Fukushima Daiichi Nuclear Power Station Plant Parameters

As of 6:00 am on May 24

<table>
<thead>
<tr>
<th>Status of water injection to the reactor</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
</tr>
</thead>
</table>
| Fresh water feeding | Fresh water feeding | Fresh water feeding | Fresh water feeding | Fresh water feeding
Fixed water system 6.1m³/h (as of 5:00 am, 5/24) | Fire suppression system 7.0m³/h (as of 5:00 am, 5/24) | Feed water system 12.0m³/h (as of 5:00 am, 5/24) | #2: (Heat removal of the reactor is functioning. Water injection is unnecessary) |
| **Fuel range A:** | Fuel range A: -1850 mm | Fuel range B: -2250 mm | Fuel range A: -1850 mm | Fuel range B: -2250 mm |
| **Fuel range B:** | -1600 mm (as of 5:00 am, 5/24) | -2000 mm (as of 5:00 am, 5/24) | -1600 mm (as of 5:00 am, 5/24) | -2000 mm (as of 5:00 am, 5/24) |

Water level in the reactor

- **Fuel range A:**
 - Fresh water feeding: 0.18 MPa g (as of 5:00 am, 5/24)
 - Fire suppression system: 0.13 MPa g (as of 5:00 am, 5/24)

- **Fuel range B:**
 - Fresh water feeding: 0.20 MPa g (as of 5:00 am, 5/24)
 - Fire suppression system: 0.18 MPa g (as of 5:00 am, 5/24)

Pressure in the reactor

- **System A:**
 - Temperature in feed-water nozzle: 115.8 °C
 - Temperature at reactor vessel bottom: 106.6 °C
 - Pressure in D/W: 0.1314 MPa abs
 - D/W Atmosphere temperature: 111.0 °C
 - CAMS radiation monitor: 1.77E+01 Sv/h
 - Designed usable D/W pressure: 0.384 MPa g (as of 5:00 pm, 5/24)

- **System B:**
 - Temperature in feed-water nozzle: 112.3 °C
 - Temperature at reactor vessel bottom: 101.1 °C
 - Pressure in D/W: 0.1010 MPa abs
 - D/W Atmosphere temperature: 105.9 °C
 - CAMS radiation monitor: 7.79E+00 Sv/h
 - Designed usable D/W pressure: 0.528 MPa abs

Temperature around the reactor vessel

- **System A:**
 - Temperature in feed-water nozzle: 115.8 °C
 - Temperature at reactor vessel bottom: 106.6 °C
 - Temperature in S/C: 64.5 °C

- **System B:**
 - Temperature in feed-water nozzle: 112.3 °C
 - Temperature at reactor vessel bottom: 101.1 °C
 - Temperature in S/C: 64.4 °C

Other parameters

- **Water temperature in the reactor:**
 - (Since there is no water inflow in the system it is impossible to collect the data)
 - Temperature in feed-water nozzle: 115.8 °C
 - Temperature at reactor vessel bottom: 106.6 °C

- **System A:**
 - Temperature in feed-water nozzle: 115.8 °C
 - Temperature at reactor vessel bottom: 106.6 °C
 - Temperature in S/C: 64.5 °C
 - Designed usable D/W pressure: 0.384 MPa g (as of 5:00 pm, 5/24)
 - Designed usable D/W maximum pressure: 0.528 MPa abs
 - Temperature in the spent fuel pool: 62.0 °C (as of May 8)
 - Temperature in the Common Spent Fuel Storage: 29°C (as of 6:30 am, 5/24)

- **System B:**
 - Temperature in feed-water nozzle: 112.3 °C
 - Temperature at reactor vessel bottom: 101.1 °C
 - Temperature in S/C: 64.4 °C
 - Designed usable D/W pressure: 0.528 MPa abs
 - Designed usable D/W maximum pressure: 0.627 MPa g (as of 5:00 pm, 5/24)
 - Temperature in the spent fuel pool: 62.0 °C (as of May 8)
 - Temperature in the Common Spent Fuel Storage: 29°C (as of 6:30 am, 5/24)

Power source

- Receiving of offsite power (P/C2C)
- Receiving offsite power (P/C4D)

Others

- Regarding reactor water level fuel range A of Unit 1, inspection of the instrument was completed at 5:00 pm, May 11.
- Data of Pressure in D/W of Unit 1 on 11/29 was corrected because it was incorrect.

Pressure conversion

\[
\text{Gauge pressure (MPa) g} = \text{Absolute pressure (MPa abs)} - \text{atmospheric pressure (normal atmospheric pressure 0.1013 MPa)}
\]

\[
\text{Absolute pressure (MPa abs)} = \text{Gauge pressure (MPa) g} + \text{atmospheric pressure (normal atmospheric pressure 0.1013 MPa)}
\]
<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow</td>
<td>Temporarily</td>
<td>System 1/1</td>
</tr>
<tr>
<td>Water level in the reactors</td>
<td>Data measured by the water gauge, which monitor the fuel range</td>
<td>Main indicator</td>
<td>System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.</td>
<td>Measures voltage value through the main indicator panel and converts to the pressure.</td>
<td>System A 1/2Ch, System B 1/2Ch</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>Since there is no water inflow at the points, where thermometers are set, no data is collected.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Temperature around the reactor vessel</td>
<td>Data measured at feed-water nozzle and at reactor vessel bottom are noted among multiple data to view the whole picture.</td>
<td>Main indicator</td>
<td>Point of Feed-water nozzle 1/4Ch, reactor vessel bottom 1/2Ch (Unit 1), 1/1Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Pressure in D/W-S/C</td>
<td>Data from main indicator. Measure voltage value by the main indicator panel converted to the pressure in case main indicator are not in function. (D/W: Dry Well, S/C: Suppression Chamber)</td>
<td>Unit 1/2Main indicator, Unit 3:Main indicator panel (converted from voltage)</td>
<td>Main indicator system 1/1, Main recorder regular use 1/1Ch, wide range 1/1Ch</td>
</tr>
<tr>
<td>D/W Atmosphere temperature</td>
<td>Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV: Reactor Pressure Vessel, HVH: Heating Ventilating Handling Unit)</td>
<td>Main recorder</td>
<td>RPV Bellows Air 1/5Ch, D/W HVH return 1/5Ch</td>
</tr>
<tr>
<td>CAMS radiation monitor</td>
<td>Data from the instrument reading of main indicator. (CAMS: Containment Atmospheric Monitoring System)</td>
<td>Main indicator</td>
<td>D/W System A 1/1Ch, System B 1/1Ch, S/C System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B.</td>
<td>Main recorder</td>
<td>System A1/4Ch (Unit 1), 8Ch (Unit 2/3), System B1/4Ch (Unit 1), 8Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Temperature in the spent fuel pool</td>
<td>Data from the instrument reading of main recorder (Non-thermal mode : Urgent Heat load Mode, SHC mode : Shut down Cooling Mode)</td>
<td>Main recorder</td>
<td>1/2Ch (Unit 1), 1Ch (Unit 2~4)</td>
</tr>
<tr>
<td>FPC skimmer surge tank level</td>
<td>Data from the instrument reading of main indicator (FPC: Fuel Pool Cooling and Filtering System)</td>
<td>Main indicator</td>
<td>System 1/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 6:00 am, 5/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure : down of instrument reading (over) scale / failure of instrument</td>
<td>Unit 1: Spent fuel pool temperature, CAMS D/W radiation monitor, Unit 2: Temperature at reactor vessel bottom, pressure in S/C, RPV Bellows Air temperature, Unit 3: Spent fuel pool temperature, level of skimmer surge tanks, Unit 4: Spent fuel pool temperature</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>Unit 4: Monitoring is not implemented since all fuel are takeoff, Unit 5/6: Monitoring is not implemented since heat removal of reactor is functioning</td>
<td>Unit 1: Reactor pressure, feed-water nozzle temperature, CAMS S/C radiation monitor, Unit 2: Reactor pressure, CAMS S/C radiation monitor, Unit 3: Reactor pressure, RPV bellows air temperature, feed-water nozzle temperature, CAMS S/C radiation monitor</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>Inaccurate Data defined from relation with other Parameters such as negative figure.</td>
<td>Unit 1: Reactor pressure, feed-water nozzle temperature, CAMS S/C radiation monitor, Unit 2: Reactor pressure, CAMS S/C radiation monitor, Unit 3: Reactor pressure, RPV bellows air temperature, feed-water nozzle temperature, CAMS S/C radiation monitor</td>
</tr>
</tbody>
</table>