As of 12:00 on September 9

<table>
<thead>
<tr>
<th>Unit</th>
<th>Status of water injection to the reactor</th>
<th>Water level in the reactor</th>
<th>Pressure in the reactor</th>
<th>Water temperature of the reactor</th>
<th>Power source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fresh water feeding Feed water system 3.7m³/h (as of 11:00, 9/9)</td>
<td>Fuel range A: Downscale Fuel range B: 1550 mm (as of 11:00, 9/9)</td>
<td>System A: 0.018 MPa g System B: 0.5 MPa g (as of 11:00, 9/9)</td>
<td>Temperature in feed-water nozzle: 104.9 ℃</td>
<td>Receiving offsite power (P/C2C)</td>
</tr>
<tr>
<td>2</td>
<td>fresh water feeding Feed water system 3.7m³/h (as of 11:00, 9/9)</td>
<td>Fuel range A: -1850 mm Fuel range B: 2200 mm (as of 11:00, 9/9)</td>
<td>System A: 0.318 MPa g System B: 0.6 MPa g (as of 11:00, 9/9)</td>
<td>Temperature at reactor vessel bottom: 97.6 ℃</td>
<td>Receiving offsite power (P/C4D)</td>
</tr>
<tr>
<td>3</td>
<td>fresh water feeding Feed water system 5.0m³/h, CS line 2.9m³/h (as of 11:00, 9/9)</td>
<td>Fuel range A: -3000 mm Fuel range B: 2200 mm (as of 11:00, 9/9)</td>
<td>System A: 0.181 MPa g System B: 0.100 MPa g (as of 11:00, 9/9)</td>
<td>Temperature in S/C: 32.0 ℃</td>
<td>Receiving offsite power (P/C4D)</td>
</tr>
<tr>
<td>4</td>
<td>(Heat removal of the reactor is functioning; Water injection is unnecessary)</td>
<td>Stoppage range 1881 mm (as of 12:00, 9/9)</td>
<td>System A: 0.005 MPa g System B: 0.021 MPa g (as of 12:00, 9/9)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Stoppage range 2443 mm (as of 12:00, 9/9)</td>
<td>Stoppage range 0.005 MPa g (as of 12:00, 9/9)</td>
<td>System A: 0.005 MPa g System B: 0.021 MPa g (as of 12:00, 9/9)</td>
<td>29.4 ℃</td>
<td>Receiving offsite power (P/C2C)</td>
</tr>
</tbody>
</table>

Note
- Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events. We comprehensively evaluate situation in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration.

Pressure Conversion
- Gauge pressure (MPa g) = Absolute pressure (MPa abs) \(- \) atmospheric pressure (normal atmospheric pressure = 0.1013 MPa)
- Absolute pressure (MPa abs) = Gauge pressure (MPa g) \(+ \) atmospheric pressure (normal atmospheric pressure = 0.1013 MPa)
Supplemental explanation for the plant parameters

Status of water injection to the reactor
- **Recording manner**: Water inflow (CS line: Core Spray system)
- **Measurement manner**: Temporary
- **Ch number or number of systems**: System 1/1

Water level in the reactors
- **Recording manner**: Data measured by the water gauge, which monitors the fuel range
- **Measurement manner**: Main indicator
- **Ch number or number of systems**: System A 1/1Ch, System B 1/1Ch

Pressure in the reactors
- **Recording manner**: Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.
- **Measurement manner**: Unit 1/2 Temporary, Unit 3 Measures voltage value through the main indicator panel and converts them to the pressure
- **Ch number or number of systems**: Temporary indicator: 1/1 system, Main System A 1/2Ch, System B 1/2Ch

Temperature in the reactor
- **Recording manner**: Since there is no water inflow at the points, where thermometers are set, no data is collected.
- **Measurement manner**: –
- **Ch number or number of systems**: –

Temperature around the reactor vessel
- **Recording manner**: Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U: RPV Bottom Head, 2U: RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.
- **Measurement manner**: Main recorder
- **Ch number or number of systems**: Point of Feed-water nozzle 1/4Ch, reactor vessel bottom 1/2Ch (Unit 1), 1/1Ch (Unit 2/3)

Pressure in D/W - S/C
- **Recording manner**: Data from main instrument. Measure voltage value by the main instrument panel converted to the pressure in case main instruments are not in function. As to the D/W pressure of Unit 2, the reading of the temporary indicator is described.
- **Measurement manner**: (D/W: Dry Well, S/C: Suppression Chamber)
- **Ch number or number of systems**: Main recorder:
 - Unit 1 Main recorder
 - Unit 2 Temporary
 - Unit 3 Main instrument panel (converted from voltage)
 - (S/C) Unit 1/2 Main indicator
 - Unit 3 Main instrument panel (converted from voltage)

D/W Atmosphere temperature
- **Recording manner**: Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV: Reactor Pressure Vessel, HVH: Heating Ventilating Handling Unit)
- **Measurement manner**: Main recorder
- **Ch number or number of systems**: D/W Bellows Air 1/5Ch, D/W HVH return 1/5Ch

CAMS radiation monitor
- **Recording manner**: Data from the instrument reading of main indicator. (CAMS: Containment Atmospheric Monitoring System)
- **Measurement manner**: Main indicator
- **Ch number or number of systems**: Main indicator:
 - D/W System A 1/1Ch
 - System B 1/1Ch
 - S/C System A 1/1Ch
 - System B 1/1Ch

Temperature in S/C
- **Recording manner**: Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B.
- **Measurement manner**: Main recorder
- **Ch number or number of systems**: System A 1/4Ch (Unit 1), 8Ch (Unit 2/3), System B 1/4Ch (Unit 1), 8Ch (Unit 2/3)

Temperature in the spent fuel pool
- **Recording manner**: Data from the instrument reading or from the measurement reading of samples of main indicator and temporary insulmamment. (Non-thermal mode: Urgent Heat load Mode, SHC mode: Shut down Cooling Mode)
- **Measurement manner**: Unit 2/3 Main recorder
- **Ch number or number of systems**: Unit 1/3/4 Temporary indicator
 - Main indicator: 1/1Ch (Unit 2)
 - Temporary indicator: 1/1 system (Unit 1/3/4)

FPC skimmer surge tank level
- **Recording manner**:
 - Unit 2, 4 are the FPC skimmer surge tank level measured main indicator.
 - Unit 1, 3 are the FPC skimmer surge tank level estimated from temporary pressure pages. (reference value) (FPC: Fuel Pool Cooling system)
- **Measurement manner**: Unit 2/4 Main indicator
- **Ch number or number of systems**: Unit 1/3 Temporary instrument (Pressure pages)

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 12:00 on September 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure: down of instrument reading (over) scale, failure of instrument</td>
<td>Unit 1 CAMS D/W radiation monitor, Unit 2 Pressure in S/C, CAMS D/W radiation monitor, CAMS S/C radiation monitor Unit 3 –</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>Inaccurate Data defined from relation with other Parameters such as negative figure</td>
<td>Unit 1 Reactor water level(B), Unit 2 Reactor water level, RPV bellow air temperature, Unit 3 Reactor water level, reactor pressure, RPV bellow air temperature, CAMS D/W radiation monitor</td>
</tr>
</tbody>
</table>