Fukushima Daiichi Nuclear Power Station Plant Parameters

As of 06:00 on October 31

Unit 1
- **Status of water injection to the reactor**: Fresh water feeding
- **Feed water system**: 6.5 m³/h
- **Temperature in feed-water nozzle**: 66.5 °C
- **Temperature at reactor vessel bottom**: 78.6 °C
- **Pressure in D/W**: 0.110 MPa abs
- **Pressure in S/C**: 0.090 MPa abs
- **RPV bellow seal**: 58.4 °C
- **HVH return**: 62.3 °C
- **D/W (A)**: 1.00E-02 Sv/h
- **D/W (B)**: 2.14E+01 Sv/h
- **S/C (A)**: 6.60E-01 Sv/h
- **S/C (B)**: 6.70E-01 Sv/h

Unit 2
- **Status of water injection to the reactor**: Fresh water feeding
- **Feed water system**: 2.5 m³/h
- **CS line**: 8.1 m³/h
- **Temperature in feed-water nozzle**: 58.9 °C
- **Temperature at reactor vessel bottom**: 60.3 °C
- **Pressure in D/W**: 0.1254 MPa abs
- **Pressure in S/C**: 0.090 MPa abs
- **RPV bellow seal**: 60.4 °C
- **HVH return**: 62.3 °C
- **D/W (A)**: 1.00E-02 Sv/h
- **D/W (B)**: 2.14E+01 Sv/h
- **S/C (A)**: 6.60E-01 Sv/h
- **S/C (B)**: 6.70E-01 Sv/h

Unit 3
- **Status of water injection to the reactor**: Fresh water feeding
- **Feed water system**: 2.5 m³/h
- **CS line**: 8.1 m³/h
- **Temperature in feed-water nozzle**: 66.5 °C
- **Temperature at reactor vessel bottom**: 78.6 °C
- **Pressure in D/W**: 0.110 MPa abs
- **Pressure in S/C**: 0.090 MPa abs
- **RPV bellow seal**: 58.4 °C
- **HVH return**: 62.3 °C
- **D/W (A)**: 1.00E-02 Sv/h
- **D/W (B)**: 2.14E+01 Sv/h
- **S/C (A)**: 6.60E-01 Sv/h
- **S/C (B)**: 6.70E-01 Sv/h

Unit 4
- **Status of water injection to the reactor**: Fresh water feeding
- **Feed water system**: 6.5 m³/h
- **Temperature in feed-water nozzle**: 66.5 °C
- **Temperature at reactor vessel bottom**: 78.6 °C
- **Pressure in D/W**: 0.110 MPa abs
- **Pressure in S/C**: 0.090 MPa abs
- **RPV bellow seal**: 58.4 °C
- **HVH return**: 62.3 °C
- **D/W (A)**: 1.00E-02 Sv/h
- **D/W (B)**: 2.14E+01 Sv/h
- **S/C (A)**: 6.60E-01 Sv/h
- **S/C (B)**: 6.70E-01 Sv/h

Unit 5
- **Status of water injection to the reactor**: Fresh water feeding
- **Feed water system**: 6.5 m³/h
- **Temperature in feed-water nozzle**: 66.5 °C
- **Temperature at reactor vessel bottom**: 78.6 °C
- **Pressure in D/W**: 0.110 MPa abs
- **Pressure in S/C**: 0.090 MPa abs
- **RPV bellow seal**: 58.4 °C
- **HVH return**: 62.3 °C
- **D/W (A)**: 1.00E-02 Sv/h
- **D/W (B)**: 2.14E+01 Sv/h
- **S/C (A)**: 6.60E-01 Sv/h
- **S/C (B)**: 6.70E-01 Sv/h

Unit 6
- **Status of water injection to the reactor**: Fresh water feeding
- **Feed water system**: 6.5 m³/h
- **Temperature in feed-water nozzle**: 66.5 °C
- **Temperature at reactor vessel bottom**: 78.6 °C
- **Pressure in D/W**: 0.110 MPa abs
- **Pressure in S/C**: 0.090 MPa abs
- **RPV bellow seal**: 58.4 °C
- **HVH return**: 62.3 °C
- **D/W (A)**: 1.00E-02 Sv/h
- **D/W (B)**: 2.14E+01 Sv/h
- **S/C (A)**: 6.60E-01 Sv/h
- **S/C (B)**: 6.70E-01 Sv/h

Notes
1. Instrument failure
2. Not covered for collecting data
3. Continuously monitoring the status

Temperature in feed-water nozzle:

- **Unit 1**: 66.5 °C
- **Unit 2**: 58.9 °C
- **Unit 3**: 66.5 °C
- **Unit 4**: 66.5 °C
- **Unit 5**: 66.5 °C
- **Unit 6**: 66.5 °C

Temperature at reactor vessel bottom:

- **Unit 1**: 78.6 °C
- **Unit 2**: 60.3 °C
- **Unit 3**: 78.6 °C
- **Unit 4**: 78.6 °C
- **Unit 5**: 78.6 °C
- **Unit 6**: 78.6 °C

Pressure in D/W:

- **Unit 1**: 0.110 MPa abs
- **Unit 2**: 0.1254 MPa abs
- **Unit 3**: 0.110 MPa abs
- **Unit 4**: 0.110 MPa abs
- **Unit 5**: 0.110 MPa abs
- **Unit 6**: 0.110 MPa abs

Pressure in S/C:

- **Unit 1**: 0.090 MPa abs
- **Unit 2**: 0.090 MPa abs
- **Unit 3**: 0.090 MPa abs
- **Unit 4**: 0.090 MPa abs
- **Unit 5**: 0.090 MPa abs
- **Unit 6**: 0.090 MPa abs

Data of Pressure in D/W of Unit 2 on 11/11 was corrected because it was incorrect.

Additional Notes
- **Power source**: Receiving offsite power (P/C+C)
- **Power source**: Receiving offsite power (P/C+D)
- **Power source**: Receiving offsite power

Pressure conversion:

- Gauge pressure (MPa g) = Absolute pressure (MPa abs) - Atmospheric pressure (normal atmospheric pressure 0.1013 MPa)
- Absolute pressure (MPa abs) = Gauge pressure (MPa g) + Atmospheric pressure (normal atmospheric pressure 0.1013 MPa)

Fuel range A:

- **Unit 1**: -2133 mm
- **Unit 2**: -2199 mm
- **Unit 3**: -2133 mm
- **Unit 4**: -2199 mm
- **Unit 5**: -2133 mm
- **Unit 6**: -2199 mm

Fuel range B:

- **Unit 1**: -2133 mm
- **Unit 2**: -2199 mm
- **Unit 3**: -2133 mm
- **Unit 4**: -2199 mm
- **Unit 5**: -2133 mm
- **Unit 6**: -2199 mm

Notations:

- *1*: Instrument failure
- *2*: Not covered for collecting data
- *3*: Continuously monitoring the status
Supplemental explanation for each parameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow (CS line : Core Spray system)</td>
<td>Temporary</td>
<td>System 1/1</td>
</tr>
<tr>
<td>Water level in the reactors</td>
<td>Data measured by the water gauge, which monitor the fuel range</td>
<td>Temporary</td>
<td>System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>One representing value is noted among multiple data on each System A, B, Readings of temporary instruments are represented in A system for Unit 1 and 2.</td>
<td>Temporary</td>
<td>System A 1/2Ch, System B 1/2Ch (Unit 3)</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>Since there is no water inflow at the points, where thermometers are set, no data is collected.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Temperature around the reactor vessel</td>
<td>Data measured at feed-water nozzle and at reactor vessel bottom (1U, 3U: RPV Bottom Head, 2U: RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.</td>
<td>Temporary</td>
<td>Point of Feed-water nozzle reactor vessel bottom 1/4Ch, 1/2Ch (Unit 1), 1/2Ch (Unit 2, 3)</td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>Data from temporary instrument, (D/W : Dry Well, S/C : Suppression Chamber)</td>
<td>Temporary</td>
<td>D/W : System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>D/W Atmosphere temperature</td>
<td>Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV : Reactor Pressure Vessel, HVH : Heating Ventilating Handling Unit)</td>
<td>Temporary</td>
<td>RPV Bellows Air D/W HVH return 1/5Ch</td>
</tr>
<tr>
<td>CAMS radiation monitor</td>
<td>Data from temporary instrument, (CAMS : Containment Atmospheric Monitoring System)</td>
<td>Temporary</td>
<td>System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>Data from temporary instrument, One representing value is noted among multiple data on each System A, B.</td>
<td>Temporary</td>
<td>System A 1/4Ch (Unit 1), 8Ch (Unit 2, 3) System B 1/4Ch (Unit 1), 8Ch (Unit 2, 3)</td>
</tr>
<tr>
<td>Temperature in the spent fuel pool</td>
<td>Data from temporary instrument, (Non-thermal mode : Urgent Heat Load Mode, SHC mode : Shut down Cooling Mode)</td>
<td>Temporary</td>
<td>1/1Ch (Unit 2) 1/1 system (Unit 1/3/4)</td>
</tr>
<tr>
<td>FPC skimmer surge tank level</td>
<td>• Unit 2, 4 are the FPC skimmer surge tank level measured temporary instrument. • Unit 1, 3 are the FPC skimmer surge tank level estimated from temporary pressure gages. (reference value) IFPC : Fuel Pool Cooling system!</td>
<td>Temporary</td>
<td>1/1system</td>
</tr>
</tbody>
</table>

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 06:00 on October 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure : down of instrument reading (over) scale, failure of instrument</td>
<td>Unit 1 CAMS D/W radiation monitor Unit 2 Pressure in S/C, CAMS D/W/B radiation monitor, CAMS S/C/B radiation monitor Unit 3 ---</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>Unit 4: Monitoring is not implemented since all fuel are takeoff Unit 5-6: Monitoring is not implemented since heat removal of reactor is functioning</td>
<td>---</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>Inaccurate Data defined from relation with other Parameters such as negative figure.</td>
<td>Unit 1 Reactor water level(B) Unit 2 Reactor water level, RPV bellows air temperature. Unit 3 Reactor water level, reactor pressure, RPV bellows air temperature, CAMS D/W/B radiation monitor</td>
</tr>
</tbody>
</table>