Fukushima Daiichi Nuclear Power Station  Plant Parameters

As of 06:00 on August 4

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Feed water feeding</td>
<td>Feed water feeding</td>
<td>Feed water feeding</td>
<td>#2</td>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>Water level in the reactor</td>
<td>Fuel range A: Downscale</td>
<td>Fuel range A: 1850 mm</td>
<td>Fuel range A: 1900 mm</td>
<td>#3</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>System A: 0.0022 MPa g</td>
<td>System A: 0.0025 MPa g</td>
<td>System A: 0.170 MPa g</td>
<td>#3</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Water temperature of the reactor</td>
<td>Temperature in feed-water nozzle: 104.1 ℃</td>
<td>Temperature in feed-water nozzle: 111.9 ℃</td>
<td>Temperature in feed-water nozzle: 116.2 ℃</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>Water temperature around the reactor vessel</td>
<td>Temperature at reactor vessel bottom: 93.5 ℃</td>
<td>Temperature at reactor vessel bottom: 123.5 ℃</td>
<td>Temperature at reactor vessel bottom: 108.2 ℃</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>D/W: 0.1289 MPa abs</td>
<td>D/W: 0.110 MPa abs</td>
<td>D/W: 0.1016 MPa abs</td>
<td>#2</td>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>D/W Atmospheric temperature</td>
<td>25.3 ℃</td>
<td>26.3 ℃</td>
<td>26.3 ℃</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>CAMS radiation monitor</td>
<td>System A: 45.7 ℃</td>
<td>System A: 45.6 ℃</td>
<td>System A: 49.6 ℃</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>Designed usable D/W pressure</td>
<td>0.384 MPa g (0.485 MPa abs)</td>
<td>0.384 MPa g (0.485 MPa abs)</td>
<td>0.384 MPa g (0.485 MPa abs)</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>Temperature in the spent fuel pool</td>
<td>33.0 ℃</td>
<td>31.0 ℃</td>
<td>41.0 ℃</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>Others</td>
<td>Receiving offsite power (P/C2C)</td>
<td>Receiving offsite power (P/C4D)</td>
<td>Receiving offsite power</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
</tbody>
</table>

Pressure conversion: Gauge pressure/MPa g = Absolute pressure/MPa abs − atmospheric pressure (normal atmospheric pressure = 0.1013 MPa)

### Notes
- Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events. We comprehensively evaluate situations in plants using all available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration.

### Pressure Conversion

\[ \text{Gauge pressure (MPa g)} = \text{Absolute pressure (MPa abs)} - 0.1013 \text{ MPa} \]

### Others

- Data of Pressure in D/W of Unit 1 on 11/29 was corrected because it was incorrect.

---

**As of 06:00 on August 4**

- **Fresh water feeding**
  - Unit 1: Feed water system 3.8 m³/h (as of 5:00, 8/4)
  - Unit 2: Feed water system 9.1 m³/h (as of 5:00, 8/4)
  - Unit 5: Feed water system 3.4 m³/h (as of 5:00, 8/4)

- **Power source**
  - Receiving offsite power
  - Receiving offsite power
  - Receiving offsite power

- **Temperature in the spent fuel pool**
  - 33.0 ℃ (as of 5:00, 8/4)

- **RPV bellow seal**
  - 93.1 ℃ (as of 6:00, 8/4)

- **HVH return**
  - 94.8 ℃ (as of 5:00, 8/4)

- **D/W (A)**
  - 0.00E+00 Sv/h

- **S/C (A)**
  - 7.06E-01 Sv/h

- **D/W (B)**
  - 3.55E+02 Sv/h

- **S/C (B)**
  - 7.31E-01 Sv/h

---

### Pressure Conversion

\[ \text{Absolute pressure (MPa abs)} = \text{Gauge pressure (MPa g)} + 0.1013 \text{ MPa} \]

---

### Additional Notes

- **Monitoring**
  - System A: Continuous monitoring (as of 5:00, 8/4)
  - System B: Continuous monitoring (as of 5:00, 8/4)

- **Temperature**
  - 37.5 ℃ (as of 5:00, 8/4)

---

### Power Supply

- **Receiving offsite power**
  - 5u: P/C4D (from 14:45, 7/15)
  - 6u: SHC mode (from 10:02, 8/3)

---
# Supplemental explanation for the plant parameters

## Status of water injection to the reactor

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water inflow</td>
<td>Temporary</td>
<td>System 1</td>
<td></td>
</tr>
</tbody>
</table>

## Water level in the reactors

- Data measured by the water gauge, which monitor the fuel range

## Pressure in the reactor

- Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.

## Temperature in the reactor

- Since there is no water inflow at the points, where thermometers are set, no data is collected.

## Temperature around the reactor vessel

- Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U: RPV Bottom Head, 2U: RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.

## Pressure in D/W - S/C

- Data from main instrument. Measure voltage value by the main instrument panel converted to the pressure in case main instruments are not in function. As to the D/W pressure of Unit 2, the reading of the temporary indicator is described.

## D/W Atmosphere temperature

- Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV: Reactor Pressure Vessel, HVH: Heating Ventilating Handling Unit)

## CAMS radiation monitor

- Data from the instrument reading of main indicator. (CAMS: Containment Atmospheric Monitoring System)

## Temperature in S/C

- Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B.

## Temperature in spent fuel pool

- Data from the instrument reading or from the measurement reading of samples of main indicator and temporary insufflenture (Non-thermal mode: Urgent Heat load Mode, SHC mode: Shut down Cooling Mode)

## FPC skimmer surge tank level

- Data from the instrument reading of main indicator (FPC: Fuel Pool Cooling and Filtering System)

## Instrument failure

- Instrument failure: down of instrument reading (over) scale/failure of instrument

## Not covered for collecting data

- Unit 4: Monitoring is not implemented since all fuel are takeoff.
- Unit 5/6: Monitoring is not implemented since heat removal of reactor is functioning.

## Continuously monitoring the status

- Inaccurate Data defined from relation with other Parameters such as negative figure.

---

### Status As of 06:00 on August 4

- Unit 1 CAMS D/W radiation monitor, spent fuel pool temperature, Level of skimmer surge tanks
- Unit 2 Pressure in S/C, CAMS S/C(B) radiation monitor
- Unit 3 Level of skimmer surge tanks
- Unit 4 Reactor water level (B)
- Unit 5 Reactor water level, RPV bellow air temperature
- Unit 6 Reactor water level, reactor pressure, RPV bellow air temperature, CAMS D/W/IA radiation monitor