Fukushima Daiichi Nuclear Power Station Plant Parameters

As of 12:00 on September 1

Unit 1
- **Status of water injection to the reactor**: fresh water feeding
- **Water level in the reactor** (as of 11:00, 9/1)
- **Pressure in the reactor**
 - **Water temperature of the reactor**
- **Temperature around the reactor vessel**
- **Pressure in D/W・S/C**
 - **D/W Atmosphere temperature**
 - **CAES radiation monitor**
 - **Temperature in S/C**
 - **Designed usable D/W pressure**
 - **Designed usable D/W maximum pressure**
 - **Temperature in the spent fuel pool**
 - **Temperature in the Common Spent Fuel Storage**
 - **Power source**

Unit 2
- **Status of water injection to the reactor**: fresh water feeding
- **Water level in the reactor** (as of 11:00, 9/1)
- **Pressure in the reactor**
 - **Water temperature of the reactor**
- **Temperature around the reactor vessel**
- **Pressure in D/W・S/C**
 - **D/W Atmosphere temperature**
 - **CAES radiation monitor**
 - **Temperature in S/C**
 - **Designed usable D/W pressure**
 - **Designed usable D/W maximum pressure**
 - **Temperature in the spent fuel pool**
 - **Temperature in the Common Spent Fuel Storage**
 - **Power source**

Unit 3
- **Status of water injection to the reactor**: fresh water feeding
- **Water level in the reactor** (as of 11:00, 9/1)
- **Pressure in the reactor**
 - **Water temperature of the reactor**
- **Temperature around the reactor vessel**
- **Pressure in D/W・S/C**
 - **D/W Atmosphere temperature**
 - **CAES radiation monitor**
 - **Temperature in S/C**
 - **Designed usable D/W pressure**
 - **Designed usable D/W maximum pressure**
 - **Temperature in the spent fuel pool**
 - **Temperature in the Common Spent Fuel Storage**
 - **Power source**

Unit 4
- **Status of water injection to the reactor**: fresh water feeding
- **Water level in the reactor** (as of 11:00, 9/1)
- **Pressure in the reactor**
 - **Water temperature of the reactor**
- **Temperature around the reactor vessel**
- **Pressure in D/W・S/C**
 - **D/W Atmosphere temperature**
 - **CAES radiation monitor**
 - **Temperature in S/C**
 - **Designed usable D/W pressure**
 - **Designed usable D/W maximum pressure**
 - **Temperature in the spent fuel pool**
 - **Temperature in the Common Spent Fuel Storage**
 - **Power source**

Unit 5
- **Status of water injection to the reactor**: fresh water feeding
- **Water level in the reactor** (as of 11:00, 9/1)
- **Pressure in the reactor**
 - **Water temperature of the reactor**
- **Temperature around the reactor vessel**
- **Pressure in D/W・S/C**
 - **D/W Atmosphere temperature**
 - **CAES radiation monitor**
 - **Temperature in S/C**
 - **Designed usable D/W pressure**
 - **Designed usable D/W maximum pressure**
 - **Temperature in the spent fuel pool**
 - **Temperature in the Common Spent Fuel Storage**
 - **Power source**

Unit 6
- **Status of water injection to the reactor**: fresh water feeding
- **Water level in the reactor** (as of 11:00, 9/1)
- **Pressure in the reactor**
 - **Water temperature of the reactor**
- **Temperature around the reactor vessel**
- **Pressure in D/W・S/C**
 - **D/W Atmosphere temperature**
 - **CAES radiation monitor**
 - **Temperature in S/C**
 - **Designed usable D/W pressure**
 - **Designed usable D/W maximum pressure**
 - **Temperature in the spent fuel pool**
 - **Temperature in the Common Spent Fuel Storage**
 - **Power source**

Note
- Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events. We comprehensively evaluate the situation in plants using all available information from indicators and also focusing on trends, taking into consideration the uncertainty of indicators.

Pressure Conversion
- **Gauge pressure (MPa g) = Absolute pressure (MPa abs) - atmospheric pressure (normal atmospheric pressure 0.1013 MPa)**
- **Absolute pressure (MPa abs) = Gauge pressure (MPa g) + atmospheric pressure (normal atmospheric pressure 0.1013 MPa)**

Data

- **As of 12:00 on September 1**

Other Information
- **Receiving offsite power (P/C2C)**
- **Receiving offsite power (P/C4D)**
- **Temperature in the Common Spent Fuel Storage**
- **Power source**
- **Others**

Additional Notes
- Data of Pressure in D/W of Unit 1 on 11/29 was corrected because it was incorrect.

References
- Data on Fukushima Daiichi Nuclear Power Station
- Technical Support Team for Public Understanding of Nuclear Science and Technology
Supplemental explanation for each parameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow</td>
<td>Temporary</td>
<td>System 1/1</td>
</tr>
<tr>
<td>Water level in the reactors</td>
<td>Data measured by the water gauge, which monitor the fuel range</td>
<td>Main indicator</td>
<td>System A 1/1Ch System B 1/1Ch</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.</td>
<td>Unit 1/2 Temporary Unit 3 Measures voltage value through the main indicator panel and converts them to the pressure</td>
<td>Temporary indicator: 1/1 system Main System A: 1/2Ch System B: 1/2Ch</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>Since there is no water inflow at the points, where thermometers are set, no data is collected.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Temperature around the reactor vessel</td>
<td>Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U: RPV Bottom Head, 2U: RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.</td>
<td>Main recorder</td>
<td>Point of Feed-water nozzle 1/4Ch reactor vessel bottom 1/2Ch (Unit 1) 1/1Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>Data from main instrument. Measure voltage value by the main instrument panel converted to the pressure in case main instruments are not in function. As to the D/W pressure of Unit2, the reading of the temporary indicator is described. (D/W: Dry Well, S/C: Suppression Chamber)</td>
<td>(D/W) Unit 1/Main recorder Unit 2/Temporary Unit 3/Main instrument panel (converted from voltage) (S/C) Unit 1/2/Main indicator Unit 3/3 Main instrument panel (converted from voltage)</td>
<td>(D/W) Main recorder wide range 1/1Ch (Unit 1) Temporary indicator: 1/1 system (Unit 2) Main instrument panel 1/4Ch (Unit 3) (S/C) Main indicator 1/1 system (Unit 1/2) Main instrument panel 1/2Ch (Unit 3)</td>
</tr>
<tr>
<td>D/W Atmosphere temperature</td>
<td>Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV: Reactor Pressure Vessel, HVH: Heating Ventilating Handling Unit)</td>
<td>Main recorder</td>
<td>RPV Bellows Air 1/5Ch D/W HVH return 1/5Ch</td>
</tr>
<tr>
<td>CAMS radiation monitor</td>
<td>Data from the instrument reading of main indicator. (CAMS: Containment Atmospheric Monitoring System)</td>
<td>Main indicator</td>
<td>D/W System A 1/1Ch System B 1/1Ch S/C System A 1/1Ch System B 1/1Ch</td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B.</td>
<td>Main recorder</td>
<td>System A: 1/4Ch (Unit 1), 8Ch (Unit 2/3) System B: 1/4Ch (Unit 1), 8Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Temperature in the spent fuel pool</td>
<td>Data from the instrument reading or from the measurement reading of samples of main indicator and temporary instrumentation (Non-thermal mode: Urgent Heat load Mode, SHC mode: Shut down Cooling Mode)</td>
<td>Unit 2/3/Main recorder Unit 3/3-Temporary indicator</td>
<td>Main: 1/1Ch (Unit 2) Temporary indicator: 1/1 system (Unit 1/3/4)</td>
</tr>
<tr>
<td>FPC skimmer surge tank level</td>
<td>・Unit2, 4 are the FPC skimmer surge tank level measured main indicator. ・Unit1, 3 are the FPC skimmer surge tank level estimated from temporary pressure pages (reference value) (FPC: Fuel Pool Cooling system)</td>
<td>Unit2/4/Main indicator Unit1/3-Temporary instrument (Pressure pages)</td>
<td>Main indicator: 1/1 system (Unit 2/4) Temporary instrument: 1/1 system (Unit 1/3)</td>
</tr>
</tbody>
</table>

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As Of 12:00 on September 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure: down of instrument reading (over) scale/failure of instrument</td>
<td>Unit 1 CAMS D/W radiation monitor Unit 2 Pressure in S/C, CAMS D/W/B radiation monitor, CAMS S/C/B radiation monitor Unit 3 —</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>Monitoring is not implemented since all fuel are takeoff. Unit5/6: Monitoring is not implemented since heat removal of reactor is functioning</td>
<td>Unit 1 Reactor water level/BI Unit 2 Reactor water level, RPV bellow air temperature, CAMS D/W/A radiation monitor Unit 3 —</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>Inaccurate Data defined from relation with other Parameters such as negative figure.</td>
<td>—</td>
</tr>
</tbody>
</table>