

東京電力ホールディングス株式会社 放射性廃棄物処理・処分 2019/4/25現在

分	括作業内容		0.7			18			FP				
野名	0	これまで1ヶ月の動きと今後1ヶ月の予定	3月		-	4月			5月		6月	7月	備考
	保	 (実 績) ・一時保管エリアの保管量確認/線量率測定および集計 ・ガレキ等の将来的な保管方法の検討 ・線量低減対策検討 ・ガレキ・伐採木の保管管理に関する諸対策の継続 (う 定) ・一時保管エリアの保管量確認/線量率測定および集計 	24 段时 - 段 計	31 一時保 ;	7 管エリアの保管量、 ずレキ等の将来的な 寝量低減対策検討	14 21 線量率集計 保管方法の検討	28	。 一時保管エリ	17の保管量、線量率集計 ■	-時保管工!」			量率集計
	理 日初にに成山される瓜粉に加具守 計 による敷地境界線量低減 画	・ガレキ・ウルオメロッなは、音力ぶつ(大日) ・線量低減対策検討 ・ガレキ・伐採木の保管管理に関する諸対策の継続	現處作業	—用 ガレ	キ・伐採木の保管	量確認、線量率測定 管理に関する諸対策の継続							
固体廃棄物の保留		 (実績) 【研究開発】固体廃棄物のサンブリング・分析 【研究開発】JAEAにて試料の分析(現場:JAEA東海等) ・分析試料のJAEA東海・民間分析施設への輸送 (予定) 【研究開発】国体廃棄物のサンブリング・分析 	^{候 10} 20 20 10 11 11 11 11 11 11 11 11 1	本廃棄物のサンプ [」] のサンブリング	主	要機器搬入・据付工事							 ・これまでの分析結果は以下のウェブ ページにまとめられている https://fukushima.jeea.go.jp/hairo/ work/tech-info.html ・多核種除去設備の運転状況に応じて順 次試料を採取
官管理、処理・処分計画	4. 固体廃棄物の性状把握	・【研究開発】JAEAにて試料の分析(現場:JAEA東海等)	【研究開発】JA 互礫の分析: (α 核種、 汚染水(滞 (α 核種、 , 水処理二次)	EA こて試料の分析 専	fi (現場 : JAEA東 マスラッジ) の分析 の分析等	(海等)							互課:デブリ状況把握Pi等試料のデータ を取り継め中、2号機外壁等試料を分析 中 汚染水:滞留水・処理水(No、ヨウ 素)、建屋スラッジのデータを取り継め 中
	5, JAEA分析・研究施設の整備 (施設管理棟、第1棟、第2棟)	 (実 績) 施設管理棟建設工事 第1棟建屋現地工事 基礎工事 躯体工事 (予 定) 第1棟建屋現地工事 躯体工事 	(α 核種、 (α 核種、) (α 核種、) (α 核種、) (α 核種、) (α 核種、) (α 核種、	<i>8</i> 城種、 γ 核種)		躯体工事(地上2	2階)						 水処理二次廃棄物:ALPS吸着材(活性 炭等)分析中 2017年3月7日: JAEA分析研究施設第1棟 実施計画変更認可 (原規規第1703071号) 2018年2月28日:竣工(施設管理 棟) 2018年3月15日連用開始(施設管理 棟) 2018年3月15日:抗工事完了 ・2018年11月15日:地上1階躯体工事 開始
										躯体工	事(地上3階	,	PORE

東京電力ホールディングス株式会社 放射性廃棄物処理・処分 2019/4/25現在

瓦礫類・伐採木・使用済保護衣等の管理状況(2019.3.29 時点)

	分類	保管場所	保管方法	エリア境界 空間線量率 (mSv/h)	保管量		前回集約からの増加 (2019.2.28 - 2019.3.2	咸 ^{※1} 29)	変動 ^{※2} 理由	エリア 占有率	保管量 ^{※3} /保管容量 (割合)	トピックス
		В	屋外集積	0.01	3,300	m ³	+700	m ³	12	63 %		
		С	屋外集積	0.01未満	62,300	m ³	+200	m^3	13	98 %		
		F 2	屋外集積	0.01未満	6,400	m ³	0	m ³	_	85 %		
		J	屋外集積	0.01	5,400	m ³	+200	m ³	4	68 %		・フランジタンク解体片
	屋外集積	Ν	屋外集積	0.01未満	9,600	m ³	微増	m ³	_	96 %	195300 / 252700	2019年2月末時点でコンテナ928基保管。
	(0.1mSv/h以下)	0	屋外集積	0.01未満	43,300	m ³	-200	m ³	5	84 %	(77%)	エリアP1コンテナ数:670基 (2015年6月15日~) エリアAAコンテナ数:262基 (2018年3月15日~)
		P 1	屋外集積	0.01未満	50,700	m ³	+300	m ³	16	79 %		
		U	屋外集積	0.01未満	700	m ³	0	m ³	_	100 %		
		V	屋外集積	0.01	4,800	m ³	+100	m ³	\bigcirc	80 %		
		AA	屋外集積	0.01未満	8,600	m ³	+100	m ³	1	24 %		
_		D	シート養生	0.01未満	2,600	m ³	0	m ³	_	58 %		
风礫		E 1	シート養生	0.02	14,100	m ³	0	m ³	_	88 %		
類	シート養生 (0.1~1mSv/h)	P2	シート養生	0.01	5,600	m ³	微増	m ³	_	62 %	37900 / 71000	 エリアWでの車両解体(プレス等)完了。(2018年1月)
		W	シート養生	0.03	7,700	m ³	+1,200	m ³	18	26 %	(53%)	
		Х	シート養生	0.01	7,900	m ³	0	m^3	_	65 %		
		L	覆土式一時保管施設	0.01未満	16,000	m ³	0	m ³	—	100 %		
	覆土式一時保管施設、	А	仮設保管設備	0.14	1,000	m ³	0	m ³	_	14 %		 ・主な瓦礫類は、1~3号機工事等で発生した瓦礫類。
	仮設保管設備、容器	E2	容器 ^{※4}	0.01	400	m ³	0	m ³	_	24 %	18500 / 31700	・ 覆土式4 槽の受入開始に伴い、保管容量(4,000m3) 増加。
	(1~30mSv/h)	F 1	容器	0.01未満	600	m ³	0	m ³	_	99 %	(58%)	(2018年5月)
		Q	容器	0.04	400	m ³	-400	m^3	910	7%		
	固体廃棄物貯蔵庫	固体廃棄物 貯蔵庫	容器 ^{※4}	0.01	15,100	m³	+600	m ³	181	33%	15100 / 45600 (33%)	・主な瓦礫類は、1~3号機工事等で発生した瓦礫類。 ・固体廃棄物貯蔵庫9棟の運用開始に伴い、保管容量(33,600m3)増加。 (2018年2月)
		合計(ガレキ)		266,800	m ³	+2,800	m^3	—	67 %		
		G	屋外集積	0.01未満	25,300	m ³	微増	m^3	_	63 %		
	屋外集積	Н	屋外集積	0.01未満	31,700	m ³	0	m^3	_	74 %	96800 / 134000	
伐	(幹・根・枝・葉)	Μ	屋外集積	0.01未満	39,600	m ³	0	m^3	—	88 %	(72%)	
休木		V	屋外集積	0.01	100	m ³	微増	m^3		2 %		
	一時保管槽	G	伐採木一時保管槽	0.01未満	26,200	m ³	0	m^3	-	88 %	37300 / 41600	
	(枝・葉)	Т	伐採木一時保管槽	0.01未満	11,100	m ³	0	m^3	-	94 %	(90%)	
合計(伐採木)					134,100	m ³	微増	m^3	—	76 %		
保護衣	屋外集積		容器	0.04	56,000	m ³	+500	m ³	(12)	82 %	56000 / 68300 (82%)	 ・使用済保護衣等焼却量 5314t(2019年3月末累積) ・焼却灰(ブラスト材含む)のドラム缶数 1308本(2019年3月末累積)
		全計 (庙田)	8 (2) (注)		56,000	3	+500			02 %		

※1 100m³未満を端数処理しており、微増・微減とは100m³未満の増減を示す。

※2 主な変動理由:①タンク関連工事 ②一時保管施設設置工事 ③港湾復旧工事 ④一時保管エリアOからの移動 ⑤一時保管エリアJへの移動 ⑥1~4号機建屋周辺瓦礫撤去関連工事 ⑦一時保管エリアP1からの移動 ⑧固体庫9棟へ瓦礫の移動 ⑨一時保管エリアWへの移動 ⑩固体庫9棟へ瓦礫の移動 ⑪一時保管エリアWからの移動⑫使用済保護衣等の受入

※3 端数処理で100m³末満を四捨五入しているため、合計値が合わないことがある。

※4 水処理二次廃棄物(小型フィルタ等)を含む。

		小是生一八历				5\2010.1		·)/////		
分類	保管場所	種類		保管量		前回集約からの増減 (2019.3.7 - 2019.4.4	<mark>或</mark> ※1 い	保管量/保管容量 (割合)	トピックス	
		セシウム吸着装置使用済ベッセル		775	本	+4	本			Ha
		第ニセシウム吸着装置使用済ベック	セル	216	本	+6	本			H
		冬枝種除土設備竿炉筒突架	既設	1,607*	1基	+7	基	4332 / 6372		18
	使用済吸着培 保管施設	夕 恆裡际公設備守床自各品	増設	1,443 [*]	² 基	+13	基	(68%)	 ・ 收着塔一時保管施設の増容量が認可(2015年12月14日) ・ 使用前検査完了(2017年5月26日)に伴う保管容量増(第四施設架台129塔分) 	
水		高性能多核種除去設備使用済ベッセル	高性能	74	本	0	本			le:
処		多核種除去設備処理カラム 既設 モバイル式処理装置等使用済ベッセル及びフィルタ類		11	塔	0	塔			1
埋				206	本	+2	本			
二次廃棄物	廃スラッジ 貯蔵施設	廃スラッジ		597	m ³	0	m ³	597 / 700 (85%)	 ・除染装置の運転計画は無く、新たに廃棄物が増える見込みは無い。 ・準備が整い次第、除染装置の廃止について実施計画の変更申請を行う。 	
	濃縮廃液タンク	濃縮廃液		9,330	m ³	0	m ³	9330 / 10300 (91%)	・タンク水位の変動は、計器精度±1%の誤差範囲内。(現場パトロール異常なし) ・水位計0%以上の保管量:9230 [m] タンク底部〜水位計の保管量(DS):約100[m]	

水処理-次廃棄物の管理状況(201944時占)

※1:データ集計の間違い修正により、基数を訂正。 【正】1,607基 【誤】1,590基(2020.3.4)

※2:データ集計の間違い修正により、基数を訂正。 【正】1,443基 【誤】1,460基(2020.3.4)

東京電力ホールディングス株式会社 放射性廃棄物処理·処分 2019年4月25日

G

廃棄物試料の分析結果 (1~3号機原子炉建屋内瓦礫)

平成31年4月25日 技術研究組合 国際廃炉研究開発機構/ 日本原子力研究開発機構

本資料には、平成28年度補正予算補正予算「廃炉・汚染水対策事業費補助金(固体廃棄物の処理・処分に関する研究開発)」成果の一部が含まれている。

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

概要

- 事故後に発生した固体廃棄物は、従来の原子力発電所で発生した廃棄物と性状が 異なるため、廃棄物の処理・処分の安全性の見通しを得る上で性状把握が不可欠 である。
- 廃棄物の性状を把握するため、瓦礫、伐採木、保護衣等焼却灰、水処理二次廃棄物等の廃棄物、今後の廃炉作業の進捗により廃棄物となることが想定される原子炉建屋等から試料を採取し、分析を継続している。
- 原子炉建屋から採取された試料は、解体廃棄物の汚染状態の把握、発生量(体積、質量)や放射能量の推定、インベントリの評価を行う上で重要である。今回、1、 2及び3号機原子炉建屋内部の瓦礫として、床のボーリングコアと除染操作に伴うストリッパブルペイント*1、また、格納容器内部の瓦礫として、格納容器堆積物及びTIP 配管内閉塞物*2の試料を分析した結果を報告する。

*1「建屋内の遠隔除染技術の開発」の分析試料から一部を分取したものである。(前田ら、JAEA-Research 2013-025、2014.)

*2 1号機格納容器堆積物、2号機TIP配管内閉塞物は、「平成27年度補正予算廃炉・汚染水対策事業費補助金(総合的な炉内状 況把握の高度化)」で用いられた試料から一部を分取したものである。

原子炉建屋(1~5階)瓦礫- 試料の性状

試料名試料	採取日	ŧ	采取場所	試料性状
1RB-X6-P				ボーリングコア 塗膜
1RB-X6-C-1	2014年2月下旬	1号機原子炉建屋	1階 貫通孔X6近傍	同 コンクリート上層部
1RB-X6-C-2				同 コンクリート下層部
1RB-AC-P1	2014年2月下旬			ボーリングコア 塗膜
1RB-AC-C1-1		1号機原子炉建屋	1階AC配管根元近傍水跡	同 コンクリート上層部
1RB-AC-C1-2				同 コンクリート下層部
1RB-AC-C2-1	2014年2日工句	1旦幽百之后建员	1陛20司管坦元近傍水陆	ボーリングコア コンクリート上層部
1RB-AC-C2-2	2014年2月下旬	「方陂原丁炉建産	「哈谷しに官板儿辺汚水跡	同 コンクリート下層部分
2RB-2F-SP	2012年6月28日 ~7月4日	2号機原子炉建屋	2階北側通路•床 (RCW Hx近傍)	同 ストリッパブルペイント
2RB-3F-SP	2012年6月28日 ~7月4日	2号機原子炉建屋	3階北側・床 (RCWポンプ近傍)	同 ストリッパブルペイント
2RB-OP1-P-2	2014年1日下句		5陛占エルプニグト邨(由	ボーリングコア 下層塗膜
2RB-OP1-C-1	2014年1月下旬	2号機原子炉建屋	5時/ノエルノノクエ帥(中	同 コンクリート上層部
2RB-OP1-C-2	~ 3月下町			同 コンクリート下層部
2RB-OP2-P-1	2014年1日下旬			ボーリングコア 上層塗
2RB-OP2-C-1		2号機原子炉建屋	5階オペフロ北東部	同 コンクリート上層部
2RB-OP2-C-2				同 コンクリート下層部
3RB-1F-C	2012年6月28日 ~7月4日	3号機原子炉建屋	1階床	ボーリングコア コンクリート上層部

原子炉建屋(1~5階)瓦礫一分析内容

- 1~3号機の原子炉建屋内から採取された瓦礫(ボーリングコアの塗膜とコンクリート、ストリッパブ ルペイント)に関して、瓦礫類が含有する放射能の推定に資するため、次の点に着目して分析した。
 - ◆ 原子炉建屋内部の汚染について、放射性核種の組成に基づいて分類するため、従来、 分析試料が得られていない、あるいは点数が少ない場所からの試料を選んだ。
 - ◆ また、汚染の拡散に関する想定として、空気とともに水を経由した汚染を考え、汚染水からの影響の可能性がある試料を選んだ。
- 放射性核種は、⁶⁰Co、⁹⁰Sr、⁹⁴Nb、¹³⁷Cs、¹⁵²Eu、¹⁵⁴Eu を分析した。
 - ◆ これらに加え、供試料量が確保できた場合に、以下の核種を分析した。
 ³H. ¹⁴C. ⁶³Ni. ⁷⁹Se. ⁹⁹Tc. ¹²⁶Sn. ¹²⁹I. ²³⁸Pu. ²³⁹⁺²⁴⁰Pu. ²⁴¹Am. ²⁴⁴Cm

ボーリングコア塗膜 (2RB-OP1-P-2) ボーリングコア コンクリート (2RB-OP1-C-1)

ストリッパフルペイン (2RB-2F-SP) ストリッパブルペイント (2RB-3F-SP)

原子炉建家内瓦礫試料の外観(例)

原子炉建屋(1~5階)瓦礫 – 分析データ(1/2)

- 図 原子炉建家内から採取した瓦礫試料から検出された核種の濃度(¹³⁷Csに対するプロット)
- ³H/¹³⁷Cs比は、これまでと同等の値である。⁶⁰Coは2号機で検出され、⁶⁰Co/¹³⁷Cs比は、これまでと同等の値である。
- ➢ 3H と 60Co については、Cs に対しての汚染の違いが、今回分析した試料には認められなかった。

 4.7×10^{-3}

 4.9×10^{-3}

燃料*2

IRI

(JAEA)
 *1 2014~2018年度取得データ(本報告取得データ含む).
 *2 照射燃料について計算した2011.3.11時点の放射能(日本原子力研究開発機構報告書「JAEA-Data/Code 2012-018」).

燃料*2

 1.3×10^{-5}

 1.4×10^{-5}

 1.4×10^{-5}

図 原子炉建家内から採取した瓦礫試料から検出された核種の濃度(137Csに対するプロット)

▶ ⁹⁰Sr/¹³⁷Cs比に関して、1号機貫通孔X6近傍、3号機1階床から採取した試料では、比が高い傾向にある。

▶ ²³⁸Pu/¹³⁷Cs比に関して、1号機貫通孔X6近傍、2号機5階から採取した試料では、比が高い傾向にある。

▶ 90Sr と ²³⁸Pu については、Cs に対しての汚染の違いが認められる場所があることが示唆された。

*1 2014~2018年度取得データ(本報告取得データ含む).

JAEA

IRID

©International Research Institute for Nuclear Decommissioning

*2 照射燃料について計算した2011.3.11時点の放射能(日本原子力研究開発機構報告書「JAEA-Data/Code 2012-018」).

原子炉建屋(格納容器)瓦礫 - 分析試料(堆積物)

- 1号機格納容器 (PCV) 内部調査の一環として、PCV底部の堆積物(浮遊物)が 2017年4月に採取された^{*1}。1号機内部の汚染状況や核種組成を把握し、汚染の過 程を推定するため、堆積物(約 10 mg)の次の核種と元素を分析した。
 - ◆ ⁵⁵Fe, ⁶⁰Co, ⁶³Ni, ⁹⁰Sr, ⁹³Zr, ⁹⁴Nb, ¹²⁵Sb, ¹³⁷Cs, ¹⁵⁴Eu, U同位体, ²³⁷Np, Pu同 位体, Am同位体, Cm同位体

©International Research Institute for Nuclear Decommissioning

東京電力ホールディングス株式会社, "1~3号機原子炉格納容器内部調査関連サンプル等の分析結果," 第62回特定原子力施設監視・評価検討会 (2018).

原子炉建屋(格納容器)瓦礫 - 分析試料(配管閉塞物)

- 原子炉温度計設置のため、2013年7月に原子炉の炉心部に直接繋がっている TIP 配管の閉塞解消を試みた際に、ダミーケーブルの先端に付着物が回収された^{*1}。格 納容器内部の汚染状況や核種組成を把握し、汚染の過程を推定するため、TIP配 管Bライン閉塞物(ろ物として約 3 mg)の次の核種と元素を分析した。
 - ◆ ⁵⁵Fe, ⁶⁰Co, ⁶³Ni, ⁹⁰Sr, ⁹³Zr, ⁹⁴Nb, ¹²⁵Sb, ¹³⁷Cs, ¹⁵⁴Eu, U同位体, ²³⁷Np, Pu同 位体, Am同位体, Cm同位体

NFD

IRID

©International Research Institute for Nuclear Decommissioning

1 東京電力ホールディングス株式会社, "1~3号機原子炉格納容器内部調査関連サンプル等の分析結果," 第62回特定原子力施設監視・評価検討会 (2018). 原子炉建屋(格納容器)瓦礫-分析データ(核種、比較)

- ¹³⁷Cs を基準とした放射能の比は、 TIP配管閉塞物では ⁵⁵Fe、⁶⁰Co と
 ⁶³Ni が顕著に高く、構造材料に由来 すると思われる放射化生成物核種 が主に寄与している。一方で、U や Pu などのアクチニド核種は、逆に著 しく低い。
- 格納容器の内部にあっても、汚染の 傾向は場所によって大きく異なって いると言える。

分析により求めた放射能濃度の ¹³⁷Cs に対する比

 1)「JAEA-Data-Code-2012-018」から引用、冷却年数7.8年に換算.
 2)「余裕深度処分対象廃棄物に関する基本データ集(一部改訂),平成28年 8月23日, 電気事業連合会」を参考に算出.

IRID (JAEA

INIED

1号機格納容器堆積物 – 分析データ(元素)

表 元素分析結果(試料量約10mg)

元素	含有量 [µg]	割合 [%] ^{注)}
U	30.3	1.7
Zr	45.7	2.5
Fe	1637	89.7
Cr	3.16	0.17
Mn	13.9	0.76
Со	0.42	0.02
Ni	46.1	2.5
Sr	0.5	0.03
Y	0.04	0.002
Nb	0.66	0.04
Мо	6.4	0.35
Sn	14.6	0.80
Sb	26.3	1.4
合計	1825	100

注)各元素の割合は丸めた値を示しているため、記載した値を 合計しても100%とはならない。

NFD

IRID

- Fe、Zr、Uをそれぞれ検出し、Feが主成分であった。
- Cr/Fe比に着目すると、Fe などの鉄鋼成分の由来は、炭素鋼の寄与が大きいとみられる。
- 燃料成分としては、Sr、ZrやUがみられた。Snの由来は不明である。

※原子力発電所の運転及び解体に伴い発生する廃棄物の物量、性状等 に関する資料集、平成10年11月、財団法人原子力環境整備センター

2号機TIP配管内閉塞物 – 分析データ(核種)

 1)「JAEA-Data-Code-2012-018」から引用、冷却年数7.8年に換算.
 2)「余裕深度処分対象廃棄物に関する基本データ集(一部改訂),平成28年 8月23日、電気事業連合会」を参考に算出.

2号機TIP配管閉塞物 – 分析データ(元素)

表 元素分析結果(試料量約3mg)

元素	含有量 [µg]	割合 [%] ^{注)}
U	0.00144	0.00003
Zr	11.5	2.8
Fe	318	76.4
Cr	39.1	9.4
Mn	1.89	0.45
Со	0.57	0.14
Ni	34.3	8.2
Nb	0.013	0.003
Мо	10.2	2.5
Sn	0.307	0.07
Sb	0.091	0.02
合計	416	100

注)各元素の割合は丸めた値を示しているため、記載した値を 合計しても100%とはならない。

NFD

IRID (JAEA)

図 各元素量とFe元素量の比

- Fe、Zr、Uをそれぞれ検出し、Feが主成分である。
- Cr/Fe比に着目すると、Feなどの鉄鋼成分の由来は、ステンレス鋼の寄与が支配的である。

元素量 / Fe元素量

Zr は被覆管等別の構造材料に由来すると思われる。Sn の由来は不明である。

まとめ

- 1、2及び3号機原子炉建屋1から5階で得られた、床ボーリングコア、除染操作のスト リッパブルペイント、また、1号機格納容器堆積物及び2号機TIP配管閉塞物を分析した。
- 原子炉建屋1から5階の汚染は、³Hと⁶⁰Coは、Csに対する挙動が場所によらず同様であった。一方、⁹⁰Srは、1号機貫通孔X6近傍や3号機1階床、また、²³⁸Puは1号機X6ペネ近傍や2号機5階において¹³⁷Csとの比がそれぞれ高い傾向にあり、揮発性が低い核種の汚染が比較的高い場所がある。
- 1号機PCV堆積物と2号機TIP配管閉塞物は、相対的に前者が⁶⁰Coなど金属構造 材料由来の核種の寄与が大きく、Uなどアクチニド核種の汚染が低い。化学的な組 成は、鉄鋼成分が主体であり、それぞれ炭素鋼、ステンレス鋼の由来であると推定 される。格納容器の内部では、汚染の様態が場所によって大きく異なっている。
- 今後も、廃棄物の性状の推定、廃棄物の処理・処分方法の検討、作業環境の安全 確保等に活用するために、廃棄物の発生状況等を踏まえつつ、性状把握を継続し ていく。

参考情報

原子炉建屋(1~5階)瓦礫 - 核種分析結果(1/3)

		放射能濃度[Bq/g]												
試料名	³ Н	¹⁴ C	⁶⁰ Co	⁶³ Ni	⁷⁹ Se	⁹⁰ Sr								
	(約12年)	(約5.7×10 ⁴ 年)	(約5.3年)	(約1.0×10 ² 年)	(約6.5×10 ⁴ 年)	(約29年)								
1RB-X6-P	-	-	< 6 × 10⁻¹	-	-	(2.5±0.1) × 10 ¹								
1RB-X6-C-1	-	-	< 2 × 10 ⁻¹	-	-	(6.5±0.1) × 10 ⁰								
1RB-X6-C-2	-	-	< 2 × 10 ⁻¹	-	-	$(7.9\pm0.1) \times 10^{0}$								
1RB-AC-P1	-	-	< 7 × 10 ⁻¹	-	-	(1.6±0.1) × 10 ⁰								
1RB-AC-C1-1	-	-	< 5 × 10⁻¹	-	-	(6.9±1.4) × 10⁻¹								
1RB-AC-C1-2	-	-	< 5 × 10⁻¹	-	-	$(8.7\pm0.2) \times 10^{0}$								
1RB-AC-C2-1	(1.9±0.2) × 10 ⁰	< 6 × 10 ⁻¹	< 4 × 10 ⁻¹	-	-	(1.2±0.2) × 10 ¹								
1RB-AC-C2-2	(1.1±0.1) × 10 ⁰	< 1 × 10 ⁻¹	< 4 × 10 ⁻¹	-	-	(1.2±0.1) × 10 ¹								
2RB-OP1-P-2	-	-	(5.9±0.7) × 10 ¹	-	-	$(1.1\pm0.1) \times 10^4$								
2RB-OP1-C-1	(2.8±0.2) × 10 ⁰	< 5 × 10⁻¹	(5.2±1.2) × 10 ⁻¹	(1.1±0.2) × 10 ⁰	< 2 × 10 ⁻¹	(5.3±0.1) × 10 ¹								
2RB-OP1-C-2	-	-	< 3 × 10 ⁻¹	-	-	(9.7±0.2) × 10 ¹								
2RB-OP2-P-1	-	-	(3.5±0.2) × 10 ¹	-	-	(1.5±0.1) × 10 ³								
2RB-OP2-C-1	$(4.0\pm0.2) \times 10^{0}$	< 5 × 10 ⁻¹	(4.8±0.2) × 10 ¹	$(9.6\pm0.3) \times 10^{0}$	< 1 × 10 ⁰	$(3.3\pm0.1) \times 10^3$								
2RB-OP2-C-2	-	-	< 8 × 10 ⁻¹	-	-	$(1.0\pm0.1) \times 10^2$								
3RB-1F-C	-	-	< 5 × 10⁻¹	-	-	$(5.7\pm0.1) \times 10^{0}$								
2RB-2F-SP	$(5.5\pm0.1) \times 10^{1}$	$(1.8\pm0.1) \times 10^{0}$	(1.5±0.1) × 10 ²	$(3.6\pm0.1) \times 10^{1}$	$(1.4\pm0.1) \times 10^{0}$	(1.6±0.1) × 10 ³								
2RB-3F-SP	$(2.2\pm0.1) \times 10^{1}$	$(7.6\pm0.3) \times 10^{-1}$	$(3.6\pm0.1) \times 10^{1}$	$(8.9\pm0.1) \times 10^{0}$	$(2.8\pm0.4) \times 10^{-1}$	$(7.8\pm0.1) \times 10^2$								

▶ ³H、⁶³Ni、⁹⁰Srは測定した全ての試料から検出された。

▶ ¹⁴C、⁷⁹Seはストリッパブルペイント試料から検出された。

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。 ·分析値の±の後の数値は、計数誤差。

原子炉建屋(1~5階)瓦礫 - 核種分析結果 (2/3)

	放射能濃度[Bq/g]											
試料名	⁹⁴ Nb	⁹⁹ Tc	¹²⁶ Sn	¹²⁹	¹³⁷ Cs							
	(約2.0×10 ⁴ 年)	(約2.1×10 ⁵ 年)	(約1.0×10 ⁵ 年)	(約1.6×10 ⁷ 年)	(約30年)							
1RB-X6-P	< 2 × 10 ⁻¹	-	-	-	(2.5±0.1) × 10 ²							
1RB-X6-C-1	< 6 × 10 ⁻²	-	-	-	(5.3±0.1) × 10 ¹							
1RB-X6-C-2	< 7 × 10 ⁻²	-	-	-	$(4.9\pm0.1) \times 10^{1}$							
1RB-AC-P1	< 3 × 10 ⁻¹	-	-	-	(2.0±0.1) × 10 ²							
1RB-AC-C1-1	< 2 × 10 ⁻¹	-	-	-	(4.8±0.1) × 10 ³							
1RB-AC-C1-2	< 2 × 10 ⁻¹	-	-	-	(3.3±0.1) × 10 ³							
1RB-AC-C2-1	< 2 × 10 ⁻¹	-	-	-	(6.0±0.1) × 10 ⁴							
1RB-AC-C2-2	< 2 × 10 ⁻¹	-	-	-	$(1.9\pm0.1) \times 10^4$							
2RB-OP1-P-2	< 8 × 10 ⁰	-	-	-	(2.2±0.1) × 10 ⁶							
2RB-OP1-C-1	< 2 × 10 ⁻¹	< 2 × 10 ⁻¹	< 5 × 10⁻¹	< 5 × 10 ⁻¹	(3.2±0.1) × 10 ⁵							
2RB-OP1-C-2	< 1 × 10 ⁻¹	-	-	-	$(8.7\pm0.1) \times 10^3$							
2RB-OP2-P-1	< 2 × 10 ⁰	-	-	-	(1.0±0.1) × 10 ⁵							
2RB-OP2-C-1	< 2 × 10 ⁰	(3.5±0.2) × 10 ⁰	< 1 × 10 ⁰	< 5 × 10⁻¹	(3.1±0.1) × 10 ⁶							
2RB-OP2-C-2	< 3 × 10 ⁻¹	-	-	-	(5.3±0.1) × 10 ⁴							
3RB-1F-C	< 2 × 10 ⁻¹	-	-	-	$(1.2\pm0.1) \times 10^{1}$							
2RB-2F-SP	< 8 × 10 ⁻¹	$(3.6\pm0.1) \times 10^{1}$	$(2.7\pm0.1) \times 10^{0}$	$(1.4\pm0.1) \times 10^{0}$	(3.1±0.1) × 10 ⁵							
2RB-3F-SP	< 4 × 10 ⁻¹	(1.6±0.1) × 10 ⁰	(5.2±0.4) × 10 ⁻¹	(3.2±0.2) × 10 ⁻¹	(2.5±0.1) × 10 ⁵							

▶ ¹³⁷Csはすべての試料から検出された。

▶ ⁹⁴Nbはすべての試料で不検出であった。

▶ ¹²⁶Sn、¹²⁹Iはストリッパブルペイント試料から検出された。

IRID (JAEA)

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。 ·分析値の±の後の数値は、計数誤差。

原子炉建屋(1~5階)瓦礫 - 核種分析結果 (3/3)

			放射能	≧濃度[Bq/g]		
≣式坐社夕	¹⁵² Eu	¹⁵⁴ Eu	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm
武不行口	(約14年)	(約8.6年)	(約88年)	(約2.4×10 ⁴ 年、 約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)
1RB-X6-P	< 2 × 10 ⁰	< 1 × 10 ⁰	(9.9±1.5) × 10 ⁻³	(1.7±0.2) × 10 ⁻²	(5.1±0.3) × 10 ⁻²	< 4 × 10 ⁻³
1RB-X6-C-1	< 6 × 10 ⁻¹	< 3 × 10 ⁻¹	-	-	-	-
1RB-X6-C-2	< 7 × 10 ⁻¹	< 4 × 10 ⁻¹	-	-	-	-
1RB-AC-P1	< 3 × 10 ⁰	< 2 × 10 ⁰	-	-	-	-
1RB-AC-C1-1	< 2 × 10 ⁰	< 1 × 10 ⁰	< 3 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 3 × 10 ⁻³
1RB-AC-C1-2	< 2 × 10 ⁰	< 1 × 10 ⁰	< 3 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 3 × 10 ⁻³
1RB-AC-C2-1	< 2 × 10 ⁰	< 8 × 10 ⁻¹	< 3 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 3 × 10 ⁻³
1RB-AC-C2-2	< 2 × 10 ⁰	< 8 × 10 ⁻¹	< 3 × 10 ⁻³	< 2 × 10 ⁻³	(1.1±0.2) × 10 ⁻³	< 2 × 10 ⁻³
2RB-OP1-P-2	< 8 × 10 ¹	< 4 × 10 ¹	(1.7±0.3) × 10 ⁻¹	(8.8±1.8) × 10 ⁻²	(1.2±0.2) × 10 ⁻¹	(1.4±0.3) × 10 ⁻¹
2RB-OP1-C-1	< 2 × 10 ⁰	< 8 × 10 ⁻¹	(1.1±0.2) × 10 ⁻²	(5.5±0.8) × 10⁻³	(6.2±0.7) × 10 ⁻³	(6.9±0.9) × 10 ⁻³
2RB-OP1-C-2	< 1 × 10 ⁰	< 6 × 10 ⁻¹	(5.4±0.6) × 10 ⁻³	(2.1±0.3) × 10 ⁻³	(3.2±0.4) × 10 ⁻³	(2.5±0.4) × 10 ⁻³
2RB-OP2-P-1	< 2 × 10 ¹	< 6 × 10 ⁰	(1.2±0.1) × 10 ⁰	(6.3±0.2) × 10 ⁻¹	(1.1±0.1) × 10 ⁰	(5.8±0.2) × 10 ⁻¹
2RB-OP2-C-1	< 2 × 10 ¹	< 8 × 10 ⁰	(1.7±0.5) × 10 ⁻²	< 1 × 10 ⁻²	< 1 × 10 ⁻²	(1.6±0.3) × 10 ⁻²
2RB-OP2-C-2	< 3 × 10 ⁰	< 2 × 10 ⁰	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 3 × 10 ⁻³
3RB-1F-C	< 2 × 10 ⁰	< 9 × 10 ⁻¹	-	-	-	-
2RB-2F-SP	< 8 × 10 ⁰	$(1.2\pm0.1) \times 10^{1}$	$(3.1\pm0.1) \times 10^{0}$	$(1.4\pm0.1) \times 10^{0}$	(2.1±0.1) × 10 ⁰	$(2.3\pm0.1) \times 10^{0}$
2RB-3F-SP	< 4 × 10 ⁰	$(6.4\pm0.7) \times 10^{0}$	(1.1±0.1) × 10 ⁰	(4.5±0.2) × 10 ⁻¹	(6.8±0.3) × 10⁻¹	(8.5±0.4) × 10 ⁻¹

▶ ²³⁸Pu、²³⁹⁺²⁴⁰Pu、²⁴¹Am、²⁴⁴Cmは10⁻³~ 10⁰ Bq/gの濃度範囲で検出された。
 ▶ ¹⁵²Euはすべての試料で不検出であった。

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。 ・分析値の±の後の数値は、計数誤差。

©International Research Institute for Nuclear Decommissioning

・²³⁹⁺²⁴⁰Puの半減期補正は²⁴⁰Puの半減期(約6.6×10³年)を使用。

原子炉建屋瓦礫(格納容器堆積物) 一 核種分析結果

No	12 15	<u> 14 2만 위해</u>	溶解液	溶解残渣1	溶解残渣2
NO	12/11	+- //0,991	Bq	Bq	Bq
1	⁵⁵ Fe	2.73 y	1.7E+04 ± 2.7E+01	-	-
2	60Co	5.2714 y	1.1E+04 ± 2.5E+02	2.4E+01 ± 1.3E+00	1.3E+02 ± 6.9E+00
3	⁶³ Ni	100.1 y	6.6E+03 ± 9.7E+00	-	-
4	90Sr-90Y	28.79 y	6.1E+04 ± 2.2E+02	-	-
5	⁹³ Zr	1.53E+06 y	1.6E+00 ± 6.0E-02	-	-
6	^{83m} Nb	16.13 y	2.6E+01 ± 7.3E-01	-	-
7	94Nb	2.03E+04 y	3.4E-01 ± 6.4E-02	< 3.3E+00	< 2.3E+01
8	⁹³ Mo	4.0E+03 y	< 1.4E+00	-	-
9	⁹⁹ Tc	2.111E+05 y	4.6E+00 ± 1.4E-01	-	-
10	106 Ru-106 Rh	373.59 d	7.7E+02 ± 7.5E+00	2.9E+02 ± 2.9E+01	< 5.6E+02
11	110mAg	249.79 d	1.1E+02 ± 1.5E+00	< 9.2E+00	< 5.9E+01
12	^{121m} Sn	55 y	1.6E+03 ± 9.6E+00	-	-
13	¹²⁶ Sn	2.30E+05 y	9.7E+00 ± 1.6E-01	-	-
14	¹²⁵ Sb	2.7582 y	7.3E+04 ± 1.9E+03	8.2E+01 ± 1.8E+01	3.4E+02 ± 1.1E+02
15	¹³⁴ Cs	2.0648 y	2.4E+05 ± 9.4E+02	1.9E+03 ± 9.3E+00	1.8E+04 ± 5.8E+01
16	¹³⁷ Cs	30.07 y	3.2E+06 ± 3.3E+03	2.3E+04 ± 3.2E+01	2.2E+05 ± 2.0E+02
17	144Ce	284.893 d	1.4E+03 ± 1.3E+02	< 6.2E+01	< 3.9E+02
18	¹⁵² Eu	13.5 y	< 4.1E+01	-	-
19	154Eu	8.593 y	3.8E+03 ± 3.1E+01	< 4.8E+00	< 1.9E+01
20	155Eu	4.7611 y	1.7E+03 ± 2.1E+01	< 2.6E+01	< 1.6E+02
21	²³⁴ U	2.455E+05 y	1.6E+00 ± 1.6E-01	-	-
22	²³⁵ U	7.038E+08 y	3.2E-02 ± 4.3E-04	-	-
23	236U	2.342E+07 y	2.5E-01 ± 6.6E-03	-	-
24	238U	4.468E+09 y	3.8E-01 ± 6.3E-04	-	-
25	²³⁷ Np	2.144E+06 y	2.1E-01 ± 6.3E-03	Ξ.	-
26	²³⁸ Pu	87.7 y	2.4E+03 ± 1.6E+01	-	-
27	239Pu	2.411E+04 y	2.3E+02 ± 4.0E+00	-	-
28	²⁴⁰ Pu	6.563E+03 y	3.8E+02 ± 7.2E+00	H	-
29	²⁴¹ Pu	14.35 y	3.9E+04 ± 1.1E+03	-	-
30	²⁴² Pu	3.733E+05 y	2.0E+00 ± 5.1E-02	-	-
31	²⁴¹ Am	432.2 y	1.4E+03 ± 1.7E+01	-	-
32	²⁴² Cm	162.8 d	1.0E+01 ± 1.1E+00	-	-
33	244Cm	18.10 y	1.8E+03 ± 1.4E+01	-	-

注1)放射能は測定日での値、誤差は放射能測定による誤差

注2) 半減期出典: Table of Isotopes(8th ed.)(1999)。126 Snは日本原子力研究開発機構 核データ研究グループ の値を参考。

原子炉建屋瓦礫(TIP配管閉塞物) 一 核種分析結果

No	拔誦	半減期			溶	解液	溶解残渣		溶解後	後フィルタ
NO	134 13	- 194 PV			l	Bq	Bq			Bq
1	⁵⁵ Fe	2.73	у		7.7E+05	± 6.0E+02	-			-
2	60Co	5.2714	у		9.5E+05	± 8.5E+02	4.9E+02 ± 2.0E+00		2.7E+02	± 3.3E+00
3	⁶³ Ni	100.1	У		1.7E+05	± 8.1E+01	-			-
4	⁵⁴ Mn	312.3	d	<	1.0E+03		4.3E+02 ± 1.7E+00		9.7E+01	± 1.9E+00
5	90Sr-90Y	28.79	у		2.0E+03	± 1.4E+01	-			-
6	⁹³ Zr	1.53E+06	у		3.9E-01	± 3.1E-02	-			-
7	93mNb	16.13	у		1.2E+02	± 1.5E+00	-			-
8	94Nb	2.03E+04	У		2.1E+00	± 1.1E-01	-			-
9	⁹³ Mo	4.0E+03	у		8.3E-02	± 1.9E-02	-			-
10	99Tc	2.111E+05	у	<	2.9E-01		-			-
11	106Ru-106Rh	373.59	d	<	7.6E+00		-			-
12	^{121m} Sn	55	у		1.1E+01	± 1.2E+00	-			-
13	¹²⁶ Sn	2.30E+05	у	<	2.3E-01		-			- 1
14	¹²⁵ Sb	2.7582	У		1.6E+02	± 9.3E+00	< 3.5E+00	<	5.6E+00	
15	¹³⁴ Cs	2.0648	у		2.9E+03	± 1.4E+02	2.4E+01 ± 5.5E-01		1.7E+01	± 9.2E-01
16	¹³⁷ Cs	30.07	У		3.1E+04	± 2.1E+02	2.9E+02 ± 1.4E+00		2.0E+02	± 2.5E+00
17	¹⁴⁴ Ce	284.893	d	<	4.1E+00		-			-
18	¹⁵² Eu	13.537	у	<	3.0E+00		-			-
19	¹⁵⁴ Eu	8.593	у		5.0E+01	± 1.5E+00	< 2.3E+00	<	4.1E+00	
20	¹⁵⁵ Eu	4.7611	у		2.2E+01	± 7.6E-01	-			-
21	²³⁴ U	2.455E+05	у		9.9E-05	± 2.2E-05	-			-
22	235U	7.038E+08	у		1.5E-06	± 2.2E-07	-			-
23	²³⁶ U	2.342E+07	у		3.3E-06	± 7.5E-07	-			
24	²³⁸ U	4.468E+09	у		1.8E-05	± 4.5E-07	-			-
25	²³⁷ Np	2.144E+06	у	<	5.2E-05		-			-
26	²³⁸ Pu	87.7	У		6.4E-02	± 1.1E-02	-			-
27	²³⁹ Pu	2.411E+04	у		1.4E-02	± 2.4E-03	-			-
28	²⁴⁰ Pu	6.563E+03	у		5.0E-03	± 9.5E-04	-			-
29	²⁴¹ Pu	14.35	У	<	4.3E-02		-			-
30	²⁴² Pu	3.733E+05	у	<	1.7E-06		-			-
31	²⁴¹ Am	432.2	у		4.0E-02	± 3.0E-03	-			
32	²⁴² Cm	162.8	d		2.9E-03	± 1.3E-03	-			-
33	²⁴⁴ Cm	18.10	У		3.8E-02	± 4.7E-03	-			-

注1)放射能は測定日での値、誤差は放射能測定による誤差

注2) 半減期出典 : Table of Isotopes(8th ed.)(1999)。¹²⁶Snは日本原子力研究開発機構 核データ研究グループ の値を参考。

以前に報告した分析値の訂正 (²³⁹⁺²⁴⁰Pu放射能濃度の一部)

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

²³⁹Pu+²⁴⁰Pu放射能濃度の一部訂正(概要)

- これまでに公開した廃棄物試料の分析結果のうち、一部の²³⁹Pu+²⁴⁰Puの放射能濃度に誤りがあった。
 - 誤っていた分析値は、多核種除去設備入口水、多核種除去設備処理水、建屋内瓦礫、土 壌及び焼却灰の計24点である。
 - 誤りは、α線測定により得たスペクトルから放射能濃度を算出する過程において、使用する パラメータ(放射性壊変に伴うα線の放出率)が不適切であったために生じた。
- 訂正した²³⁹Pu+²⁴⁰Puの放射能濃度は、これまでに廃棄物試料から検出された値と同等であり、 周辺環境や労働環境への影響はないと考えられる。
- 次の資料に含まれる分析値を訂正する。
 - ▶ 廃炉・汚染水対策チーム会合/事務局会議(第28回、平成28年3月31日):p9及び14(既設 多核種除去設備入口水)
 - ▶ 同上(第29回、平成28年4月28日):p28(建屋内瓦礫)
 - 同上(第40回、平成29年3月30日):p3及びp8(土壌)、p11及びp13(焼却灰)、p26(多核種 除去設備処理水)、p27(まとめ)
 - 同上(第60回、平成30年11月29日):p3及びp14(建屋内瓦礫)、p6及びp16(土壌)、p11(まとめ)

²³⁹Pu+²⁴⁰Pu放射能濃度の訂正内容(1/2)

公坛計判		計料夕	形代生	²³⁹ Pu+ ²⁴⁰ Pu放射能濃度				
フ」 171 品以本十	1자 시치 니	<u> ፲</u> ፲	加加大寺	単位	修正前	修正後		
分析訊料 无設多核種除去設備入口水 ^{※1} 建屋内瓦礫(1号機原子炉建屋1階) ^{※2、※4} 建屋内瓦礫(3号機原子炉建屋1階) ^{※2、※4} 上壤 ^{※3、※5}	H25.4	LI-AL4-1		Pa /am ³	$< 2 \times 10^{-3}$	$(1.7\pm0.5)\times10^{-3}$		
成設多核種味去設備入口水	H26.5	LI-AL4-4			$(1.9\pm0.3)\times10^{-3}$	$(3.7\pm0.6)\times10^{-3}$		
		1RB-AS-R5	表面塗膜		$< 2 \times 10^{-2}$	$(2.6\pm0.5)\times10^{-2}$		
建最内瓦瓅(1号楼瓦之恒建最1陛)※2、※4	H25 10	1RB-AS-R7	保温材		$< 3 \times 10^{-2}$	$(2.4\pm0.6)\times10^{-2}$		
定产的式味(15%尿于产生产1°1/	1123.10	1RB-AS-R8	保温材	Ba/a	< 1 × 10 ⁻²	$(1.3\pm0.3)\times10^{-2}$		
		1RB-AS-R11	保温材	Dq/ g	$(1.6\pm0.3)\times10^{-2}$	$(3.1\pm0.5)\times10^{-2}$		
建最内瓦礫(2号楼瓦之恒建最1陛)※2、※4	H26 3	3RB-AS-R9	コンクリート		$(2.5\pm0.3)\times10^{-2}$	$(5.0\pm0.6)\times10^{-2}$		
建产的武味(35%尿于扩建产于增)	1120.0	3RB-AS-R11	保温材		$(3.1\pm0.3)\times10^{-2}$	$(6.3\pm0.6)\times10^{-2}$		
	H27 3	S2-D2-1	_		$< 6 \times 10^{-4}$	$(1.0\pm0.3)\times10^{-3}$		
土壤 ^{※3、※5}	1127.0	S2-F1-1	_	Bq/g	$< 9 \times 10^{-4}$	$< 2 \times 10^{-3}$		
	H27.5	S2-P1-1	_		$< 9 \times 10^{-4}$	$< 2 \times 10^{-3}$		
		ASH-HOT1-1			$(5.5\pm0.5)\times10^{-3}$	$(1.1\pm0.1)\times10^{-2}$		
	H28.2	ASH-HOT1-2			$(2.3\pm0.3)\times10^{-3}$	$(4.7\pm0.6)\times10^{-3}$		
焼却灰 ^{※3、※5}		ASH-HOT1-3	—	Bq∕g	$(5.1\pm0.5)\times10^{-3}$	$(1.0\pm0.1)\times10^{-2}$		
	H28.3	ASH-HOT1-5			$(1.5\pm0.3)\times10^{-3}$	$(3.1\pm0.5)\times10^{-3}$		
	1120.5	ASH-HOT1-6			$(1.4\pm0.3)\times10^{-3}$	$(2.8\pm0.5)\times10^{-3}$		
		LI-AAL7A-5			$< 2 \times 10^{-4}$	$< 3 \times 10^{-4}$		
多核種除去設備処理水 ^{※3}	H28.7	LI-AAL7A-8	—	Bq∕cm³	$< 2 \times 10^{-4}$	< 3 × 10 ⁻⁴		
		LI-AAL7A-9			$< 2 \times 10^{-4}$	< 3 × 10 ⁻⁴		

※1 廃炉・汚染水対策チーム会合/事務局会議(第28回)公表(平成28年3月31日)

※2 廃炉・汚染水対策チーム会合/事務局会議(第29回)公表(平成28年4月28日)

※3 廃炉・汚染水対策チーム会合/事務局会議(第40回)公表(平成29年3月30日)

※4 試料採取場所は参考資料1参照(第29回資料, p5)

※5 試料採取場所は参考資料2参照(第40回資料, p2)

²³⁹Pu+²⁴⁰Pu放射能濃度の訂正内容(2/2)

公托計約	域市口	日 計料名 形代生		²³⁹ Pu+ ²⁴⁰ Pu放射能濃度				
ノ」 171 高以本子	1자 4X 니						修正前	修正後
		4RB-1F-DU-C1	コンクリート		修正前 <3 × 10 ⁻³ <2 × 10 ⁻³ <4 × 10 ⁻³	$(3.0\pm0.9)\times10^{-3}$		
	LI20 7	4RB-1F-C-E2	コンクリート	Ba / am ³	$< 2 \times 10^{-3}$	$< 3 \times 10^{-3}$		
	1123.7	4RB-2F-DU-J1	コンクリート	Dq/ Cill	$< 4 \times 10^{-3}$	$(4.3 \pm 1.0) \times 10^{-3}$		
建崖内式珠(45碳床于炉建崖2幅)		4RB-2F-C-N2	コンクリート		$< 3 \times 10^{-3}$	$(2.5\pm0.7)\times10^{-3}$		
土壤 ^{※6、※8}	H27.4	S2-H1-1	—	Bq/kg	$(1.1 \pm 0.1) \times 10^{1}$	$(2.1\pm0.1)\times10^{1}$		

※6 廃炉・汚染水対策チーム会合/事務局会議(第60回)公表(平成30年11月29日)

※7 試料採取場所は参考資料3参照(第60回資料, p2)

※8 試料採取場所は参考資料4参照 (第60回資料, p5)

修正別\第20凹具朴,014,	修正前	(第28	回資料,	p14)
-----------------	-----	------	------	------

	放射能濃度〔Bq/cm³〕							
試料名	²³⁸ Pu (約88年)	²³⁹ Pu+ ²⁴⁰ Pu	²⁴² Pu (約3.7×10 ⁵ 年)	²⁴¹ Am (約432年)	²⁴³ Am (約7.4×10 ³ 年)	²⁴⁴ Cm (約18年)		
LI-RW3-1	$(6.2 \pm 1.3) \times 10^{-4}$	< 4 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴		
LI-HTI3-1	(8.3±1.5)×10 ⁻⁴	< 3 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴		
LI-HTI4-2	$(2.4\pm0.5)\times10^{-3}$	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 2×10 ⁻³	< 1 × 10 ⁻³	< 8 × 10 ⁻⁴		
LI-KU3-3	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴		< 3×10 ⁻⁴		< 3 × 10 ⁻⁴		
LI-SA3-1	$(1.4\pm0.3)\times10^{-3}$	< 4 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴		
LI-SA3-2	$(7.3\pm2.0)\times10^{-4}$	< 4 × 10 ⁻⁴		< 5×10⁻⁴		< 3 × 10 ⁻⁴		
LI-SA4-1	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 7 × 10 ⁻⁴	< 2×10 ⁻³	< 2 × 10 ⁻³	< 3 × 10 ⁻³		
LI-SA4-2	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 2 × 10 ⁻³	< 8 × 10 ⁻⁴	< 2 × 10 ⁻³		
LI-KU3-1	< 3 × 10 ⁻⁴	< 3×10 ⁻⁴		< 6×10 ⁻⁴		< 4 × 10 ⁻⁴		
LI-KU3-2	< 4 × 10 ⁻⁴	< 2 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 2 × 10 ⁻⁴		
LI-AR3-1	< 5 × 10 ⁻⁴	< 4 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 2 × 10 ⁻⁴		
LI-AR3-2	< 5 × 10 ⁻⁴	<u></u>		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴		
LI-AL4-1	(2.8±0.5)×10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	$(3.5\pm0.7)\times10^{-3}$	< 2 × 10 ⁻³	$(1.0\pm0.3)\times10^{-3}$		
LI-AL4-4	(1.4±0.1)×10 ⁻²	(1.9±0.3)×10 ⁻³	< 7 × 10 ⁻⁴	< 3 × 10 ⁻³	< 2 × 10 ⁻³	(1.9±0.4)×10 ⁻²		
LI-AL4-2	< 2 × 10 ⁻³		< 7 × 10 ⁻⁴	< 2 × 10 ⁻³	< 2 × 10 ⁻³	$(1.6 \pm 0.4) \times 10^{-3}$		
LI-AL4-3	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 3 × 10 ⁻³	< 2 × 10 ⁻³	< 1 × 10 ⁻³		
LI-AL4-5	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 3 × 10 ⁻³	< 2 × 10 ⁻³	(9.9±3.3)×10 ⁻⁴		

➢ ²³⁹⁺²⁴⁰Pu、²⁴¹Am、²⁴⁴Cm:多核種除去設備出入口水以外の試料で不検出。

-

©International Research Institute for Nuclear Decommissioning

²⁶ 14

修正後	(第28回資料	, p14)
-----	---------	--------

試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴² Pu	²⁴¹ Am	²⁴³ Am	²⁴⁴ Cm
	(約88年)	< 4×10-4	(約3.7×10°年)	(約432年)	(約7.4×10°年)	(約18年)
	$(0.2 \pm 1.3) \times 10^{-4}$	< 4 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴
LI-HII3-1	$(8.3\pm1.5)\times10^{-1}$	< 3 × 10 ⁻⁴	7 101	< 4 × 10 ⁻⁷	i 103	< 3 × 10 ⁻⁴
LI-H114-2	$(2.4\pm0.5)\times10^{-3}$	< 2 × 10 ⁻³	< / × 10-4	< 2 × 10 ⁻³	< 1 × 10 ⁻⁵	< 8 × 10 ⁻⁺
LI-KU3-3	< 3 × 10 ⁻⁴	< 3×10⁴		< 3 × 10 ⁻⁴		< 3 × 10 ⁻⁴
LI-SA3-1	(1.4±0.3)×10 ⁻³	< 4 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴
LI-SA3-2	$(7.3 \pm 2.0) \times 10^{-4}$	< 4 × 10 ⁻⁴		< 5 × 10 ⁻⁴		< 3 × 10 ⁻⁴
LI-SA4-1	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 7 × 10 ⁻⁴	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 3 × 10 ⁻³
LI-SA4-2	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 2 × 10 ⁻³	< 8 × 10 ⁻⁴	< 2 × 10 ⁻³
LI-KU3-1	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴		< 6 × 10 ⁻⁴		< 4 × 10 ⁻⁴
LI-KU3-2	< 4 × 10 ⁻⁴	< 2 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 2 × 10 ⁻⁴
LI-AR3-1	< 5 × 10 ⁻⁴	< 4 × 10 ⁻⁴		< 4 × 10 ⁻⁴		< 2 × 10 ⁻⁴
LI-AR3-2	< 5 × 10 ⁻⁴	<u>≤-5×10</u> 4		< 4 × 10 ⁻⁴		< 3 × 10 ⁻⁴
LI-AL4-1	(2.8±0.5) × 10 ⁻³	(1.7±0.5)×10 ⁻³	< 7 × 10 ⁻⁴	$(3.5\pm0.7) \times 10^{-3}$	< 2 × 10 ⁻³	(1.0±0.3)×10 ⁻³
LI-AL4-4	(1.4±0.1)×10 ⁻²	$(3.7\pm0.6) imes 10^{-3}$	< 7 × 10 ⁻⁴	< 3 × 10 ⁻³	< 2 × 10 ⁻³	(1.9±0.4)×10 ⁻³
LI-AL4-2	< 2 × 10 ⁻³	- 2×10 ⁻³	< 7 × 10 ⁻⁴	< 2 × 10 ⁻³	< 2 × 10 ⁻³	(1.6±0.4)×10 ⁻³
LI-AL4-3	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 3 × 10 ⁻³	< 2 × 10 ⁻³	< 1 × 10 ⁻³
LI-AL4-5	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴	< 3 × 10 ⁻³	< 2 × 10 ⁻³	(9.9±3.3)×10 ⁻⁴
▹ ²³⁸ Pu∶7試 の分析結∮	料で検出。LI-AL4-4 果と同程度。	以外の今回の検出	値は、これまでの	の水試料	放射能濃度は、H23.∶ 分析値の±の後の数	3.11において補正。 値は、計数値誤差 ⁻

²⁷ **14**

	修正前(第29回資料, p28)									
((AEA) 参考 α 核種分析結果(建屋内瓦礫)									
	放射能濃度(Bq/g)									
No.	試料名	²³⁸ Pu (約88年)	²³⁹⁺²⁴⁰ Pu (約2.4×10 ⁴ 年 約6.6×10 ³ 年)	²⁴² Pu (約3.7×10 ⁵ 年)	²⁴¹ Am (約4.3×10 ² 年)	²⁴³ Am (約7.4×10 ³ 年)	²⁴⁴ Cm (約18年)	全α		
1	1RB-AS-R2	-		_	_	-	-	(6.2±1.0) × 10 ⁻³		
2	1RB-AS-R5	(8.2±0.9)×10	< 2×10 ⁻²	A 2×10 ^{−2}	< 3×10 ⁻²	< 2×10 ⁻²	(3.5±0.6)×10 ⁻²	_		
3	1RB-AS-R7	(1.3±0.2)×10 ¹	< 3×10 ⁻²	< 2×10 ⁻²	< 4×10 ⁻²	< 2×10 ⁻²	< 2×10 ⁻²	_		
4	1RB-AS-R8	(5.8±0.6)×10 ⁻²	< 1×10 ⁻²	< 9×10 ⁻³	< 2×10 ⁻²	< 9×10 ⁻³	(9.2±2.5)×10 ⁻³	_		
5	1RB-AS-R9	-	-	-	_	_	_	(1.5±0.2) × 10 ⁻²		
6	1RB-AS-R11	(1.2±0.1)×10	(1.6±0.3)×10 ⁻²	< 9×10 ⁻³	< 2×10 ⁻²	< 2×10 ⁻²	(8.7±2.4)×10 ⁻³	_		
7	1RB-DE-C1	-	`	-	_	_	_	(2.5±0.3) × 10 ⁻²		
8	2RB-DE-D1	(1.6±0.4)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 3×10⁻³	< 2×10 ⁻³	(1.3±0.4)×10 ⁻³	_		
9	2RB-DE-D2	(2.3±0.5)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 2×10 ⁻³	< 2×10 ⁻³	(1.0±0.4)×10 ⁻³	_		
10	2RB-DE-D3	(1.4±0.4)×10 ⁻³	< 2×10 ⁻³	< 6×10⁻⁴	< 2×10⁻³	< 2×10 ⁻³	(2.4±0.5)×10 ⁻³	_		
11	2RB-DE-D4	< 2×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 2×10⁻³	< 9×10 ⁻⁴	(1.3±0.4)×10 ⁻³	_		
12	2RB-DE-D5	(1.6±0.4)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	(4.6±0.8)×10 ⁻³	< 3×10 ⁻³	(3.5±0.6)×10 ⁻³	_		
13	3RB-AS-R1	_	_	_	_	_	_	<2×10 ⁻³		
14	3RB-AS-R2	_	_	_	_	_	_	(6.2±1.1) × 10 ⁻³		
15	3RB-AS-R5	_	_	_	_	_	_	(4.0±0.8) × 10 ⁻³		
16	3RB-AS-R7	-			_	_	-	(1.3±0.1) × 10 ⁻¹		
17	3RB-AS-R9	(1.7±0.1)×101	(2.5±0.3)×10 ⁻²	< 9×10 ⁻³	< 3×10 ⁻²	< 2×10 ⁻²	(1.5±0.4)×10 ⁻²			
18	3RB-AS-R10	-	() <u> </u>	-	_	_	-	(1.1±0.2) × 10 ⁻²		
19	3RB-AS-R11	(1.9±0.1)×10	(3.1±0.3)×10 ⁻²	< 9×10 ⁻³	< 2×10 ⁻²	< 2×10 ⁻²	(1.5±0.4)×10 ⁻²			
	IRID	放射能濃度は、H2 分析値の±より後4 ーは分析未実施を	3.3.11に補正。 ろの数値は、計数値誤ま 示す。	差で ある 。 239	⁹⁺²⁴⁰ Puの半減期補正に	。 ©International Res は ²⁴⁰ Puの半減期(約6.6	earch Institute for Nuclear × 10 ³ 年)を使用。	Decommissioning		

	修正後(第29回資料, p28									
((ALA) 参考 α 核種分析結果(建屋内瓦礫)									
	放射能濃度(Bq/g)									
No.	試料名	²³⁸ Pu (約88年)	²³⁹⁺²⁴⁰ Pu (約2.4×10 ⁴ 年 約6.6×10 ³ 年)	²⁴² Pu (約3.7×10 ⁵ 年)	²⁴¹ Am (約4.3×10 ² 年)	²⁴³ Am (約7.4×10 ³ 年)	²⁴⁴ Cm (約18年)	全α		
1	1RB-AS-R2	-		-	_	_	-	(6.2±1.0) × 10 ⁻³		
2	1RB-AS-R5	(8.2±0.9)×10 ⁻⁷	(2.6±0.5)×10 ⁻²	< 2×10 ⁻²	< 3×10 ⁻²	< 2×10 ⁻²	(3.5±0.6)×10 ⁻²	_		
3	1RB-AS-R7	(1.3±0.2)×10 ⁻	(2.4±0.6)×10 ⁻²	< 2×10 ⁻²	< 4×10 ⁻²	< 2×10 ⁻²	< 2×10 ⁻²	_		
4	1RB-AS-R8	(5.8±0.6)×10 ⁻²	(1.3±0.3)×10 ⁻²	< 9×10 ⁻³	< 2×10 ⁻²	< 9×10 ⁻³	(9.2±2.5)×10 ⁻³	_		
5	1RB-AS-R9	-	_	-	_	-	-	(1.5±0.2)×10 ⁻²		
6	1RB-AS-R11	(1.2±0.1)×10	(3.1±0.5)×10 ⁻²	< 9×10 ⁻³	< 2×10 ⁻²	< 2×10 ⁻²	(8.7±2.4)×10 ⁻³	_		
7	1RB-DE-C1	_	/	_	_	_	_	(2.5±0.3) × 10 ⁻²		
8	2RB-DE-D1	(1.6±0.4)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 3×10 ⁻³	< 2×10 ⁻³	(1.3±0.4)×10 ⁻³	_		
9	2RB-DE-D2	(2.3±0.5)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 2×10 ⁻³	< 2×10 ⁻³	(1.0±0.4)×10 ⁻³	_		
10	2RB-DE-D3	(1.4±0.4)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 2×10 ⁻³	< 2×10 ⁻³	(2.4±0.5)×10 ⁻³	_		
11	2RB-DE-D4	< 2×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	< 2×10 ⁻³	< 9×10 ⁻⁴	(1.3±0.4)×10 ⁻³	_		
12	2RB-DE-D5	(1.6±0.4)×10 ⁻³	< 2×10 ⁻³	< 6×10 ⁻⁴	(4.6±0.8)×10 ⁻³	< 3×10 ⁻³	(3.5±0.6)×10 ⁻³	_		
13	3RB-AS-R1	_	_	_	_	_	_	<2×10 ⁻³		
14	3RB-AS-R2	_	_	_	_	_	_	(6.2±1.1) × 10 ⁻³		
15	3RB-AS-R5	_	_	_	-	_	-	$(4.0\pm0.8) \times 10^{-3}$		
16	3RB-AS-R7	_		_	_	_	_	(1.3±0.1) × 10 ⁻¹		
17	3RB-AS-R9	(1.7±0.1)×10 ⁻	(5.0±0.6)×10 ⁻²	< 9×10 ⁻³	< 3×10 ⁻²	< 2×10 ⁻²	(1.5±0.4)×10 ⁻²	_		
18	3RB-AS-R10	-	-	-	_	_	-	(1.1±0.2)×10 ⁻²		
19	3RB-AS-R11	(1.9±0.1)×10 ⁻	(6.3±0.6)×10 ⁻²	< 9×10 ⁻³	< 2×10 ⁻²	< 2×10 ⁻²	(1.5±0.4)×10 ⁻²	-		
	IRID	放射能濃度は、H2 分析値の±より後3 ーは分析未実施を	3.3.11に補正。 6の数値は、計数値誤差 示す。	きである。 235	⁺⁺²⁴⁰ Pu の半減期補 正は	©International Res ²⁴⁰ Puの半減期(約6.65	earch Institute for Nuclear × 10 ³ 年)を使用。	Decommissioning		

່ 30

修正前(第40回資料, p8)

土壤 - 核種分析結果②

	放射能濃	005 000	
試料名	²³⁵ U	²³⁸ U	²³⁵ U/ ²³⁸ U比
	(約7.0×10 ⁸ 年)	(約4.5×10 ⁹ 年)	
S2-D2-1	$(5.1\pm0.2)\times10^{-4}$	$(1.1\pm0.1)\times10^{-2}$	4.6×10 ⁻²
S2-F1-1	$(7.8\pm0.1)\times10^{-4}$	$(1.7\pm0.1)\times10^{-2}$	4.5×10⁻²
S2-I2-1	$(5.7\pm0.1)\times10^{-4}$	$(1.3\pm0.1)\times10^{-2}$	4.5×10⁻²
S2-K2-1	$(1.1\pm0.1)\times10^{-3}$	(2.5±0.1)×10 ⁻²	4.5×10⁻²
S2-L1-1	$(6.2\pm0.2)\times10^{-4}$	$(1.4\pm0.1)\times10^{-2}$	4.5×10 ⁻²
S2-P1-1	$(4.5\pm0.1)\times10^{-4}$	$(1.0\pm0.1)\times10^{-2}$	4.5×10 ⁻²

		放射能濃度[Bq	'g]	
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)) (約4.3×10 ² 年)	(約18年)
S2-D2-1	$(2.2\pm0.4)\times10^{-3}$	< 6 × 10 ⁻⁴	< 1 × 10 ⁻³	< 9 × 10 ⁻⁴
S2-F1-1	< 2 × 10 ⁻³	< 9 × 10 ⁻⁴	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴
S2-I2-1	< 2 × 10 ⁻³	<1×10 ⁻³	< 2 × 10 ⁻³	< 1 × 10 ⁻³
S2-K2-1	< 2 × 10 ⁻³	< 9 × 10 ⁻⁴	< 2 × 10 ⁻³	< 8 × 10 ⁻⁴
S2-L1-1	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³
S2-P1-1	< 2 × 10 ⁻³	< 9 × 10 ⁻⁴	< 1 × 10 ⁻³	< 1 × 10 ⁻³

▶ ²³⁵U、²³⁸Uは全ての試料で検出された。²³⁵U/²³⁸U比は天然Uの値(4.7×10⁻²)に近い。

▶ ²³⁸Pulは¹³⁷Cs濃度の最も高い試料から検出された。²³⁹⁺²⁴⁰Pu、²⁴Am、²⁴⁴Cmは不検出であった。

 ・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。
 ・分析値の±の後の数値は、計数誤差。

³² 8

修正後(第40回資料, p8)

土壤 - 核種分析結果②

	放射能濃		
試料名	²³⁵ U	²³⁸ U	²³⁵ U/ ²³⁸ U比
	(約7.0×10 ⁸ 年)	(約4.5×10 ⁹ 年)	
S2-D2-1	$(5.1\pm0.2)\times10^{-4}$	$(1.1\pm0.1)\times10^{-2}$	4.6×10 ⁻²
S2-F1-1	$(7.8\pm0.1)\times10^{-4}$	$(1.7\pm0.1)\times10^{-2}$	4.5×10 ⁻²
S2-I2-1	$(5.7\pm0.1)\times10^{-4}$	$(1.3\pm0.1)\times10^{-2}$	4.5×10 ⁻²
S2-K2-1	$(1.1\pm0.1)\times10^{-3}$	$(2.5\pm0.1)\times10^{-2}$	4.5×10 ⁻²
S2-L1-1	$(6.2\pm0.2)\times10^{-4}$	$(1.4\pm0.1)\times10^{-2}$	4.5×10 ⁻²
S2-P1-1	$(4.5\pm0.1)\times10^{-4}$	$(1.0\pm0.1)\times10^{-2}$	4.5×10 ⁻²

		放射能濃度[Bq/g	g]	
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)
S2-D2-1	(2.2±0.4)×10 ⁻³	(1.0±0.3)×10 ⁻³	< 1 × 10 ⁻³	< 9 × 10 ⁻⁴
S2-F1-1	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 7 × 10 ⁻⁴
S2-I2-1	< 2 × 10 ⁻³	`` 1×10⁻³ `	< 2 × 10 ⁻³	< 1 × 10 ⁻³
S2-K2-1	< 2 × 10 ⁻³	< 9 × 10 ⁻⁴	< 2 × 10 ⁻³	< 8 × 10 ⁻⁴
S2-L1-1	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 2 × 10 ⁻³
S2-P1-1	< 2 × 10 ⁻³	< 2 × 10 ⁻³	< 1 × 10 ⁻³	< 1 × 10 ⁻³

▶ 235U、238Uは全ての試料で検出された。235U/238U比は天然Uの値(4.7×10-2)に近い。

▶ ²³⁸Pulは¹³⁷Cs濃度の最も高い試料から検出された。²³⁹⁺²⁴⁰Pu、²¹Am、²⁴⁴Cmは不検出であった。

 ・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。
 ・分析値の±の後の数値は、計数誤差。

³³ 8

修正前(第40回資料, p13)

焼却灰 – 核種分析結果

			放射能濃加	度〔Bq/g〕		
試料名	¹⁴ C	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	¹³⁷ Cs	¹⁵⁴ Eu
	(約5.7×10 ³ 年)	(約5.3年)	(約1.0×10 ² 年)	(約29年)	(約30年)	(約8.6年)
ASH-HOT1-1	< 2 × 10 ⁻¹	$(4.2\pm0.1)\times10^{1}$	$(1.3\pm0.1)\times10^{\circ}$	$(6.1\pm0.1)\times10^{1}$	$(1.2\pm0.1)\times10^{3}$	< 2 × 10⁻¹
ASH-HOT1-2	(5.3±0.9)×10 ⁻¹	$(5.5\pm0.4) \times 10^{\circ}$	< 2 × 10 ⁻¹	$(3.3\pm0.1)\times10^{1}$	$(1.5\pm0.1)\times10^{3}$	< 2 × 10⁻¹
ASH-HOT1-3	(2.6±0.7)×10 ⁻¹	$(6.7\pm0.4) \times 10^{\circ}$	< 5 × 10 ⁻¹	$(3.7\pm0.1)\times10^{1}$	$(1.7\pm0.1)\times10^{2}$	< 2 × 10⁻¹
ASH-HOT1-5	$(6.5\pm1.1)\times10^{-1}$	$(4.3\pm0.4) \times 10^{\circ}$	< 2 × 10 ⁻¹	$(6.4\pm0.1)\times10^{1}$	$(1.8\pm0.1)\times10^{3}$	< 9 × 10 ⁻²
ASH-HOT1-6	$(3.7\pm0.9)\times10^{-1}$	$(8.3\pm0.5)\times10^{\circ}$	(1.7±0.5)×10 ⁻¹	$(1.2\pm0.1)\times10^{2}$	$(2.5\pm0.1)\times10^{3}$	< 2 × 10⁻¹

	放射能濃度〔Bq/g〕									
計約名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm						
ውላተገ	(約88年)	(約2.4×10 ⁴ 年 約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)						
ASH-HOT1-1	(3.6±0.2)×10 ⁻²	(5.5±0.5)×10⁻³	(1.0±0.1)×10 ⁻²	$(7.2\pm0.8)\times10^{-3}$						
ASH-HOT1-2	(6.0±0.7)×10 ⁻³	(2.3±0.3)×10⁻³	(3.1±0.5)×10 ⁻³	$(3.1\pm0.5)\times10^{-3}$						
ASH-HOT1-3	(2.2±0.2)×10 ⁻²	(5.1±0.5)×10⁻³	(6.4±0.7)×10 ⁻³	$(5.3\pm0.7)\times10^{-3}$						
ASH-HOT1-5	$(1.0\pm0.1)\times10^{-2}$	(1.5±0.3)×10⁻³	(3.5±0.5)×10⁻³	$(4.1\pm0.5)\times10^{-3}$						
ASH-HOT1-6	(8.0±0.8)×10⁻³	(1.4±0.3)×10⁻³	(6.7±0.7)×10 ⁻³	(1.9±0.4)×10 ⁻³						

➢ ⁶⁰Co、⁹⁰Sr、¹³⁷Cs、Pu、²⁴¹Am、²⁴⁴Cmはすべての試料で検出された。

▶ ¹⁴Cは4試料で、⁶³Niは2試料で検出された。¹⁵⁴Euはすべての試料で不検出であった。

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。
 ・分析値の±の後の数値は、計数誤差。

修正後(第40回資料, p13)

焼却灰 – 核種分析結果

	放射能濃度[Bq/g]											
試料名	¹⁴ C	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	¹³⁷ Cs	¹⁵⁴ Eu						
	(約5.7×10 ³ 年)	(約5.3年)	(約1.0×10 ² 年)	(約29年)	(約30年)	(約8.6年)						
ASH-HOT1-1	< 2 × 10 ⁻¹	$(4.2\pm0.1)\times10^{1}$	$(1.3\pm0.1)\times10^{\circ}$	$(6.1\pm0.1)\times10^{1}$	$(1.2\pm0.1)\times10^{3}$	< 2 × 10⁻¹						
ASH-HOT1-2	(5.3±0.9)×10 ⁻¹	$(5.5\pm0.4) \times 10^{\circ}$	< 2 × 10 ⁻¹	$(3.3\pm0.1)\times10^{1}$	(1.5±0.1)×10 ³	< 2 × 10⁻¹						
ASH-HOT1-3	(2.6±0.7)×10 ⁻¹	$(6.7\pm0.4) \times 10^{\circ}$	< 5 × 10 ⁻¹	$(3.7\pm0.1)\times10^{1}$	(1.7±0.1)×10 ²	< 2 × 10⁻¹						
ASH-HOT1-5	$(6.5\pm1.1)\times10^{-1}$	$(4.3\pm0.4) \times 10^{\circ}$	< 2 × 10 ⁻¹	$(6.4\pm0.1)\times10^{1}$	$(1.8\pm0.1)\times10^{3}$	< 9 × 10 ⁻²						
ASH-HOT1-6	$(3.7\pm0.9)\times10^{-1}$	$(8.3\pm0.5)\times10^{\circ}$	(1.7±0.5)×10 ⁻¹	$(1.2\pm0.1)\times10^{2}$	$(2.5\pm0.1)\times10^{3}$	< 2 × 10 ⁻¹						

	放射能濃度[Bq/g]										
計判名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm							
<u>в</u> -4-4-7 ° Ц	(約88年)	(約2.4×10 ⁴ 年 約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)							
ASH-HOT1-1	(3.6±0.2)×10 ⁻²	(1.1±0.1)×10 ⁻²	(1.0±0.1)×10 ⁻²	$(7.2\pm0.8)\times10^{-3}$							
ASH-HOT1-2	(6.0±0.7)×10⁻³	(4.7±0.6)×10 ⁻³	(3.1±0.5)×10 ⁻³	$(3.1\pm0.5)\times10^{-3}$							
ASH-HOT1-3	(2.2±0.2)×10⁻²	(1.0±0.1)×10 ⁻²	(6.4±0.7)×10 ⁻³	$(5.3\pm0.7)\times10^{-3}$							
ASH-HOT1-5	$(1.0\pm0.1)\times10^{-2}$	(3.1±0.5)×10 ⁻³	$(3.5\pm0.5)\times10^{-3}$	$(4.1\pm0.5)\times10^{-3}$							
ASH-HOT1-6	(8.0±0.8)×10⁻³	(2.8±0.5)×10 ⁻³	(6.7±0.7)×10 ⁻³	(1.9±0.4)×10 ⁻³							

➢ ⁶⁰Co、⁹⁰Sr、¹³⁷Cs、Pu、²⁴¹Am、²⁴⁴Cmはすべての試料で検出された。

▶ ¹⁴Cは4試料で、⁶³Niは2試料で検出された。¹⁵⁴Euはすべての試料で不検出であった。

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。
 ・分析値の±の後の数値は、計数誤差。

修正前(第40回資料, p26)

多核種除去設備処理水-核種分析結果③

	放射能濃度[Bq/g]											
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm								
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)								
LI-AAL7A-1	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-2	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴								
LI-AAL7A-3	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴								
LI-AAL7A-4	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 1 × 10 ⁻⁴								
LI-AAL7A-5	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-6	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴								
LI-AAL7A-7	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 1 × 10 ⁻⁴								
LI-AAL7A-8	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 1 × 10 ⁻⁴								
LI-AAL7A-9	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-10	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-11	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-12	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								

▶ ²³⁸Pu、²³⁹⁺²⁴⁰Pu、²⁴¹Am、²⁴⁴Cmはすべての試料で不検出であった。

IRID

©International Research Institute for Nuclear Decommissioning

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。 ・分析値の±の後の数値は、計数誤差。

³⁸ 26

修正後(第40回資料, p26)

多核種除去設備処理水-核種分析結果③

	放射能濃度[Bq/g]											
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm								
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)								
LI-AAL7A-1	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-2	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴								
LI-AAL7A-3	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴								
LI-AAL7A-4	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 1 × 10 ⁻⁴								
LI-AAL7A-5	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-6	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴								
LI-AAL7A-7	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 1 × 10 ⁻⁴								
LI-AAL7A-8	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 1 × 10 ⁻⁴								
LI-AAL7A-9	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-10	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-11	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								
LI-AAL7A-12	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴	< 3 × 10 ⁻⁴	< 2 × 10 ⁻⁴								

▶ ²³⁸Pu、²³⁹⁺²⁴⁰Pu、²⁴¹Am、²⁴⁴Cmはすべての試料で不検出であった。

IRID

©International Research Institute for Nuclear Decommissioning

・放射能濃度は、2011.3.11において補正。・核種の下の括弧内は半減期。
 ・分析値の±の後の数値は、計数誤差。

³⁹ 26

修正前(第40回資料, p27)

		K
あ	C	α

構内土壌、焼却灰並びに汚染水処理設備出入口水を分析し、それぞれ次の核種が検出された。

試料	³ Н	¹⁴ C	⁶⁰ Co	⁶³ Ni	⁷⁹ Se	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Tc	¹²⁶ Sn	129	¹³⁷ Cs	¹⁵⁴ Eu	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm
土壌		~				V	-*		-*		V		-*	V	-*	V			1	
焼却灰	-*	V	1	V	-*	V	-*	-*	-*	-*	V		-*	-*	-*	-*	V		V	V
セシウム吸着 装置入口水	V	_*	V	V	-*	V					V		V	V	~	V	V	V	V	V
セシウム吸着 装置出口水	V	_*		V	*	V					V		V	V	~	V	V			
多核種除去 設備処理水	_*	_*	V			V		V	_*		V		_*		_*					
																	*.	-は未測	定を実	₹ ₫ .

- ◆ 構内土壌は、放射能データとともに粒度分布とCs濃度の相関に関するデータを得た。
- ◆ 焼却灰は、Co、Srなど不揮発性核種の濃度が瓦礫に比べて高い。
- ◆ セシウム吸着装置では、Sr吸着材適用の効果により、出口での⁹⁰Sr濃度が入口濃度の 約百分の一に低下している。
- ◆ 多核種除去設備は、核種により除去されている工程・吸着材が異なることを確認した。
- データをさらに蓄積するために、試料の採取と分析を継続する。

IRID

JAEA

©International Research Institute for Nuclear Decommissioning

⁴⁰ **27**

40

															化	逐正	後()	第40回	□資≭	¥, p27
JAEA	まとめ																			
構内土壌、焼却灰並びに汚染水処理設備出入口水を分析し、それぞれ次の核種が検出された。																				
試料	³ Н	¹⁴ C	⁶⁰ Co	⁶³ Ni	⁷⁹ Se	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Tc	¹²⁶ Sn	129	¹³⁷ Cs	¹⁵⁴ Eu	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	l ²⁴¹ Am	²⁴⁴ Cm
土壌		V				V	_*		-*		V		_*	V	-*	V	X	v	1	
焼却灰	-*	1	V	V	-*	V	-*	-*	-*	-*	V		-*	-*	-*	-*	V		V	V
セシウム吸着 装置入口水	V	-*	V	V	_*	V					V		V	V	~	V	V	V	~	•
セシウム吸着 装置出口水	V	_*		V	_*	V					V		V	V	V	V	•			
多核種除去 設備処理水	_*	_*	V			V		V	_*		V		_*		_*					
*:-は未測定を表す。																				
◆ 構[为土	;壤(;	ま、左	友射	能デ	5	とと	もに	粒度	分有	FとC	s濃	叓の	相関		関す	るデ	ータを	得た。	
☆ (由:	ᆔ교	713	Co	Srz	تل ت	不揮	密机	±核?	話の	澧庉	゠゚゚ゕ゙゙゙゙゙゙゙゙	「秘」	- ++ ,	ベて	言に	\				
				, Or + ==	o⊂` 	1.1 1	・フレ . .ntt. ニ	- 1×1	」主♥ノ 士□□	ᇒᆋ		しゅへい - しい	יטע – יווי		[D] V			<i>L</i> % 7		~
* セン がつ	ノワ	ム	く有う _/-/	反直	じは	$\sqrt{2}$	呶着	111	固用 (の刻	吊い	より	、田	ЦC	: U) ^a	~2r;	辰 [夏]	ንሊሀ	浱閁	U)
ボリト	ヨフ		-1~1 	」 了 了		いる) ₀	L DA		-			د مور	<u>.</u>		- 7	• _ •			
◆ 多核種除去設備は、核種により除去されている工程・吸着材が異なることを確認した。																				
■ データをさらに蓄積するために、試料の採取と分析を継続する。																				
IRID													¢	Dinterna	tional Re	search li	nstitute foi	Nuclear Deco	ommissionin	g
																				⁴¹ 27

					修正]	前(第60回]資料, p11			
まとめ										
原子炉建屋内瓦礫、土壌並びに水処理設備処理水を分析し、それぞれ次の核種が検出された。										
試料 ³ H ¹⁴ C ⁶⁰ C	o ⁶³ Ni ⁹⁰ Sr ⁹⁹ Tc	¹⁰⁶ Ru ¹²⁵ Sb ¹	¹²⁹ l ¹³⁷ Cs ¹⁵⁴ Eu	²³⁴ U ²³⁵ U ²³	³⁶ U ²³⁸ U ²³	³⁸ Pu ²³⁹⁺²⁴⁰ Pu ²	⁴¹ Am ²⁴⁴ Cm			
瓦礫 🖌 🖌 🗸	-* -*	_* _*	4	_* _* .	_* _*		_* _*			
土壤	v	-* 🖌	V	v v	V	VV	~			
多核種除去 設備処理水 [*]										
	*:「一」は未測定を表す。									
◆ 原子炉建屋内 ¹³⁷ Csとの相関	内瓦礫では、4- 関は明らかでは	号原子炉建原 ない。	屋内コンクリー	ートコアを分	が析した。茨	汚染の核種 語	組成の、			
◆ 土壌では、構 ⁹⁰ Sr/ ¹³⁷ Cs比は	内の汚染分布 は、他の場所か	に係るデー	タを蓄積した 试料の ⁹⁰ Sr/1 ³	。H4タンクコ ³⁷ Cs比と比東	ニリアから	採取した試験	料の 。平成2			
5年8月に漏	えいした汚染水	、のβ核種は	注に ⁹⁰ Sr とす	きえられる。						
◆ 多核種除去設備の各吸着材に吸着されている主な核種を整理した。 ⁹⁰ Srは複数の吸着材で 主要な核種であると見られる。										
今後も、廃棄物の発生状況等を踏まえつつ、性状把握を継続することにより得られた結果を、廃棄物の性状の推定、廃棄物の処理・処分方法の検討、作業環境の安全確保等に活用する。										
IRID (AEA)					©International Re	esearch Institute for Nu	clear Decommissioning 46 11			

														•	修正	[後(第60[回資料	料, p11
	まとめ																		
■ 原子焼 出され	原子炉建屋内瓦礫、土壌並びに水処理設備処理水を分析し、それぞれ次の核種が検出された。																		
試料	зН	¹⁴ C	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	⁹⁹ Tc	¹⁰⁶ Ru	¹²⁵ Sb	¹²⁹	¹³⁷ Cs	¹⁵⁴ Eu	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁸ Pú	²³⁹⁺²⁴⁰ Pu	1 ²⁴¹ Am	²⁴⁴ Cm
瓦礫	V	V	V	_*	-*		_*	_*		~		_*	_*	_*	_*			-*	-*
土壌					V		_*	V		V		V	V		V	V	V	V	
多核種除去 設備処理水	多核種除去 設備処理水 ^{-*} ^{-*} ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ^{-*} ^{-*} ✓ ✓ ^{-*} ^{-*} ^{-*}																		
	*:「一」は未測定を表す。																		
◆ 厉 13	₹子炊 ⁱ⁷ Csa	戸建 との [:]	屋内 相関	瓦礫 は明	では らか	、4≢ では	子原子 ない	² 炉建 。	屋内	コン	クリ-	-13	アを	分析し	した。	汚染	の核種	〔 組成	の、
◆ ± ∞	◆ 土壌では、構内の汚染分布に係るデータを蓄積した。H4タンクエリアから採取した試料の ⁹⁰ Sr/ ¹³⁷ Cs比は、他の場所から採取した試料の ⁹⁰ Sr/ ¹³⁷ Cs比と比較して高い傾向にある。平成2																		
 → 6月に漏えいした汚染小の β 核理はエミごう とちえられる。 ◆ 多核種除去設備の各吸着材に吸着されている主な核種を整理した。⁹⁰Srは複数の吸着材で 主要な核種であると見られる。 																			
今後も、廃棄物の発生状況等を踏まえつつ、性状把握を継続することにより得られた結果を、廃棄物の性状の推定、廃棄物の処理・処分方法の検討、作業環境の安全確保等に活用する。																			
IRID (JAE				-									©Inte	ernational	l Research	Institute for I	Nuclear Deco	ommissioning 47 11

修正前(第60回資料, p14)

原子炉建屋内瓦礫-核種分析結果②

【塗装表面積当たりの放射能量】

	放射能濃度〔Bq/cm ² 〕											
試料名	¹³⁷ Cs	¹⁵⁴ Eu	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu								
	(約30年)	(約8.6年)	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)								
4RB-1F-DU-C1	(3.9±0.5)×10 ⁻¹	< 9 × 10 ⁻¹	(1.7±0.2)×10 ⁻²	< 3 × 10⁻ ³								
4RB-1F-C-E2	(5.9±0.2)×10 ⁰	< 4 × 10 ⁻¹	< 3 × 10 ⁻³	< 2 × 10 ⁻³								
4RB-2F-DU-J1	(5.7±1.2)×10 ⁻¹	< 3 × 10 ⁻¹	(3.7±0.3)×10 ⁻²	< 4 × 10 ⁻³								
4RB-2F-C-N2	(5.6±1.4)×10 ⁻¹	< 8 × 10 ⁻¹	(1.2±0.2)×10 ⁻²	< 3 × 10 ⁻³								
4RB-3F-C-O1	(1.4±0.1)×10 ¹	< 9 × 10 ⁻¹	(8.8±1.4)×10 ⁻³	< 3 × 10 ⁻³								
4RB-3F-DU-Q2	(1.2±0.1)×10 ¹	< 1 × 10 ⁰	(3.7±0.9)×10 ⁻³	< 4 × 10 ⁻³								
4RB-4F-C-S2	(5.4±0.1)×10 ⁰	< 8 × 10 ⁻¹	< 4 × 10 ⁻³	< 3 × 10 ⁻³								
4RB-4F-DU-U1	(4.2±0.2)×10 ⁰	< 9 × 10⁻¹	(9.5±1.5)×10 ⁻³	< 3 × 10 ⁻³								

※ 表面積は画像解析ソフトによる算出値である。2011年3月11日に減衰を補正した放射能濃度を示す。 核種の下の括弧内は半減期を、分析値の±の後の数値は計数誤差を示す。

▶ 154Eu、²³⁹⁺²⁴⁰Puは測定した全ての試料で不検出であった。

IRID (AEA)

©International Research Institute for Nuclear Decommissioning

⁴⁸ **14**

修正後(第60回資料, p14)

原子炉建屋内瓦礫-核種分析結果②

【塗装表面積当たりの放射能量】

	放射能濃度〔Bq/cm ² 〕											
試料名	¹³⁷ Cs	¹⁵⁴ Eu	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu								
	(約30年)	(約8.6年)	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)								
4RB-1F-DU-C1	(3.9±0.5)×10 ⁻¹	< 9 × 10 ⁻¹	(1.7±0.2)×10 ⁻²	(3.0±0.9)×10 ⁻³								
4RB-1F-C-E2	(5.9±0.2)×10 ⁰	< 4 × 10 ⁻¹	< 3 × 10 ⁻³	< 3 × 10 ⁻³								
4RB-2F-DU-J1	(5.7±1.2)×10 ⁻¹	< 3 × 10 ⁻¹	(3.7±0.3)×10 ⁻²	(4.3±1.0)×10 ⁻³								
4RB-2F-C-N2	(5.6±1.4)×10 ⁻¹	< 8 × 10 ⁻¹	(1.2±0.2)×10 ⁻²	(2.5±0.7)×10 ⁻³								
4RB-3F-C-O1	(1.4±0.1)×10 ¹	< 9 × 10 ⁻¹	(8.8±1.4)×10 ⁻³	< 3 × 10 ⁻³								
4RB-3F-DU-Q2	(1.2±0.1)×10 ¹	< 1 × 10 ⁰	(3.7±0.9)×10 ⁻³	< 4 × 10 ⁻³								
4RB-4F-C-S2	(5.4±0.1)×10 ⁰	< 8 × 10 ⁻¹	< 4 × 10 ⁻³	< 3 × 10 ⁻³								
4RB-4F-DU-U1	$(4.2\pm0.2)\times10^{\circ}$	< 9 × 10 ⁻¹	(9.5±1.5)×10 ⁻³	< 3 × 10 ⁻³								

※ 表面積は画像解析ソフトによる算出値である。2011年3月11日に減衰を補正した放射能濃度を示す。 核種の下の括弧内は半減期を、分析値の±の後の数値は計数誤差を示す。

▶ 154Eu、239+240Puは測定した全ての試料で不検出であった。

IRID (AEA)

©International Research Institute for Nuclear Decommissioning

⁴⁹ 14

修正前(第60回資料, p16)

土壤-核種分析結果②

試料名	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁵ U/ ²³⁸ U比
	(約2.5×10 ⁵ 年)	(約7.0×10 ⁸ 年)	(約2.3×10 ⁷ 年)	(約4.5×10 ⁹ 年)	
S2-F2-1	(2.0±0.1)×10 ¹	(9.3±0.3)×10 ⁻¹	< 3 × 10 ⁰	(2.0±0.1)×10 ¹	0.046
S2-J1-1	(8.8±0.5)×10 ⁰	(7.4±0.3)×10⁻¹	< 3 × 10 ⁰	(1.6±0.1)×10 ¹	0.046
S2-H1-1	(1.6±0.1)×10 ¹	(7.4±0.2)×10 ⁻¹	< 3 × 10 ⁰	(1.6±0.1)×10 ¹	0.046
S2-K1-1	(1.0±0.1)×10 ¹	(5.1±0.2)×10⁻¹	< 3 × 10 ⁰	(1.1±0.1)×10 ¹	0.047
S3-H4A-1-1	(1.5±0.1)×10 ¹	(7.1±0.3)×10 ⁻¹	< 3 × 10 ⁰	(1.5±0.1)×10 ¹	0.046
S3-H4B-1	(2.1±0.1)×10 ¹	(1.1±0.1)×10 ⁰	< 3 × 10 ⁰	(2.4±0.1)×10 ¹	0.046

	放射能濃度〔Bq/kg〕					
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm		
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)		
S2-F2-1	< 8 × 10⁻¹	< 7 × 10 ⁻¹	< 9 × 10⁻¹	< 6 × 10 ⁻¹		
S2-J1-1	< 8 × 10⁻¹	< <u>7×10⁻¹</u>	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		
S2-H1-1	(6.7±0.2)×10 ¹	(1.1±0.1)×10 ¹	(8.4±0.7)×10 ⁰	< 6 × 10 ⁻¹		
S2-K1-1	< 8 × 10 ⁻¹	*<7×10-1	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		
S3-H4A-1-1	< 8 × 10 ⁻¹	< 7 × 10 ⁻¹	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		
S3-H4B-1	< 8 × 10 ⁻¹	< 7 × 10 ⁻¹	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		

※ 2011年3月11日に減衰を補正した放射能濃度を示す。核種の下の括弧内は半減期を、分析値の±の後の数値は計数誤差を示す。

▶ ²³⁴U、²³⁵U、²³⁸Uが全ての試料で検出されたが、この²³⁵U/²³⁸U比は天然Uの0.047と一致しており、この検出は天然Uと推察される。

▶ 原子炉北西側に位置するHエリアからは、Pu及び²⁴¹Amが検出された。

IRID (JAEA

修正後(第60回資料, p16)

土壤-核種分析結果②

試料名	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁵ U/ ²³⁸ U比
	(約2.5×10 ⁵ 年)	(約7.0×10 ⁸ 年)	(約2.3×10 ⁷ 年)	(約4.5×10 ⁹ 年)	
S2-F2-1	(2.0±0.1)×10 ¹	(9.3±0.3)×10 ⁻¹	< 3 × 10 ⁰	(2.0±0.1)×10 ¹	0.046
S2-J1-1	(8.8±0.5)×10 ⁰	(7.4±0.3)×10⁻¹	< 3 × 10 ⁰	(1.6±0.1)×10 ¹	0.046
S2-H1-1	(1.6±0.1)×10 ¹	(7.4±0.2)×10⁻¹	< 3 × 10 ⁰	(1.6±0.1)×10 ¹	0.046
S2-K1-1	(1.0±0.1)×10 ¹	(5.1±0.2)×10⁻¹	< 3 × 10 ⁰	(1.1±0.1)×10 ¹	0.047
S3-H4A-1-1	(1.5±0.1)×10 ¹	(7.1±0.3)×10⁻¹	< 3 × 10 ⁰	(1.5±0.1)×10 ¹	0.046
S3-H4B-1	(2.1±0.1)×10 ¹	(1.1±0.1)×10 ⁰	< 3 × 10 ⁰	(2.4±0.1)×10 ¹	0.046

	放射能濃度〔Bq/kg〕					
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm		
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)		
S2-F2-1	< 8 × 10⁻¹	< 7 × 10 ⁻¹	< 9 × 10⁻¹	< 6 × 10 ⁻¹		
S2-J1-1	< 8 × 10 ⁻¹	<7×10 ⁻¹	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		
S2-H1-1	(6.7±0.2)×10 ¹	(2.1±0.1)×10 ¹	(8.4±0.7)×10 ⁰	< 6 × 10 ⁻¹		
S2-K1-1	< 8 × 10 ⁻¹	*<7×10-1	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		
S3-H4A-1-1	< 8 × 10 ⁻¹	< 7 × 10 ⁻¹	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		
S3-H4B-1	< 8 × 10 ⁻¹	< 7 × 10 ⁻¹	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹		

※ 2011年3月11日に減衰を補正した放射能濃度を示す。核種の下の括弧内は半減期を、分析値の±の後の数値は計数誤差を示す。

▶ ²³⁴U、²³⁵U、²³⁸Uが全ての試料で検出されたが、この²³⁵U/²³⁸U比は天然Uの0.047と一致しており、この検出は天然Uと推察される。

▶ 原子炉北西側に位置するHエリアからは、Pu及び²⁴¹Amが検出された。

IRID (JAEA

参考資料

参考資料(第40回資料, p2)

土壌 – 試料の性状、分析内容

IF構内の汚染分布把握のために、露地から 採取した土壌のうち6試料を分析した。

試料名	採取日	採取場所	探取深さ (cm)	(g)	線量车 ^{2/2} (µSv/h)
S2-D2-1	2015.3.24	Dエリア	0~5	111	13
S2-F1-1	2015.3.30	Fエリア	0~-5	111	8
S2-12-1	2015.4.16	ロエリア	0~-5	110	6
S2-K2-1	2015.3.16	KI97	0~5	111	< 0.5
S2-L1-1	2015.4.20	Lエリア	0~-5	111	< 0.5
S2-P1-1	2015.5.8	PIUT	0~5	111	6

以下の核種を分析した。

(JAEA

- ³H, ¹⁴C, ⁶⁰Co, ⁶³Ni, ⁷⁹Se, ⁹⁰Sr, ⁹⁹Tc, ¹²⁹J, ¹³⁷Cs, ¹⁵⁴Eu, ²³⁵U, ²³⁸U, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ²⁴⁴Cm
- 元素、TOC(全有機炭素)、粒度分布を分析 した。

IRID ※1:風袋込み ※2:表面得量率(y)

1-1- $\mathbb{D} \cdot \mathbb{R}$ F-1 土壤试料採取場所

Elementaria de Research instituto for Austea Cecummunos y

	标取目	採取場所	質量(g)	面積 ^(cm)	線量率 [。] (µSvil
RB-1F-DU-C1	2017.7.5	4号機原子炉建園1階ダクト下コンクリート	9.8	2.37	<0.5
4RB-1F-C-E2	2017.7.6	4号機原子炉建屋1階 床面コンクリート	4.7	2.41	<0.5
RB-2F-DU-J1	2017.7.4	4号機原子炉建量2階ダクト下コンクリート	4.3	2.48	<0.5
4RB-2F-C-N2	2017.7.5	4号機原子炉建量2階床面コンクリート	10.2	2.40	<0.5
4RB-3F-C-01	2017.7.7	4号機原子炉建屋3階 床面コンクリート	11.9	2.54	<0.5
RB-3F-DU-Q2	2017.7.7	4号機原子炉建屋3階タクト下コンクリート	14.7	2.39	<0,5
4RB-4F-C-S2	2017.7.10	4号機原子炉建屋4階床面コンクリート	11.9	2.35	<0.5
RB-4F-DU-U1	2017.7.10	4号機原子炉建屋4階ダクト下コンクリート	12.1	2.60	<0.5
•H, ۱۹C, • کانت کا ک	Co, WTc, 1	201, 107Cs, 104Eu, 238Pu, 2384240Pu	4RB-3F	co1	arB-4F-C-5
	4R8-1F-DU-	ara-25-C-102		DU-02	ARB-4F-DU

土壌ー試料の性状、分析内容

構内の汚染分布把握のために採取した土 壌について、既報^{※1.82}に続き、4試料を分 析した。また、H4タンクエリアの土壌2試料 を分析した。

就料名	採取日	採取場所	資量 (g)	<u>18重</u> 率 [∞] (µSvih)
S2-F2-1	2015.3.30	Fエリア	102	35
S2-J1-1	2015.3.2	Jエリア	102	7
S2-H1-1	2015.4.9	HIUF	102	21
S2-K1-1	2015.2.16	KIUF	102	18
S3-H4A-1-1	2017.3.3	H4タンクエリア	104	48
S3-H48-1	2017.3.3	H4タンクエリア	103	10
			Col and	which be allowed a set of

※:長面線重挙(で)

以下の核種を分析した。

14C, 60Co, 63Ni, 90Sr, 99Tc, 125Sb; 129I, 137Cs, 154Eu, 234U, 235U, 236U, 238U, 238Pu, 239+240Pu, 241Am, 244Cm

参考資料(第60回資料, p5)

IRID 《(ABA) ※1 廃炉 汚染水対策チーム会合/事務局会議(第40回), 平成28年3月30日 ※2.特定原子力施服放射性應業物規制施計会(第1回),平成27年12月4日。

56

- ▶ 核種の放射能 (Bq) は、専用ソフトを用いて計数(カウント数)の合計を測定時間 (秒)で割り、α線の放出率や検出器の効率等の補正に必要なパラメータを入力して求める。
- > ²³⁹Puと²⁴⁰Puは、α線を区別できないので、合計値を算出する。