Utilization of Robots (Remote Control Machines) In the Accident of Fukushima Daiichi Nuclear Power Station

April 28, 2011 Tokyo Electric Power Company

Purpose: Support for various works using remote control heavy machines and small robots

In order to reduce exposure of radioactive ray to the workers and improvement of work efficiency, remote control machines have been introduced and considered for project teams such as a team for building permanent cooling system

- Remote Control Heavy Machine for Treatment of Rubble (Using Robot Technology)
- Monitoring Small Robots (Domestic and Foreign Products)
- Revising Concrete Pump Vehicle to Remote Control

Removal of Outside Rubble by Remote Control Heavy Machines

Contractor: JV (Taisei, Kajima, Shimizu)

Heavy Machines

- •Komatsu…Oil Pressure Shovel 3 cars, Crawler Dump 2 cars
- Hitachi-Kenki…Crawler Dump 1 car
- •Caterpiller Japan… Oil Pressure Shovel 1 cars , Bulldozer 1 car

Inside of Operation Car

Results of Removal of Rubble

• Sys1-2 : 1R/B North Side (4/18~21)

Sys1-2 : IR/B North Side (4/18~21)		Site	Status	No. of Container	
		Test Information Building	Completed (4/6~4/7)	3	
		Sys1−1 Shiomisaka Kosei Building	Completed(4/11~17)	11	
		Sys1−2 1R/B North Side	Completed (4/18~21)	6	
A CONTRACTOR OF THE OWNER		Sys1−3 1R∕B West Side	Completed (4/22~26)	8	
Before	After	Sys1−4 3R/B South Side	Under Construction (4/27~)	1	
A Syc1-3 \cdot 1 R/R West Side (1/22~26)	Sys1-5 3T/B East Side	Planned (4∕30~)		

◆Sys1-3 :1R/B West Side (4/22~26)

	Site	Status	No. of Container
	Sys2-1 Unit 3/4 Switch Yard	Completed (4/10~21)	20
	Sys2-2 3R∕B West Side	Under Construction (4/22~)	10
	Sys2-3 3R/B North Side	Planned (5∕1~)	

Before

After

Total 59 Containers (As of 4/27)

3

Flow of Introduction of Robots

Examples of how the small robots are used

Manufa- cture		Name		April	May	Purposes of operations
iRobot	Packbot		1		ing of Unit 3 ed inside of the of Unit1,2 and 3	To monitor the situations of inside/outside the buildings,etc.
QinetiQ (DOE)	Talon		1	4/27:Combination operating vehicle Late April: Final a	operations IST(Tsukuba) eration at Onahama n with robot	Planned to use for outside survey, etc. (This robot has mapping functions)
C.I.T., Touhoku U.,etc.	Quince			into operations Trainings/adjustments at Chiba Confirmation of m performance, ac (4/11,15,2	ljustments	Planned to use to monitor the situations of inside/outside the buildings,etc

Robot operating vehicle system

Developed at Japan Atomic Energy Agency

1. Identify the source of radiation by γ -ray camera, etc.

2. Measure the dose of radiation and monitor the situation

Talon (offered by DOE, Manufactured by QinetiQ) (w/Automatic radiation quantity mapping function)

Planned to use to measure the dose of radiation at outside of the buildings, etc.

(Studying to operate with robot operation vehicle)

7

Quince (Jointly developed by Chiba Institute of Technology, Tohoku University, International Rescue System, etc.)

スペック

仕様

. . .

全長	665~1099[mm]
全幅	480 [mm]
高さ	225 [mm]
休里	26.4 [bg]
最高速度	1.8 [m/秒]
是大ആ範圍	90kg
防器・防水(1 267)	あり
準備情	2m 序下
那季装置	3chカメラ(前後、俯瞰)、マイクロフォン・スピーカ、PSDセンサ
オブション装置	パンチルトスームカメラ、6DDFマニピュレータ、赤外穂サーモグラフィ、CO2センサ・ 3D レーザーレンジファインダ

- Confirmation of manipulation performance
 Radiation-proof: Confirmed over 100mSv
 Confirmed mobility at dark area
- ✓ Attached radiation measurement equipment

High mobility is the main feature

- Having a low center of gravity with four sub crawlers
 - Overcame debris (concrete of 40 sq. meter and wooden debris)
 - It may go up and down wet and slippery staircases
- It is developed for the purposes of survey the closed room where such as chemical material is leaked and explosion occurred.
- It has world class track record such as winning the championship twice at RoboCup World mobility competition.

Planned to use to measure the dose of radiation at outside/inside of the buildings, etc. (Studying to operate with robot operation vehicle)

(Reference) Operation record of the small robots

- Packbot: 2 robots
 - Size: 0.7 × 0.53 × 0.18[m]
 - Weight: 35[kg]
- Running Performance
 - Maximum speed: 9.3[km/h]
- Possible uninterrupted operation hour: 4h

The site survey was conducted inside the reactor buildings of Unit 1 to 3 on the followings: photos, radiation dose, temperature, humidity, and oxygen density. (4/17, 18, 26)

Filmed on April 17th, 2011

Fukushima Daiichi Nuclear Power Station 1 st Floor of Unit 1's Reactor Building

Remote control of concrete pumping vehicle

Schedule to enable remotely-controlled operation of concrete pumping vehicles.

Mitsubishi Fuso & MHI: carbody

shielding