As of 06:00 on July 5

<table>
<thead>
<tr>
<th>Unit</th>
<th>Status of water injection to the reactor</th>
<th>Water level in the reactor</th>
<th>Pressure in the reactor</th>
<th>Water temperature of the reactor</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Fresh water feeding</td>
<td>Fresh water feeding</td>
<td>System A: 0.039 MPa ♦ System B: 0.039 MPa</td>
<td>Temperature in feed-water nozzle: 117.3 ℃</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Feed water system 3.5m³/h</td>
<td>Feed water system 3.5m³/h</td>
<td>System B: -0.162 MPa ♦ System C: -0.162 MPa</td>
<td>Temperature at reactor vessel bottom: 102.2 ℃</td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Feed water system 8.8m³/h</td>
<td>Feed water system 8.8m³/h</td>
<td>System A: 0.162 MPa ♦ System B: 0.162 MPa</td>
<td>Temperature in feed-water nozzle: 112.4 ℃</td>
<td></td>
</tr>
<tr>
<td>Unit 4</td>
<td></td>
<td></td>
<td></td>
<td>Temperature at reactor vessel bottom: 122.0 ℃</td>
<td></td>
</tr>
<tr>
<td>Unit 5</td>
<td></td>
<td></td>
<td></td>
<td>Temperature in feed-water nozzle: 34℃</td>
<td></td>
</tr>
<tr>
<td>Unit 6</td>
<td></td>
<td></td>
<td></td>
<td>Temperature at reactor vessel bottom: 3100 mm</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
- **※1:** Instrument failure
- **※2:** Not covered for collecting data
- **※3:** Continuously monitoring the status

Other
- **Power source:** Receiving offsite power (P/C2C)
- **Others:** Data of Pressure in D/W of Unit 1 on 11/29 was corrected because it was incorrect.
- **Pressure conversion:** Gauge pressure/MPa g = Absolute pressure/MPa abs - atmospheric pressure (normal atmospheric pressure0.1013 MPa)
 Absolute pressure/MPa abs = Gauge pressure/MPa g + atmospheric pressure (normal atmospheric pressure0.1013 MPa)

Pressure Conversion
- **Pressure conversion:** Gauge pressure/MPa g = Absolute pressure/MPa abs - atmospheric pressure (normal atmospheric pressure0.1013 MPa)
- **Absolute pressure/MPa abs = Gauge pressure/MPa g + atmospheric pressure (normal atmospheric pressure0.1013 MPa)
Supplemental explanation for the plant parameters

Status of water injection to the reactor
- **Water inflow**: Temporary
 - Measurement manner: System 1/1

Water level in the reactors
- Data measured by the water gage, which monitor the fuel range
 - Measurement manner: Main indicator
 - Ch number or number of systems: System A 1/1Ch, System B 1/1Ch

Pressure in the reactor
- Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.
 - Unit 1/2: Temporary
 - Unit 3: Measures voltage value through the main indicator panel and converts them to the pressure
 - Measurement manner: System A 1/2Ch, System B 1/2Ch

Temperature in the reactor
- Since there is no water inflow at the points, no data is collected.
 - Measurement manner: —

Temperature around the reactor vessel
- Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U: RPV Bottom Head, 2U: RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.
 - Measurement manner: Main indicator
 - Ch number or number of systems: Point of Feed-water nozzle 1/4Ch, reactor vessel bottom 1/2Ch (Unit 1), 1/1Ch (Unit 2/3)

D/W, S/C Temperature
- Data from main indicator. Measure voltage value by the main indicator panel converted to the pressure in case main indicator are not in function.
 - Measurement manner: Main indicator system 1/1
 - Ch number or number of systems: Main recorder regular use 1/1Ch, wide range 1/1Ch

CAMS radiation monitor
- Data from the instrument reading of main indicator.
 - Measurement manner: Main indicator
 - Ch number or number of systems: D/W System A 1/1Ch, System B 1/1Ch, S/C System A 1/1Ch, System B 1/1Ch

Temperature in S/C
- Data from the instrument reading of main indicator. One representing value is noted among multiple data on each System A, B.
 - Measurement manner: Main indicator
 - Ch number or number of systems: System A 1/4Ch (Unit 1), 8Ch (Unit 2/3), System B 1/4Ch (Unit 1), 8Ch (Unit 2/3)

Temperature in the spent fuel pool
- Data from the instrument reading or from the measurement reading of samples of main indicator and temporary insumption (Non-thermal mode : Urgent Heat load Mode, SHC mode : Shut down Cooling Mode)
 - Measurement manner: Main indicator
 - Ch number or number of systems: System A 1/2Ch (Unit 1), 1Ch (Unit 2), Main 1/1 system (Unit 3/4)

FPC skimmer surge tank level
- Data from the instrument reading of main indicator
 - Measurement manner: Main indicator
 - Ch number or number of systems: System 1/1

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 06:00 on July 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure : down of instrument reading (over) scale/failure of instrument</td>
<td>Unit 1 CAMS D/W radiation monitor, spent fuel pool temperature</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>Unit 4: Monitoring is not implemented since all fuel are takeoff</td>
<td>Unit 2 Pressure in S/C, CAMS S/C/B radiation monitor</td>
</tr>
<tr>
<td></td>
<td>Unit 5/6: Monitoring is not implemented since heat removal of reactor is functioning</td>
<td>Unit 3 Level of skimmer surge tanks</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>inaccurate Data defined from relation with other Parameters such as negative figure.</td>
<td>Unit 1 Reactor water level/B</td>
</tr>
</tbody>
</table>