Fukushima Daiichi Nuclear Power Station Plant Parameters

As of 12:00 on September 11

<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Fresh water feeding Feed water system 3.6m³/h (as of 11:00, 9/11)</td>
<td>Fresh water feeding Feed water system 3.5m³/h (as of 11:00, 9/11)</td>
<td>Fresh water feeding Feed water system 5.0m³/h, CS line 2.9m³/h (as of 11:00, 9/11)</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Water level in the reactor</td>
<td>Fuel range A: 1250 mm (as of 11:00, 9/11)</td>
<td>Fuel range B: 2200 mm (as of 11:00, 9/11)</td>
<td>Fuel range A: 2360 mm (as of 11:00, 9/11)</td>
<td>(C)</td>
<td>(D)</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>System A: 0.019 MPa g (as of 11:00, 9/11)</td>
<td>System B: 0.016 MPa g (as of 11:00, 9/11)</td>
<td>System A: 0.183 MPa g (as of 11:00, 9/11)</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>System A: 44.6 ℃ (as of 11:00, 9/11)</td>
<td>System B: 44.8 ℃ (as of 11:00, 9/11)</td>
<td>System A: 47.1 ℃ (as of 11:00, 9/11)</td>
<td>(C)</td>
<td>(D)</td>
</tr>
<tr>
<td>Receiving offsite power (P/C2C)</td>
<td></td>
<td></td>
<td>(Heat removal of the reactor is functioning. Water injection is unnecessary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature in feed-water nozzle: 105.1 ℃</td>
<td>Temperature at reactor vessel bottom: 98.4 ℃ (as of 11:00, 9/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>System A: 0.384 MPa g (0.485 MPa abs)</td>
<td>System B: 0.427 MPa g (0.528 MPa abs)</td>
<td>System A: 0.005 MPa g (0.105 MPa abs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature of the reactor</td>
<td>(Since there is no water inflow in the system it is impossible to collect the data.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature around the reactor vessel</td>
<td>Temperature in feed-water nozzle: 107.7 ℃</td>
<td>Temperature at reactor vessel bottom: 113.8 ℃ (as of 11:00, 9/11)</td>
<td>Temperature in feed-water nozzle: 105.1 ℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>3620 mm (as of 11:00, 9/11)</td>
<td>2950 mm (as of 11:00, 9/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>Stoppage range 3620 mm (as of 12:00, 9/11)</td>
<td>Stoppage range 2950 mm (as of 12:00, 9/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>304 ℃ (as of 12:00, 9/11)</td>
<td>292 ℃ (as of 12:00, 9/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designed usable D/W pressure</td>
<td>0.384MPa g (0.485MPa abs)</td>
<td>0.384MPa g (0.485MPa abs)</td>
<td>0.384MPa g (0.485MPa abs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power source</td>
<td>Receiving offsite power (P/C4D)</td>
<td>Receiving offsite power (P/C2C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>—</td>
<td>—</td>
<td>(Heat removal of the reactor is functioning. Water injection is unnecessary)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events.
- We comprehensively evaluate situations in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration.

Pressure conversion:

- Gauge pressure (MPa g) = Absolute pressure (MPa abs) – atmospheric pressure (normal atmospheric pressure: 0.1013 MPa)
- Absolute pressure (MPa abs) = Gauge pressure (MPa g) + atmospheric pressure (normal atmospheric pressure: 0.1013 MPa)

*1: Instrument failure
*2: Not covered for collecting data
*3: Continuously monitoring the status
Supplemental explanation for the plant parameters

Supplemental explanation for each parameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow (CS line : Core Spray system)</td>
<td>Temporary</td>
<td>System 1/1</td>
</tr>
</tbody>
</table>
| Water level in the reactors | Data measured by the water gauge, which monitor the fuel range | Main indicator | System A 1/1Ch
System B 1/1Ch |
| Pressure in the reactor | Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.
(D/W : Dry Well, S/C : Suppression Chamber.) | Unit1/2 Temporary
Unit 3 Measures voltage value through the main indicator panel and converts them to the pressure | Temporary indicator: 1/1 system
Main System A: 1/2Ch
System B: 1/2Ch |
| Temperature in the reactor | Since there is no water inflow at the points, where thermometers are set, no data is collected. | – | – |
| Temperature around the reactor vessel | Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U : RPV Bottom Head, 2U : RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.
(RPV : Reactor Pressure Vessel, HVH : Heating Ventilating Handling Unit) | Main recorder | Point of Feed-water nozzle 1/4Ch
reactor vessel bottom 1/2Ch (Unit 1)
1/1Ch (Unit 2/3) |
| Pressure in D/W - S/C | Data from main instrument, Measure voltage value by the main instrument panel converted to the pressure in case main instruments are not in function.
As to the D/W pressure of Unit 2, the reading of the temporary indicator is described.
(CAMS : Containment Atmospheric Monitoring System) | (D/W)
Unit 1:Main recorder
Unit 2:Temporary
Unit 3:Main instrument panel (converted from voltage)
(S/C)
Unit 1/2:Main indicator
Unit 3:Main instrument panel (converted from voltage) | (D/W)
Main recorder wide range 1/1Ch (Unit 1)
Temporary indicator: 1/1 system (Unit 2)
Main instrument panel 1/4Ch (Unit 3)
(S/C)
Main indicator 1/1system (Unit 1/2)
Main instrument panel 1/2Ch (Unit 3) |
| D/W Atmosphere temperature | Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV : Reactor Pressure Vessel, HVH : Heating Ventilating Handling Unit) | Main recorder | RPV Bellows Air 1/5Ch
D/W HVH return 1/5Ch |
| CAMS radiation monitor | Data from the instrument reading of main indicator.
(CAMS : Containment Atmospheric Monitoring System) | Main indicator | D/W System A 1/1Ch
System B 1/1Ch
S/C System A 1/1Ch
System B 1/1Ch |
| Temperature in S/C | Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B. | Main recorder | System A: 1/4Ch (Unit 1), 8Ch (Unit 2/3)
System B: 1/4Ch (Unit 1), 8Ch (Unit 2/3) |
| Temperature in the spent fuel pool | Data from the instrument reading or from the measurement reading of samples of main indicator and temporary instumentment (Non-thermal mode : Urgent Heat load Mode, SHC mode : Shut down Cooling Mode) | Unit2/3:Main recorder
Unit 3/4:Temporary indicator | Main: 1/1Ch (Unit 2)
Temporary indicator: 1/1 system (Unit 1/2/3) |
| FPC skimmer surge tank level | Unit2, 4 are the FPC skimmer surge tank level measured main indicator.
Unit1, 3 are the FPC skimmer surge tank level estimated from temporary pressure pages.(reference value)
(FPC : Fuel Pool Cooling system) | Unit2/4:Main indicator
Unit1/3:Temporary instrument (Pressure pages) | Main indicator: 1/1system (Unit 2/4)
Temporary instrument: 1/1system (Unit 1/3) |

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 12:00 on September 11</th>
</tr>
</thead>
</table>
| Instrument failure | Instrument failure : down of instrument reading (over) scale://failure of instrument | Unit 1 CAMS D/W radiation monitor
Unit 2 Pressure in S/C, CAMS D/W/IB radiation monitor, CAMS S/C/B radiation monitor
Unit 3 – |
| Not covered for collecting data | Unit4: Monitoring is not implemented since all fuel are taken off
Unit5/6: Monitoring is not implemented since heat removal of reactor is functioning | – |
| Continuously monitoring the status | Inaccurate Data defined from relation with other Parameters such as negative figure. | Unit 1 Reactor water level/IB
Unit 2 Reactor water level, RPV bellow air temperature.
Unit 3 Reactor water level, reactor pressure, RPV bellow air temperature, CAMS D/W/IB radiation monitor |