<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Fresh water feeding: 3.8m³/h (as of 5:00, 10/10)</td>
<td>Fresh water feeding: 3.8m³/h, CS line 7.0m³/h (as of 5:00, 10/10)</td>
<td>Fresh water feeding: 2.2m³/h, CS line 8.1m³/h (as of 5:00, 10/10)</td>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>Water level in the reactor</td>
<td>#3</td>
<td>#3</td>
<td>#3</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>Fuel range A: -1800 mm</td>
<td>Fuel range B: -2500 mm</td>
<td>Fuel range A: -2500 mm</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Pressure in D/W • S/C</td>
<td>System A: 0.013 MPa g</td>
<td>System B: -0.1 MPa g</td>
<td>System A: 0.011 MPa g</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Pressure in D/W Atmosphere</td>
<td>System A: 0.011 MPa g</td>
<td>System B: -0.1 MPa g</td>
<td>System A: 0.011 MPa g</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Pressure in S/C</td>
<td>System A: -0.179 MPa g</td>
<td>System B: -0.128 MPa g</td>
<td>System A: -0.179 MPa g</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>26.5 °C (as of 6:00, 10/10)</td>
<td>26.5 °C (as of 6:00, 10/10)</td>
<td>26.3 °C (as of 6:00, 10/10)</td>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>System A: 23.4 °C (as of 5:00, 10/10)</td>
<td>System A: 23.4 °C (as of 5:00, 10/10)</td>
<td>System A: 24.0 °C (as of 5:00, 10/10)</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Designed usable D/W pressure</td>
<td>0.384MPa ab (0.485MPa ab)</td>
<td>0.384MPa ab (0.485MPa ab)</td>
<td>0.384MPa ab (0.485MPa ab)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Designed usable D/W maximum pressure</td>
<td>0.427MPa ab (0.528MPa ab)</td>
<td>0.427MPa ab (0.528MPa ab)</td>
<td>0.427MPa ab (0.528MPa ab)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Power source</td>
<td>Receiving offsite power (P/C2C)</td>
<td>Receiving offsite power (P/C4D)</td>
<td>Receiving offsite power</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Others</td>
<td>As of 06:00 on October 10</td>
</tr>
</tbody>
</table>

Note: Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events. We comprehensively evaluate situation in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration.

Pressure conversion:

- Gauge pressure (MPa g) = Absolute pressure (MPa ab) – atmospheric pressure (normal atmospheric pressure 0.1013 MPa)
- Absolute pressure (MPa ab) = Gauge pressure (MPa g) + atmospheric pressure (normal atmospheric pressure 0.1013 MPa)
Supplemental explanation for the plant parameters

Supplemental explanation for each parameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow (CS line : Core Spray system)</td>
<td>Temporary</td>
<td>System 1 / 1</td>
</tr>
<tr>
<td>Water level in the reactors</td>
<td>Data measured by the water gauge, which monitor the fuel range</td>
<td>Main indicator</td>
<td>System A 1 / Ch system B 1 / Ch</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>Measure voltage value of pressure instrument by the main indicator panel and convert to the pressure. One representing value is noted among multiple data on each System A, B.</td>
<td>Unit 1/2 Temporary system 3 Measures voltage value through the main indicator panel and converts them to the pressure</td>
<td>Temporary indicator 1/1 system system A 1 / 2Ch system B 1 / 2Ch</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>Since there is no water inflow at the points, where thermometers are set, no data is collected.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Temperature around the reactor vessel</td>
<td>Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U : RPV Bottom Head, 2U : RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.</td>
<td>Main recorder</td>
<td>Point of Feed-water nozzle reactor vessel bottom 1/4Ch (Unit 1) 1/1Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>Data from main instrument. Measure voltage value by the main instrument panel converted to the pressure in case main instruments are not in function. As to the D/W pressure of Unit 2, the reading of the temporary indicator is described. (D/W : Dry Well, S/C : Suppression Chamber)</td>
<td>(D/W) Unit 1 Main recorder Unit 2 Temporary system 3 Main instrument panel (converted from voltage) (S/C) Unit 1/2 Main indicator Unit 3 Main instrument panel (converted from voltage)</td>
<td>(D/W) Main recorder wide range 1/1Ch (Unit 1) Temporary indicator 1/1 system (Unit 2) Main instrument panel 1/4Ch (Unit 3) (S/C) Main indicator 1/1 system (Unit 1/2) Main instrument panel 1/2Ch (Unit 3)</td>
</tr>
<tr>
<td>D/W Atmosphere temperature</td>
<td>Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV : Reactor Pressure Vessel, HVH : Heating Ventilating Handling Unit)</td>
<td>Unit 1: Main instrument panel (converted from voltage) Unit 2/3 Main recorder</td>
<td>RPV Bellows Air 1/5Ch D/W HVH return 1/5Ch</td>
</tr>
<tr>
<td>CAMS radiation monitor</td>
<td>Data from the instrument reading of main indicator. (CAMS : Containment Atmospheric Monitoring System)</td>
<td>Main indicator</td>
<td>D/W System A 1/1Ch System B 1/1Ch System A 1/1Ch System B 1/1Ch</td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>Data from the instrument reading of main recorder. One representing value is noted among multiple data on each System A, B.</td>
<td>Main recorder</td>
<td>System A 1/4Ch (Unit 1), 8Ch (Unit 2/3) System B 1/4Ch (Unit 1), 8Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Temperature in the spent fuel pool</td>
<td>Data from the instrument reading or from the measurement reading of samples of main indicator and temporary insuturnment (Non-thermal mode : Urgent Heat load Mode, SHC mode : Shut down Cooling Mode)</td>
<td>Unit 2/3 Main recorder Unit 1/3/4 Temporary indicator</td>
<td>Main indicator 1/1 system (Unit 1) Temporary indicator 1/1 system (Unit 2)</td>
</tr>
<tr>
<td>FPC skimmer surge tank level</td>
<td>- Unit 2, 4 are the FPC skimmer surge tank level measured main indicator. - Unit 1, 3 are the FPC skimmer surge tank level estimated from temporary pressure pages. (Reference value!) (FPC : Fuel Pool Cooling system)</td>
<td>Unit 2/4 Main indicator Unit 1/3 Temporary instrument (Pressure pages)</td>
<td>Main indicator 1/1 system (Unit 2/4) Temporary instrument 1/1 system (Unit 1/3)</td>
</tr>
</tbody>
</table>

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 06:00 on October 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure : down of instrument reading (over) scale / failure of instrument</td>
<td>Unit 1 CAMS D/W radiation monitor Unit 2 Pressure in S/C, CAMS D/W/B radiation monitor, CAMS S/C/B radiation monitor Unit 3 -</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>Unit 4: Monitoring is not implemented since all fuel are takeoff Unit 5/6: Monitoring is not implemented since heat removal of reactor is functioning</td>
<td>--</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>Inaccurate Data defined from relation with other Parameters such as negative figure</td>
<td>Unit 1 Reactor water level(B) Unit 2 Reactor water level, RPV bellow air temperature, Unit 3 Reactor water level, reactor pressure, RPV bellow air temperature, CAMS D/W/B radiation monitor</td>
</tr>
</tbody>
</table>