・モジュール 7	乾式貯蔵キャスク1基

表 2.5-17 載荷ケースの組合せ(EW 方向基礎)

6) 設計断面力

検討タイプ別に,全ての組合せケースの最大値(負の値は最小値)を抽出し,設計断面力 とする。

7) 荷重図

代表例として,検討タイプ別に下側鉄筋の決定ケースとなった組合せケースの荷重図を図 2.5-7~図 2.5-9 に示す。

図 2.5-7 荷重図 (レール支持梁(EW 方向) ケース 2)

図 2.5-8 荷重図 (NS 方向基礎 ケース 8)

li li li	·		

図 2.5-9 荷重図 (EW 方向基礎 ケース 1)

(4) 耐震性の評価

耐震性の評価は次式に示すように検討用断面力が部材の終局耐力を下回ることを確認する。

曲げ耐力の照査

$$\gamma i \cdot \frac{Md}{Mud} \leq 1.0$$

ここに,
 $\gamma i : 構造物係数 \gamma i=1.0$
Md: 設計曲げモーメント (kN・m)
Mud: 設計曲げ耐力 (kN・m)

せん断耐力の照査

$$\gamma i \cdot \frac{Vd}{Vyd} \leq 1.0$$

ここに,
 $\gamma i : 構造物係数 \gamma i=1.0$
Vd: 設計せん断力 (kN)
Vyd: 設計せん断耐力 (kN)

断面検討結果を表 2.5-18~表 2.5-20 に示す。

断面検討の結果、検討用断面力が部材の終局耐力以下であることを確認した。

項目			記号	単位	レール支持梁
立111	部材幅		b	(mm)	3500
部材	部材高		h	(mm)	1800
		位置	d	(mm)	525
	162日	鉄筋			D25
		本数		(本)	24.00
		鉄筋量	As	$(\rm cm^2)$	121.61
		位置	d	(mm)	866
	2段目	鉄筋			D25
		本数		(本)	6.00
建位		鉄筋量	As	$(\rm cm^2)$	30.40
亚大 月刀	아파ㅁ	位置	d	(mm)	1658
		鉄筋			D32
	JFX E	本数		(本)	24.00
		鉄筋量	As	$(\rm cm^2)$	190.61
		鉄筋			D22
	++ 4、除乐	ピッチ		(mm)	—
		鉄筋本数		(本)	4.000
		配置間隔	Ss	(mm)	450

	引張鉄筋	項目	記号	単位	レール支持梁
		決定ケース			ケース5
	⊢ /8川	曲げモーメント	Md	(kN∙m)	-4671
	上侧	軸力	Nd	(kN)	-282
-0.		せん断力	Vd	(kN)	33
設		決定ケース			ケース2
可し	下側	曲げモーメント	Md	(kN∙m)	9200
画		軸力	Nd	(kN)	92
山力		せん断力	Vd	(kN)	546
//		決定ケース			ケース3
	せん断力最大	曲げモーメント	Md	(kN⋅m)	8733
		軸力	Nd	(kN)	163
		せん断力	Vd	(kN)	2701

	引張鉄筋位置	項目	記号	単位	レール支持梁
		曲げ耐力	Mud	(kN∙m)	-5306
	⊢ /8川	構造物係数	γi		1.00
	上侧	γi∙Md∕Mud	≦ 1.0		0.88
		判定			OK
	下側	曲げ耐力	Mud	(kN∙m)	11224
级已阳田		構造物係数	γi		1.00
小公内小区分下		γi∙Md∕Mud	≦ 1.0		0.82
		判定			OK
		せん断耐力	Vyd	(kN)	3003
		構造物係数	γi		1.00
	して変	γi∙Vd∕Vyo	d ≦ 1.0		0.90
		判定			OK

図 2.5-10 NS 方向基礎検討位置図

表 2.5-19 断面検討結果 (NS 方向基礎)

	項目		記号	単位	レール部 スラブ	スラブA	スラブB
	部材幅		b	(mm)	8300	8300	8300
። በካፈላ	部材高		h	(mm)	1650	850	650
		位置	d	(mm)	350	350	100
	1 다. ㅁ	鉄筋			D25	D25	D25
	1段日	本数		(本)	55.00	110.00	55.00
		鉄筋量	As	(cm^2)	278.69	557.37	278.69
		位置	d	(mm)	1540	740	540
建佐	262-日	鉄筋			D32	D25	D32
业人用力	242 0	本数		(本)	55.00	55.00	55.00
		鉄筋量	As	(cm^2)	436.81	278.69	436.81
		鉄筋			D16	D16	D16
	++ 4.186	ピッチ		(mm)	600	600	600
	C N M	鉄筋本数		(本)	13.833	13.833	13.833
		配置間隔	Ss	(mm)	900	600	600
	引張鉄筋	項目	記号	単位	レール部スラブ	スラブA	スラブB
		決定ケース			ケース14	ケース3	ケース11
	上側	曲げモーメント	Md	(kN∙m)	-871	-5042	-1929
		軸力	Nd	(kN)	-1792	-1606	19
≞л		せん断力	Vd	(kN)	386	289	266
設計		決定ケース			ケース14	ケース8	ケース17
新	下側	曲げモーメント	Md	(kN∙m)	10214	5322	4166
面	下頂	軸力	Nd	(kN)	-588	-2062	-823
」 力		せん断力	Vd	(kN)	2498	1440	1495
	また馬は細子	決定ケース			ケース8	ケース7	ケース16
		曲げモーメント	Md	(kN∙m)	9692	3647	3697
		軸力	Nd	(kN)	-937	498	1121
		せん断力	Vd	(kN)	2961	2274	2450
	-						
	引張鉄筋	項目	記号	単位	レール部スラブ	スラブA	スラブB
		曲げ耐力	Mud	(kN∙m)	-4455	-6829	-4524
	上側	構造物係数	γi		1.00	1.00	1.00
		γi∙Md∕Mud	≦ 1.0		0. 20	0.74	0. 43
		判定			OK	OK	OK
		曲げ耐力	Mud	(kN∙m)	21197	7384	6320
終局限界	下側	構造物係数	γi		1.00	1.00	1.00
		γi•Md∕Mud	≦ 1.0		0. 48	0.72	0.66
		判定		<i>(</i> , , ,)	OK	OK	OK
		せん断耐力	Vyd	(kN)	4407	3022	2853
	せん断	構造物係数	γi		1.00	1.00	1.00
1		I Y i V d / Vv	$d \leq 10$		0 67	0 75	<u> </u>

Ⅱ-2-13-添 3-328

OK

ΟK

ΟK

判定

輸送貯蔵兼用キャスク	乾式貯蔵キャスク
	lanaal, lanaal, lanaal, lanaal, lanaal, lanaal, lanaal, lanaal, l
スラブC	スラブD

図 2.5-11 EW 方向基礎検討位置図

項目			記号	単位	スラブC	スラブD
立てたナ	部材幅		b	(mm)	5170	5170
티아이지	部材高		h	(mm)	800	1000
		位置	d	(mm)	113	113
	1626日	鉄筋			D13	D13
	I FX H	本数		(本)	17.000	14.000
		鉄筋量	As	(cm ²)	21.54	17.74
		位置	d	(mm)	275	525
	2段目	鉄筋			D25	D25
		本数		(本)	28.000	32.000
建故		鉄筋量	As	(cm ²)	141.88	162.14
亚大 月刀	ᇬᇝᄆ	位置	d	(mm)	661	866
		鉄筋			D25	D22
	JFZ H	本数		(本)	34.000	34.000
		鉄筋量	As	(cm ²)	172. 28	131.61
		鉄筋			D16	D16
	まん新	ピッチ		(mm)	600	600
		鉄筋本数		(本)	8.617	8.617
		配置間隔	Ss	(mm)	600	600

表 2.5-20 断面検討結果(EW 方向基礎)

					* -	*
	引張鉄筋	項目	記号	単位	スラフC	スラフD
		決定ケース			ケース1	ケース4
	⊢ /Bil	曲げモーメント	Md	(kN⋅m)	-983	-1133
	上四	軸力	Nd	(kN)	-2510	-3051
=n.		せん断力	Vd	(kN)	35	34
設計		決定ケース			ケース1	ケース7
	下側	曲げモーメント	Md	(kN⋅m)	1966	2695
一面		軸力	Nd	(kN)	-1307	-317
山力		せん断力	Vd	(kN)	1291	203
		決定ケース			ケース1	ケース7
	ᄮᄾᄣᆂᆂ	曲げモーメント	Md	(kN⋅m)	1966	2450
	でん町力取入	軸力	Nd	(kN)	-1307	122
		せん断力	Vd	(kN)	1291	928

	引張鉄筋	項目	記号	単位	スラブC	スラブD
		曲げ耐力	Mud	(kN⋅m)	-1596	-1352
	⊢ /81	構造物係数	γi		1.00	1.00
	上顶	γi∙Md∕Mud	≦ 1.0		0.62	0.84
		判定			OK	OK
	下側	曲げ耐力	Mud	(kN∙m)	3474	5415
级已阳田		構造物係数	γi		1.00	1.00
於同恨齐		γi∙Md∕Mud	≦ 1.0		0.57	0.50
		判定			OK	OK
		せん断耐力	Vyd	(kN)	1554	1939
		構造物係数	γi		1.00	1.00
	せん断	γi∙Vd∕Vyd	d ≦ 1.0		0.83	0.48
		判定			OK	OK

- (5) 改良地盤の耐震性に対する検討
- 1) 検討方針

検討は「JEAC 4616-2009」に準拠し、基準地震動 Ss により発生する荷重に対して許容限界 を満足することを確認する。

改良地盤の許容限界は,改良地盤の設計圧縮強度,せん断抵抗に対する安全率に基づき設 定する。

支持地盤の許容限界は、支持地盤の極限支持力に対する安全率に基づき設定する。

2)検討モデル

改良地盤の範囲は、コンクリート基礎下面から 0.P.+35.80mまでである。図 2.5-12 に地盤 改良平面図、図 2.5-13 に 1-1 断面を示す。

図 2.5-13 1-1 断面(単位:mm)

3) 改良地盤に生じる地盤反力度に対する検討

改良地盤に生じる地盤反力度に対する検討は,改良地盤に発生する最大地盤反力度(梁バネモデルにより算出するバネ反力度)に対して圧縮強度が 1.5 以上の安全率を有していることを確認する。

_{ss} f _{sc} qmax	≧ 1.	5	
ここに, t _{ss} mp	f _{sc} : hax:	改良地盤の圧縮弱 最大地盤反力度) (kN/m ²) (kN/m ²)

安全率の検討結果を表 2.5-21 に示す。検討結果より改良地盤の圧縮強度はコンクリート基礎直下の最大地盤反力度の 1.5 以上の安全率を有していることを確認した。

	最大地盤反力度	改良地盤の圧縮強度	安全率	
	qmax	ssfsc	_{SS} f _{SC} ∕qmax	判定
	(kN∕m²)	(kN∕m²)		
レール支持梁	312	548	1.76 > 1.5	OK
NS方向スラブ	230	548	2.38 > 1.5	ОК
EW方向スラブ	115	548	4.77 > 1.5	OK

表 2.5-21 改良地盤の地盤反力度に対する検討結果 (基礎下面)

4) 改良地盤に生じるせん断力に対する検討

改良地盤に生じるせん断力に対する検討は,改良地盤に発生する設計せん断力に対して地 盤のせん断抵抗力が1.5以上の安全率を有していることを確認する。

 Hu
 ≥ 1.5

 Hd
 ≥ 1.5

 Hu = ss f ss · B·L
 ss f ss = 1/5 · ss f sc

 cccc,
 L

 Hu : 改良地盤のせん断抵抗力 (kN)

 Hd : 設計せん断力 (コンクリート基礎底面に作用する水平力)

 (kN)

 ss f ss : 改良地盤のせん断強度 (kN/m²)

 ss f sc : 改良地盤の圧縮強度 (kN/m²)

 ss f sc : 改良地盤の圧縮強度 (kN/m²)

 B: コンクリート基礎幅 B=80.0(m)

 L: コンクリート基礎長 L=95.9(m)

改良地盤のせん断抵抗力は次式により算定する。

 $\underset{\text{Mu}=}{\text{ss f ss}} 1/5 \cdot 548 = 109.6 \text{ (kN/m}^2) \\ \text{Hu}= 109.6 \times 80.0 \times 95.9 = 840851 \text{ (kN)}$

安全率の検討結果を表 2.5-22 に示す。検討結果より改良地盤のせん断抵抗力はコンクリート基礎直下の設計せん断力の 1.5 以上の安全率を有していることを確認した。

表 2.5-22 改良地盤のせん断力に対する検討結果

設計せん断力 Hd	改良地盤のせん断抵抗力 Hu	安全率	当守	
(kN)	(kN)			
238043	840851	3.53 > 1.50	OK	

5) 支持力の検討

改良地盤直下の支持地盤については、改良体下面に作用する設計鉛直力に対して支持地盤 の極限支持力が1.5以上の安全率を有していることを確認する。

Ru Vd	\geq	1.5		
Ru= =	qu> 511	<ae .3×7855.8=4016671 (kN)</ae 		
ここに, Ru Qu Ae	u : u : e :	支持地盤の極限支持力 (kN) 極限支持力度 (kN/m ²) 基礎地盤の有効載荷面積(m ²)		
Vd=	Vd1	+Vd2		
ここに, Vd Vd1 Vd2	1 : L : 2 :	設計鉛直力 (kN) コンクリート基礎下面に作用する 改良地盤による鉛直力 (kN)	鉛直力 (kN) Vd1=513853 Vd2=619393	(kN) (kN)
V	d=	Vd1+Vd2=1133246 (kN)		

安全率の検討結果を表 2.5-23 に示す。検討結果より地盤の極限支持力は設計鉛直力の 1.5 以上の安全率を有していることを確認した。

設計鉛直力 Vd	支持地盤の極限支持力 Ru	安全率	当守
(kN)	(kN)		
1133246	4016671	3.54 > 1.5	OK

表 2.5-23 支持力に対する検討結果

- 3 異常時の評価
- 3.1 異常事象の抽出
- 3.1.1 想定すべき異常事象の抽出

乾式キャスクの取扱い及び仮保管時の作業の際に想定される異常事象の発生原因として、図 3.1-1 に示すように機器の破損,誤操作等の内部事象に起因するもの及び地震, 火災等の外部事象に起因するものに分け,以下に示すような設計/運用による対応等を 考慮して,選定された異常事象の選定結果の妥当性を確認し,安全評価において想定す べき異常事象として抽出する。

- ① 設計/運用による対応の有効性
- ② 事象の結果の大きさ(影響度)
- ③ 原子炉施設の安全評価事象との包絡性
- 3.1.2 評価条件の設定

乾式キャスクの取扱い時及び仮保管時の各作業における,以下の諸条件を考慮して, 抽出された異常事象の評価条件を設定する。

- ① 乾式キャスクの取扱いに係る機器の仕様,状態
- ② 乾式キャスクを取扱う際の位置
- ③ 移送用機器の仕様,状態
- ④ 仮保管に係る設備の仕様,状態
- 3.1.3 安全評価基準

乾式キャスクの輸送,保管等の取扱いは構内にて行われることからキャスク仮保管設備の安全評価における各安全機能の評価基準は,専門部会報告書「原子力発電所内の使用済燃料の乾式キャスク貯蔵について(平成4年8月27日原子力安全委員会了承,平成18年9月19日一部改訂)」に基づき,以下のとおりとする。

(1)除熱

想定される異常事象に対して, 乾式キャスク各部の温度の異常な上昇を防止できる こと。

具体的評価にあたっては、乾式キャスクの温度解析を行い、各部の温度が密封、遮 へい及び臨界防止のために設定する温度制限を上回らず、各安全機能を確保するため に支障のない温度であることを確認する。

(2)密封

想定される異常事象に対して,必要とされる漏えい率が維持できること等乾式キャ スクの密封機能を維持できること。

具体的評価にあたっては、乾式キャスク本体及び一次蓋が破損しないこと、一次蓋 締め付けボルト及び密封シール面に塑性変形が生じないこと並びに金属ガスケット 等のシール部温度が密封健全性を維持できる温度を上回らないことを確認する。 (3) 遮へい

想定される異常事象に対して、遮へい機能を維持できること。

具体的評価にあたっては、荷重、温度上昇等が遮へい材に及ぼす影響を考慮した上 で乾式キャスクの線量率を評価し、乾式キャスク表面より 1m の点において 10mSv/h 以下であることを確認する。

(4) 臨界防止

想定される異常事象に対して, 乾式キャスクに収納される使用済燃料が臨界に達し ないこと。

具体的評価にあたっては、乾式キャスク本体、バスケット、使用済燃料等に及ぼさ れる形状変形等の影響を考慮した上で実効増倍率を評価し、計算誤差等を考慮しても、 実効増倍率が 0.95 を上回らないことを確認する。

3.1.4 異常事象の抽出

図 3.1-2 及び図 3.1-3 に示すハンドリングフローに基づき,乾式キャスクの取扱い及 び仮保管時までの各作業において想定される起因事象に着目し,発生防止対策を考慮し て異常事象の発生の可能性を検討し,想定すべき異常事象を抽出した。異常事象の抽出 結果を表 3.1-1 に示す。なお,共用プールの燃料取扱設備は震災前と同等に復旧する予 定であり,共用プールからキャスク仮保管設備に乾式貯蔵キャスクを搬入する手順等は 通常の発電所内と同等である為,乾式貯蔵キャスクの異常事象はキャスク仮保管設備で の取扱いを対象にしているが,輸送貯蔵兼用キャスクは福島第一発電所構内で取扱った 実績がないことから念のため,異常事象は共用プールでの取扱い,構内輸送,キャスク 仮保管設備での取扱いを対象にしている。

抽出した異常事象は以下のとおりである。

- 乾式貯蔵キャスクを支持架台が装着された状態で吊り下げる際に、クレーンの誤操 作が原因で、支持架台が基礎コンクリートに異常着床する。
- 輸送貯蔵兼用キャスクを搬送台車架台に吊下げる際に、クレーンの誤操作が原因となって、輸送貯蔵兼用キャスクが搬送台車架台に異常着床する。
- 輸送貯蔵兼用キャスクを輸送架台に吊下げる際に、クレーンの誤操作が原因となって、輸送貯蔵兼用キャスクが輸送架台に異常着床する。
- 輸送貯蔵兼用キャスクを支持架台に吊下げる際に、クレーンの誤操作が原因となって、輸送貯蔵兼用キャスクが支持架台に異常着床する。

図 3.1-1 異常事象の発生原因

No.	取り扱いモード	No.	取り扱いモード
1-1	乾式貯蔵キャスクの支持架台を設置す	1-2	長手側の1面を開けて,コンクリート
	るための固定具を取り付ける。		モジュールの3面を立てる。
	(図は平面図を示す)		コンクリートモジュール
1-3	水平吊具をクレーンフックに取り付け	1-4	輸送車両で乾式貯蔵キャスクを搬入さ
	\$.		せる。
1.5		1.0	
1-5	支持架台の固定ボルトを取り外す。	1-6	輸送車両上の支持架台に、クレーンの
	<u>支持架台 支持架台 支持架台固定ボルト</u> 輸送車両 000000		水 FID 来 を 4 5 15 0 3。
<u> </u>	L図 3.1-2 乾式貯蔵キャス	クのハン	L ドリングフロー(1/4)

Ⅱ-2-13-添 3-337

Ⅱ-2-13-添 3-339

Ⅲ-2-13-添 3-340

図 3.1-3 輸送貯蔵兼用キャスクのハンドリングフロー(1/3)

図 3.1-3 輸送貯蔵兼用キャスクのハンドリングフロー(2/3) Ⅱ-2-13-添 3-342

図 3.1-3 輸送貯蔵兼用キャスクのハンドリングフロー (3/3)

表 3.1-1 異常事象の抽出(1/3)

起因事象		原因	異常事象発生の可能性	発生の	想定シナリオ	抽出の
(ハンドリングフローNo.)				要否		要否
乾式キャスクの落下 (1-4~1-10) (2-2~2-16)	輸送車両取扱い時の 落下	固定ボルトの取付け不 良	乾式キャスクは,輸送車両に複数の固定ボルトで固縛されているこ とを確認する。また,乾式キャスクは輸送車両で徐行して輸送する こと,輸送経路は輸送に関係する人,車両以外の立入を制限するこ とからから落下しない。	×		×
	搬送台車取扱い時の 落下	固定ボルトの取付け不 良	輸送貯蔵兼用キャスクは搬送台車に複数のボルトで固縛されている ことを確認する。また,搬送台車はレール上を走行し,走行範囲イ ンターロック及び障害物検知装置を有していることから他の構築物 等に衝突はしないため,落下しない。	×		×
	クレーン取扱い時の 落下	吊具の取り付け不良 ワイヤーロープの切断	吊具の二重化,始業前の吊具点検,取付け後の外れ止めを施すため, 乾式キャスクは落下しない。 ワイヤーロープの二重化,始業前のワイヤーロープ点検を行うため, 乾式キャスクは落下しない。	×		×
乾式キャスクの衝突 (1-7~1-10) (2-2, 2-5, 2-13~ 2-16)	クレーンでの移動時 (走行,横行)の衝突 (1-7~1-9) (2-2,2-5,2-13~ 2-15)	ブレーキの故障	移動前に移動経路に障害物がないことを確認し,乾式キャスクと移 動経路の芯あわせを行い,走行の両輪及び横行それぞれにインバー タによる停止機能に加えてブレーキによる停止機能により二重化し ているため,乾式キャスクは他の構築物等へ衝突しない。	×		×
		操作員の誤操作	クレーンの横行範囲に制限機構を設ける。また,移動前に移動経路 に障害物がないことの確認,乾式キャスクと移動経路の芯あわせを 行うため,乾式キャスクは他の構築物等へ衝突しない。	×		×
			巻き上げ装置ブレーキを二重化しているため,乾式貯蔵キャスクは 架台基礎コンクリートへ衝突(異常着床)しない。	×		×
	クレーンでの吊下げ 時の衝突(異常着床) (1-10) (2-2, 2-5, 2-16)	プレーイの政障	巻き上げ装置ブレーキを二重化しているため,輸送貯蔵兼用キャス クは搬送台車架台,輸送架台及び支持架台に衝突(異常着床)しな い。	×		×
		-5, 2-16) 操作員の誤操作	吊下げ時の誤操作により,支持架台を装着した状態で乾式貯蔵キャ スクは吊下げ速度で架台基礎コンクリートに異常着床する可能性が ある。	0	クレーンの最大吊下げ速度 1.5m/min で,支持架台を 装着した状態で乾式貯蔵キャスクは,架台基礎コン クリート上に異常着床する場合を異常事象として抽 出する。	0
			吊下げ時の誤操作により,輸送貯蔵兼用キャスクは吊下げ速度で搬 送台車架台,輸送架台及び支持架台に異常着床する可能性がある。	0	クレーンの最大吊下げ速度 1.5m/min で,輸送貯蔵兼 用キャスクは,搬送台車架台,輸送架台及び支持架 台に異常着床する場合を異常事象として抽出する。	0

表 3.1-1 異常事象の抽出(2/3)

起因	事象	原因	異常事象発生の可能性	発生の	想定シナリオ	抽出の
(ハンドリングフローNo.)				要否		要否
乾式キャスクへの重 量物の落下 (1-13~1-16)	コンクリートモジュ ール側壁部の転倒 (1-13)	固定具取り付け不良	コンクリートモジュールはコの字形状に接合されているために自立 すること、複数個の固定具で基礎に固定されていることから、1 個 の固定具が取り付不良であっても、コンクリートモジュールは転倒 しない。	×		×
		吊具取り付け不良	始業前に吊具の点検を行い,吊具は外れ止め防止金具を取り付ける ため,コンクリートモジュール(長手方向)は落下しない。	×		×
	コンクリートモジュ ール (長手方向) の落	ワイヤーロープの切断	始業前にワイヤーロープの点検を行い,ワイヤーロープは二重化し ているため,コンクリートモジュールは落下しない。	×		×
	下 (1-14~1-16)	操作員の誤操作	コンクリートモジュール(長手方向)の移動前に,コンクリートモジュール(長手方向)と移動経路の芯あわせを行い,荷振れ対策としてガイドロープを使用するため,コンクリートモジュール(長手方向)は乾式キャスクへ落下しない。	×		×
	屋根部コンクリート モジュールの落下	吊具取り付け不良	始業前に吊具の点検を行い、吊具は外れ止め防止金具を取り付ける ため、天板コンクリートモジュールは落下しない。 天板コンクリートモジュールは矩形に組んだ側板コンクリートモジ ュールに比べて迫出した形状であり、天板コンクリートモジュール の移動前に側板コンクリートモジュールとの接合位置があうように 芯あわせするため、仮に天板コンクリートモジュールが落下したと してもキャスク上には落下しない。	×		×
		ワイヤーロープの切断	始業前にワイヤーローノの点検を行い、ワイヤーローノは一里化しているため、天板コンクリートモジュールは落下しない。	X		X
		操作員の誤操	操作員の誤操作	天板コンクリートモジュールは矩形に組んだ側板コンクリートモジ ュールに比べて迫出した形状であり,天板コンクリートモジュール の移動前に,側板コンクリートモジュールとの接合位置があうよう に芯あわせを行い,荷振れ対策としてガイドロープを使用するため, 天板コンクリートモジュールは乾式キャスクへ落下しない。	×	
ユンクリートモジュール給排気口の閉塞 積雪		異物の付着	異物の飛来により給気口の閉塞が想定される。	0	給気口の閉塞により,除熱機能への影響が懸念され るものの,日常の巡視点検により閉塞の有無を確認 できる。また,乾式キャスク表面温度は免震重要棟 で連続監視し,所定の設定温度で警報を発報するた め事前に異常を検知できる。なお,温度センサーの 断線により,データが採取されない場合にも警報を 発報する。	×
		積雪	積雪による閉塞がないような設計対応及び日常の巡視等の運用対応 により、給排気口が閉塞することはない。	×		×

Ⅲ-2-13-添 3-345

表 3.1-1 異常事象の抽出 (3/3)

起因	事象	原因	異常事象発生の可能性	発生の	想定シナリオ	抽出の
(ハンドリン	グフローNo.)			要否		要否
			乾式キャスク、コンクリートモジュールは、地震時にも基本的安全	×		×
			機能を維持できるよう設計する。			
			動力機関として内燃機関を使用するものはなく、実用上可能な限り	×		×
火災・爆発			不燃性又は難燃性材料を使用し、持ち込み物品の制限等の運用対応			
			をするため、火災の発生する可能性は非常に低い。			
外部電源喪失			クレーンのフェイルセイフ設計により、乾式キャスクの落下防止、	×		×
			衝突防止が施されている。			
			乾式貯蔵キャスクは設計貯蔵期間 40 年で, 輸送貯蔵兼用キャスクは	×		×
経年変化			設計貯蔵期間 50 年で設計されており,それより短い期間で使用する			
			ため、経年変化を考慮する必要はない。			
地震以外の自然災害	台風		コンクリートモジュールの風荷重に対する設計は、「建築基準法」に	×		×
			定める設計基準に従う。			
	積雪,凍結		敷地周辺の過去の記録に基づいて敷地で考えられる最も過酷な場合	×		×
			を想定した設計を行う。			
	津波,高潮		敷地の標高 (OP. 39, 700), 海岸からの距離等から判断して, 敷地が	×		×
			被害を受けることは考えられない。			

- 3.2 異常事象の評価
- (1) 乾式貯蔵キャスクの異常事象の評価
- 1) 評価方針

支持架台が装着された乾式貯蔵キャスクが水平姿勢でクレーンの最大吊下げ速度 (1.5m/min)のまま基礎コンクリートに衝突した場合に,乾式貯蔵キャスクに生じる衝 撃加速度を算出する。概念図を図 3.2-1 に示す。

図 3.2-1 異常着床概念図

2)評価条件及び方法

乾式貯蔵キャスクが支持架台に衝突する際に生じる衝撃加速度の計算条件は以下のとおりである。

- ・支持架台の弾性により乾式貯蔵キャスクの運動エネルギーを吸収する。
- ・乾式貯蔵キャスク本体(トラニオン除く)を剛とする。
- ・基礎コンクリート床面を剛とする。
- ・支持架台の自重は無視する。
- a. 衝撃加速度の算出式
 - エネルギー保存則により乾式貯蔵キャスクに生じる衝撃加速度を算出する。

$$\frac{1}{2}\mathbf{m}\cdot\mathbf{v}^{2}+\mathbf{m}\cdot\mathbf{g}\cdot\boldsymbol{\delta}=\frac{1}{2}\mathbf{K}\cdot\boldsymbol{\delta}^{2}$$

ここで,

- m: 乾式貯蔵キャスクの質量(kg)
- v: クレーンの巻下定格速度=1.5 (m/min) =0.025 (m/s)
- g: 重力加速度=9.80665 (m/s²)
K: 支持架台のばね定数 (N/m)

上式を変形すると

$$\delta = \frac{\mathbf{m} \cdot \mathbf{g}}{\mathbf{K}} + \sqrt{\frac{\mathbf{m}^2 \cdot \mathbf{g}^2}{\mathbf{K}^2} + \frac{\mathbf{m} \cdot \mathbf{v}^2}{\mathbf{K}}} \qquad (\delta \ge 0)$$

また、乾式貯蔵キャスクに生じる衝撃加速度は次式で算出する。

$$\alpha = \frac{F}{m}$$
$$F = K \cdot \delta$$

ここで,

F: 乾式貯蔵キャスクに作用する衝撃力(N)

以上より、乾式貯蔵キャスクに生じる衝撃加速度は次式のとおりとなる。

$$\alpha = g + \sqrt{g^2 + \frac{K \cdot v^2}{m}}$$

b. 支持架台のばね定数

支持架台のばね定数は,固有周期解析における鉛直方向の変形モードの固有振動数か ら計算した。

固有振動数(1質点の1次元自由振動)は、次式で求められる。

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{M}}$$

ここで,

f: 固有振動数(Hz)

固有振動数は「2.1 乾式キャスクの耐震性(1) 乾式貯蔵キャスク3) 固有周期の算定」と同手法で算定した

M: 乾式貯蔵キャスク及び支持架台の合計質量(kg)

中型乾式貯蔵キャスク:キャスク(96t) +支持架台(16t)

大型乾式貯蔵キャスク:キャスク(115t)+支持架台(15t)

上式を変形すると支持架台のばね定数は,

 $K=4M\cdot \pi^2 \cdot f^2$

となる。

3) 評価結果

乾式貯蔵キャスクに生じる衝撃加速度を表 3.2-1 に示す。乾式貯蔵キャスクに生じる 衝撃加速度は運搬時の評価加速度(3G)より小さい値となり,運搬時の評価結果に包絡さ れ,乾式貯蔵キャスクの安全機能は維持される。

キャスク	固有 振動数	支持架台の ばね定数	衝撃力	叩速度
タイプ	f	Κ	0	x
	(Hz)	(N/m)	(m/s^2)	(G)
乾式貯蔵キャスク	01 7	0.00×10^{10}		0.75
(中型)	81. (2.96 \times 10 ¹⁰	26. 9	2.75
乾式貯蔵キャスク	74.9	0.00×10^{10}	95.7	0.60
(大型)	14.2	2.83 \times 10 ⁻¹	23. 1	2.03

表 3.2-1 乾式貯蔵キャスクに生じる衝撃加速度

(2)輸送貯蔵兼用キャスクの異常事象の評価

1)評価方針

輸送貯蔵兼用キャスクがクレーンの最大吊下げ速度(1.5m/min)のまま搬送台車架台, 輸送架台及び,支持架台に衝突した場合に,輸送貯蔵兼用キャスクに生じる衝撃加速度 を算出する。概念図を図 3.2-2~4 に示す。

図 3.2-2 異常着床概念図(搬送台車架台への衝突)

図 3.2-3 異常着床概念図(輸送架台への衝突)

図 3.2-4 異常着床概念図(支持架台への衝突)

Ⅱ-2-13-添 3-350

2) 輸送貯蔵兼用キャスクの評価条件および方法

輸送貯蔵兼用キャスクが搬送台車架台,輸送架台,支持架台に衝突する際に生じる衝 撃加速度の計算条件は以下のとおりである。

- ・搬送台車架台,輸送架台,支持架台の弾性により輸送貯蔵兼用キャスクの運動 エネルギーを吸収する。
- ・輸送貯蔵兼用キャスク本体(トラニオン含む)を剛とする。
- ・搬送台車架台,輸送架台,支持架台の自重は無視する。

a. 衝撃加速度の算出式

エネルギー保存則によりキャスクに生じる衝撃加速度を算出する。

$$\frac{1}{2}\mathbf{m}\cdot\mathbf{v}^{2}+\mathbf{m}\cdot\mathbf{g}\cdot\boldsymbol{\delta}=\frac{1}{2}\mathbf{K}\cdot\boldsymbol{\delta}^{2}$$

ここで,

m: 輸送貯蔵兼用キャスク質量
 輸送貯蔵兼用キャスクA:1.183×10⁵(kg)
 輸送貯蔵兼用キャスクB:1.186×10⁵(kg)
 v: クレーン巻下定格速度=1.5 (m/min) =0.025 (m/s)
 g: 重力加速度=9.80665 (m/s²)
 δ: 架台の最大変形量 (m)
 K: 架台のばね定数 (N/m)

上式を変形すると

$$\delta = \frac{\mathbf{m} \cdot \mathbf{g}}{K} + \sqrt{\frac{\mathbf{m}^2 \cdot \mathbf{g}^2}{K^2} + \frac{\mathbf{m} \cdot \mathbf{v}^2}{K}} \qquad (\delta \ge 0)$$

また、輸送貯蔵兼用キャスクに生じる衝撃加速度は次式で算出する。

$$\alpha = \frac{F}{m}$$
$$F = K \cdot \delta$$
$$\Xi \subseteq \mathcal{C},$$

α: 輸送貯蔵兼用キャスクに生じる衝撃加速度 (m/s²)

以上より、輸送貯蔵兼用キャスクに生じる衝撃加速度は次式のとおりとなる。

$$\alpha = g + \sqrt{g^2 + \frac{K \cdot v^2}{m}}$$

b. 架台のばね定数

架台のばね定数は,搬送台車架台,輸送架台,支持架台の鉛直方向の弾性から算出 した。

・搬送台車架台のばね定数	:1.36×10 ¹⁰ (N/m)(2脚分)
・輸送架台のばね定数	
輸送貯蔵兼用キャスク A 用	:3.79×10 ¹⁰ (N/m)(4脚分)
輸送貯蔵兼用キャスク B 用	:4.0×10 ¹⁰ (N/m)(4 脚分)*1
・支持架台のばね定数	
輸送貯蔵兼用キャスク A 用	:4.28×10 ¹⁰ (N/m)(4脚分)
輸送貯蔵兼用キャスク B 用	:4.56×10 ¹⁰ (N/m) (4脚分)
*1:輸送貯蔵兼用キャスク B 用の	の輸送架台は設計中のため計画値

3)評価結果

輸送貯蔵兼用キャスクに生じる衝撃加速度を表 3.2-2 に示す。 表 3.2-2 より設計事象Ⅱ の衝撃加速度は、「1.1 乾式キャスクの構造強度」における構造強度評価で用いている衝撃 加速度、横姿勢:3G、縦姿勢(キャスク、バスケット):5G、縦姿勢(トラニオン):2.5G に包絡されており、輸送貯蔵兼用キャスクの安全機能は維持されることを確認している。

田世市在	ナッフカカノー	支持架台の ばね定数	衝擊加速度	
共 吊 争 家	++×>>>+>	Κ	α	
		(N/m)	(m/s^2)	(G)
搬送台車架台への衝突	輸送貯蔵兼用キャスクA	1.26×10^{10}	22.8	2.33
(縦姿勢)	(勢) 輸送貯蔵兼用キャスク B	1. 30 \ 10	22.8	2.33
輸送架台への衝突	輸送貯蔵兼用キャスクA	3.79 $\times 10^{10}$	27.1	2.77
(横姿勢)	輸送貯蔵兼用キャスク B	4. 0×10^{10}	27.4	2.80
支持架台への衝突	輸送貯蔵兼用キャスクA	4. 28×10^{10}	27.8	2.84
(横姿勢)	輸送貯蔵兼用キャスク B	4.56 $\times 10^{10}$	28.2	2.88

表 3.2-2 輸送貯蔵兼用キャスクに生じる衝撃加速度

安全評価について

- 1 除熱機能
- 1.1 乾式キャスクの除熱機能
- (1) 乾式貯蔵キャスクの除熱機能
- 1) 基本的な考え方

除熱設計に当たっては,使用済燃料の健全性及び安全機能を有する構成部材の健全性が 維持できるよう,使用済燃料の崩壊熱を適切に除去できるように以下のとおり設計する。

- 乾式貯蔵キャスク内部には、格子構造のバスケットを設け、その中に使用済燃料を 収納する。
- ② 乾式貯蔵キャスク内部には、熱伝導率の高いヘリウムガスを充てんする。
- ③ 熱伝導率の低い中性子遮へい材内部には、伝熱プレートを設け、熱伝導性を向上さ せる。

乾式貯蔵キャスクには収納する使用済燃料の体数が異なる中型と大型の2種類の乾式 貯蔵キャスクがあり、中型と大型それぞれについて評価する。

図1.1-1に除熱評価のフローを示す。乾式貯蔵キャスクは、図1.1-1の「使用済燃料の 崩壊熱計算」から「乾式貯蔵キャスクの除熱計算」に関して、使用済燃料仕様、乾式貯蔵 キャスク仕様及び解析モデル等は全て添付資料-2「評価の基本方針」で記載している既 存評価書の内容から変更はない。また、乾式貯蔵キャスク周囲の温度についてもコンクリ ートモジュール内部の空気温度を45℃以下で設計する為、既存評価書と同じ条件である。

よって、本評価結果は既存評価書の内容を引用するが、燃料被覆管の設計基準温度に関しては、新知見を反映し、水素再配向等による強度低下が発生しない温度とした(表1.1-1)。

図 1.1-1 キャスク仮保管設備除熱評価フロー図

2) 設計基準

設計基準を表 1.1-1 に示す。

表 1.1-1 設計基準

1111	1		(0, 0)
	11	•	- (`)
(++)	11/	•	\mathcal{O}

対象とな る部材	材質	設計基準	設計基 準温度	備考
1/44- 1/21		使用済燃料被覆管の累積クリープ 量が1 %を超えない温度,照射硬化 回復現象により燃料被覆管の機械	200*	使用済燃料(8×8 燃料,新型8×8 燃料)
被覆管	ジルカロイー2	的特性が著しく低下しない温度及 び水素化物の再配向による燃料被 覆管の機械的特性の低下が生じな い温度以下となる温度とする ¹⁾²⁾³⁾⁴⁾	300*	使用済燃料(新型 8×8 ジルコニウ ムライナ燃料)
	レジン	形状変化及び重量減少を考慮して 遮へい機能が確保される制限温度	150	中性子遮へい材
	低合金鋼	構造強度が確保される制限温度	350	貯蔵容器本体
乾式貯蔵	ステンレス鋼	構造強度が確保される制限温度	400	二次蓋
キャスク	アルミニウム, インコネル	基準漏えい率が保証でき,密封機能 が維持される制限温度	150	金属ガスケット
	ボロン添加アル ミニウム	構造強度が確保される制限温度	230	バスケット

*水素化物の再配向による燃料被覆管の機械的特性の低下が生じない温度を設計基準温度として設定したもので、燃料被覆管の周方向応力は設計基準温度状態で70 MPa 以下とする。燃料被覆管の累積クリープ量が1%を超えない温度は390℃と評価され、上記設計基準温度を超えている。また、燃料被覆管の照射硬化の回復については機械的強度への影響を評価するものとする。

- 1) 平成15年度リサイクル燃料資源貯蔵施設安全解析コード改良試験(燃料の長期安全性に関する試験 最終成果報告書)
 (04 基炉報-0001,独立行政法人原子力安全基盤機構)
- 2) 平成18年度リサイクル燃料資源貯蔵技術調査等(貯蔵燃料長期健全性等確証試験に関する試験最終報告書)
 (06基炉報-0006,独立行政法人原子力安全基盤機構)
- 3) 平成19年度リサイクル燃料資源貯蔵技術調査等(貯蔵燃料健全性等調査に関する試験成果報告書) (07 基炉報-0004, 独立行政法人原子力安全基盤機構)
- 4)金属製乾式キャスクを用いる使用済燃料中間貯蔵施設における金属製乾式キャスクとその収納物の長期 健全性について (総合資源エネルギー調査会 原子力安全・保安部会 核燃料サイクル安全小委員会 中間貯蔵ワーキンググループ 輸送ワーキンググループ , 平成 21 年 6 月 25 日)

表 1.1-1 に示す乾式貯蔵キャスクを構成する部材のうち金属ガスケットについては,モ デルとしては考慮しているが既存評価書には記載していない。一方,輸送貯蔵兼用キャ スクでは,金属ガスケットについても評価対象となっていることから,乾式貯蔵キャス クについても同様に金属ガスケットを新たに追加し評価する。

3) 燃料仕様

評価は8×8 燃料,新型8×8 燃料及び新型8×8 ジルコニウムライナ燃料のうち最も厳 しい発熱量となる新型8×8 ジルコニウムライナ燃料(最高燃焼度36,500MWd/t,冷却期 間13年)を収納した場合について行い,使用済燃料の発熱量はORIGEN2コードにより求 める。

乾式貯蔵キャスク1基当たりの発熱量を中型及び大型についてそれぞれ表1.1-2及び 表1.1-3に示す。共用プールに貯蔵中の上記使用済燃料のうち,発熱量の大きいものか らキャスクに収納した場合の発熱量(平成24年6月1日時点)は、中型キャスクで約6.9kW、 大型キャスクで約9.6kWであり、除熱設計の前提としている発熱量を大幅に下回る。

燃料集合体の種類	8×8 燃料	新型 8×8 燃料	新型 8×8 ジルコ ニウムライナ燃料
初期濃縮度 (wt%)	約 2.7	約 2.9	約 3.0
収 納 物 の 最高燃焼度(MWd/t)	30, 000	33, 500	36, 500
冷却期間(年)	13	13	13
収納体数(体)	37	37	37
評価に用いる 発 熱 量 (kW)	9.0	9.6	10.8

表 1.1-2 乾式貯蔵キャスク1 基当たりの発熱量(中型キャスク)

表1.1-3 乾式貯蔵キャスク1基当たりの発熱量(大型キャスク)

燃料集合体の種類	8×8 燃料	新型 8×8 燃料	新型 8×8 ジルコ ニウムライナ燃料
初期濃縮度 (wt%)	約 2.7	約 2.9	約 3.0
収 納 物 の 最高燃焼度 (MWd/t)	30, 000	33, 500	36, 500
冷却期間(年)	13	13	13
収納体数(体)	52	52	52
評価に用いる 発 熱 量(kW)	12.6	13.5	15.2

4) 評価条件

乾式貯蔵キャスクの除熱評価は以下の3種類の解析モデルを用いて行う。

a. 軸方向断面モデル(乾式貯蔵キャスク全体の二次元軸対称モデル)

b. 半径方向断面モデル(胴中央部断面形状の二次元平面モデル)

c. 燃料集合体断面モデル(燃料集合体の断面形状の二次元平面モデル)

上記解析モデルを図 1.1-2~図 1.1-7 に示す。また,評価条件を表 1.1-4 及び表 1.1-5 に示す。

[単位:mm]

図1.1-2 軸方向断面モデル(乾式貯蔵キャスク(中型キャスク))

図 1.1-3 半径方向断面モデル(乾式貯蔵キャスク(中型キャスク))

図 1.1-4 燃料集合体断面モデル(乾式貯蔵キャスク(中型キャスク))

[単位:mm]

図 1.1-5 軸方向断面モデル(乾式貯蔵キャスク(大型キャスク))

図 1.1-6 半径方向断面モデル(乾式貯蔵キャスク(大型キャスク))

図 1.1-7 燃料集合体断面モデル(乾式貯蔵キャスク(大型キャスク))

Ⅲ-2-13-添 4-8

表 1.1-4 評価条件(中型キャスク)

項目	評価条件
収納体数 (体)	37
姿 勢	横置き
発 熱 量 (k₩)	10.8
周囲温度 (℃)	45

表 1.1-5 評価条件 (大型キャスク)

項目	評価条件
収納体数 (体)	52
姿 勢	横置き
発 熱 量 (k₩)	15.2
周囲温度 (℃)	45

5) 評価方法

先ず,乾式貯蔵キャスク各部の温度分布を軸方向断面モデルにて求める。次に半径方 向断面モデルにて乾式貯蔵キャスク中央断面各部の温度分布及びバスケットの最高温度 を求める。

最後に、半径方向断面モデルの熱解析から得られたバスケットの最高温度を境界温度 として燃料集合体断面モデルによる熱解析を実施し、燃料被覆管の温度分布を求める。 解析は ABAQUS コードを用いる。 6) 評価結果

評価結果を表 1.1-6 及び表 1.1-7 に示す。評価は 8×8 燃料,新型 8×8 燃料及び新型 8 ×8 ジルコニウムライナ燃料のうち最も厳しい発熱量となる新型 8×8 ジルコニウムライ ナ燃料(最高燃焼度 36,500MWd/t,冷却期間 13 年)を収納した場合について行った。新 型 8×8 ジルコニウムライナ燃料の評価結果においても、8×8 燃料及び新型 8×8 燃料の 燃料被覆管設計基準温度(200℃)を満足しているため、発熱量がより低い 8×8 燃料及び 新型 8×8 燃料についても設計基準温度を満足する。本表に示すとおり使用済燃料の健全 性を示す燃料被覆管の温度及び乾式貯蔵キャスクを構成する各部材はいずれも設計基準 温度を下回っており、熱的健全性は維持される。

表 1.1-6 評価結果(中型キャスク)

(単位:℃)

部材	評価結果	設計基準温度	備考
	150 115 *1*2	200	使用済燃料(8×8燃料,新
	199 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	型 8×8 燃料)
<i>冰叶1</i> 双復目	150.22%3	300	使用済燃料(新型8×8ジ
	109	500	ルコニウムライナ燃料)
レジン	92	150	中性子遮へい材
低合金鋼	102	350	貯蔵容器本体
ステンレス鋼	75	400	二次蓋
アルミーウム インコウル	74	150	一次蓋金属ガスケット
	72	150	二次蓋金属ガスケット
ボロン添加アルミニウム	142	230	バスケット

*1 新型 8×8 ジルコニウムライナ燃料(発熱量 10.8kW)の燃料被覆管温度が 159℃であるため,発熱量の低い 8×8 燃料(9.0kW),新型 8×8 燃料(9.6kW)の燃料被覆管温度は 159℃以下となる。

- ※2 通常取り扱い時及び異常時に燃料被覆管にかかる応力は、評価結果が最も厳しくなる 新型 8×8 ジルコニウムライナ燃料で 56MPa となる。200℃での未照射材の降伏応力は 約 230MPa であるため、照射硬化回復を考慮しても、燃料被覆管にかかる応力は降伏応 力を超えることはない。
- ※3 運用期間中に燃料被覆管温度が最も高くなる真空乾燥時では、最も厳しい大型キャスクに新型8×8ジルコニウムライナ燃料を収納した場合、燃料被覆管温度は194℃であり、この状態の燃料被覆管周方向応力は46.0MPaであり、燃料被覆管温度及び周方向応力ともに設計基準を満たしている。

表 1.1-7 評価結果(大型キャスク)

1111	1		(α)
(= /	$\overline{\mathbf{M}}$	٠	- (`)
(++	<u>.</u>	•	\mathcal{O}

部材	評価結果	設計基準温度	備考
177	174	200	使用済燃料(8×8燃料,新
<i>做</i> 料, 本 要 答	174以下""	200	型 8×8 燃料)
从3个Y1Q7复目	174*5*6	200	使用済燃料(新型8×8ジ
	174	500	ルコニウムライナ燃料)
レジン	104	150	中性子遮へい材
低合金鋼	114	350	貯蔵容器本体
ステンレス鋼	83	400	二次蓋
アルミーウム インコウル	81	150	一次蓋金属ガスケット
	79	150	二次蓋金属ガスケット
ボロン添加アルミニウム	159	230	バスケット

※4 新型 8×8 ジルコニウムライナ燃料(発熱量 15.2kW)の燃料被覆管温度が 174℃であるため,発熱量の低い 8×8 燃料(12.6kW),新型 8×8 燃料(13.5kW)の燃料被覆管温度は 174℃以下となる。

※5 通常取り扱い時及び異常時に燃料被覆管にかかる応力は、評価結果が最も厳しくなる 新型 8×8 ジルコニウムライナ燃料で 56MPa となる。200℃での未照射材の降伏応力は 約 230MPa であるため、照射硬化回復を考慮しても、燃料被覆管にかかる応力は降伏応 力を超えることはない。

※6 運用期間中に燃料被覆管温度が最も高くなる真空乾燥時では、最も厳しい大型キャスクに新型8×8ジルコニウムライナ燃料を収納した場合、燃料被覆管温度は194℃であり、この状態の燃料被覆管周方向応力は46.0MPaであり、燃料被覆管温度及び周方向応力ともに設計基準を満たしている。

参考資料

除熱解析に用いるコード (ABAQUS) について

(1) 概要

ABAQUS コードは、米国 Hibbitt, Karlsson & Sorensen, Inc. (HKS 社)で開発された 有限要素法に基づく伝熱解析等の汎用解析コードであり、輸送キャスクの伝熱解析など に広く利用されている。

(2) 機能

ABAQUS コードは、伝熱解析に際して以下の機能を有している。

- ① 定常,非定常のいずれの解も得ることができる。
- 2) 一次元~三次元の任意形状の構造に対して解くことが可能である。
- ③ 初期条件(温度)は要素ごとに変化させることができ、計算ステップの自動決定も可能である。
- ④ 境界条件として、時間に依存する熱流束、温度、伝導、対流及びふく射が考慮できる。
- **⑤** 構成物質の相変態が考慮できる。
- (3) 解析フロー

ABAQUS コードの解析フローを図 1.1-8 に示す。

(4) 使用実績

ABAQUS コードは、多くの伝熱解析に使用された実績がある。

(5) 検証方法

貯蔵キャスクの定常伝熱試験に対して ABAQUS による解析結果と試験結果を比較・検討し、本コードの妥当性が検証されている¹⁾。

1)山川秀次,五味義雄,尾崎幸男,尾崎明朗「使用済燃料キャスク貯蔵技術の確立― キャスクの伝熱特性評価―」,電中研報告書,U92038,(1993)

図 1.1-8 ABAQUS コードの解析フロー図

除熱解析に用いるコード (ORIGEN2) について

(1) 概要

ORIGEN2 コードは、米国オークリッジ国立研究所(ORNL)で開発された炉内中性子束の 1点近似による燃焼計算コードである。ORIGEN2 コードは汎用解析コードであり、輸送キ ャスクの崩壊熱計算等に広く利用されている。

(2) 機能

ORIGEN2 コードは、燃焼解析に際して以下の機能を有している。

- 燃料の炉内での燃焼計算,炉取出し後の減衰計算により,冷却期間に対応した崩壊
 熱,放射線の強度,各核種の放射能量等が求められる。
- ② 原子炉の炉型と燃料の組合せに対し、中性子エネルギースペクトルの違いにより重みをつけた断面積ライブラリが内蔵されており、任意に選択できる。
- ③ 計算結果は、放射化生成物、アクチニド、核分裂生成物に分類して出力される。
- ④ 燃焼計算に必要な放射性核種データ(崩壊熱,ガンマ線のエネルギー分布,自発核 分裂と(α, n)反応により発生する中性子源強度等)に関しては,ORIGEN2 コー ド専用のライブラリがあり、これを用いる。
- (3) 計算フロー

ORIGEN2 コードの計算フローを図 1.1-9 に示す。

(4) 使用実績

ORIGEN2 コードは、輸送キャスク、核燃料施設の崩壊熱計算に広く使用されている¹⁾。

(5) 検証方法

汎用コードの導入評価¹⁾ が実施されていることが確認されている。 大型実験/ベンチマーク試験による検証²⁾ が実施されていることが確認されている。

- 1)A.G.Croff, "ORIGEN2 Isotope Generation and Depletion Code MATRIX EXPONENTIALMETHOD", CCC-371(1987)
- 2) (社) 日本原子力学会"原子炉崩壊熱とその推奨値", 1989 年 8 月

図 1.1-9 ORIGEN2 コードの計算フロー図

- (2) 輸送貯蔵兼用キャスクAの除熱機能
- 1) 基本的な考え方

除熱設計に当たっては,使用済燃料の健全性及び安全機能を有する構成部材の健全 性が維持できるよう,使用済燃料の崩壊熱を適切に除去できる設計とする。そのため, 以下の配慮を行う。

- a) 輸送貯蔵兼用キャスク A 内部には, 熱伝導率の高いアルミニウム合金製のバスケットを設け, その中に使用済燃料を収納する。
- b) 輸送貯蔵兼用キャスクA内部には、熱伝導率の高いヘリウムガスを充てんする。
- c) 側部中性子遮へい材には伝熱性能の優れたプロピレングリコール水溶液を使用 する。

輸送貯蔵兼用キャスクA及びBの除熱解析フローを図1.1-10に示す。なお、コンク リートモジュールの除熱解析フローは乾式貯蔵キャスクと同様であるため、輸送貯蔵 兼用キャスクA及びBの除熱解析フローのみを示す。

図 1.1-10 輸送貯蔵兼用キャスク A および B 除熱評価フロー図

2) 設計基準

設計基準を表 1.1-8 に示す。

表 1.1-8 設計基準

(単位:℃)

対象とな る部材	材質	設計基準	設計基 準温度	備考
燃料 被覆管		使用済燃料被覆管の累積クリープ 量が1%を超えない温度,照射硬化回 復現象により燃料被覆管の機械的	200*	使用済燃料(8×8 燃料,新型8×8 燃料)
	ジルカロイー2	特性が著しく低下しない温度及び 水素化物の再配向による燃料被覆 管の機械的特性の低下が生じない 温度以下となる温度とする	300*	使用済燃料 (新型 8×8 ジルコニウ ムライナ燃料)
輸送貯蔵 兼用キャ スク A	レジン	中性子遮へい材の性能が維持され る制限温度	149	中性子遮へい材
	プロピレングリ コール水溶液	中性子遮へい材の性能が維持され る制限温度	140	中性子遮へい材
	低合金鋼	構造強度が維持される制限温度	350	密封容器 二次蓋
	ニッケル基合金, アルミニウム	閉じ込め機能が維持される制限温 度	130	金属ガスケット
	アルミニウム 合金	構造強度が維持される制限温度	250	バスケット

**水素化物の再配向による燃料被覆管の機械的特性の低下が生じない温度を設計基準温度として設定したもので、燃料被覆管の周方向応力は設計基準温度状態で70 MPa以下とする。燃料 被覆管の累積クリープ量が1%を超えない初期温度は360℃程度と評価され、上記設計基準温 度を超えている。また、燃料被覆管の照射硬化の回復については機械的強度への影響を評価 するものとする。 3) 燃料仕様

輸送貯蔵兼用キャスクA1基当たりの発熱量を表 1.1-9 に示す。8×8 燃料について は、収納する燃料の燃焼度がそれぞれ収納物平均で 26,000MWd/t,収納物最高で 29,000MWd/t であるため発熱量は新型8×8 燃料及び新型8×8 ジルコニウムライナ燃料 より低くなり、評価は包絡される。使用済燃料の発熱量は ORIGEN2 コードにより求め る。

共用プールに貯蔵中の使用済燃料のうち,発熱量の最も大きい燃料(平成24年12月1日時点)を収納条件を満足するよう69体収納した場合,輸送貯蔵兼用キャスクAの発熱量は約11.7kWとなり,除熱設計の前提としている発熱量を大幅に下回る。

燃料集合体の種類		新型8×8燃料	新型8×8ジルコニウム
			ライナ燃料
初期濃縮度(wt%)		約2.9	
収納物の	平均燃焼度	34, 000	
燃焼度	(MWd/t)		
冷却期間(年)		18	
収納体数(体)		69	
評価に用いる発熱量(kW) ^{注)}		15. 3	

表1.1-9 輸送貯蔵兼用キャスクA 1 基当たりの発熱量

注) 輸送貯蔵兼用キャスクAの最大発熱量は 12.1kW であるが,除熱設計では燃料 集合体の軸方向の燃焼度分布を保守的に考慮した設計発熱量を用いる。

4)評価条件

輸送貯蔵兼用キャスク A の除熱評価は以下の3種類の解析モデルを用いて行う。

- a. 軸方向断面モデル(輸送貯蔵兼用キャスクA全体の二次元軸対称モデル)
- b. 半径方向断面モデル(胴中央部断面形状の二次元平面モデル)
- c. 燃料集合体断面モデル(燃料集合体の断面形状の二次元平面モデル)

上記解析モデルを図 1.1-11~図 1.1-13 に示す。また,評価条件を表 1.1-10 に示す。

項 目 評価条件	
収納体数 (体) 69	
姿 勢 横置き	
発 熱 量 (kW) 15.3	
周囲温度 (℃) 空気:45	
コンクリートモジュール内面:65	5

表 1.1-10 評価条件

張室を設けている

図 1.1-11 軸方向断面モデル

図 1.1-12 半径方向断面モデル

注)Wはウォーターロッドであり、発熱はない。

図 1.1-13 燃料集合体断面モデル

5) 評価方法

はじめに,輸送貯蔵兼用キャスク A 各部の温度分布を軸方向断面モデルにて求める。 軸方向断面モデルでは,燃料集合体の軸方向発熱分布を考慮する。

次に,径方向断面モデルにて輸送貯蔵兼用キャスク A 中央断面各部の温度分布及びチ ャンネルボックスの最高温度を求める。径方向断面モデルでは,径方向の発熱分布を考 慮して,燃料の配置制限に従い,中央に最高燃焼度燃料に対応した発熱量の燃料を配置 し,当該断面の発熱量が設計発熱量の設定と等しくなるように外周には低い発熱量の燃 料を配置する。また,径方向断面モデルでは,熱の軸方向移動による蓋板上面や底板下 面からの放熱を模擬できないため,輸送貯蔵兼用キャスク A の温度分布が現実に比べて 高めとなる。このため,軸方向断面モデルで得られた結果に基づいて軸方向への熱の移 動を考慮する。

最後に,径方向断面モデルの熱解析から得られたチャンネルボックスの温度分布を境 界温度として燃料集合体断面モデルによる熱解析を実施し,燃料被覆管の温度分布を求 める。

解析は ABAQUS コードを用いる。

6) 評価結果

評価結果を表 1.1-11 に示す。8×8 燃料については、収納する燃料の燃焼度がそれぞれ 収納物平均で 26,000MWd/t,収納物最高で 29,000MWd/t であるため発熱量は新型 8×8 燃 料及び新型 8×8 ジルコニウムライナ燃料より低くなり、評価は包絡される。本表に示す とおり、使用済燃料の健全性を示す燃料被覆管の温度及び輸送貯蔵兼用キャスク A を構 成する各部材はいずれも設計基準温度を下回っており、熱的健全性は維持される。

表 1.1-11 評価結果

(単位:℃)

部材	評価結果	設計基準温度	備考
		200	使用済燃料(8×8燃料,新
做 料	170※1※2		型 8×8 燃料)
水: 种科权 復 目	176****	300	使用済燃料(新型 8×8 ジ
			ルコニウムライナ燃料)
レジン	99	149	中性子遮へい材
プロピレングリコ	00	140	古姓で産ったせ
ール水溶液	99	140	中性于感,、()构
任今今细	122	350	密封容器
医口骨管	88	550	二次蓋
ニッケル基合金,	01	120	全国ガフケット
アルミニウム	91	190	並属ルヘクット
アルミニウム合金	163	250	バスケット

- ※1 構造強度評価及び異常事象の評価における最大評価加速度 3G が燃料被覆管にかかる場合, 燃料被覆管にかかる応力は評価結果が厳しくなる新型 8×8 ジルコニウムライナ燃料で 50MPa となる。既存評価書において 260℃における照射後の降伏応力 568MPa¹⁾に燃料被覆 管の照射硬化回復式²⁾を保守的に考慮した降伏応力は 313MPa と評価されており,照射硬 化回復を考慮しても,燃料被覆管にかかる応力は降伏応力を超えることはない。
- ※2 運用期間中に燃料被覆管温度が最も高くなる真空乾燥時での燃料被覆管温度は 198℃で ある。また、この状態の燃料被覆管周方向応力は 47MPa であり、燃料被覆管温度及び周 方向応力ともに設計基準を満たしている。
 - 1):(独)原子力安全基盤機構,"平成18 年度 高燃焼度9×9型燃料信頼性実証成果報告書(総合評価編)",(2007)
 - 2):(独)原子力安全基盤機構,"平成15年度リサイクル燃料資源貯蔵施設安全解析コード改良試験(燃料の長期安全性に関する試験最終成果報告書)",(2004)

(3) 輸送貯蔵兼用キャスクBの除熱機能

1) 基本的な考え方

除熱設計に当たっては,使用済燃料の健全性及び安全機能を有する構成部材の健全 性が維持できるよう,使用済燃料の崩壊熱を適切に除去できる設計とする。そのため, 以下の配慮を行う。

- d) 輸送貯蔵兼用キャスク B 内部のバスケットは, 熱伝導の優れた伝熱プレートの設置により必要な伝熱性能を確保する。
- e) 輸送貯蔵兼用キャスク B 内部には、熱伝導率の高いヘリウムガスを充てんする。
- f) 側部中性子しゃへい材には熱伝導の低いレジンを用いており, 伝熱フィンを設け ることにより必要な伝熱性能を確保する。

2) 設計基準

設計基準を表 1.1-12 に示す。

表 1.1-12 設計基準

(単位:℃)

対象とな る部材	材質	設計基準	設計基 準温度	備考
燃料 被覆管	ジルカロイー2	使用済燃料被覆管の累積クリープ 量が1%を超えない温度,照射硬化回 復現象により燃料被覆管の機械的 特性が著しく低下しない温度及び 水素化物の再配向による燃料被覆 管の機械的特性の低下が生じない 温度以下となる温度とする	300*	使用済燃料 (新型 8×8 ジルコニウ ムライナ燃料)
輸送貯蔵 兼用キャ スク B	レジン	中性子遮へい材の性能が維持され る制限温度	150	中性子遮へい材
	炭素鋼	構造強度が維持される制限温度	350	密封容器 二次蓋
	アルミニウム合金, ニッケル基合金	閉じ込め機能が維持される制限温 度	130	金属ガスケット
	ボロン添加 ステンレス鋼	構造強度が維持される制限温度	300	バスケット

※水素化物の再配向による燃料被覆管の機械的特性の低下が生じない温度を設計基準温度として設定したもので、燃料被覆管の周方向応力は設計基準温度状態で70 MPa以下とする。燃料 被覆管の累積クリープ量が1%を超えない初期温度は360℃程度と評価され、上記設計基準温 度を超えている。また、燃料被覆管の照射硬化の回復については機械的強度への影響を評価 するものとする。 3) 燃料仕様

輸送貯蔵兼用キャスク B1 基当たりの発熱量を表 1.1-13 に示す。使用済燃料の発熱 量は ORIGEN2 コードにより求める。

共用プールに貯蔵中の使用済燃料のうち,発熱量の最も大きい燃料(平成24年12月1日時点)を収納条件を満足するよう69体収納した場合,輸送貯蔵兼用キャスクBの発熱量は約11.7kWとなり,除熱設計の前提としている発熱量を大幅に下回る。

表1.1-13 輸送貯蔵兼用キャスクB 1 基当たりの発熱量

燃料集合体の種類		新型8×8ジルコニウムライナ燃料
初期濃縮度(wt%)		約2.9
収納物の	平均燃焼度	24,000
燃焼度	(MWd/t)	34,000
冷却期間(年)		18
収納体数(体)		69
評価に用いる発熱量(kW) ^{注)}		15. 3

注) 輸送貯蔵兼用キャスクBの最大発熱量は 12.1kW であるが,除熱設計では燃料 集合体の軸方向の燃焼度分布を保守的に考慮した設計発熱量を用いる。

4)評価条件

輸送貯蔵兼用キャスクBの除熱評価は以下の3種類の解析モデルを用いて行う。

- a. 軸方向断面モデル(輸送貯蔵兼用キャスクB全体の二次元軸対称モデル)
- b. 半径方向断面モデル(胴中央部断面形状の二次元平面モデル)
- c. 燃料集合体断面モデル(燃料集合体の断面形状の二次元平面モデル) 上記解析モデルを図 1.1-14~図 1.1-16 に示す。また,評価条件を表 1.1-14 に示す。

項	目	評価条件
収納体数	(体)	69
姿 勢		横置き
発熱量	(kW)	15.3
周囲温度	(°C)	空気:45
		コンクリートモジュール内面:65

表 1.1-14 評価条件

図 1.1-14 軸方向断面モデル

図 1.1-15 半径方向断面モデル

注)Wはウォーターロッドであり、発熱はない。

図 1.1-16 燃料集合体断面モデル

5) 評価方法

はじめに,輸送貯蔵兼用キャスク B 各部の温度分布を軸方向断面モデルにて求める。 軸方向断面モデルでは,燃料集合体の軸方向発熱分布を考慮する。

次に,径方向断面モデルにて輸送貯蔵兼用キャスク B 中央断面各部の温度分布及びチ ャンネルボックスの最高温度を求める。径方向断面モデルでは,径方向の発熱分布を考 慮して,燃料の配置制限に従い,中央に最高燃焼度燃料に対応した発熱量の燃料を配置 し,当該断面の発熱量が設計発熱量の設定と等しくなるように外周には低い発熱量の燃 料を配置する。また,径方向断面モデルでは,熱の軸方向移動による蓋板上面や底板下 面からの放熱を模擬できないため,輸送貯蔵兼用キャスク B の温度分布が現実に比べて 高めとなる。このため,軸方向断面モデルで得られた結果に基づいて軸方向への熱の移 動を考慮する。

最後に,径方向断面モデルの熱解析から得られたチャンネルボックスの温度分布を境 界温度として燃料集合体断面モデルによる熱解析を実施し,燃料被覆管の温度分布を求 める。

解析は ABAQUS コードを用いる。

6) 評価結果

評価結果を表 1.1-15 に示す。本表に示すとおり,使用済燃料の健全性を示す燃料被覆 管の温度及び輸送貯蔵兼用キャスク B を構成する各部材はいずれも設計基準温度を下回 っており,熱的健全性は維持される。

	r	r	r
部材	評価結果	設計基準温度	備考
做 料	249 ^{**1*2}	300	使用済燃料(新型 8×8 ジ
旅行的复合			ルコニウムライナ燃料)
レジン	117	150	中性子遮へい材
出主网	123	250	密封容器
灰系쾟	0.0	350	一次茎
	00		二八 益
アルミニウム合金,	86	130	全属ガスケット
ニッケル基合金	00	130	並属ルハケット
ボロン添加	228	300	バスケット
ステンレス鋼	238		

表 1.1-15 評価結果

(単位:℃)

- ※1構造強度評価及び異常事象の評価における最大評価加速度 3G が燃料被覆管にかかる場合, 燃料被覆管にかかる応力は 55MPa となる。既存評価書において 260℃における照射後の降 伏応力 568MPa¹¹に燃料被覆管の照射硬化回復式 ²¹を保守的に考慮した降伏応力は 313MPa と評価されており,照射硬化回復を考慮しても,燃料被覆管にかかる応力は降伏応力を 超えることはない。
- ※2 運用期間中に燃料被覆管温度が最も高くなる真空乾燥時での燃料被覆管温度は 249℃であ る。また、この状態の燃料被覆管周方向応力は 52MPa であり、燃料被覆管温度及び周方 向応力ともに設計基準を満たしている。
 - 1):(独)原子力安全基盤機構,"平成18 年度 高燃焼度9×9型燃料信頼性実証成果報告書(総合評価編)",(2007)
 - 2):(独)原子力安全基盤機構,"平成15年度 リサイクル燃料資源貯蔵施設安全解析コード改良試験(燃料の長期安全性に関する試験最終成果報告書)",(2004)
- 1.2 コンクリートモジュールの除熱機能
- (1) 乾式貯蔵キャスク用コンクリートモジュールの除熱機能
- 1) 基本的な考え方

コンクリートモジュール内の除熱評価においては、コンクリートモジュール及び乾式 貯蔵キャスクを適切にモデル化し、三次元熱流動解析コード FLUENT を用いて乾式貯蔵キ ャスク周囲空気温度、コンクリートモジュールの各部コンクリート温度を評価する。

コンクリートモジュール内に保管されたキャスクの崩壊熱は次の伝熱形態で最終的に 外界へ放熱される。

- ① 使用済燃料から乾式貯蔵キャスク表面に伝えられた崩壊熱の大部分は、キャスク近傍の空気に対流と伝導により伝達される。崩壊熱の一部については、ふく射及び支持架台を介する伝導によりコンクリートモジュールに伝えられる。
- ② コンクリートモジュールへ伝わった熱は構造材を介した伝導伝熱及び対流により外界 (外気,地中など)に放出される。あるいは、対流と伝導によってモジュール内の空気 に伝わり、その自然換気に従って外界に放出される。

なお,発熱量の大きい大型乾式貯蔵キャスク用のコンクリートモジュールを代表して 評価する。

2) 設計基準

設計基準を表 1.2-1 に示す。

対象箇所	設計基準	設計基準温度
キャフク国田沢庄	乾式キャスク除熱評価のインプット	45°C L'I T
イヤヘク同囲値及	条件となる制限温度	43 0 以下
モジュールの	コンクリート材の構造強度が確保さ	
コンクリート材	れる制限温度	09 し以下 7

表 1.2-1 設計基準

1)発電用原子力設備規格 コンクリート製原子炉格納容器規格(JSME S NE1-2003)

3) 評価条件

コンクリートモジュールの除熱評価の解析モデルは以下の通りとする。

- ・ 保管状態の金属キャスク 1 基を含むコンクリートモジュール及び基礎スラブを解 析対象とし、コンクリートモジュール及びキャスク形状の対称性を想定して 1/2 区分を模擬(モデル化)する。(図 1.2-1 参照)
- ・ 大型乾式貯蔵キャスクは、直径約 2.4m、全長約 5.6mの円柱形状で模擬する。(図 1.2-1 参照)

- 解析で模擬しない部分の圧力損失要素として、給排気口に設置するグレーチング と外気が給排気口に流入/流出する際の縮流/拡流の圧力損失を、給排気面を換気 流が通過する際に発生する圧力損失として付与する(相当する圧力損失係数の設 定)。
- コンクリートモジュール温度を保守的に評価するため、モジュール外壁表面及び 床基礎スラブ底面は断熱条件とする。また、キャスク上面側のモジュール壁面に 設けられる点検扉及び給気口(1面)は模擬しない。(図 1.2-1 参照)なお、モジュ ール外壁表面での外気との熱の出入りを考慮した評価については参考資料に示す。

図 1.2-1 に三次元熱流動解析の評価領域を示す。また、評価条件を表 1.2-2 に示す。

図 1.2-1 三次元熱流動解析の評価領域

(コンクリートモジュール断面(単位:mm))

表 1.2-2 評価条件

項目	評価条件	備考	
設計給気温度(℃)	29.4	小名浜特別地域気象観測所で観測された 2007 年~2011	
		年の夏季(6月~9月)毎正時観測データにおける累積出	
		現率が 99%となる最高温度	
発熱量 (kW)	15.2	乾式貯蔵キャスク(大型キャスク)の発熱量。キャスク	
		全表面(上面,側面,底面)に一様な熱流束を設定する。	

4) 評価方法

三次元熱流動解析コード FLUENT を用いて、伝導、対流、ふく射が共存する伝熱流動場の支配方程式系を解くことにより、キャスク周囲雰囲気温度及びコンクリートモジュール温度を評価する。

図 1.2-2 に FLUENT での解析モデル図を示す。

図 1.2-2 コンクリートモジュールの解析モデル図

5) 評価結果

評価結果を以下に示す。

A. 空気温度(キャスク周囲雰囲気温度及び排気温度)

表1.2-3 に三次元熱流動解析によるコンクリートモジュール内の平均空気温度と排気 温度を示す。三次元熱流動解析の結果から、コンクリートモジュール内の平均空気温度 は 34.5℃,排気温度は 39.4℃であり、制限温度 45℃と比較して十分に低い温度となっ ていることを確認した。

B. コンクリートモジュールの温度

表 1.2-4 に三次元熱流動解析によるコンクリートモジュール最高温度値,図 1.2-3 に コンクリートモジュール内壁表面(天井面,側壁面,床面)の温度分布図を示す。

コンクリートモジュールのコンクリート材最高温度は 53.2℃(側壁)となり,制限温度 65℃まで十分な裕度があることを確認した。

表 1.2-3	三次元熱流動解析による空気温度	F
- L		~

(単位:℃)

キャスク型式	項目	評価結果	設計基準温度
乾式貯蔵キャスク	コンクリートモジュール内の 平均空気温度	34. 5	45
(大型)	排気温度	39.4	45

表 1.2-4 三次元熱流動解析によるコンクリートモジュール温度の最高値

(単位:℃)

評価部位	評価結果	設計基準温度
天井面	52.8	
側壁面	53.2	65
床面	51.5	

図 1.2-3 コンクリートモジュール内壁表面温度分布

除熱解析に用いるコード(FLUENT)について

(1) 概要

FLUENT コードは、米国製の汎用熱流体解析コードであり、貯蔵キャスクの除熱解析などに利用されている。

(2) 機能

FLUENT コードは、臨界解析に際して以下の機能を有している。

- 非圧縮性流れから圧縮性流れまで幅広く取り扱うことができ、層流、乱流、伝熱(対流、伝導、ふく射)、反応流、多相流等様々な流動場を解析の対象として取り扱うことができる。
- ② 熱伝導,対流熱伝達,ふく射の形態での伝熱過程を連成して解析することが可能で あり,また,流体領域と固体領域での伝熱を同時に取り扱うことができる。
- (3) 解析フローFLUENT コードの解析フローを図 1.2-4 に示す。
- (4) 使用実績

FLUENT コードは、海外の金属キャスク貯蔵施設、コンクリートキャスクの除熱解析や 国内中間貯蔵施設の貯蔵キャスク、貯蔵建屋の除熱評価に使用されている。

(5) 検証方法

ベンチマーク試験¹⁾による検証²⁾が実施されていることを確認。

- 1)電力中央研究所報告 U99505「キャスク貯蔵施設の除熱性能の実証に関する研究-スタック方式施設の除熱試験-」竹田浩文・古賀智成・亘真澄・坂本和昭(2000)
- 2)使用済燃料中間貯蔵施設貯蔵建屋・設備の安全設計及び施設安全評価について(東 電設計株式会社, TEPSCO-LR-001 改2 平成21 年 8 月)

図 1.2-4 FLUENT コードの解析フロー図

外気との熱の出入りを考慮した除熱評価について

コンクリートモジュールの除熱評価においては、モジュール外壁表面及び床基礎スラブ 底面は断熱条件とし評価を実施している。ここでは、モジュール壁面での外気との熱の出 入りを考慮した評価を行い、モジュール外壁表面を断熱とする条件における評価との比 較・検討を実施する。なお、床基礎スラブ底面は断熱条件とする。

1)評価条件

モジュール外壁表面を断熱とする条件,及びモジュール壁面での外気との熱の出入り を考慮する条件のそれぞれの評価条件を表 1.2-5 に示す。モジュール壁面での外気との 熱の出入りを考慮した評価を行う場合,太陽からの日射量をコンクリート壁面に入熱量 として付与すること,及びコンクリート外壁面からの放熱(外気による対流伝熱及び外 気へのふく射伝熱)を考慮することの2点がモジュール外壁表面を断熱条件とする場合 と異なる評価条件である。評価は,三次元熱流動解析コード FLUENT を用いて行う。

	モジュール 外壁断熱	モジュール壁面での 熱の出入りを考慮	備考
設計給気 温度(℃)	29.4	同左	表 1. 2-2 評価条件と同一
崩壊熱(k₩)	15.2	同左	表 1.2-2 評価条件と同一
日射入熱 (W/m ²)	無し	水平面:800 垂直面:200 (日射吸収率:0.6)	"核燃料物質等の工場又は事業 所の外における運搬に関する技 術上の基準に係る細目等を定め る告示",第14条,別記第四の 一の規定を準用
外気による	無し	風速 2m/s	小名浜の夏季(6~9月)の月平均 風速の平年値2.2~2.6m/sより 「発電用原子炉施設の安全解析
刘加西杰		◎ 与: 風速 0.5m/s	に関する気象指針」に定める静 穏状態の風速を参照し設定
外気-外壁間 の輻射伝熱	無し	考慮	

表 1.2-5 評価条件

2)評価結果

評価結果を表 1.2-6 に示す。また、モジュール壁面での熱の出入りを考慮した評価に おける、風速 2m/s での評価と、風速 0.5m/s の評価のコンクリートモジュール内壁温度 分布図をそれぞれ図 1.2-5、図 1.2-6 に示す(モジュール外壁表面を断熱とする条件での 温度分布図は図 1.2-3 参照)。モジュール外壁断熱での評価と比べ、モジュール壁面での 熱の出入りを考慮した評価では外気への排熱によりコンクリート温度が低くなるが、風 速 0.5m/s の評価においては、天井面の入熱量が大きく、天井内面温度が大きくなる傾向 にある。モジュール外壁を断熱条件とする場合と、モジュール壁面での外気との熱の出 入りを考慮する場合いずれも設計基準値を満足する。

		モジューノ	レ壁面での	
	モジュール	熱の出入	りを考慮	泗斗 甫滩庙
	外壁断熱	国油 9/	風速0.5m/s	以 訂
)虬述 2m/ S	(参考値)	
排気温度	39.4	38.1	38.9	
モジュール内	94 E	94 1	94 9	45
空気平均温度	34. 3	34.1	34. 3	
天井内面最高温度	52.8	51.1	54.5	
屋根面最高温度	_	51.9	59.3	
側壁内面最高温度	53.2	46.7	50.6	65
側壁外面最高温度	_	41.0	43.4	
床面最高温度	51.5	50.9	51.1	

表 1.2-6 評価結果

(単位:℃)

FLUENT 6.3 (3d, pbns, ske)

図 1.2-5 コンクリートモジュール内壁表面温度分布(風速 2.0m/s)

図 1.2-6 コンクリートモジュール内壁表面温度分布(風速 0.5m/s(参考値))

3)考察

評価条件,及び評価結果の不確定性に対する検討結果を以下に示す。モジュール壁面 での外気との熱の出入りを考慮する条件において,評価条件は妥当であると考えられる こと,モジュール外壁を断熱とする条件とモジュール壁面での外気との熱の出入りを考 慮する条件とで評価結果に大きな差異はなく,またいずれも設計基準値を満足している こと,評価結果に対する不確定性を考慮しても,設備への影響は無いと考えられること から,本文に記載しているモジュール外壁を断熱とする条件の評価は,コンクリートモ ジュールの除熱評価として妥当と考える。

① 日射入熱量の条件に事業所外運搬の告示に定める値を使用すること

各都市での夏期の設計用日射量(W・h/(m²・日))を表 1.2-7 に示す。 (空気調和・衛生工学便覧(第 14 版)第 17 章 冷暖房負荷表 17.6 設計用日射量(夏期))

	札幌	東京	福岡
水平面全天	7959	8086	8100
垂直面全天(E)	3752	3486	3511
垂直面全天(₩)	3705	3553	3475
垂直面全天(N)	1117	1091	1121
垂直面全天(S)	2527	1798	1598

表 1.2-7 各都市夏期の設計用日射量(W・h/(m²・日))

福島から最も近く,南に位置する東京データでの水平面及び垂直面の日照時間中 (5-18 時の13 時間と想定)の時間平均値を求めると,それぞれ以下の値となる。

・水平面:8086/13=622W/m²

• 垂直面平均值: (3486+3553+1091+1798)/(4×13)=191W/m²

また、1F構内での気象観測データにおける、2006年~2010年6~9月の5年間の日 射量データのうち、最も積算日射量が高い日の積算日射量を可照時間で割った値は607 W/m²であり、冷房設計用日射量計算モデル(東京:622W/m²)による時間平均値を下回 る。以上より、事業所外運搬の告示に定める値(水平面:800W/m²,垂直面:200W/m²) は、保守的な設定値と考えられ、評価に用いることは妥当と考える。

② 日射吸収率

日射入熱量に対するコンクリートの日射吸収率は、日本建築学会「建築設計資料集成」 より、明るい色のコンクリートの日射吸収率である 0.6 を用いている。文献により、コ ンクリートの日射吸収率の数値は若干の違いがあり、空気調和・衛生工学便覧,第5編 には、コンクリートの日射吸収率は0.7程度という記載がある。本評価では、上記のと おり日本建築学会「建築設計資料集成」記載値にて評価を行っているが、日射吸収率を 0.7程度とした場合においても、表1.2-8のとおり設計基準温度を超えることは無い。

また,数年程度ではコンクリート表面色の変化はほぼ無いと考えられるが,仮保管期 間が長期にわたる場合は,仮保管された乾式キャスクの表面温度やコンクリートの表面 状態等を確認し,除熱機能に影響が無いか今後状態を確認していく。

表 1.2-8 日射吸収率を変えた場合の除熱評価結果(風速 0.5m/s)

(単位:℃)

	ん 日本 座に 老市	熱の出入りを考慮		乳計甘油は
	2下生时然	日射吸収率	日射吸収率	
		0.6	0.7程度	
排気温度	39.4	38.9	39.3	
モジュール内	24 5	24.2	24 4	45
空気平均温度	34. 3	34. 3	04.4	
天井内面最高温度	52.8	54.5	57.0	
側壁内面最高温度	53.2	50.6	52.8	65
床面最高温度	51.5	51.1	51.3	

③外気による対流伝熱にて考慮する風速について

コンクリート壁面と外気との対流伝熱において,外気の風速を考慮し伝熱量を設定している。外気の風速は,小名浜特別地域気象観測所の観測データより,夏季(6~9月)の 月平均風速の平年値が約2.2~2.6m/s であることを踏まえ,2m/s と設定し評価を行っている。また,参考として静穏状態の評価もあわせて実施し,除熱評価の評価結果が設計 基準温度を満足することを確認している。静穏状態の風速は,「発電用原子炉施設の安全 解析に関する気象指針」の解説において,

(抜粋)

感度のよい微風向・微風速計では静穏時でも0.5m/s以上の風速を示していることが多く, また,静穏時における放射性雲からのガンマ線被曝も極端に高い実測値がえられていな いことから,静穏時においても大気による拡散希釈は行われているものと考えられる。

このように記載されていることから、コンクリートモジュールの除熱評価においても、

静穏状態の風速として同指針を参照し、0.5m/sと設定している。なお、風速 0.5m/sは1F 構内での気象観測データにおける、2006年~2010年6~9月の日照時間中(5時-18時と 想定)風速データの約97.5%を包絡する値であり、保守的な設定である。

④ 評価結果の不確定性

コンクリートモジュールの除熱評価における,現状の評価方針について,大きな保守 性を有するものではないが,定常的に評価条件を逸脱することはないと考える。また, 一時的に本評価条件を超える状態が発生した場合においても,以下の通り設備への影響 はないと考える。

・コンクリートモジュールへの影響

コンクリートの設計基準温度は保守的に「コンクリート製原子炉格納容器規格(JSME S NE1-2003)」の定常状態での温度制限値を用いている。同規格において 24 時間未満の非定常状態における温度制限値は 175℃とされており、一時的に 65℃以上の温度となったとしても、ただちにコンクリート内の水分の散逸により健全性に影響を与えることは考えにくい。

・キャスク除熱への影響

キャスクの除熱機能の確認のため、キャスク表面に温度センサ及び警報が設置され ており、温度上昇が発生した場合には免震重要棟で検知でき、散水などによる外気温 度の低下等の速やかな対処が可能である。

なお,キャスクの除熱評価における評価条件は,保守的な崩壊熱(※1)を設定して おり,評価の保守性を有している。またキャスクの除熱評価結果は最も設計基準温度に 対する余裕が厳しい燃料被覆管においても、26℃以上の裕度を有している。従って,一 時的にコンクリートモジュール内温度が 45℃を超過したとしても,キャスク各部の設 計基準温度を超過する恐れはないと考える。

※1 使用済燃料の軸方向燃焼度分布は中心部分で大きいことを考慮し,燃料の平均燃 焼度から求まる崩壊熱より大きい値を設計崩壊熱量とし除熱評価を行っている。

- (2) 輸送貯蔵兼用キャスク用コンクリートモジュールの除熱機能
- 1) 基本的な考え方

コンクリートモジュール内の除熱評価においては、コンクリートモジュール及び輸送 貯蔵兼用キャスクを適切にモデル化し、三次元熱流動解析コード FLUENT を用いて輸送貯 蔵兼用キャスク周囲温度、コンクリートモジュールの各部コンクリート温度を評価する。 コンクリートモジュール内に保管されたキャスクの崩壊熱は次の伝熱形態で最終的に 外界へ放熱される。

- ③ 使用済燃料から乾式キャスク表面に伝えられた崩壊熱の大部分は、キャスク近傍の空気に対流と伝導により伝達される。崩壊熱の一部については、ふく射及び支持架台を介する伝導によりコンクリートモジュールに伝えられる。
- ④ コンクリートモジュールへ伝わった熱は構造材を介した伝導伝熱及び対流により外界 (外気,地中など)に放出される。あるいは、対流と伝導によってモジュール内の空気 に伝わり、その自然換気に従って外界に放出される。
- 2) 設計基準

設計基準を表 1.2-9 に示す。

対象箇所	設計基準	設計基準温度
キャフク国田沢庄	乾式キャスク除熱評価のインプット	45℃以下
キャスク周囲温度	条件となる制限温度	
モジュールの	コンクリート材の構造強度が確保さ	
コンクリート材	れる制限温度	65 C LX F

表 1.2-9 設計基準

1)発電用原子力設備規格 コンクリート製原子炉格納容器規格(JSME S NE1-2003)

3) 評価条件

コンクリートモジュールの除熱評価の解析モデルは以下の通りとする。

- 保管状態のキャスク1基を含むコンクリートモジュール及び基礎スラブを解析対象とし、コンクリートモジュール及びキャスク形状の対称性を想定して1/2区分を模擬(モデル化)する。(図1.2-7参照)
- 輸送貯蔵兼用キャスクの形状は形状寸法が大きく流路の圧力損失が大きくなる A
 型キャスクとし、直径約 2.5m、全長約 5.4mの円柱形状で模擬する。(図 1.2-7 参
 照)
- ・ 輸送貯蔵兼用キャスク A型・B型とも発熱量は 15.3kW であり、キャスク表面の熱流束は表面積の小さい B型が大きくなる。このため、B型と同じ熱流束を A型キャ

スクに対して与え,両タイプを包絡できる発熱条件とする。評価に用いる発熱量は,15.3kW×(A型キャスクの表面積/B型キャスクの表面積)より,15.9kWとする。

- 解析で模擬しない部分の圧力損失要素として,給排気口に設置するグレーチング と外気が給排気口に流入/流出する際の縮流/拡流の圧力損失を,給排気面を換気 流が通過する際に発生する圧力損失として付与する(相当する圧力損失係数の設 定)。
- コンクリートモジュール温度を保守的に評価するため、モジュール外壁表面及び 床基礎スラブ底面は断熱条件とする。また、キャスク上面側のモジュール壁面に 設けられる点検扉及び給気口(1面)は模擬しない。(図 1.2-7 参照)なお、モジュ ール外壁表面での外気との熱の出入りを考慮した評価については参考資料に示す。

図 1.2-7 に三次元熱流動解析の評価領域を示す。また,評価条件を表 1.2-10 に示す。

図 1.2-7 三次元熱流動解析の評価領域 (コンクリートモジュール断面(単位:mm))

項目評価条件備考設計給気温度(℃)29.4小名浜特別地域気象観測所で観測された 2007 年~2011
年の夏季(6月~9月)毎正時観測データにおける累積出
現率が 99%となる最高温度発熱量(kW)15.9A型キャスク及びB型キャスクの表面の熱流束を包絡す
る値。15.3kW×(A型キャスクの表面積/B型キャスク
の表面積)より設定。キャスク全表面(上面,側面,
底面)に一様な熱流束を設定する。

表 1.2-10 評価条件

4) 評価方法

三次元熱流動解析コード FLUENT を用いて、伝導、対流、ふく射が共存する伝熱流動場の支配方程式系を解くことにより、キャスク周囲温度及びコンクリートモジュール温度を評価する。

図 1.2-8 に FLUENT での解析モデル図を示す。

5) 評価結果

評価結果を以下に示す。

A. 空気温度(キャスク周囲温度及び排気温度)

表 1.2-11 に三次元熱流動解析によるコンクリートモジュール内の平均空気温度と排 気温度を示す。三次元熱流動解析の結果から、コンクリートモジュール内の平均空気温 度は 34.8℃,排気温度は 40.3℃であり、設計基準温度 45℃を満足する。

B. コンクリートモジュールの温度

表 1.2-12 に三次元熱流動解析によるコンクリートモジュール最高温度値,図 1.2-9 にコンクリートモジュール内壁表面(天井面,側壁面,床面)及びコンクリート支持架台 の温度分布図を示す。

コンクリートモジュールのコンクリート材最高温度は 57.6℃(側壁)となり,設計基準 温度 65℃を満足する。

			(中位: 0)
キャスク型式	項目	評価結果	設計基準温度
輸送貯蔵兼用	コンクリートモジュール内 の平均空気温度	34.8	45
キャスク	排気温度	40.3	40

表 1.2-11 三次元熱流動解析による空気温度

(単位:℃)

表 1.2-12 三次元熱流動解析によるコンクリートモジュール温度の最高値

(単位:℃)

評価部位	評価結果	設計基準温度
天井面	54.8	
側壁面	57.6	
床面	50.2	65
コンクリート 支持架台	54.7	

図 1.2-9 コンクリートモジュール内壁表面温度分布

参考資料

外気との熱の出入りを考慮した除熱評価について(輸送貯蔵兼用キャスク)

コンクリートモジュールの除熱評価においては、モジュール外壁表面及び床基礎スラブ 底面は断熱条件とし評価を実施している。ここでは、モジュール壁面での外気との熱の出 入りを考慮した評価を行い、モジュール外壁表面を断熱とする条件における評価との比 較・検討を実施する。なお、床基礎スラブ底面は断熱条件とする。評価条件等は乾式貯蔵 キャスク用コンクリートモジュールでの除熱評価と同様である。

1)評価条件

評価条件を表 1.2-13 に示す。評価は,三次元熱流動解析コード FLUENT を用いて行う。

	モジュール	モジュール壁面での	備考	
	外壁断熱	熱の出入りを考慮		
設計給気 温度(℃)	29.4	同左	表 1. 2-10 評価条件と同一	
崩壞熱(kW)	15.9	同左	表 1.2-10 評価条件と同一	
日射入熱 (W/m ²)			"核燃料物質等の工場又は事業	
	無し	水平面:800	所の外における連搬に関する技	
		<u> </u>	術上の基準に係る細日等を定め	
		(日射吸収率:0.6)	る告示",第14条,別記第四の	
			ーの規定を準用	
外気による 対流伝熱	無し	周連 2m/c	小名浜の夏季(6~9月)の月平均	
		/虹(丞 ZIII/ S	風速の平年値 2.2~2.6m/s より	
		参考: 風速 0.5m/s	「発電用原子炉施設の安全解析	
			に関する気象指針」に定める静	
			穏状態の風速を参照し設定	
外気-外壁間	年 1	去虛		
の輻射伝熱	無し	与思		

表 1.2-13 評価条件

2)評価結果

評価結果を表 1.2-14 に示す。また、モジュール壁面での熱の出入りを考慮した評価に おける、風速 2m/s での評価と、風速 0.5m/s の評価のコンクリートモジュール内壁温度 分布図をそれぞれ図 1.2-10、図 1.2-11 に示す(モジュール外壁表面を断熱とする条件で の温度分布図は図 1.2-9 参照)。モジュール外壁断熱での評価と比べ、モジュール壁面で の熱の出入りを考慮した評価では外気への排熱によりコンクリート温度が低くなるが, 風速 0.5m/sの評価においては,天井面の入熱量が大きく,天井内面温度が大きくなる傾向にある。モジュール外壁を断熱条件とする場合と,モジュール壁面での外気との熱の 出入りを考慮する場合いずれも設計基準値を満足する。

		モジュール壁面での		きれました迷は
	モジュール	熱の出入りを考慮		
	外壁断熱	風速 2m/s	風速0.5m/s	
			(参考値)	
排気温度	40.3	38.6	39.4	
モジュール内	24 0	34.3	34. 5	45
空気平均温度	34.0			
天井内面最高温度	54.8	52.2	55.7	
屋根面最高温度	_	52.1	59.6	
側壁内面最高温度	57.6	47.9	51.8	
側壁外面最高温度	_	40.6	44.1	65
床面最高温度	50.2	49.3	49.6	
コンクリート支持架台	54.7	53.5	53.9	

表 1.2-14 評価結果

(単位:℃)

図 1.2-10 コンクリートモジュール内壁表面温度分布(風速 2.0m/s)

図 1.2-11 コンクリートモジュール内壁表面温度分布 (風速 0.5m/s (参考値))

Ⅱ-2-13-添 4-52

- 2 密封機能
- 2.1 乾式キャスクの密封機能について
- (1) 乾式貯蔵キャスク
- 1) 基本的な考え方

乾式貯蔵キャスクについて,周辺公衆及び放射線業務従事者に対し,放射線被ばく上 の影響を及ぼすことのないよう,使用済燃料が内包する放射性物質を適切に閉じ込める 設計とする。そのため以下の配慮を行う。

- ① 蓋部及び蓋部貫通孔のシール部には、金属ガスケットを用い、設計貯蔵期間中の圧力 障壁を維持する構造とする。
- ② 乾式貯蔵キャスク本体は堅固な構造であり、蓋部は一次蓋、二次蓋の二重構造である。 乾式貯蔵キャスク本体の密封境界は、図2.1-1に示すように胴、底板、一次蓋、貫通 孔蓋板及び金属ガスケットからなる。また図2.1-2に示すように、胴、一次蓋、二次 蓋、貫通孔蓋板及び金属ガスケットからなる密封監視圧力境界がある。
- ③ 乾式貯蔵キャスク内部は負圧(密封境界)とし、一次蓋と二次蓋の間は正圧とすることにより圧力障壁を設ける。
- ④ 蓋間空間の圧力を監視することにより、万一いずれかの金属ガスケットに漏えいが生じた場合には、密封機能低下が検出できる。この場合でも乾式貯蔵キャスク内部の負圧は維持され、内部気体が直接大気中に放出されることはない。
- ⑤ 金属ガスケットの構造は、コイルスプリングを内蔵する金属製Oリング状ガスケットである。外観はOリング状で、中心部にあるコイルスプリングと、これを覆う二層の被覆から構成される。

なお,密封評価は大型乾式貯蔵キャスクを代表して評価する。これは大型乾式貯蔵キャ スクの金属ガスケットの直径が大きいことから,漏えい孔径が大きくなるためである。

密封評価の評価条件として用いるキャスク内部圧力,蓋間空間圧力,大気圧,キャス ク容積,流体温度,内部気体,設計貯蔵期間は添付資料-2「評価の基本方針」で記載し ている既存評価書の内容と同じ条件である。よって本評価結果は既存評価書の内容を引用 する。

図 2.1-1 乾式貯蔵キャスクの密封構造図

図 2.1-2 乾式貯蔵キャスクの密封部詳細図

図 2.1-3 乾式貯蔵キャスクの貫通孔蓋板部詳細図

2) 評価基準

貯蔵容器の金属ガスケットの漏えい率が、基準漏えい率以下となること。

3) 評価条件

基準漏えい率を求めるにあたっては,蓋間圧力は一定及び蓋間空間のガスは乾式貯蔵 キャスク内部側にのみ漏えいするものとして漏えい計算を行う。また大気圧としては, 気象変化による圧力変動を考慮した値 9.7×10⁴Pa(0.96atm,日本に上陸した平均的な台 風の中心気圧¹⁾)とする。

密封評価条件を表 2.1-1 に示す。

項目	評価条件		
圧力	キャスク内部:8.1×10 ⁴ (初期)		
(Pa abs)	蓋間空間 : 4.1×10 ⁵ (初期)		
	大気圧 : 9.7×10 ⁴		
空間容積	キャスク内部:4.0		
(m^3)			
流体温度	キャスク内部: 240		
(°C)	(今回の熱解析の結果では, キャスクにヘリウム		
	を封入した後の燃料被覆管の温度174℃がキャス		
	ク内部の最高温度であるが,保守的に 240℃を採		
	用する。)		
	シール部 :-4.5		
	(小名浜特別地域気象観測所で観測された 2007		
	年12月~2012年2月の冬季(12月~2月)毎正時		
	観測データにおける累積出現率が99%となる最低		
	温度)		
内部気体	ヘリウム		
設計貯蔵期間	40		
(年)			

表 2.1-1 密封評価条件

1) 理科年表, 国立天文台 1989

4) 評価方法

① 概要

密封評価では,設計貯蔵期間中にキャスク内部の負圧が維持できる漏えい率を求める。 漏えい率はシールする流体,シール部温度及び漏えい上流側と下流側の圧力に依存す る。従って乾式貯蔵キャスクの漏えい計算では,初期値としてある漏えい率を設定し, 微小時間ごとに乾式貯蔵キャスク内部圧力の変化とそれによる漏えい率の変化を求め, 圧力変化を積分することにより,ある期間経過後の乾式貯蔵キャスク内部圧力を求める。

乾式貯蔵キャスクの密封評価の基準となる基準漏えい率は,設計貯蔵期間中に乾式貯 蔵キャスク内部の負圧が維持できる漏えい率として定義される。これは上述の漏えい計 算を繰り返して行うことにより,設計貯蔵期間経過後に乾式貯蔵キャスク内部圧力が大 気圧となる漏えい率として求める。

なお、基準漏えい率及び漏えい率は一次蓋からの漏えいと貫通孔蓋板からの漏えいの 合計の値とする。

② 基準漏えい率計算手順

基準漏えい率の算出フローを図 2.1-4 に示す。

- A. 乾式貯蔵キャスクの密封境界の漏えい率 Q₀を設定する。この漏えい率は使用済燃料の貯蔵開始時のシール部の圧力,温度条件での乾式貯蔵キャスクの密封境界(一次蓋)全箇所からの漏えい率の合計値として設定する。
- B. 乾式貯蔵キャスク初期内部圧力 Pi(0), この時の漏えい率 Q(Pi)=Q₀による微小時間 dt 後の内部圧力 Pi(t)を,ボイル・シャルルの法則に基づき,以下のように求める。

ここで,

- dPi(t):乾式貯蔵キャスク内部の圧力変動(Pa)
 - Pi:乾式貯蔵キャスク内部の圧力 (Pa)
 - Vi: 乾式貯蔵キャスク内部容積 (m³)
 - Ti:乾式貯蔵キャスク内部温度(K)
 - Q(Pi):漏えい率 (Pa·m³/s)
 - dt:微小時間(s)
 - Ts:シール部温度(K)
- C.新しい乾式貯蔵キャスク内部圧力 Pi(t)による漏えい率 Q(Pi)を求める。

D.新しい漏えい率 Q(Pi)による微小時間後の乾式貯蔵キャスク内部圧力 Pi(t)を(1)の

式にて求める。

- E.C,Dの手順で微小時間ごとに積算(数値積分)することにより,設計貯蔵期間経過 後の乾式貯蔵キャスク内部圧力 Pf を求める。
- F.Pf が正圧の場合はより小さい漏えい率を,負圧の場合はより大きい漏えい率 Q₀を設 定して,A~Eを繰り返し,設計貯蔵期間経過後の乾式貯蔵キャスク内部圧力が大 気圧となる漏えい率 Qf を求める。

G.Qf を標準状態(25℃, 1×10⁵ Pa)の漏えい率に換算し,基準漏えい率 Qs とする。

③ 漏えい計算式

前項の漏えい率の計算や基準漏えい率の換算は,流体力学基礎式に基づく以下のクヌッ センの式を用いる。

$$Q = LPa$$

$$L = (Fc + Fm) \cdot (Pu - Pd)$$

$$Fc = \frac{\pi}{128} \cdot \frac{D^4}{a\mu}$$

$$Fm = \frac{\sqrt{2\pi Ro}}{6} \cdot \frac{D^3 \sqrt{T/M}}{aPa}$$

ここで,

- Fc:連続流のコンダクタンス係数 (m³/(Pa·s))
- Fm:自由分子流のコンダクタンス係数 (m³/(Pa·s))
- D:相当漏えい孔径(m)
- a:漏えい孔長(m)
- μ:粘性係数 (Pa·s)
- T:流体の温度(K)
- M:流体の分子量 (kg/mol)
- Ro: 気体定数 (J/(mol·K))
- L: 圧力 Pa における体積漏えい率 (m³/s)
- Pa:流れの平均圧力 (Pa), Pa= (Pu+Pd) / 2
- Pu:上流側(蓋間空間)の圧力(Pa)
- Pd:下流側(乾式貯蔵キャスク内部)の圧力(Pa)

図 2.1-4 漏えい率計算フロー図

5) 評価結果

解析した結果を表 2.1-2 に示す。

乾式貯蔵キャスクの気密漏えい確認の判定基準が基準漏えい率を下回るように設定する。使用する金属ガスケットはこれまで当社で行った気密漏えい確認実績において漏えい率が1×10⁻⁹Pa·m³/sオーダーであったものと同型のものを用い、気密漏えい確認において実機の漏えい率が基準漏えい率を下回ることを確認する。

項目	解析結果	
基準漏えい率 (Pa·m ³ /s)	1×10^{-6}	

表 2.1-2 密封評価結果

- (2) 輸送貯蔵兼用キャスク A
- 1) 基本的な考え方

輸送貯蔵兼用キャスク A について,周辺公衆及び放射線業務従事者に対し,放射線被 ばく上の影響を及ぼすことのないよう,使用済燃料が内包する放射性物質を適切に閉じ 込める設計とする。そのため以下の配慮を行う。

- ① 蓋部及び蓋部貫通孔のシール部には、金属ガスケットを用い、設計評価期間中の圧力 障壁を維持する構造とする。
- ② 輸送貯蔵兼用キャスクA本体は堅固な構造であり、蓋部は一次蓋、二次蓋の二重構造である。輸送貯蔵兼用キャスクA本体の密封境界は、図2.1-5に示すように本体胴、一次蓋、バルブカバー及び金属ガスケットからなる。また図2.1-6に示すように、本体胴、一次蓋、二次蓋、バルブカバー、圧力センサ及び金属ガスケットからなる密封監視圧力境界がある。
- ③ 輸送貯蔵兼用キャスクA内部は負圧(密封境界)とし,一次蓋と二次蓋の間は正圧と することにより圧力障壁を設ける。
- ④ 蓋間空間の圧力を監視することにより、万一いずれかの金属ガスケットに漏えいが生じた場合には、密封機能低下が検出できる。この場合でも輸送貯蔵兼用キャスクA内部の負圧は維持され、内部気体が直接大気中に放出されることはない。
- ⑤ 金属ガスケットの構造は、コイルスプリングを内蔵する金属製Oリング状ガスケットである。外観はOリング状で、中心部にあるコイルスプリングと、これを覆う二層の被覆から構成される。

密封評価の評価条件として用いるキャスク内部圧力,蓋間空間圧力,大気圧,キャス ク容積,内部気体,設計評価期間は既存評価書の内容と同じ条件であるが,流体温度は 異なっている。

よって本評価結果は既存評価書の内容を引用し、流体温度の影響を考察する。

図 2.1-5 輸送貯蔵兼用キャスク A の密封構造図

Ⅲ-2-13-添4-63

図 2.1-6 輸送貯蔵兼用キャスク A の密封部詳細図

2) 評価基準

貯蔵容器の金属ガスケットの漏えい率が、基準漏えい率以下となること。

3) 評価条件

基準漏えい率を求めるに当たっては,蓋間圧力は一定及び蓋間空間のガスは輸送貯蔵 兼用キャスク A 内部側にのみ漏えいするものとして漏えい計算を行う。また大気圧とし ては,気象変化による圧力変動を考慮した値 9.7×10⁴Pa(0.96atm,日本に上陸した平均 的な台風の中心気圧¹⁾)とする。

密封評価条件を表 2.1-3 に示す。

項目	評価条件		
圧力	キャスク内部:8.0×10 ⁴ (初期)		
(Pa abs)	蓋間空間 : 4.1×10 ⁵ (初期)		
	大気圧 : 9.7×10 ⁴		
空間容積	キャスク内部:約5		
(m^3)			
流体温度	キャスク内部:181		
(°C)	(1.1(2) 輸送貯蔵兼用キャスクAの除熱機能の		
	結果から、キャスクにヘリウムを封入した後のキ		
	ャスク内部の最高温度は燃料被覆管の温度 178℃		
	であるが、既存評価書で行った熱解析の結果		
	181℃を保守的に採用する。)		
	シール部 :-22.4		
	(乾式貯蔵キャスクの密封評価で用いる温度は		
	-4.5℃であるが,既存評価書で実施した密封評価		
	において用いた-22.4℃を保守的に採用する。)		
内部気体	ヘリウム		
設計評価期間	60		
(年)			

表 2.1-3 密封評価条件

1) 理科年表, 国立天文台 1989

- 4) 評価方法
- ① 概要

密封評価では,設計評価期間中にキャスク内部の負圧が維持できる漏えい率を求める。 漏えい率はシールする流体,シール部温度及び漏えい上流側と下流側の圧力に依存す る。従って輸送貯蔵兼用キャスク A の漏えい計算では,初期値としてある漏えい率を設 定し,微小時間ごとに輸送貯蔵兼用キャスク A 内部圧力の変化とそれによる漏えい率の 変化を求め,圧力変化を積分することにより,ある期間経過後の輸送貯蔵兼用キャスク A 内部圧力を求める。

輸送貯蔵兼用キャスク A の密封評価の基準となる基準漏えい率は,設計評価期間中に 輸送貯蔵兼用キャスク A 内部の負圧が維持できる漏えい率として定義される。これは上 述の漏えい計算を繰り返して行うことにより,設計評価期間経過後に輸送貯蔵兼用キャ スク A 内部圧力が大気圧となる漏えい率として求める。なお,基準漏えい率及び漏えい 率は一次蓋からの漏えいとカバープレートからの漏えいの合計の値とする。

内部空間の圧力の算定にあたっては、使用済燃料の破損率として、米国の使用済燃料 集合体の乾式貯蔵中における漏えい燃料発生率(約0.01%)と日本の軽水炉における漏え い燃料発生率(約0.01%以下)を考慮し、保守的な値として0.1%¹⁾を想定する。

 日本原子力学会標準「使用済燃料中間貯蔵施設用金属キャスクの安全設計及び検査 基準:2010」附属書J(参考)金属キャスクの密封設計における使用済燃料の破損 の仮定

② 基準漏えい率計算手順

基準漏えい率の算出フローを図 2.1-4 に示す。

- A.輸送貯蔵兼用キャスクAの密封境界の漏えい率Q₀を設定する。この漏えい率は使用 済燃料の貯蔵開始時のシール部の圧力,温度条件での輸送貯蔵兼用キャスクAの密 封境界(一次蓋)全箇所からの漏えい率の合計値として設定する。
- B.輸送貯蔵兼用キャスクA初期内部圧力Pi(0),この時の漏えい率Q(Pi)=Q₀による微小時間 dt 後の内部圧力Pi(t)を、ボイル・シャルルの法則に基づき、以下のように求める。

 $\frac{Vi \cdot dPi(t)}{Ti} = \frac{Q(Pi) \cdot dt}{Ts} \quad \dots \dots \dots (1)$

ここで,

dPi(t):輸送貯蔵兼用キャスクA内部の圧力変動(Pa)

Pi:輸送貯蔵兼用キャスクA内部の圧力(Pa)

- Vi:輸送貯蔵兼用キャスクA内部容積(m³)
- Ti:輸送貯蔵兼用キャスクA内部温度(K)
- Q(Pi):漏えい率 (Pa·m³/s)
 - dt:微小時間(s)
 - Ts:シール部温度 (K)
- C.新しい輸送貯蔵兼用キャスクA内部圧力Pi(t)による漏えい率Q(Pi)を求める。
- D.新しい漏えい率Q(Pi)による微小時間後の輸送貯蔵兼用キャスクA内部圧力Pi(t)を (1)の式にて求める。
- E.C,Dの手順で微小時間ごとに積算(数値積分)することにより,設計評価期間経過 後の輸送貯蔵兼用キャスクA内部圧力Pfを求める。
- F.Pf が正圧の場合はより小さい漏えい率を,負圧の場合はより大きい漏えい率 Q₀を設 定して,A~Eを繰り返し,設計評価期間経過後の輸送貯蔵兼用キャスク A 内部圧 力が大気圧となる漏えい率 Qf を求める。
- G.Qf を標準状態(25℃, 1.01×10⁵ Pa)の漏えい率に換算し,基準漏えい率Qsとする。
- ③ 漏えい計算式

前項の漏えい率の計算や基準漏えい率の換算は,流体力学基礎式に基づく以下のクヌッ センの式を用いる。

$$Q = LPa$$

$$L = (Fc + Fm) \cdot (Pu - Pd)$$

$$Fc = \frac{\pi}{128} \cdot \frac{D^4}{a\mu}$$

$$Fm = \frac{\sqrt{2\pi Ro}}{6} \cdot \frac{D^3 \sqrt{T/M}}{aPa}$$

ここで,

- Fc:連続流のコンダクタンス係数 (m³/(Pa·s))
- Fm:自由分子流のコンダクタンス係数 (m³/(Pa·s))
- D:相当漏えい孔径(m)
- a:漏えい孔長(m)
- μ :粘性係数 (Pa·s)
- T:流体の温度(K)
- M:流体の分子量 (kg/mol)
- Ro: 気体定数 (J/(mol·K))
- L: 圧力 Pa における体積漏えい率 (m³/s)
Pa:流れの平均圧力 (Pa), Pa= (Pu+Pd) / 2

Pu:上流側(蓋間空間)の圧力(Pa)

Pd:下流側(輸送貯蔵兼用キャスクA内部)の圧力(Pa)

5) 評価結果

解析した結果を表 2.1-4の基準漏えい率に示す。

設計評価期間中に輸送貯蔵兼用キャスク A 内部の負圧が維持できる漏えい率以下にリ ークテスト判定基準を設定し、これを満足することにより密封機能が維持される設計と なっている。

なお,使用する金属ガスケットは乾式貯蔵キャスクで用いている金属ガスケットと同 等である。

項目	基準漏えい率	リークテスト判定基準
	(Pa ⋅ m³/s)	(Pa ⋅ m³/s)
金属ガスケットの漏えい率	2. 4×10^{-6}	1.9×10^{-6}

表 2.1-4 密封評価結果

- (3) 輸送貯蔵兼用キャスク B
- 1) 基本的な考え方

輸送貯蔵兼用キャスク B について,周辺公衆及び放射線業務従事者に対し,放射線被 ばく上の影響を及ぼすことのないよう,使用済燃料が内包する放射性物質を適切に閉じ 込める設計とする。そのため以下の配慮を行う。

- ① 蓋部及び蓋部貫通孔のシール部には、金属ガスケットを用い、設計評価期間中の圧力 障壁を維持する構造とする。
- ② 輸送貯蔵兼用キャスクB本体は堅固な構造であり、蓋部は一次蓋、二次蓋の二重構造である。輸送貯蔵兼用キャスクB本体の密封境界は、図2.1-7に示すように本体胴、一次蓋、カバープレート及び金属ガスケットからなる。また図2.1-8に示すように、本体胴、一次蓋、二次蓋、カバープレート、圧力センサ及び金属ガスケットからなる密封監視圧力境界がある。
- ③ 輸送貯蔵兼用キャスクB内部は負圧(密封境界)とし、一次蓋と二次蓋の間は正圧と することにより圧力障壁を設ける。
- ④ 蓋間空間の圧力を監視することにより、万一いずれかの金属ガスケットに漏えいが生じた場合には、密封機能低下が検出できる。この場合でも輸送貯蔵兼用キャスクB内部の負圧は維持され、内部気体が直接大気中に放出されることはない。
- ⑤ 金属ガスケットの構造は、コイルスプリングを内蔵する金属製Oリング状ガスケットである。外観はOリング状で、中心部にあるコイルスプリングと、これを覆う二層の被覆から構成される。

密封評価の評価条件として用いるキャスク内部圧力,蓋間空間圧力,大気圧,キャス ク容積,内部気体,設計評価期間は既存評価書の内容と同じ条件であるが,流体温度は 異なっている。

よって本評価結果は既存評価書の内容を引用し、流体温度の影響を考察する。

図 2.1-7 輸送貯蔵兼用キャスクの密封構造図

Ⅲ-2-13-添 4-70

図 2.1-8 輸送貯蔵兼用キャスク B の密封部詳細図

2) 評価基準

貯蔵容器の金属ガスケットの漏えい率が、基準漏えい率以下となること。

3) 評価条件

基準漏えい率を求めるにあたっては,蓋間圧力は一定及び蓋間空間のガスは輸送貯蔵 兼用キャスク B 内部側にのみ漏えいするものとして漏えい計算を行う。また大気圧とし ては,気象変化による圧力変動を考慮した値 9.7×10⁴Pa(0.96atm,日本に上陸した平均 的な台風の中心気圧¹⁾)とする。

密封評価条件を表 2.1-5 に示す。

項目	評価条件	
圧力	キャスク内部:8.0×10 ⁴ (初期)	
(Pa abs)	蓋間空間 : 4.1×10 ⁵ (初期)	
	大気圧 : 9.7×10 ⁴	
空間容積	キャスク内部:約6	
(m^3)		
流体温度	キャスク内部:259	
(°C)	(1.1(3) 輸送貯蔵兼用キャスクBの除熱機能の	
	結果から、キャスクにヘリウムを封入した後のキ	
	ャスク内部の最高温度は燃料被覆管の温度 249℃	
	であるが、既存評価書で行った熱解析の結果	
	259℃を保守的に採用する。)	
	シール部 :-22.4	
	(乾式貯蔵キャスクの密封評価で用いる温度は	
	-4.5℃であるが,既存評価書で実施した密封評価	
	において用いた-22.4℃を保守的に採用する。)	
内部気体	ヘリウム	
設計評価期間	60	
(年)		

表 2.1-5 密封評価条件

1) 理科年表, 国立天文台 1989

- 4) 評価方法
- ① 概要

密封評価では,設計評価期間中にキャスク内部の負圧が維持できる漏えい率を求める。 漏えい率はシールする流体,シール部温度及び漏えい上流側と下流側の圧力に依存す る。従って輸送貯蔵兼用キャスク B の漏えい計算では,初期値としてある漏えい率を設 定し,微小時間ごとに輸送貯蔵兼用キャスク B 内部圧力の変化とそれによる漏えい率の 変化を求め,圧力変化を積分することにより,ある期間経過後の輸送貯蔵兼用キャスク B 内部圧力を求める。

輸送貯蔵兼用キャスク B の密封評価の基準となる基準漏えい率は,設計評価期間中に 輸送貯蔵兼用キャスク B 内部の負圧が維持できる漏えい率として定義される。これは上 述の漏えい計算を繰り返して行うことにより,設計評価期間経過後に輸送貯蔵兼用キャ スク B 内部圧力が大気圧となる漏えい率として求める。なお,基準漏えい率及び漏えい 率は一次蓋からの漏えいと一次蓋貫通孔蓋板からの漏えいの合計の値とする。

内部空間の圧力の算定にあたっては、使用済燃料の破損率として、米国の使用済燃料 集合体の乾式貯蔵中における漏えい燃料発生率(約0.01%)と日本の軽水炉における漏え い燃料発生率(約0.01%以下)を考慮し、保守的な値として0.1%¹⁾を想定する。

 日本原子力学会標準「使用済燃料中間貯蔵施設用金属キャスクの安全設計及び検査 基準:2010」附属書J(参考)金属キャスクの密封設計における使用済燃料の破損 の仮定

② 基準漏えい率計算手順

基準漏えい率の算出フローを図 2.1-4 に示す。

- A.輸送貯蔵兼用キャスク B の密封境界の漏えい率 Q₀を設定する。この漏えい率は使用 済燃料の貯蔵開始時のシール部の圧力,温度条件での輸送貯蔵兼用キャスク B の密 封境界(一次蓋)全箇所からの漏えい率の合計値として設定する。
- B. 輸送貯蔵兼用キャスク B 初期内部圧力 Pi (0), この時の漏えい率 Q(Pi)=Q₀による微小 時間 dt 後の内部圧力 Pi (t)を,ボイル・シャルルの法則に基づき,以下のように求 める。

ここで,

dPi(t):輸送貯蔵兼用キャスクB内部の圧力変動(Pa)

Pi:輸送貯蔵兼用キャスクB内部の圧力(Pa)

- Vi:輸送貯蔵兼用キャスクB内部容積(m³)
- Ti:輸送貯蔵兼用キャスクB内部温度(K)
- Q(Pi):漏えい率 (Pa·m³/s)
 - dt:微小時間(s)
 - Ts:シール部温度 (K)
- C.新しい輸送貯蔵兼用キャスクB内部圧力Pi(t)による漏えい率Q(Pi)を求める。
- D.新しい漏えい率Q(Pi)による微小時間後の輸送貯蔵兼用キャスクB内部圧力Pi(t)を (1)の式にて求める。
- E.C,Dの手順で微小時間ごとに積算(数値積分)することにより,設計評価期間経過 後の輸送貯蔵兼用キャスクB内部圧力Pfを求める。
- F.Pf が正圧の場合はより小さい漏えい率を,負圧の場合はより大きい漏えい率 Q₀を設 定して,A~Eを繰り返し,設計評価期間経過後の輸送貯蔵兼用キャスク B 内部圧 力が大気圧となる漏えい率 Qf を求める。
- G.Qf を標準状態(25℃, 1.01×10⁵ Pa)の漏えい率に換算し,基準漏えい率Qsとする。
- ③ 漏えい計算式

前項の漏えい率の計算や基準漏えい率の換算は,流体力学基礎式に基づく以下のクヌッ センの式を用いる。

$$Q = LPa$$

$$L = (Fc + Fm) \cdot (Pu - Pd)$$

$$Fc = \frac{\pi}{128} \cdot \frac{D^4}{a\mu}$$

$$Fm = \frac{\sqrt{2\pi Ro}}{6} \cdot \frac{D^3 \sqrt{T/M}}{aPa}$$

ここで,

- Fc:連続流のコンダクタンス係数 (m³/(Pa·s))
- Fm:自由分子流のコンダクタンス係数 (m³/(Pa·s))
- D:相当漏えい孔径(m)
- a:漏えい孔長(m)
- μ :粘性係数 (Pa·s)
- T:流体の温度(K)
- M:流体の分子量 (kg/mol)
- Ro: 気体定数 (J/(mol·K))
- L: 圧力 Pa における体積漏えい率 (m³/s)

Pa:流れの平均圧力 (Pa), Pa= (Pu+Pd) / 2

Pu:上流側(蓋間空間)の圧力(Pa)

Pd:下流側(輸送貯蔵兼用キャスクB内部)の圧力(Pa)

5) 評価結果

解析した結果を表 2.1-6の基準漏えい率に示す。

設計評価期間中に輸送貯蔵兼用キャスク B 内部の負圧が維持できる漏えい率以下にリ ークテスト判定基準を設定し、これを満足することにより密封機能が維持される設計と なっている。

なお,使用する金属ガスケットは乾式貯蔵キャスクで用いている金属ガスケットと同 等である。

項目	基準漏えい率	リークテスト判定基準
	(Pa ⋅ m³/s)	(Pa ⋅ m³/s)
金属ガスケットの漏えい率	2. 4×10^{-6}	1.6×10^{-6}

表 2.1-6 密封評価結果

3 遮へい機能

- 3.1 乾式キャスクの遮へい機能
- (1) 乾式貯蔵キャスクの遮へい機能
- 1) 基本的な考え方

遮へい設計に当たっては、周辺公衆及び放射線業務従事者に対し、放射線被ばく上影響を及ぼすことのないよう、使用済燃料の放射線を適切に遮へいする能力を有するよう 以下のとおり設計する。

- ① 乾式貯蔵キャスクはガンマ線遮へいと中性子遮へいの機能を有する。
- ② ガンマ線遮へい材は主にキャスク構造体(胴,底板,一次蓋,二次蓋等)であり, 鍛造炭素鋼等で構成される。
- ③ 中性子遮へい材は、水素を多く含有するレジンで構成される。

乾式貯蔵キャスクには収納する使用済燃料の体数が異なる中型と大型の2種類の乾式 貯蔵キャスクがあり、中型と大型の乾式貯蔵キャスクそれぞれについて評価する。

乾式貯蔵キャスクの遮へい解析フローを図 3.1-1 に示す。この中で評価条件として用 いる使用済燃料仕様,乾式貯蔵キャスク仕様,線源強度及び解析モデル等は添付資料-2 「評価の基本方針」で記載している既存評価書の内容と同じ条件である。よって,本評 価結果は既存評価書の内容を引用する。

図 3.1-1 乾式貯蔵キャスクの遮へい解析フロー

2) 設計基準

乾式貯蔵キャスクの設計基準は,事業所内運搬に係る法令「実用発電用原子炉の設置, 運転等に関する規則」(昭和53年12月28日通商産業省令第77号)第13条を適用し, 表3.1-1のとおりとする。

表 3.1-1 設計基準

(単位: μ Sv/h)

	設計基準	
乾式貯蔵キャスク		
表面	2000以下	
乾式貯蔵キャスク	100 115	
表面より 1m	100以下	

3) 設計条件

①遮へい厚さ

乾式貯蔵キャスクの遮へい厚さを表 3.1-2 に示す。なお、遮へい厚さは大型・中型 ともに同じ厚さである。

表 3.1-2 遮へい厚さ

(単位:mm)

	低合金鋼	ステンレス鋼	レジン
半径方向	260	—	$106/170$ $^{\pm 1}$
蓋方向	295	90	140
底方向	305	—	150

注1:図3.1-2のようにレジンを用いた中性子遮へい領域の厚さは場所によって違う ため2つの値を併記した。

②線源条件

8×8 燃料,新型8×8 燃料及び新型8×8 ジルコニウムライナ燃料のうち最も厳し い線源条件となる新型8×8 ジルコニウムライナ燃料について評価する。燃料収納条 件を表3.1-3 に示す。乾式貯蔵キャスクの収納物の線源条件を中型,大型それぞれ表 3.1-4,表3.1-5 に示す。

	燃料仕様			
	8×8燃料 新型8×8 新型8×8			
			ジルコニウムライナ	
最高燃焼度(MWd/tU)	30, 000	33, 500	36, 500	
最低冷却期間 (年)	13	13	13	

表 3.1-3 燃料収納条件

表 3.1-4 線源条件(中型キャスク)

項	目	線源条件
平均燃焼度	(MWd/t)	36, 500
初期濃縮度	(%)	約 3.0
冷却期間	(年)	13
収納体数	(体)	37

表 3.1-5 線源条件(大型キャスク)

項	目	線源条件
平均燃焼度	(MWd/t)	36, 500
初期濃縮度	(%)	約 3.0
冷却期間	(年)	13
収納体数	(体)	52

③線源強度及びエネルギー

A. ガンマ線源強度

使用済燃料のガンマ線源強度の計算は ORIGEN2 コードにより行う。 得られたガンマ線源強度を中型,大型それぞれ表 3.1-6,表 3.1-7 に示す。

エネルギー	平均エネルギー	エネルギー範囲	線源強度
群	(MeV)	(MeV)	(ph/s)
1	0.375	0.30 - 0.45	5.991×10^{14}
2	0.575	0.45 - 0.70	2. 619×10^{16}
3	0.850	0.70 - 1.0	1.567×10^{15}
4	1.25	1.0 - 1.5	9. 238×10^{14}
5	1.75	1.5 - 2.0	2. 766×10^{13}
6	2.25	2.0 - 2.5	5. 429×10^{10}
7	2.75	2.5 - 3.0	5. 208×10^9
8	3.50	3.0 - 4.0	6. 783×10^8

表 3.1-6 ガンマ線源強度(中型キャスク)

表 3.1-7 ガンマ線源強度(大型キャスク)

エネルギー	平均エネルギー	エネルギー範囲	線源強度
群	(MeV)	(MeV)	(ph/s)
1	0.375	0.30 - 0.45	8. 420×10^{14}
2	0.575	0.45 - 0.70	3. 681×10^{16}
3	0.850	0.70 - 1.0	2. 202×10^{15}
4	1.25	1.0 — 1.5	1.298×10^{15}
5	1.75	1.5 - 2.0	3. 887×10^{13}
6	2.25	2.0 - 2.5	7. 630×10^{10}
7	2.75	2.5 - 3.0	7.319×10^{9}
8	3.50	3.0 - 4.0	9. 533×10^8

使用済燃料の構造材の放射化による線源強度を中型,大型それぞれ表 3.1-8,表 3.1-9 に示す。

	Co-60 強度(decay/s)
上部タイプレートハンドル部	5. 259×10^{11}
上部タイプレートグリッド・上部端栓部	6. 558×10^{12}
上部プレナム部	2. 640×10^{13}
下部端栓・下部タイプレート部	$1.270 imes 10^{13}$

表 3.1-8 構造材の放射化によるガンマ線源強度(中型キャスク)

表 3.1-9 構造材の放射化によるガンマ線源強度(大型キャスク)

	Co-60 強度(decay/s)
上部タイプレートハンドル部	7. 390×10^{11}
上部タイプレートグリッド・上部端栓部	9. 216×10^{12}
上部プレナム部	3. 710×10^{13}
下部端栓・下部タイプレート部	1.784×10^{13}

B. 中性子線源強度

使用済燃料の中性子線源強度の計算は ORIGEN2 コードにより行う。得られた中性 子線源強度を中型,大型それぞれ表 3.1-10,表 3.1-11 に示す。また計算で使用す る中性子エネルギースペクトルを表 3.1-12 に示す。

		中性子線源強度(n/s)
1次中性子源	自発核分裂によるもの	6. 307×10^9
	(α, n) 反応によるもの	1.042×10^8
	合 計	6. 411×10^9
増倍効果を考慮した全中性子線源強度		1.069×10^{10}

表 3.1-10 中性子線源強度(中型キャスク)

表 3.1-11 中性子線源強度(大型キャスク)

		中性子線源強度(n/s)
1次中性子源	自発核分裂によるもの	8.863 $\times 10^{9}$
	(α, n) 反応によるもの	1.465×10^8
	合 計	9.010 $\times 10^{9}$
増倍効果を考	意した全中性子線源強度	1.502×10^{10}

エネルギー群	上限エネルギー (MeV)	スペクトル
1	1.492×10^{1}	5.72 \times 10 ⁻⁴
2	1.220×10^{1}	2.02×10^{-3}
3	1.000×10^{1}	6.07 \times 10 ⁻³
4	8.180 \times 10 ⁰	2.00×10^{-2}
5	6.360 \times 10 ⁰	4.12 \times 10 ⁻²
6	4.960 \times 10 ⁰	5.27×10^{-2}
7	4.060 \times 10 ⁰	1.10×10^{-1}
8	3.010×10^{0}	8.74 \times 10 ⁻²
9	2.460 \times 10 ⁰	2.28×10^{-2}
10	2.350 \times 10 ⁰	1.15×10^{-1}
11	1.830×10^{0}	2.07×10^{-1}
12	1.110×10^{0}	1.89×10^{-1}
13	5.500 \times 10 ⁻¹	1.31×10^{-1}
14	1.110×10^{-1}	1.59×10^{-2}
15	3.350 \times 10 ⁻³	8.12 \times 10 ⁻⁵
16	5.830 \times 10 ⁻⁴	5.89×10^{-6}
17	1.010×10^{-4}	3.89×10^{-7}
18	2.900 \times 10 ⁻⁵	5.53 \times 10 ⁻⁸
19	1.070×10^{-5}	1.33×10^{-8}
20	3.060×10^{-6}	1.88×10^{-9}
21	1.120 \times 10 ⁻⁶	4.19 \times 10 ⁻¹⁰
22	4. 140 \times 10 ⁻⁷	1.20×10^{-10}

表 3.1-12 中性子エネルギースペクトル

4) 評価方法

①中性子遮へい計算(2次ガンマ線を含む)

中性子遮へい計算は DOT コードにより遮へい体を透過した中性子の線束を計算し, 乾式貯蔵キャスク表面及び表面から 1mの線量率を求める。

また,2次ガンマ線の効果についてもDOTコードを用いて中性子が遮へい体内で吸 収される際に発生する2次ガンマ線の線束を計算し,乾式貯蔵キャスク表面及び表面 から1mの線量率を求める。

中性子遮へいの解析モデルを図 3.1-2,3 に示す。解析モデルは、乾式貯蔵キャスク の実形状を考慮してモデル化する。乾式貯蔵キャスク上部及び下部のトラニオン周辺 については中性子遮へい材の遮へい厚さが他の部分より少ないため、図 3.1-4 に示し た詳細モデル(中型・大型共通)を使用する。

ライブラリとしては, DLC-23/CASK データを用い, 線量率への変換は ICRP Pub 74 に従う。

②ガンマ線遮へい計算

ガンマ線遮へい計算は QAD コードにより遮へい体を透過したガンマ線の線束を計 算し,乾式貯蔵キャスク表面及び表面から 1mの線量率を求める。

ガンマ線遮へいの解析モデルを図 3.1-5,6 に示す。解析モデルは,乾式貯蔵キャス クの実形状を考慮してモデル化する。

線量率への変換は ICRP Pub 74 のデータを用いる。

図 3.1-2 乾式貯蔵キャスク中性子遮へい解析モデル(中型キャスク)

(単位:mm)

 \otimes^{5}

(単位:mm)

 \otimes^{5}

図 3.1-3 乾式貯蔵キャスク中性子遮へい解析モデル(大型キャスク)

図 3.1-4 乾式貯蔵キャスクトラニオン部の中性子遮へい解析モデル(中型キャスク・大型キャスク共通)

(単位:mm)

図 3.1-5 乾式貯蔵キャスクガンマ線遮へい解析モデル(中型キャスク)

Ⅱ-2-13-添 4-87

(単位:mm)

図 3.1-6 乾式貯蔵キャスクガンマ線遮へい解析モデル(大型キャスク)

5) 評価結果

乾式貯蔵キャスクの評価結果を中型,大型それぞれ表 3.1-13,表 3.1-14 に示す。なお, 評価結果は半径方向,蓋方向及び底方向における線量率の最大値を示している。

本表に示すとおり,乾式貯蔵キャスクは中型・大型ともに設計基準値を満足している。 半径方向(評価点②)が計算結果のうち最大であるのは,中性子遮へい材であるレジ ンが他の領域に比べて少ないトラニオン部であり中性子線の線量率が大きいことによる。 なお使用済燃料を乾式貯蔵キャスクに収納する場合は,収納する使用済燃料の燃焼度 が 36500MWd/t 以下であることを確認する。

表 3.1-13 線量率の計算結果(中型キャスク)

(単位: μ Sv/h)

		表 面		表面から 1m		
	蓋方向	半径方向	底方向	蓋方向	半径方向	底方向
評価点	1	2	3	4	5	6
計算結果	300	1101	117	5	78	18
設計基準値	2000		準値 2000 100			

表 3.1-14 線量率の計算結果(大型キャスク)

(単位:μSv/h)

		表 面		表面から 1m		
	蓋方向	半径方向	底方向	蓋方向	半径方向	底方向
評価点	1	2	3	4	5	6
計算結果	371	1189	131	6	80	22
設計基準値	2000		2000 100			

遮へい解析に用いるコード(ORIGEN2)について

(1) 概要

ORIGEN2 コードは、米国オークリッジ国立研究所(ORNL)で開発された炉内中性子束の 1 点近似による燃焼計算コードである。ORIGEN2 コードは汎用解析コードであり、輸送キ ャスクの崩壊熱計算等に広く利用されている。

- (2) 機能
 - ORIGEN2 コードは、燃焼解析に際して以下の機能を有している。
 - ①燃料の炉内での燃焼計算,炉取出し後の減衰計算により,冷却期間に対応した崩壊熱,放射線の強度,各核種の放射能量等が求められる。
 - ②原子炉の炉型と燃料の組合せに対し、中性子エネルギースペクトルの違いにより重 みをつけた断面積ライブラリが内蔵されており、任意に選択できる。
 - ③計算結果は、放射化生成物、アクチニド、核分裂生成物に分類して出力される。
 - ④燃焼計算に必要な放射性核種データ(崩壊熱,ガンマ線のエネルギー分布,自発核 分裂と(α, n)反応により発生する中性子源強度等)に関しては,ORIGEN2 コー ド専用のライブラリがあり、これを用いる。
- (3) 計算フロー

ORIGEN2 コードの計算フローを図 3.1-7 に示す。

(4) 使用実績

ORIGEN2 コードは,輸送キャスク,核燃料施設の崩壊熱計算に広く使用されている¹⁾。 (5)検証方法

汎用コードの導入評価1)が実施されていることが確認されている。

大型実験/ベンチマーク試験による検証²⁾が実施されていることが確認されている。

- 1)A.G.Croff, "ORIGEN2 Isotope Generation and Depletion Code MATRIX EXPONENTIALMETHOD", CCC-371(1987)
- 2) (社) 日本原子力学会"原子炉崩壊熱とその推奨値", 1989 年 8 月

図 3.1-7 ORIGEN2 コードの計算フロー図

遮へい解析に用いるコード (DOT3.5 コード) について

(1) 概要

DOT3.5 コード(以下「DOT コード」という。)は二次元輸送コードであり、米国オー クリッジ国立研究所(ORNL)で開発された汎用解析コードである。

(2)機能

DOT コードは、遮へい解析に際して以下の機能を有する。

- ガンマ線や中性子線に対するボルツマン輸送方程式を解くことによる数値解析 法であり、放射線の挙動を追跡するのに重要な非等方性が表現できる。
- ② DOT コードは、二次元の体系を扱うことができる。
- (3)解析フローDOT コードの解析フローを図 3.1-8 に示す。
- (4) 使用実績

DOT コードは、原子力施設の遮へい計算に広く用いられており、輸送キャスクの遮へい解析に豊富な実績がある。

(5) 検証

汎用コードの導入評価¹⁾が実施されていることを確認。 大型実験/ベンチマーク試験による検証²⁾が実施されていることを確認。

1)W. A. Rhoades, "DOT3.5 TWO DIMENSIONAL DISCRETE ORDINATES RADIATION TRANSPORT CODE", CCC-276,1978 年 10 月

2) (社) 日本原子力学会"中性子遮蔽設計ハンドブック", 1993 年 4 月

図 3.1-8 DOT コードの解析フロー図

遮へい解析に用いるコード (QAD コード) について

(1) 概要

QAD コードは米国 Los Alamos National Laboratory で開発された点減衰核積分法に 基づくコードであり, 遮へい体内での高速中性子及びガンマ線の透過を計算できる。 QAD コードは公開コードであり, 使用済燃料輸送キャスクの遮へい解析等に広く利用 されている。

(2)機能

QAD コードは、遮へい解析に際して以下の機能を有する。

- ① 線源は角柱,円柱,あるいは球形の形状で表すことができる。
- ② 遮へい体領域は二次元線、あるいは角柱、球形等の組み合わせにより記述することが可能であり、三次元問題まで取り扱うことできる。
- ③ 計算は入力で指定した検出点について行われ、結果は同じく入力で指定される 種々の形に表すことができる。
- (3)解析フローQAD コードの解析フローを図 3.1-9 に示す。
- (4)使用実績QAD コードは,使用済燃料輸送キャスクのガンマ線遮へい解析に豊富な実績を有する。
- (5) 検証

ベンチマーク試験による検証¹⁾が実施されていることを確認。

1) (社) 日本原子力学会"ガンマ線遮蔽設計ハンドブック", 1988 年1月

図 3.1-9 QAD コードの解析フロー図

- (2) 輸送貯蔵兼用キャスクAの遮へい機能
- 1) 基本的な考え方

遮へい設計に当たっては、周辺公衆及び放射線業務従事者に対し、放射線被ばく上影響 を及ぼすことのないよう、使用済燃料の放射線を適切に遮へいする能力を有するよう以下 のとおり設計する。

- ① 輸送貯蔵兼用キャスクAはガンマ線遮へいと中性子遮へいの機能を有する。
- ② ガンマ線遮へい材は主にキャスク構造体(胴,底板,一次蓋,二次蓋等)であり, 鍛造炭素鋼等で構成される。
- ③ 中性子遮へい材は、水素を多く含有するレジン及びプロピレングリコール水溶液で 構成される。

輸送貯蔵兼用キャスクAの遮へい解析フローは、図3.1-1に示す乾式貯蔵キャスクの遮 へい解析フローと同様である。この中で評価条件として用いる使用済燃料仕様,輸送貯蔵 兼用キャスクAの仕様,線源強度及び解析モデル等は添付資料-2「評価の基本方針」で 記載している既存評価書の内容と同じ条件である。よって,本評価結果は既存評価書の内 容を引用する。 2) 設計基準

輸送貯蔵兼用キャスクAの設計上の基準は、輸送貯蔵兼用キャスクA表面の線量当量率が2mSv/h以下及び輸送貯蔵兼用キャスクA表面から1mの線量当量率が100 µSv/h以下とする。

3) 設計条件

①遮へい厚さ

輸送貯蔵兼用キャスクAの評価において考慮する遮へい材の厚さを表 3.1-15 に示す。

	低合金鋼 炭素鋼 ステンレス鋼	レジン	プロピレングリコール 水溶液
半径方向 (軸方向中央部)	約 25	_	約16
蓋 方 向 (径方向中央部)	約 30	約 10	_
底 方 向 (径方向中央部)	約 28	約 12	_

表 3.1-15 遮へい厚さ

(単位:cm)

②線源条件

輸送貯蔵兼用キャスク A の収納物の線源条件を表 3.1-16 に示す。配置制限に従い, 輸送貯蔵兼用キャスク A の中心領域に最高燃焼度燃料を配置し,外周領域には平均燃 焼度燃料を配置する条件とする。8×8 燃料については,収納する燃料の燃焼度がそれ ぞれ収納物平均で 26,000MWd/t,収納物最高で 29,000MWd/t であるため放射能量は新型 8×8 燃料及び新型 8×8 ジルコニウムライナ燃料より低くなり,評価は包絡される。

表 3.1-16 線源条件

燃料集合体の種類		長合体の種類	新型8×8燃料	新型 8 × 8 ジルコ ニウムライナ燃料	
	初期濃縮度(wt%)		約2.9		
	平均燃焼度 (MWd/t)		34,	000	
	<i>淞</i> 税皮	最高燃焼度 (MWd/t)	40,000		
	冷却期間(年)		18		

③線源強度及びエネルギー

A. ガンマ線源強度

使用済燃料の燃料有効部のガンマ線源強度の計算は ORIGEN2 コードにより行う。エネルギー群構造は, DLC-23/CASK ライブラリのガンマ線 18 群構造に振り分けたものを用いる。また,使用済燃料の構造材の放射化によるガンマ線源強度には,構造材中に含まれる Co を考慮する。

B. 中性子線源強度

使用済燃料の中性子線源強度の計算は ORIGEN2 コードにより行う。

それぞれの線源強度を表 3.1-17 に示す。また,中性子エネルギースペクトルを表 3.1-18 に示す。

緩	履種	線源強度
ガンマ線源強度	燃料有効部	8.949 $\times 10^{16}$ (S ⁻¹)
	構造材の放射化	1. 290 $\times 10^{14}$ (Bq)
中性子	1. 412×10^{10} (S ⁻¹)	

表 3.1-17 使用済燃料の線源強度

エネルギー群	上限エネルギー (eV)	スペクトル ^{注)}
1	1.492×10^{7}	5.72 $\times 10^{-4}$
2	1.220×10^{7}	2.02 $\times 10^{-3}$
3	1.000×10^{7}	6.07 $\times 10^{-3}$
4	8. 180×10^{6}	2.00 $\times 10^{-2}$
5	6. 360×10^{6}	4. 12×10^{-2}
6	4. 960 $ imes 10^{6}$	5. 27×10^{-2}
7	4. 060×10^{6}	$1.10 imes 10^{-1}$
8	$3.010 imes 10^6$	8.74 $ imes$ 10 ⁻²
9	2. 460×10^{6}	2.28×10^{-2}
10	2. 350×10^{6}	1.15×10^{-1}
11	$1.830 imes 10^{6}$	2.07 $\times 10^{-1}$
12	1.110×10^{6}	$1.89 imes 10^{-1}$
13	5. 500×10^5	1.31×10^{-1}
14	1.110×10^{5}	$1.59 imes 10^{-2}$
15	3. 350×10^3	8. 12×10^{-5}
16	5. 830×10^2	5.89 $ imes$ 10 ⁻⁶
17	$1.010 imes 10^2$	3.89×10^{-7}
18	2.900 $\times 10^{1}$	5.53 $\times 10^{-8}$
19	1.070×10^{1}	1.33×10^{-8}
20	3. 060×10^{0}	$1.88 imes 10^{-9}$
21	1.120×10^{0}	4. 19×10^{-10}
22	4. 140×10^{-1}	1.20×10^{-10}

表 3.1-18 中性子エネルギースペクトル

注) ²³⁹ Pu の核分裂スペクトルを DLC-23/CASK ライブラリの中性子 22 群構造に振り分けたものである。

4) 評価方法

輸送貯蔵兼用キャスク A の遮へい解析においては,遮へい材の最小厚さを考慮し, 輸送貯蔵兼用キャスク A の実形状を軸方向断面に二次元でモデル化する。輸送貯蔵兼 用キャスク A の遮へい解析モデルを図 3.1-10 に示す。なお,上部と下部のトラニオン 周辺と二次蓋に設ける圧力監視装置部については,当該部近傍の線束から,遮へい評 価を行う。遮へい計算はガンマ線,中性子共に DOT コードにより遮へい材を透過した ガンマ線及び中性子の線束を計算し,輸送貯蔵兼用キャスク A 表面及び表面から 1m の 線量当量率を求める。また,二次ガンマ線の効果についても DOT コードにより中性子 が遮へい材内で吸収される際に発生する二次ガンマ線の線束を計算し,輸送貯蔵兼用 キャスク A 表面及び表面から 1m の線量当量率を求める。ライブラリとしては, DLC-23/CASK データを用いて線量当量率への変換は ICRP Pub. 74 に従う。

図 3.1-10 輸送貯蔵兼用キャスク A 遮へい解析モデル

5) 評価結果

輸送貯蔵兼用キャスクAの評価結果を表 3.1-19 に示す。なお,評価結果は半径方向, 蓋方向及び底方向における線量当量率の最大値を示している。

本表に示すとおり,輸送貯蔵兼用キャスクAは設計基準値を満足している。

表 3.1-19 線量当量率の評価結果

(単位:μSv/h)

		表面			表面から 1m	
	側部	蓋部	底部	側部	蓋部	底部
評価点	1	2	3	4	5	6
評価結果	1137	346	176	80	62	77
設計基準値	2000				100	

- (3) 輸送貯蔵兼用キャスクBの遮へい機能
- 1) 基本的な考え方

遮へい設計に当たっては、周辺公衆及び放射線業務従事者に対し、放射線被ばく上影響 を及ぼすことのないよう、使用済燃料の放射線を適切に遮へいする能力を有するよう以下 のとおり設計する。

- ① 輸送貯蔵兼用キャスクBはガンマ線遮へいと中性子遮へいの機能を有する。
- ② ガンマ線遮へい材には、十分な厚みを有する鋼製の材料を用いる。
- ③ 中性子遮へい材は、水素を多く含有するレジンで構成される。

輸送貯蔵兼用キャスクBの遮へい解析フローは、図3.1-1に示す乾式貯蔵キャスクの遮 へい解析フローと同様である。この中で評価条件として用いる使用済燃料仕様,輸送貯蔵 兼用キャスクBの仕様,線源強度及び解析モデル等は添付資料-2「評価の基本方針」で 記載している既存評価書の内容と同じ条件である。よって,本評価結果は既存評価書の内 容を引用する。
2) 設計基準

輸送貯蔵兼用キャスクBの設計上の基準は、輸送貯蔵兼用キャスクB表面の線量当 量率が2mSv/h以下及び輸送貯蔵兼用キャスクB表面から1mの線量当量率が100μSv/h 以下とする。

3) 設計条件

①遮へい厚さ

輸送貯蔵兼用キャスクBの評価において考慮する遮へい材の厚さを表3.1-20に示す。

		(単位:cm)
	炭素鋼	レジン
	ステンレス鋼	
半径方向	約 26	約 14
(軸方向中央部)		
蓋方向	約 29	約 9
(径方向中央部)		
底方向	約 29	約 11
(径方向中央部)		

表 3.1-20 遮へい厚さ

②線源条件

輸送貯蔵兼用キャスク B の収納物の線源条件を表 3.1-21 に示す。配置制限に従い, 輸送貯蔵兼用キャスク B の中心領域に最高燃焼度燃料を配置し,外周領域には平均燃 焼度燃料を配置する条件とする。

表 3.1-21 線源条件

1.0			
燃料集合体の種類初期濃縮度(wt%)		長合体の種類	新型8×8ジルコニウムライナ燃料
		と縮度(wt%)	約2.9
	做运车	平均燃焼度 (MWd/t)	34, 000
	<u> </u>	最高燃焼度 (MWd/t)	40, 000
冷却期間(年)		期間(年)	18

③線源強度及びエネルギー

A. ガンマ線源強度

使用済燃料の燃料有効部のガンマ線源強度の計算は ORIGEN2 コードにより行う。エネルギー群構造は, DLC-23/CASK ライブラリのガンマ線 18 群構造に振り分けたものを用いる。また,使用済燃料の構造材の放射化によるガンマ線源強度には,構造材中に含まれる Co を考慮する。

B. 中性子線源強度

使用済燃料の燃料有効部の中性子線源強度の計算は ORIGEN2 コードにより行う。

それぞれの線源強度を表 3.1-22 に示す。また,中性子エネルギースペクトルを表 3.1-23 に示す。

線種		線源強度	
ガンマ線源強度	燃料有効部	8.949 $\times 10^{16}$ (S ⁻¹)	
	構造材の放射化	1.290 $\times 10^{14}$ (Bq)	
中性子線源強度		1. 415×10^{10} (S ⁻¹)	

表 3.1-22 使用済燃料の線源強度

エネルギー群	上限エネルギー (eV)	スペクトル ^{注)}
1	1.492×10^{7}	5.72 $\times 10^{-4}$
2	$1.220 imes 10^{7}$	2.02×10^{-3}
3	1.000×10^{7}	6.07 $\times 10^{-3}$
4	8. 180×10^{6}	2.00 $\times 10^{-2}$
5	6. 360×10^{6}	4. 12×10^{-2}
6	4. 960 $ imes 10^{6}$	5. 27×10^{-2}
7	4. 060×10^{6}	1.10×10^{-1}
8	$3.010 imes 10^6$	8.74 $ imes$ 10 ⁻²
9	2. 460×10^{6}	2. 28×10^{-2}
10	2. 350×10^{6}	$1.15 imes 10^{-1}$
11	$1.830 imes 10^{6}$	2.07 $\times 10^{-1}$
12	1.110×10^{6}	$1.89 imes 10^{-1}$
13	5. 500×10^5	1.31×10^{-1}
14	1.110×10^{5}	$1.59 imes 10^{-2}$
15	3. 350×10^3	8. 12×10^{-5}
16	5. 830×10^2	5.89 $ imes$ 10 ⁻⁶
17	$1.010 imes10^2$	3.89×10^{-7}
18	2. 900×10^{1}	5.53 $ imes$ 10 ⁻⁸
19	$1.070 imes 10^{1}$	$1.33 imes 10^{-8}$
20	3. 060×10^{0}	$1.88 imes 10^{-9}$
21	1.120×10^{0}	4. 19×10^{-10}
22	4. 140×10^{-1}	$1.20 imes 10^{-10}$

表 3.1-23 中性子エネルギースペクトル

注) ²³⁹ Pu の核分裂スペクトルを DLC-23/CASK ライブラリの中性子 22 群構造に振り分けたものである。

4) 評価方法

輸送貯蔵兼用キャスク B の遮へい解析においては,遮へい材の最小厚さを考慮し, 輸送貯蔵兼用キャスク B の実形状を軸方向断面に二次元でモデル化する。輸送貯蔵兼 用キャスク B の遮へい解析モデルを図 3.1-11 に示す。なお,上部と下部のトラニオン 周辺と二次蓋に設ける圧力監視装置部については,当該部近傍の線束から,遮へい評 価を行う。遮へい計算はガンマ線,中性子共に DOT コードにより遮へい材を透過した ガンマ線及び中性子の線束を計算し,輸送貯蔵兼用キャスク B 表面及び表面から 1m の 線量当量率を求める。また,二次ガンマ線の効果についても DOT コードにより中性子 が遮へい材内で吸収される際に発生する二次ガンマ線の線束を計算し,輸送貯蔵兼用 キャスク B 表面及び表面から 1m の線量当量率を求める。ライブラリとしては, DLC-23/CASK データを用いて線量当量率への変換は ICRP Pub. 74 に従う。

6

図 3.1-11 輸送貯蔵兼用キャスク B 遮へい解析モデル

Ⅱ-2-13-添 4-108

5) 評価結果

輸送貯蔵兼用キャスクBの評価結果を表 3.1-24 に示す。なお,評価結果は半径方向, 蓋方向及び底方向における線量当量率の最大値を示している。

本表に示すとおり,輸送貯蔵兼用キャスクBは設計基準値を満足している。

表 3.1-24 線量当量率の評価結果

(単位:μSv/h)

	表面		表面から 1m			
	側部	蓋部	底部	側部	蓋部	底部
評価点	1)	2	3	4	5	6
評価結果	1108	820	291	78	75	81
設計基準値	2000		100			

4 臨界防止機能

- 4.1 乾式キャスクの臨界防止機能について
 - (1) 乾式貯蔵キャスクの臨界防止機能について
 - 1) 基本的考え方

乾式貯蔵キャスクの臨界防止に当たっては,想定されるいかなる場合にも使用済燃料 が臨界に達することを防止するため以下のとおり設計する。

①使用済燃料を収納するバスケットは格子構造として,使用済燃料を所定の幾何学的配置に維持する設計とする。

②バスケットの材料には、中性子を吸収するボロン添加アルミニウム合金等を使用する。

乾式貯蔵キャスクの臨界防止機能について,使用済燃料仕様,乾式貯蔵キャスク仕様 及び解析モデル等は添付資料-2「評価の基本方針」で記載している既存評価書の内容 から変更はない。よって,本評価結果は既存評価書の内容を引用する。

2) 設計基準

実効増倍率は想定されるいかなる場合も 0.95 以下であること。

3) 評価条件

乾式貯蔵キャスクの臨界解析は、KEN0-VIコードを使用する。図 4.1-1、図 4.1-2 に臨 界解析モデルを示す。実効増倍率を大きく見積もるため、評価条件を下記の通りとした。

- ・評価は8×8燃料,新型8×8燃料及び新型8×8ジルコニウムライナ燃料のうち,濃縮 度の高い新型8×8ジルコニウムライナ燃料について行う。
- ・新型8×8ジルコニウムライナ燃料の使用期間を通じての炉心内装荷状態での最大無限 増倍率は1.23程度であるが、保守的に炉心内装荷状態での無限増倍率を1.30とする。
- ・キャスク内部については燃料有効長部には水が存在するとし、燃料有効長以外の領域及 びキャスク外部は真空とする。
- ・乾式貯蔵キャスクの外側は、境界条件として完全反射体で無限個の乾式貯蔵キャスが接触して配列しているものとする。
- ・使用済燃料がキャスクの中心寄りに配置された状態とする。
- ・バスケット板厚は製造公差を考慮した最小値とする。
- ・バスケット孔寸法は製造公差を考慮した最小値とする。
- ・バスケットプレート材料のボロン添加アルミニウム合金中のボロン 10 含有量は、製造 下限値に余裕をみた値とした。

4) 評価方法

乾式貯蔵キャスクの実効増倍率は,燃料棒単位セル計算により求まる燃料集合体平均の核定数を用い,乾式貯蔵キャスクの実形状をモデル化し,臨界解析コードを使用して求める。臨界解析の評価フローを参考資料の図4.1-3に示す。

5) 評価結果

乾式貯蔵キャスクについて臨界解析の結果は,表4.1-1に示すとおり実効増倍率は設計基準を満足している。

キャスクタイプ	実効増倍率※	設計基準値
乾式貯蔵キャスク(中型)	0.83	0.95
乾式貯蔵キャスク(大型)	0.83 (0.824)	0.95

表 4.1-1 臨界解析結果

*モンテカルロ計算の統計誤差3σを考慮した値

(括弧内は統計誤差を考慮しない値)

図 4.1-1 臨界解析モデル(乾式貯蔵キャスク(中型キャスク))

Ⅱ-2-13-添 4-112

図 4.1-2 臨界解析モデル(乾式貯蔵キャスク(大型キャスク))

Ⅱ-2-13-添 4-113

臨界解析に用いるコード(KENO-VI)について

(1) 概要

KENO-VIコードは、米国オークリッジ国立研究所(ORNL)で開発されたモンテカルロ法 に基づく公開の臨界解析コードであり、輸送キャスクの臨界解析などに利用されている。

(2) 機能

KEN0-VIコードは、臨界解析に際して以下の機能を有している。

- ① 実際に中性子が出会う物理現象を確率理論を用いて模擬するため、どのような物理 的問題にも適用できる。なお、統計的な手法を用いるため、計算結果には統計誤差 が付随する。
- ② 一次元~三次元の任意形状の体系を扱うことができる。
- (3) 解析フロー

KENO-VIコードの解析フローを図 4.1-3 に示す。

(4) 使用実績

KENO-VIコードは、国内外で輸送キャスクの臨界解析をはじめ、核燃料施設の臨界解析 に使用されている。

(5) 検証

米国のバッテル研究所(パシフィックノースウエスト研究所, PNL)で行われた臨界実験¹⁾の中から3種類の臨界体系をベンチマーク試験として選び,検証を行った。

1)S.R.Bierman, D.D.Clayton, and B.M.Durst, "Critical Separation between Sub-critical Clusters of 2.35wt% 235U Enriched UO2 Rods in Water with Fixed Neutron Poisons," PNL-2438, Battel Pacific Northwest Laboratories, 1977

図 4.1-3 臨界解析フロー

- (2) 輸送貯蔵兼用キャスクの臨界防止機能について
- 1) 基本的考え方

輸送貯蔵兼用キャスクの臨界防止に当たっては,想定されるいかなる場合にも使用済燃 料が臨界に達することを防止するために以下のとおり設計する。

- 使用済燃料を収納するバスケットは格子構造として、使用済燃料を所定の幾何学的配置に維持する設計とする。
- ② 輸送貯蔵兼用キャスク A においては、バスケットの格子間に中性子を吸収するボロン 添加アルミニウム合金を用いる。輸送貯蔵兼用キャスク B においては、バスケットの 材料に中性子を吸収するボロンを添加したステンレス鋼を用いる。

輸送貯蔵兼用キャスクの臨界防止機能について,使用済燃料仕様,輸送貯蔵兼用キャ スク仕様及び解析モデル等は添付資料-2「評価の基本方針」で記載している既存評価 書の内容から変更はない。よって,本評価結果は既存評価書の内容を引用する。ここ では,評価上最も厳しい胴内に水が満たされたケースについて示す。

2) 設計基準

実効増倍率は想定されるいかなる場合も0.95以下であること。

3) 評価条件

輸送貯蔵兼用キャスクの臨界解析には,KENO-V.aコードを使用する。図 4.1-4~図 4.1-5 に臨界解析モデルを示す。実効増倍率を大きく見積もるため、評価条件を下記の通りとした。

- ・ 収納する使用済燃料の炉心内装荷状態での最大無限増倍率は 1.30 未満であるが,保 守的に炉心内装荷状態での無限増倍率は 1.30 を仮定する。
- ・ キャスク胴内には水が存在するものとする。
- キャスク胴内における燃料集合体として存在する部分は燃料有効長に相当する部分のみとし、上・下部タイプレート部等を水に置き換える。また、キャスク胴内での燃料領域の上、下の部分は水に置き換える。
- 輸送貯蔵兼用キャスクの外側は、境界条件として完全反射体で無限個の輸送貯蔵兼
 用キャスクが配列しているものとする。
- 使用済燃料がキャスクの中心寄りに配置された状態とする。
- チャンネルボックスを考慮する。
- ・ バスケットの格子幅公差を安全側に考慮する。
- ・ 中性子遮へい材(側部,蓋部,底部)を無いものとする。
- バスケットのボロン含有量は最小値を用いる。

4) 評価方法

輸送貯蔵兼用キャスクの実効増倍率は,KENO-V.a コードを用いて求める。臨界解析の評価フローを参考資料の図 4.1-6 に示す。

5) 評価結果

輸送貯蔵兼用キャスクについて臨界解析の結果は,表4.1-2に示すとおり実効増倍率は 設計基準を満足している。

キャスク タイプ	実効増倍率※	設計基準値
輸送貯蔵兼用キャスクA	0.83 (0.823)	0.95
輸送貯蔵兼用キャスク B	0. 88 (0. 875)	0.95

表 4.1-2 臨界解析結果

※ モンテカルロ計算の統計誤差3σを考慮した値

(括弧内は統計誤差を考慮しない値)

注)燃料有効長部はチャンネルボックスを考慮してモデル化

(縦断面の構成は、図 3.1-10 遮へい解析モデルとほぼ同じである)

図 4.1-4 臨界解析モデル(輸送貯蔵兼用キャスクA)

注) 燃料有効長部はチャンネルボックスを考慮してモデル化

(縦断面の構成は、図 3.1-11 遮へい解析モデルとほぼ同じである)

図 4.1-5 臨界解析モデル(輸送貯蔵兼用キャスクB)

参考資料

臨界解析に用いるコード(KENO-V.a)について

(1) 概要

KENO-V.a コードは、米国オークリッジ国立研究所(ORNL)で開発されたモンテカル ロ法に基づく公開の臨界解析コードであり、輸送キャスクの臨界解析などに利用されて いる。

(2) 機能

KENO-V.a コードは、臨界解析に際して以下の機能を有している。

- ③ 実際に中性子が出会う物理現象を確率理論を用いて模擬するため、どのような物理 的問題にも適用できる。なお、統計的な手法を用いるため、計算結果には統計誤差 が付随する。
- ④ 一次元~三次元の任意形状の体系を扱うことができる。
- (3) 解析フロー

KENO-V.a コードの解析フローを図 4.1-6 に示す。

(4) 使用実績

KENO-V.a コードは、国内外で輸送キャスクの臨界解析をはじめ、核燃料施設の臨界 解析に使用されている。

(5) 検証

米国のバッテル研究所(パシフィック ノースウエスト研究所, PNL) で行われた臨界 実験¹⁾を対象としたベンチマーク解析を実施し,検証を行った。

 S. R. Bierman and E. D. Clayton, "Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% ²³⁵U Enriched UO₂ Rods in Water with Steel Reflecting Walls", NUREG/CR-1784(PNL-3602), U.S. Nuclear Regulatory Commission, (1981).

図 4.1-6 KENO-V.a コードの解析フロー図

添付資料-5

安全対策について

1 安全対策

(1) 落下防止対策内容

キャスク水平吊具及びフック,ワイヤロープ等クレーンの揚重装置の構造を図 1-1~4 に示す。

1) ワイヤロープの二重化

ー端をイコライザに固定し,他端をドラムに固定したワイヤロープによりフックブロ ックを吊る。図 1-2 のようにワイヤロープは2系列設けることで二重化する。

2) ブレーキの二重化

ワイヤロープの巻上げ,巻下げを行うドラム減速機のブレーキを図 1-3 のように 2 基 設置し,ブレーキを二重化する。

3) キャスク水平吊具の二重化

図 1-4 のようにキャスク水平吊具をフックで吊上げると共に安全板を揚重機フックブ ロックのシーブピンに掛けることで吊上げ方法を二重化する。

- 4) その他の落下防止対策
 - ・電源喪失時には直ちにブレーキが作動し、ドラムの空転による荷の落下を防止する。
 - ・主巻減速機に過速検出器を設け、一定の回転速度以上になった場合にブレーキが作動するようにし、荷の落下を防止する。
- (2) その他の安全対策
 - ・主巻きの巻下げ速度を1.5m/minに制限し、荷が着床した時の衝撃を緩和する。
 - ・コンクリートモジュールに乾式キャスクが衝突しないように、クレーンの横行装置に リミットスイッチを取付け、横行範囲を制限する。

図 1-2 主巻シーブ詳細

図 1-3 トロリ平面図

