分野名	き の 作業	的容	これまで1ヶ月の動きと今後1ヶ月の予定	12月	3	1月	2月	14	3月 4	1月	備考
	1. 発生量低減 対策の推進	持込抑制策の検 討	 (実績) ・貸出運用方法の検討 ・運用開始準備 (予定) ・運用開始準備 		前等調整						
			 (実績) ・実施計画変更認可申請対応 ・固体廃棄物貯蔵庫第9棟にかかる建屋工事 山留工事 ・店車 	废 时 • • •						• 更	2015年7月17日:実施計画変 認可申請認可
		ドラム缶保管施 設の設置	 杭工事 (予定) ・固体廃棄物貯蔵庫第9棟にかかる建屋工事 掘削工事 杭工事 	_現 固体廃棄物貯蔵庫第9棟に ^推 振削工事 杭工事	かかる建屋工事						2017年2月:竣工予定
固体廃棄物の保管管理、処理・処分	^呆 雪 目 日 五 2. 保管適正化	雑固体廃棄物の 減容検討	 (実 績) ・雑固体廃棄物焼却設備にかかる機電工事 換気空調設備、焼却設備系統試験 耐火物乾燥 各種性能フィルタ試験 ・雑固体廃棄物焼却設備にかかる建屋工事 外構工事 (予 定) ・雑固体廃棄物焼却設備にかかる機電工事 使用前検査 管理区域設定 焼却炉ホット試験 	建設 雑固体廃棄物 焼助 200 雑固体廃棄物 焼助 1 1 1 1 1 1	かかる機電工事 焼却炉コ	ールド試験 使用i	 	運用開始予定			 固体廃棄物焼却設備:2016年 月稼働予定 建屋工事(~2015年11月) 機電工事(~2016年2月) 主要工事工程] 上部躯体工事完了:2013年10月5 18 上部躯体工事完了:2015年7月 18 18PC柱・梁取付完了:2013 212月12日 2階PC柱・梁取付完了:2013 217日 4月7日 (焼却炉建屋、雑固体 2014年2月18日~
ス計画	()) / 住以生	覆土式一時保管 施設 3,4槽の設 置	 (実 績) ・設置工事(3槽) 緩衝材施工、遮水シート施工 ・設置準備工事(4槽) 4槽エリアレールー時撤去 (予 定) ・設置工事(3槽) ・設置工事(4槽) 4槽掘削 	^壊 ^壊 	- JL - JL		· ·				2014年8月12日:安全協定 基づく事前了解 2015年11月13日:使用前検査 (3槽)
		ー時保管エリア の追設/拡張	 (実 績) ・伐採木一時保管槽の追設(エリアG) 保管槽擁壁設置(追設28槽内25槽完了) 盛土施工 (予 定) ・伐採木一時保管槽の追設(エリアG) 保管槽擁壁設置(追設28槽内残り3槽) 盛土施工 	(検)))))))))))))	(エリアG) 保管槽接	軽設置(追設全28槽内残り3株 盛土施工	ادی (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲)	最新工程反明 目下旬→2月下旬」	央 C程短縮		

分野名	括 作業内容	これまで1ヶ月の動きと今後1ヶ月の予定		12月			1月	Le	1		2月	
		 (実 績) ・一時保管エリアの保管量確認/線量率測定および集計 ・ガレキ等の将来的な保管方法の検討 ・線量低減対策検討 	検討	ー時保管エリアの		。 量、線量率集計	10	時	保管エリアの保管	■ ■ ■	_	時傷
		 ・ガレキ・伐採木の保管管理に関する諸対策の継続 ・伐採木ー時保管槽への受入(枝葉) (予定) 	• 設 計	線量低減対策検討	8777							
	3. 瓦礫等の管理・発電所全体 から新たに放出される放射性物	 ・一時保管エリアの保管量確認/線量率測定および集計 ・ガレキ等の将来的な保管方法の検討 ・線量低減対策検討 ・線量低減対策検討 ・ 	-	一時保管エリアの保管量	量確調	3、 線量率測定						
	質等による敷地境界線量低減	・ガレキ・伐採木の保管管理に関する諸対策の継続		ガレキ・伐採木の保管管	管理に	関する諸対策の	継続					
			現 場 作業	伐採木一時保管槽入受利		<u> </u>	Ц	入再開時期調整	Ф			
	保											
	☆管 管管 理 計	 (実 績) ・【研究開発】スラリー安定化装置の選定要件整理・ 		【研究開発】スラリー安定 乾燥試験(作業性・)	と装i R散	置の選定要件整理 5止性)	・適用試験(コ	ールド)				
	(B)	適用試験(コールド) • 【研究開発】セシウム吸着塔の長期保管		ろ過試験(作業性・	ろ布派	麗定)	卓 乞	燥試験(耐久性				
	4. 水処理二次廃棄物の長期保 管等のための検討		検				作業	時・トラブル時	被ばく評価			
固体廃弃		適用試験(コールド) ・【研究開発】セシウム吸着塔の長期保管	討 - 設 計	【研究開発】セシウム吸着は	苔の目	長期保管						安
栗物の保				吸着試験(実規模試験の実	施(ゼオライトサン	プリング、分析、	Cs吸着挙動解析 最新工程	f)) 反映			
管管理、							解析料	青度向上に伴う 通	加試験のため延	長, 一般析結果(ז≣יית	
処 理			現									
処分計画			^吻 作 業									
Ш		(実 績) ・【研究開発】廃ゼオライト・スラッジ・ガレキ等の性状調査 ・【研究開発】固体廃棄物のサンプリング・分析	検討	【研究開発】 廃ゼオライト 中長期分析計画の策定	・ス [:] 〔精査	ラッジ・ガレキ等 〕	の性状調査					
		分析試料のJAEA及び日本核燃料開発株式会社への輸送 ・【研究開発】JAEAにて試料の分析(現場: JAEA東海)	• 設 計							中長期計画第	定を踏まえた》	文年
		 (予定) 【研究開発】廃ゼオライト・スラッジ・ガレキ等の性状調査 【研究開発】固体廃棄物のサンプリング・分析 		【研究開発】固体廃棄物の 固体廃棄物のサンプリング	サン	プリング・分析						
	n.	・【研究開発】JAEAにて試料の分析(現場:JAEA東海等)			መታ	析(現場:JAF	Δ 東海等)					
	20 ・ ・ 処 5. 固体廃棄物の性状把握			スラリーの分析(低線量試) 	β A	新闻(1915)(5)(三) 亥種)						
	分 計 画		現	再分析不要に伴う工程変更	J					工程反映(1/18。	い作業再開)	
			場 作 業					スラリーの分析	「「(高線量前処理		スラリーの分析	折(
				ガレキ等の分析(ア核種)							+
							ガレキ等	の分析(β核種、	建屋内瓦礫、覆	〕 上瓦礫)		
							ガレキ等	の分析(α核種、	建屋内瓦礫・覆	土 瓦 礫)		

ガレキ・伐採木の管理状況(2015.12.31時点)

	分類	保管場所	保管方法	エリア境界 空間線量率 (mSv/h)	保管量 [※]	1	前回報告比 (2015.11.3	上 ^{※2} 30)	変動 ^{※3} 理由	エリア 占有率	保管量/保管容量 (割合)	トピックス	
		С	屋外集積	0.01未満	54,900	m ³	-3,400	m ³	12345	87 %		• 可燃物 隼 積	
		F	屋外集積	0.01	5,000	m ³	+600	m^3	67	67 %		エリアはコンクリート・金属の一時保管から、可燃物(容器収納)	
	ᇢᅅᄹᅸᅸ	J	屋外集積	0.02	3,000	m ³	+300	m^3	\bigcirc	63 %	115600 / 177900	の一時保管に運用変更。(2015年9月8日~) ・β汚染土	
	座外集積 (0.1mSv/h以下)	Ν	屋外集積	0.01	3,800	m ³	+600	m^3	2	38 %		タンク漏えい等で発生した主にβ核種で汚染した土については、エリ	
		0	屋外集積	0.02	26,200	m ³	0	m^3		95 %	(65%)	クNCの一時保管を開始。(2015年7月15日~) ・フランジタンク解体片	
		Р	屋外集積	0.01	22,000	m ³	+2,500	m ³	1237	34 %		エリアPにて一時保管中。(2015年6月15日~) 2015年12日末時点での1首保管	
		U	屋外集積	0.01未満	700	m ³	0	m ³	—	100 %		2013年12月末時点で91季床官。	
ガレキ	シート養生 (0.1~1mSv/h)	D	シート養生	0.01	2,600	m ³	0	m ³	—	88 %		・エリアE	
		E	シート養生	0.04	7,200	m ³	+100	m ³	15	45 %	31400 / 57300	エリアEの瓦礫類について、リスク低減の観点から容器収納へ移行	
		Р	シート養生	0.02	600	m ³	+600	m ³	17	6%	(55%)	⊕。 ・エリアP2 □ 瓦礫類受入開始(2015年12月15日~)	
		W	シート養生	0.02	21,000	m ³	0	m^3	—	72 %			
		L	覆土式一時保管施設	0.01未満	12,000	m ³	0	m ³	—	100 %			
	覆土式一時保管施設、	А	仮設保管設備	0.35	1,100	m ³	+100	m ³	8	15 %	19700 / 27700	・覆土式-時保管施設(第3槽)	
	仮設保管設備、容器	E	容器 ^{※4}	0.02	300	m ³	+200	m ³	9	15 %	(71%)	瓦礫収納完了:2015年8月21日 仮要士 :2015年10月26日 定了	
	(1~30m5v/n)	F	容器	0.01	600	m ³	0	m ³	—	99 %		10月20日元」	
		Q	容器	0.12	5,700	m ³	0	m ³	—	93 %			
	固体廃棄物貯蔵庫	固体廃棄物 貯蔵庫	容器 ^{※4}	0.03	6,200	m ³	+200	m ³	81	52 %	6200 / 12000 (52%)	・主な瓦礫類は、3号機建屋で発生した高線量瓦礫類。 ・第9棟設置に伴う実施計画変更認可。(2015年7月17日)	
		合計(ガ	1しキ)		172,900	m ³	+1,800	m ³	—	63 %			
		Н	屋外集積	0.01未満	14,700	m ³	0	m ³	—	74 %			
	屋外集積	Ι	屋外集積	0.01	10,500	m ³	0	m ³		100 %	66700 / 81500	・工事により発生した幹・根を随時受入中。	
伐	(幹・根・枝・葉)	Μ	屋外集積	0.01未満	39,100	m ³	微増	m^3	—	87 %	(82%)	・エリアV移設後運用開始。(2015年10月23日~)	
木		V	屋外集積	0.03	2,400	m ³	+700	m^3	1	39 %			
	一時保管槽	G	伐採木一時保管槽	0.01未満	7,300	m ³	0	m ³	—	56 %	18400 / 24863	 エリアGにおいて、代採木―時保管 	
	(枝・葉)	Т	伐採木一時保管槽	0.01	11,100	m ³	0	m ³	—	94 %	(74%)		
合計(伐採木)					85,100	m ³	+600	m ³		80 %			

※1 端数処理で100m³未満を四捨五入しているため、合計値が合わないことがある。

※2 100m³未満を端数処理しており、微増・微減とは100m³未満の増減を示す。

※3 主な変動理由:①フェーシング工事 ②タンク設置関連工事 ③陸側遮水壁設置工事 ④焼却対象物の集約作業 ⑤焼却対象物を一時保管エリアPへ移動 ⑥焼却対象物を一時保管エリアJへ移動 ⑦焼却対象物の受入 ⑧1~4号建屋周辺瓦礫撤去関連工事 ⑨仮設集積していた瓦礫類の受入 ⑩水処理二次廃棄物(小型フィルタ等)の保管 等

※4 水処理二次廃棄物(小型フィルタ等)を含む。

水処理二次廃棄物の管理状況(2016.1.21時点)

分類	保管場所	種類		保管量		前回報告. (2015.12.1	比 (7)	保管量/保管容量 (割合)	トピックス			
	使用済吸着塔 保管施設	セシウム吸着装置使用済ベッセル		690	本	+8	本					
		第ニセシウム吸着装置使用済ベッセル		152	本	0	本					
		夕拉頢险土扒供竿贝签索品	既設	1,090	基	+36	基	2967 / 6067	・吸着塔一時保管施設の増容量が認可(2015年12月14日)			
=14		夕 核種际公設哺夺休官谷品	増設	787	基	+20	基	(49%)	・第一施設にあったホックスカルバートを第三施設へ移設に伴い撤去(-60塔分) ・使用前検査完了(2015年1月5日)に伴う保管量増(+72塔分)			
水処		高性能多核種除去設備使用済ベッセル	高性能	71	本	+2	本					
理		多核種除去設備処理カラム 既設		7	塔	0	塔					
 次		モバイル式処理装置等使用済ベッセル及びフィルタ類		170	本	+1	本					
廃棄物	廃スラッジ 貯蔵施設	ジ 廃スラッジ		597	m ³	0	m ³	597 / 700 (85%)	 ・除染装置の運転計画は無く、新たに廃棄物が増える見込みは無い。 ・準備が整い次第、除染装置の廃止について実施計画の変更申請を行う。 			
	濃縮廃液タンク	マンク 濃縮廃液		9,180	m ³	-12	m ³	9180 / 20000 (46%)	 ・タンク水位の変動は、計器精度±1%の誤差範囲内。(現場パトロール異常なし) ・保管容量20,000m³のうち,9,700m³分の撤去計画について認可済み。 ・保管量に「タンク底部〜水位計0%の水量(DS)」を含んでいない。(約100m³) 			

東京電力株式会社 放射性廃棄物処理·処分 2016年1月28日

ガレキ・伐採木・水処理二次廃棄物・濃縮廃液の保管量推移

福島第一原子力発電所 雑固体廃棄物焼却設備設置工事の進捗状況及び ホット試験の実施について

2016年1月28日 東京電力株式会社

1. 設備概要

雑固体廃棄物焼却設備

炉型

2. 雑固体廃棄物焼却設備設置工事の進捗状況(現場状況)

建屋全景

電気品室

制御室 試験作業状況

2. 雑固体廃棄物焼却設備設置工事の進捗状況(コールド試験結果)

- ●日程:2015年11月25日 ~ 2016年1月22日
- ●内容:汚染のない模擬廃棄物を焼却処理し、設備全体の機能、性能の確認を実施。
- ●焼却対象物(汚染のない模擬廃棄物) 焼却物の材料であるポリエチレンシート,綿シート,段ボール,木材,天然ゴムシート等
- ●主な確認事項及び確認結果

確認事項	確認結果					
系統の負圧維持の確認	系統の圧力が目標の負圧値で維持されていることを確認。					
各運転モードの確認及び非常停止確認	起動・焼却・停止の各運転モードが問題なく行えることを確認。非常停止についても、計画通 りの停止工程となっていることを確認。					
環境(室温等)の確認	通常運転時の通路について、適正な温度等であることを確認。					
廃棄物及び焼却灰,ダストの閉じ込め 機能確認	廃棄物及び焼却灰、ダストの漏えいがないことを確認。					
焼却性能(300kg/h×2系統)の確認 及び各種パラメータの確認	300kg/h×2系統で処理できることを確認。各種パラメータについても、所定の範囲内であることを確認。					
排ガス、焼却灰の性状確認	排ガスについて、大気汚染防止法の基準値以下であることを確認。焼却灰の熱しゃく減量の測 定について、廃棄物の処理及び清掃に関する法律施行規則の基準値以下であることを確認。					
廃棄物及び灰等の搬送状況の確認	廃棄物及び灰等の搬送に問題ないことを確認。					
系統除染係数については、コールド試験前に試験を実施し、バグフィルタは10【実施計画記載値】(測定結果:10 ³)、排ガスフィルタは10 ⁵ 【実施計画記載値】(測定結果:10 ⁶)であることを確認した						

- ●改善事項
 - ・廃棄物を投入口まで搬送する廃棄物傾斜コンベアの一部の部品について、強度を向上させる必要性が 確認されたことから、構造等の見直しを行い、取替を実施。
 - ・廃棄物供給設備について、制御シーケンス及びセンサー位置の適正化を実施。 等

東京電力

2. 雑固体廃棄物焼却設備設置工事の進捗状況(スケジュール)

3. ホット試験の実施

●日程:2016年2月上旬 ~ 2月末

- ●内容:福島第一原子力発電所構内に保管されている実廃棄物を焼却処理し,設備全体の機 能,性能の確認を実施する。
- ●確認事項
 - ・系統の負圧維持の確認
 - 各運転モードの確認
 - ・環境(室温等)の確認
 - ・ 廃棄物及び焼却灰,ダストの閉じ込め機能の確認
 - 焼却性能(300kg/h×2系統)の確認
 及び各種パラメータの確認
 - ・廃棄物及び灰等の搬送状況の確認等

- ・排ガス及び焼却灰に含まれる 放射性物質濃度の確認
- 灰ドラム缶の表面線量率の確認
- 各エリアの空間線量率の確認

●焼却対象物(<mark>実廃棄物</mark>) タイベック,下着類,布帽子,綿手袋,ゴム手袋,靴下,ヘルメット,マスク,靴等

4. 敷地境界線量評価

雑固体廃棄物焼却設備からの直接線・スカイシャイン線による被ばく(①)、放出される放射性物質 による被ばく(②)の評価は以下の通り。

- ○焼却炉の処理能力300kg/h,系統全体の除染係数10⁶(焼却炉からバグフィルタまでで10,排ガスフィルタで10⁵),系統の流量を考慮すると,評価上放出される排気中の放射性物質濃度は8.0×10⁻⁸Bq/cm³となり,排気筒出口の各核種の放射性物質濃度は、告示に定める周辺監視区域外の空気中の濃度限度を下回り、各核種の告示濃度限度に対する割合の和は1未満となる。
- 〇雑固体廃棄物焼却設備からの追加的放出による線量評価値は、敷地境界線量の目標値1mSv/yのうち気体廃棄物に 関する評価値【実施計画記載値】0.03mSv/yに比べ十分小さい値となる。
- ○実際に焼却する廃棄物の放射能量は、上記評価に用いた条件(コンテナ表面線量率1mSv/h)より低いため、放出 される放射性物質濃度は8.0×10⁻⁸Bq/cm³より低い値となる。
- Oまた, 雑固体廃棄物焼却設備から放出される放射性物質はプロセス放射線モニタ(ダストモニタ・ガスモニタ)に て常時監視し, 万が一, 当該モニタにて異常値を検知した場合は焼却運転を自動停止する設計としている。

5. 排ガス及び焼却灰に関する運用管理

●排ガスのモニタリング

- ▶保安規定に基づき、試料放射能測定装置を用いて、排気中(排気筒から採取)の粒子状の放射性物質濃度を週1回測定を行う。また、当該放射性物質濃度のデータを週1回の頻度で公開する。
- ▶常時監視するプロセス放射線モニタにて異常値を検知(警報発生)した場合には、地元 自治体へ通報・公表する。

●焼却灰の保管

焼却処理により発生する焼却灰はドラム缶に詰めて密閉し、表面線量率の測定を行ったう えで、固体廃棄物貯蔵庫などの遮へい機能を有する設備に貯蔵保管する。

【参考】

廃棄物中の放射能濃度・焼却炉処理能力・除染係数を考慮すると、排気筒出口において、「告示に定める周辺監視区域外の空気中の濃度限度」を下回り、各核種の告示濃度限度に対する割合の和が1未満となる。

^刘 廃棄物](1) 焼却	炉 → バグフィ	ルター2) リーク	マイルター・3 チー			\rightarrow
		DF=10) 5	日糸列 頃	E 左 空 詞	
流体 番号	(Bq/kg)	(Bq/cm ³)	(Bq/cm ³)	(Bq/cm ³)	告示濃度限度 (Bq/cm ³)	告示濃度限度 に対する割合	
流量 (Nm³/h)	—	20810	20810	176249	_	_	
Mn-54	4.0E+04	5.8E-05	5.8E-10	1.4E-10	8.0E-05	1.7E-06<1	
Co-58	1.9E+02	2.7E-07	2.7E-12	6.5E-13	6.0E-05	1.1E-08<1]
Co-60	1.1E+05	1.6E-04	1.6E-09	3.7E-10	4.0E-06	9.4E-05<1	
Sr-89	1.6E+03	2.3E-06	2.3E-11	5.4E-12	2.0E-05	2.7E-07<1	
Sr-90	9.9E+06	1.4E-02	1.4E-07	3.4E-08	8.0E-07	4.2E-02<1	※1:受け入れる廃棄物のコンテナの表
Ru-103	1.4E+00	2.0E-09	2.0E-14	4.8E-15	4.0E-05	1.2E-10<1	面線量率を1mSv/hとして算出。
Ru-106	3.7E+05	5.3E-04	5.3E-09	1.3E-09	2.0E-06	6.3E-04<1] <u>1mSv/h</u>
Sb-124	2.1E+02	3.0E-07	3.0E-12	7.1E-13	2.0E-05	3.6E-08<1	×
Sb-125	3.5E+05	5.0E-04	5.0E-09	1.2E-09	3.0E-05	4.0E-05<1	
I-131	3.8E-21	5.5E-29	5.5E-29	1.3E-29	5.0E-06	2.6E-24<1	約88cm
Cs-134	3.4E+06	4.9E-03	4.9E-08	1.2E-08	2.0E-05	5.8E-04<1	】 ↓ ↓ ↓ ↓ ↓ ↓ 約105cm
Cs-136	2.5E-13	3.6E-22	3.6E-27	8.5E-28	1.0E-04	8.5E-24<1	約105cm <座棄物コンテナト
Cs-137	9.4E+06	1.4E-02	1.4E-07	3.2E-08	3.0E-05	1.1E-03<1	
Ba-140	1.6E-11	2.3E-20	2.3E-25	5.4E-26	1.0E-04	5.4E-22<1	】※2:A系列・B系列それぞれ300kg/k
α	2.6E+02	3.7E-07	3.7E-12	8.9E-13	3.0E-09	3.0E-04<1	CMJWED, ZAMUD1702に個。 動地倍界においては、大気拡散动
	2.4E+07*1	3.4E-02	3.4E-07	8.0E-08*2		4.5E-02<1	果から、濃度はさらに低下する。

汚染水処理二次廃棄物の放射能評価のための多核種除去設備スラリー試料の分析

平成28年1月28日 西空組合 国際庭师研究開発

技術研究組合 国際廃炉研究開発機構/ 日本原子力研究開発機構

本資料には、平成26年度補正予算「廃炉・汚染水対策事業費補助金(固体廃棄物の処理・処分に関する研究開発)」成果の一部が含まれている。

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構

概要

- ■事故後に発生した固体廃棄物は、従来の原子力発電 所で発生した廃棄物と性状が異なるため、廃棄物の 処理・処分の安全性の見通しを得る上で試料の分析 が不可欠である。
- ■多核種除去設備からの二次廃棄物は発生量と放射 能の観点で重要である。放射能と性状の把握を、スラ リー、吸着材毎に順次進める計画である。
- ■多核種除去設備(既設及び増設)にて発生した炭酸 塩沈殿スラリーの試料を採取して分析し、結果が得ら れたことから報告する。

廃棄物試料の分析状況

建屋内瓦礫 ・1号機・3号機原子炉建屋1階瓦礫 13 http://www.meti.go.jp/earthquake/nuclear/pdf/130.28/130828_01nn.pdf ・2号機原子炉建屋1階(床、壁)ボーリングコア ・1号機原子炉建屋1階(床、壁)ボーリングコア 26/150326_01_3_7_04.pdf ・1号機原子炉建屋1階(床)ボーリングコア ・2号機原子炉建屋1階(床)ボーリングコア 26/150326_01_3_7_04.pdf ・2号機原子炉建屋1階(床)ボーリングコア ・2号機原子炉建屋1階(床)ボーリングコア 26/150326_01_3_7_04.pdf ・1気礫 ・1、3、4号機周辺瓦礫 ・1、3、4号機周辺瓦礫 001_3_4d.pdf ・1、3、4号機周辺瓦礫 ・位採木(枝、葉)、3号機周辺 生木(枝) 24 http://www.meti.go.jp/earthquake/nuclear/pdf/1407 立木 ・構内各所の立木(枝葉)及びそれに対応する落葉、 121 http://www.meti.go.jp/earthquake/nuclear/pdf/1502 ・構内各所の立木(枝葉)及びそれに対応する落葉、 121 http://www.meti.go.jp/earthquake/nuclear/pdf/1502 26/150326_01_3_7_04.pdf 140 27/140227_02ww.pdf ・ ・構内各所の立木(枝葉)及びそれに対応する落葉、 121 http://www.meti.go.jp/earthquake/nuclear/pdf/1502 26/150326_01_3_7_04.pdf 140 26/150326_01_3_7_04.pdf 26/150326_01_3_7_04.pdf	23-26	汚染水	 1~4号機タービン建屋滞留水等 集中RW地下高汚染水 濃縮廃水(RO) 高温焼却炉建屋地下滞留水 処理後水(セシウム吸着装置、第ニセシウム吸着装置) 	25	http://www.tepco.co.jp/nu/fukushima- np/images/handouts_110522_04-j.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/1209 24/120924_01jj.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/1306 27/130627_02kk.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/1311 28/131128_01ss.pdf
瓦礫 伐採木 ・ 1、3、4号機周辺瓦礫 ・ 伐採木(枝、葉)、3号機周辺生木(枝) 24 http://www.meti.go.jp/earthquake/nuclear/pdf/140 30/140130_01tt.pdf 立木 落葉、土壌 ・ 構内各所の立木(枝葉)及びそれに対応する落葉、 土壌 121 http://www.meti.go.jp/earthquake/nuclear/pdf/1402 27/140227_02ww.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/1402 26/150326_01_3_7_04.pdf		建屋内瓦礫 ボーリングコア	 1号機・3号機原子炉建屋1階瓦礫 2号機原子炉建屋5階(床)ボーリングコア 1号機原子炉建屋1階(床、壁)ボーリングコア 2号機原子炉建屋1階(床)ボーリングコア 	13	http://www.meti.go.jp/earthquake/nuclear/pdf/1308 28/130828_01nn.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/1503 26/150326_01_3_7_04.pdf http://www.meti.go.jp/earthquake/nuclear/decommi ssioning/committee/osensuitaisakuteam/2015/pdf/1 001_3_4d.pdf
 立木 ・構内各所の立木(枝葉)及びそれに対応する落葉、 121 http://www.meti.go.jp/earthquake/nuclear/pdf/140, 27/140227_02ww.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/150; 26/150326_01_3_7_04.pdf 		瓦礫 伐採木	 1、3、4号機周辺瓦礫 伐採木(枝、葉)、3号機周辺 生木(枝) 	24	http://www.meti.go.jp/earthquake/nuclear/pdf/1401 30/140130_01tt.pdf
		立木 落葉、土壌	 構内各所の立木(枝葉)及びそれに対応する落葉、 土壌 	121	http://www.meti.go.jp/earthquake/nuclear/pdf/1402 27/140227_02ww.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/1503 26/150326_01_3_7_04.pdf
21 パネパ 9 ssioning/committee/osensuitaisakuteam/2015/pdf, ・ 処理後水(セシウム吸着装置、第二セシウム吸着装置) 730_3_4c.pdf	27	汚染水	 ・集中RW地下高汚染水、高温焼却炉建屋地下滞留水 ・処理後水(セシウム吸着装置、第ニセシウム吸着装置) 	9	http://www.meti.go.jp/earthquake/nuclear/decommi ssioning/committee/osensuitaisakuteam/2015/pdf/0 730_3_4c.pdf
スラリー ・ 多核種除去設備スラリー(既設) 2 http://www.meti.go.jp/earthquake/nuclear/decomminioning/committee/osensuitaisakuteam/2015/pdf/082 3_4c.pdf		スラリー	• 多核種除去設備スラリー(既設)	2	http://www.meti.go.jp/earthquake/nuclear/decommiss ioning/committee/osensuitaisakuteam/2015/pdf/0827_ 3_4c.pdf
 汚染水・集中RW地下高汚染水、高温焼却炉建屋地下滞留水 処理後水(セシウム吸着装置、第ニセシウム吸着装置、 分析中 除染装置、多核種除去設備) 		汚染水	 集中RW地下高汚染水、高温焼却炉建屋地下滞留水 処理後水(セシウム吸着装置、第ニセシウム吸着装置、 除染装置、多核種除去設備) 	17	分析中
瓦礫 ・ 1、2、3号機原子炉建屋1階瓦礫 50 50 分析中 ・ 覆土式一時保管施設で採取した瓦礫 ・ 1号機タービン建屋砂		瓦礫	 1、2、3号機原子炉建屋1階瓦礫 覆土式一時保管施設で採取した瓦礫 1号機タービン建屋砂 	50	分析中
スラリー・多核種除去設備スラリー(既設、増設) 5 今回2試料分報告		スラリー	 多核種除去設備スラリー(既設、増設) 	5	今回2試料分報告

分析試料の情報及び分析内容

		試料名	採取日	採取 者	線量率 [※] (mSv/h)	
1	既討	GALPS炭酸塩スラリー	EAL-S2-2	H27.2.19	JAEA	18
2	増討	GALPS炭酸塩スラリー	AAL-S1-1	H27.5.13	JAEA	22
参考	報告済	既設ALPS炭酸塩スラリー	AL-S2-1	H26.6.11	JAEA	

※ 5mlを10mlバイアル瓶に収納したときの表面線量率。測定日はH27年5月27日。

- ■高性能容器(HIC)にスラリーを充填し終えた時に試料を採取し、放射能・元素濃度を分析した。
- 以下の核種を対象として分析している。
 γ線放出核種:⁵⁴Mn, ⁶⁰Co, ⁹⁴Nb, ¹²⁵Sb, ¹³⁷Cs, ¹⁵²Eu, ¹⁵⁴Eu
 β線放出核種:⁹⁰Sr
 α線放出核種:²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ²⁴⁴Cm
- 固液比、上澄液のpH、粒度分布の測定も実施した。

試料の採取

■ 多核種除去設備(既設)にて発生したスラリーを2試料採取した。高性能容器 (HIC)にスラリーが充填され交換する時に、専用治具を用いて採取した。

試料採取時の作業者被ばく線量

作業主	実効線	午 /	
1F耒有 (3~4名)	既設 EAL-S2-2	増設 AAL-S1-1	守屾稼里 * (手部)(mSv)
平均	0.14	0.12	4.5
最大	0.17	0.15	13.5

* 等価線量は、試料調製作業を含む当該月全体 での値。

現地での採取の様子

放射性核種分析結果

※エラーバーは計数値誤差

- ▶ いずれの試料についても⁹⁰Srが支配的であり、¹³⁷Cs等の他の核種に比べて3桁 以上も高い。
- ▶ ⁹⁴Nb, ¹⁵²Eu, ¹⁵⁴Eu:全ての試料で不検出。
- ▶ 試料により値に差異がみられる。

固液比及び上澄液のpH

●固液比

スラリー試料を撹拌後、一定量分取し、蒸発乾固前後の重量から固液比を求めた。

No	=-# ₩1 々	重量	比(%)	【参考】容量	圭比(%) *
NO.	高八千一〇	固体	液体	固体	液体
1	既設 EAL-S2-2	8.1	91.9	3.3	96.7
2	增設 AAL-S1-1	12.1	87.9	5.1	94.9
参考	既設 AL-S2-1	13.7	86.3	5.9	94.1

* 主な仮定物質の構成比より比重を設定し算出

● 上澄液のpH

スラリー試料を一定量分取し、ろ過法により上澄液を回収し、pHを測定した。

No.	試料名	рН
1	既設 EAL-S2-2	11.2
2	増設 AAL-S1-1	9.2 💥

※通常より若干低い値であることから、東電にて運転履歴等を確認中。

粒度分布

No.		粒子径測定結果(µm)					
	試料名	平均径 (個数基準)	メジアン径 (個数基準)	最大粒子径			
1	既設 EAL-S2-2	7.40	6.85	29.4			
2	増設 AAL-S1-1	5.27	4.30	26.9			
参考	既設 AL-S2-1	3.62	2.36	23.2			

IRID

される。

まとめ

■検出された核種

 ^{54}Mn , ^{60}Co , ^{90}Sr , ^{125}Sb , ^{137}Cs , ^{238}Pu , $^{239+240}Pu$, ^{241}Am

■供給液中のCa及びMg濃度に依存するプロセスであるため、 放射性核種濃度や粒度分布も供給液(RO濃縮塩水)組成の 影響を受けて変動している可能性がある。

■今後の計画

- ▶ 試料によって、放射性核種濃度や粒度分布に違いが確認 されたことから、新たなスラリー試料及び供給液(RO濃縮 塩水)の分析・評価を順次進めていく。
- ▶ 水処理二次廃棄物の簡易的なインベントリ評価手法の確 立に資するため、評価したインベントリの妥当性検証に分 析結果を活用する。

参考資料 多核種除去設備スラリー試料の 放射能分析・元素分析

参考 γ線放出核種分析結果

試料名		放射能濃度〔Bq/cm ³ 〕								
		⁵⁴ Mn	⁶⁰ Co	⁹⁴ Nb	¹²⁵ Sb	¹³⁷ Cs				
		(約312日)	(約5.3年)	(約2.0×10 ⁴ 年)	(約2.8年)	(約30年)				
1	既設 EAL-S2-2	$(2.0\pm0.4) \times 10^{1}$	$(5.8\pm0.3)\times10^{1}$	< 1 × 10 ¹	$(9.4\pm0.2) \times 10^{1}$	$(8.4 \pm 0.1) \times 10^{1}$				
2	増設 AAL-S1-1	$(5.6 \pm 0.4) \times 10^{1}$	$(2.2\pm0.1)\times10^{2}$	< 2 × 10 ¹	$(4.6\pm0.2)\times10^2$	$(8.5\pm0.1) \times 10^2$				
再掲	既設 AL-S2-1	$(2.9\pm0.6) \times 10^{1}$	$(1.4\pm0.1)\times10^{2}$	< 2 × 10 ¹	< 2 × 10 ²	$(2.7\pm0.1)\times10^{2}$				

		放射能濃度[Bq/cm ³]			
	試料名	¹⁵² Eu	¹⁵⁴ Eu		
		(約14年)	(約8.6年)		
1	既設 EAL-S2-2	< 3 × 10 ¹	< 2 × 10 ¹		
2	増設 AAL-S1-1	< 3 × 10 ¹	< 2 × 10 ¹		
再掲	既設 AL-S2-1	< 4 × 10 ¹	< 3 × 10 ¹		

⁵⁴ Mn,	⁶⁰ Co,	¹²⁵ Sb ,	¹³⁷ Cs:全ての試料で検出。
04 N 11-	152	154	ヘーヘジャーナムロ

- ▶ ⁹⁴Nb, ¹⁵²Eu, ¹⁵⁴Eu:全ての試料で不検出。
- ▶ 試料により値が異なる傾向がみられる。

試料の輸送日において補正。(EAL-S2-2とAAL-S1-1は2015.7.28の値、AL-S2-1は2014.9.25の値。) 分析値の±の後の数値は、計数値誤差である。

試料名		放射能濃度〔Bq/cm ³ 〕							
		²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm	⁹⁰ Sr			
		(約88年)		(約4.3×10 ² 年)	(約18年)	(約29年)			
1	既設 EAL-S2-2	$(3.8\pm0.5)\times10^{-2}$	$(9.0\pm2.5)\times10^{-3}$	< 9 × 10 ⁻³	< 5 × 10 ⁻³	$(5.3\pm0.1) \times 10^{6}$			
2	増設 AAL-S1-1	$(2.0\pm0.1)\times10^{-1}$	$(7.8\pm0.6)\times10^{-2}$	$(2.0\pm0.4) \times 10^{-2}$	< 6 × 10 ⁻³	$(6.5\pm0.1) \times 10^{6}$			
再掲	既設 AL-S2-1	$(1.9\pm0.2)\times10^{-1}$	$(6.8\pm0.9)\times10^{-2}$	< 2 × 10 ⁻²	<1 × 10 ⁻²	$(1.3\pm0.1)\times10^7$			

α線放出核種に関して

- ▶ 増設炭酸塩の濃度は報告済既設炭酸塩と同程度。
- ▶ 既設炭酸塩の濃度は報告済既設炭酸塩の1/5程度。

⁹⁰Srに関して

▶ 報告済既設炭酸塩の1/2程度。

試料の輸送日において補正。(EAL-S2-2とAAL-S1-1は2015.7.28の値、AL-S2-1は2014.9.25の値。) 分析値の±の後の数値は、計数値誤差である。

参考 元素分析結果

試料名		元素組成比〔wt%〕							
		Na	Mg	Si	Са	Mn	Fe	Ni	Sr
1	既設 EAL-S2-2	3.7	20.0	0.47	16.6	ND	0.14	0.04	0.11
2	增設 AAL-S1-1	4.0	22.2	0.43	14.5	ND	0.08	0.11	0.07
再揭	既設 AL-S2-1	2.0	16.2	0.81	25.0	0.05	0.28	ND	0.14

試料名		物質構成比〔wt%〕(代表的な物質を想定)						
		Na ₂ CO ₃	Mg(OH) ₂	SiO ₂	CaCO₃	Mn(OH) ₂		
1	既設 EAL-S2-2	8.6	48.1	1.0	41.5	0		
2	増設 AAL-S1-1	9.3	53.3	0.93	36.2	0		
再揭	既設 AL-S2-1	4.7	38.9	1.7	62.5	0.09		
		FeO(OH)•H ₂ O	Ni(OH) ₂	SrCO ₃	合計			
1	既設 EAL-S2-2	0.26	0.06	0.18	99.8			
2	增設 AAL-S1-1	0.16	0.18	0.12	100.2			
再揭	既設 AL-S2-1	0.53	0	0.24	108.7]		

参考 分析方法

■ 方法

■ 炭酸塩沈殿スラリーを硝酸で溶解した後に、対象核種に応じて分離操作を 適宜行い分析した。

■ 濃度はスラリーの体積あたりとして求めた。

■ 分析装置

- γ 線放出核種:高純度Ge検出器(HPGe)
- β線放出核種:液体シンチレーションカウンタ(LSC)又はガスフロー式低バックグ

スラリー

分取

ランドβ線計測装置(LBC)

 α 線放出核種: Si半導体検出器

元素分析: ICP-AES

参考 粒度分布測定方法

■ 方法

- 炭酸塩沈殿スラリーを純水中に希釈・分散させ、これを分取しフィルター上で乾燥後、マイラー
 膜で密封し、マイクロスコープで画像を撮影した。
- 得られた画像を、画像解析ソフトにより、バックグラウンド除去、モノクロ画像化、2値化、モフォロジー、穴埋め等の処理を行った。
- 重なり合った粒子及び粒子同士が接している粒子は削除・棄却した。

■ 装置、解析ソフト

- □ デジタルマイクロスコープKH-1300(ハイロックス社製)
 - 同軸落射ズームレンズ:MX-10C
 - 対物レンズ:OL-70II(70-700倍)、OL-700II(700-7000倍)
 - リング照明:NR-405-OL(拡散アダプタ:R-OL-D)
- □ 画像解析・計測ソフトウェアWinROOF2013(三谷商事社製)

右図 撮影した画像(例)

