As of 06:00 on October 2

<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Fresh water feeding
Fresh water feeding system 3.6m³/h (as of 5:00, 10/2)</td>
<td>Fresh water feeding
Fresh water feeding system 3.8m³/h, CS line 6.0m³/h (as of 5:00, 10/2)</td>
<td>Fresh water feeding
Fresh water system 2.5m³/h, CS line 8.0m³/h (as of 5:00, 10/2)</td>
<td>#2
Stoppage range
(as of 6:00, 10/2)</td>
<td>#2
Stoppage range
5u: SHC mode (from 11:34, 9/30)</td>
</tr>
<tr>
<td>Water level in the reactor</td>
<td>Fuel range A: -1800 mm (as of 5:00, 10/2)</td>
<td>Fuel range B: -2000 mm (as of 5:00, 10/2)</td>
<td>Fuel range A: -2400 mm (as of 5:00, 10/2)</td>
<td>#3
Pressure conversion
Gauge pressure (MPa g) = Absolute pressure (MPa abs) - atmospheric pressure (normal atmospheric pressure 0.1013 MPa)</td>
<td>#3
Pressure conversion
Absolute pressure (MPa abs) = Gauge pressure (MPa g) + atmospheric pressure (normal atmospheric pressure 0.1013 MPa)</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>System A: 0.013 MPa g
Sys B: -0.008 MPa g (as of 5:00, 10/2)</td>
<td>System A: 0.008 MPa g
Sys B: -0.0125 MPa g (as of 5:00, 10/2)</td>
<td>System A: 0.179 MPa g
Sys B: 0.125 MPa g (as of 5:00, 10/2)</td>
<td>#2
Monitoring is unnecessary since all fuel are taken off!</td>
<td>#2
Monitoring is unnecessary since heat removal of reactor is functioning.</td>
</tr>
<tr>
<td>Water temperature of the reactor</td>
<td>Temperature in feed-water nozzle: 26.5 ℃ (as of 5:00, 10/2)</td>
<td>Temperature at reactor vessel bottom: 26.8 ℃ (as of 5:00, 10/2)</td>
<td>Temperature in feed-water nozzle: 26.2 ℃ (as of 5:00, 10/2)</td>
<td>#2
Water temperature in the Common Spent Fuel Storage:
5u: SHC mode (from 11:34, 9/30)</td>
<td>#2
Water temperature in the Common Spent Fuel Storage: 6u: SHC Mode (from 11:25, 9/15)</td>
</tr>
</tbody>
</table>

Fukushima Daiichi Nuclear Power Station Plant Parameters

- **Unit 1**: Fresh water feeding system 3.6m³/h (as of 5:00, 10/2)
- **Unit 2**: Fresh water feeding system 3.8m³/h, CS line 6.0m³/h (as of 5:00, 10/2)
- **Unit 3**: Fresh water feeding system 2.5m³/h, CS line 8.0m³/h (as of 5:00, 10/2)
- **Unit 4**: Stoppage range (as of 6:00, 10/2)
- **Unit 5**: Stoppage range 5u: SHC mode (from 11:34, 9/30)
- **Unit 6**: Stoppage range 6u: SHC Mode (from 11:25, 9/15)

Water Level in the Reactor

- **Fuel range A**: -1800 mm (as of 5:00, 10/2)
- **Fuel range B**: -2000 mm (as of 5:00, 10/2)
- **Fuel range A**: -2400 mm (as of 5:00, 10/2)

Pressure in the Reactor

- **System A**: 0.013 MPa g
- **System B**: -0.008 MPa g

Water Temperature of the Reactor

- **Temperature in feed-water nozzle**: 26.2 ℃ (as of 5:00, 10/2)
- **Temperature at reactor vessel bottom**: 26.8 ℃ (as of 5:00, 10/2)

Monitoring is unnecessary since all fuel are taken off!

Heat removal of the reactor is functioning. Water injection is unnecessary

Monitoring is unnecessary since heat removal of reactor is functioning.

Notes

- **No.1/2/3/4/5/6**: SHC Mode (from 11:34, 9/30)
- **Stoppage range**: 5u: SHC mode (from 11:34, 9/30)
- **Stoppage range 6u**: SHC Mode (from 11:25, 9/15)

Pressure conversion

- Gauge pressure (MPa g) = Absolute pressure (MPa abs) - atmospheric pressure (normal atmospheric pressure 0.1013 MPa)
- Absolute pressure (MPa abs) = Gauge pressure (MPa g) + atmospheric pressure (normal atmospheric pressure 0.1013 MPa)
Supplemental explanation for the plant parameters

Supplemental explanation for each parameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow (CS line : Core Spray system)</td>
<td>Temporary</td>
<td>System 1/1</td>
</tr>
</tbody>
</table>
| Water level in the reactors | Data measured by the water gage, which monitor the fuel range | Main indicator | System A 1/1Ch
System B 1/1Ch |
| Pressure in the reactors | Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B. (D/W : Dry Well, S/C : Suppression Chamber) | Unit 1/2 Temporary
Unit 3 Main instrument panel (converted from voltage) | System A 1/1Ch
System B 1/1Ch |
| Temperature in the reactor | Since there is no water inflow at the points, where thermometers are set, no data is collected. | --- | --- |
| Temperature around the reactor vessel | Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U : RPV Bottom Head, 2U : RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture. | Main recorder | Point of Feed-water nozzle 1/4Ch
reactor vessel bottom 1/2Ch (Unit 1)
1/1Ch (Unit 2/3) |
| Pressure in D/W - S/C | Data from main instrument. Measure voltage value by the main instrument panel converted to the pressure in case main instruments are not in function. As to the D/W pressure of Unit 2, the reading of the temporary indicator is described. | (D/W)
Unit 1 Main recorder
Unit 2 Temporary
Unit 3 Main instrument panel (converted from voltage) (S/C)
Unit 1/2 Main indicator
Unit 3 Main instrument panel (converted from voltage) | (D/W)
Main recorder wide range 1/1Ch (Unit 1)
Temporary indicator 1/1 system (Unit 2)
Main instrument panel 1/1Ch (Unit 3)
(S/C)
Main indicator 1/1 system (Unit 1/2)
Main instrument panel 1/1Ch (Unit 3) |
| D/W Atmosphere temperature | Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV : Reactor Pressure Vessel, HVH : Heating Ventilating Handling Unit) | Unit 1: Main instrument panel (converted from voltage)
Unit 2/3 Main recorder | RPV Bellows Air 1/5Ch
D/W HVH return 1/5Ch |
| CAMS monitor | Data from the instrument reading of main indicator. (CAMS : Containment Atmospheric Monitoring System) | Main indicator | System A 1/1Ch
System B 1/1Ch
S/C System A 1/1Ch
System B 1/1Ch |
| Temperature in S/C | Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B. | Main recorder | System A1/4Ch (Unit 1)
8Ch (Unit 2/3)
System B1/4Ch (Unit 1)
8Ch (Unit 2/3) |
| Temperature in the spent fuel pool | Data from the instrument reading or from the measurement reading of samples of main indicator and temporary instrument. (Non-thermal mode : Urgent Heat load Mode, SHC mode : Shut down Cooling Mode) | Unit 2/3 Main recorder
Unit 1/3/4 Temporary indicator | Main:1/1Ch (Unit 2)
Temporary indicator: 1/1 system (Unit 1/3/4) |
| FPC skimmer surge tank level | Unit 2, 4 are the FPC skimmer surge tank level measured main indicator.
Unit 1, 3 are the FPC skimmer surge tank level estimated from temporary pressure pages. Reference value! FPC : Fuel Pool Cooling system! | Unit 2/4 Main indicator
Unit 1/3 Temporary instrument (Pressure pages) | Main indicator: 1/1 system (Unit 2/4)
Temporary instrument: 1/1 system (Unit 1/3) |

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As Of 06:00 on October 2</th>
</tr>
</thead>
</table>
| Instrument failure | Instrument failure : down of instrument reading (over) scale./failure of instrument | Unit 1 CAMS D/W radiation monitor
Unit 2 Pressure in S/C, CAMS D/W/BI radiation monitor, CAMS S/C/BI radiation monitor
Unit 3 --- |
| Not covered for collecting data | Unit 4: Monitoring is not implemented since all fuel are takeoff.
Unit 5/6: Monitoring is not implemented since heat removal of reactor is functioning | --- |
| Continuously monitoring the status | Inaccurate Data defined from relation with other Parameters such as negative figure. | Unit 1 Reactor water level(BI)
Unit 2 Reactor water level, RPV bellow air temperature.
Unit 3 Reactor water level, reactor pressure, RPV bellow air temperature, CAMS D/W/BI radiation monitor |