As of 06:00 on November 8

<table>
<thead>
<tr>
<th>Unit</th>
<th>Status of water injection to the reactor</th>
<th>Water level in the reactor</th>
<th>Pressure in the reactor</th>
<th>Water temperature of the reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fresh water feeding</td>
<td>Fuel range E: 1810 mm</td>
<td>System A: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Feed water system 7.9m³/h</td>
<td>E: 2–2110 mm (as of 500, 11/8)</td>
<td>System B: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Liquid level (as of 500, 11/8)</td>
<td>E: 2–2110 mm (as of 500, 11/8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fresh water feeding</td>
<td>Fuel range A: 1968 mm</td>
<td>System A: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Feed water system 3.0m³/h</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td>System B: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Liquid level (as of 500, 11/8)</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fresh water feeding</td>
<td>Fuel range A: 1968 mm</td>
<td>System A: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Feed water system 2.3m³/h</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td>System B: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Liquid level (as of 500, 11/8)</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fresh water feeding</td>
<td>Fuel range A: 1968 mm</td>
<td>System A: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Feed water system 2.3m³/h</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td>System B: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Liquid level (as of 500, 11/8)</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fresh water feeding</td>
<td>Fuel range A: 1968 mm</td>
<td>System A: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Feed water system 2.3m³/h</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td>System B: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Liquid level (as of 500, 11/8)</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fresh water feeding</td>
<td>Fuel range A: 1968 mm</td>
<td>System A: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Feed water system 2.3m³/h</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td>System B: 0.017 MPa g</td>
<td>26.4 ℃ (as of 6:00, 11/8)</td>
</tr>
<tr>
<td></td>
<td>Liquid level (as of 500, 11/8)</td>
<td>A: 2–2174 mm (as of 500, 11/8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature
- Temperature in the reactor vessel bottom: 72.3 ℃ (as of 5:00, 11/8)
- Temperature in the common spent fuel storage: 27 ℃ (as of 9:50, 11/7)

Water temperature
- 25.0 ℃ (as of 5:00, 11/8)
- 26.4 ℃ (as of 5:00, 11/8)
- 27 ℃ (as of 9:50, 11/7)

Pressure
- 0.384 MPa g (0.485 MPa abs)
- 0.427 MPa g (0.528 MPa abs)

Others
- Receiving offsite power (P/C2C)
- Receiving offsite power (P/C4D)

*Data of Pressure in D/W of Unit 2 on 11/11 was corrected because it was incorrect.
*2 Data of Pressure in D/W of Unit 1 on 11/29 was corrected because it was incorrect.

(Note)
Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events. We comprehensively evaluate situation in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration.
Supplemental explanation for each parameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Recording manner</th>
<th>Measurement manner</th>
<th>Ch number or number of systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of water injection to the reactor</td>
<td>Water inflow (CS line: Core Spray system)</td>
<td>Temporary</td>
<td>System 1 / 1</td>
</tr>
<tr>
<td>Water level in the reactors</td>
<td>Data measured by the water gauge, which monitor the fuel range</td>
<td>Temporary</td>
<td>System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>Pressure in the reactor</td>
<td>One representing value is noted among multiple data on each System A, B. Readings of temporary instruments are represented in A system for Unit 1 and 2.</td>
<td>Temporary</td>
<td>1/1 system (Unit 1/2), System A 1/2Ch, System B 1/2Ch (Unit 3)</td>
</tr>
<tr>
<td>Temperature in the reactor</td>
<td>Since there is no water inflow at the points, where thermometers are set, no data is collected.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Temperature around the reactor vessel</td>
<td>Data measured at feed-water nozzle and at reactor vessel bottom. (1U, 3U: RPV Bottom Head, 2U: RPV Wall Above Bottom Head) are noted among multiple data to view the whole picture.</td>
<td>Temporary</td>
<td>Point of Feed-water nozzle reactor vessel bottom 1/4Ch, 1/2Ch (Unit 1), 1/1Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Pressure in D/W - S/C</td>
<td>Data from temporary instrument, (D/W: Dry Well, S/C: Suppression Chamber)</td>
<td>Temporary</td>
<td>(D/W) wide range 1/1Ch (Unit 1), 1/1 system (Unit 2), 1/4Ch (Unit 3), (S/C) 1/1 system (Unit 1/2), 1/2Ch (Unit 3)</td>
</tr>
<tr>
<td>D/W Atmosphere temperature</td>
<td>Data at upper point (RPV Bellows Air) and middle point (HVH return) are noted among multiple data to view the whole picture. (RPV: Reactor Pressure Vessel, HVH: Heating Ventilating Handling Unit)</td>
<td>Temporary</td>
<td>RPV Bellows Air D/W HVH return 1/5Ch</td>
</tr>
<tr>
<td>CAMS radiation monitor</td>
<td>Data from temporary instrument, (CAMS: Containment Atmospheric Monitoring System)</td>
<td>Temporary</td>
<td>D/W System A 1/1Ch, System B 1/1Ch, S/C System A 1/1Ch, System B 1/1Ch</td>
</tr>
<tr>
<td>Temperature in S/C</td>
<td>Data from temporary instrument. One representing value is noted among multiple data on each System A, B.</td>
<td>Temporary</td>
<td>System A1/4Ch (Unit 1), 8Ch (Unit 2/3), System B1/4Ch (Unit 1), 8Ch (Unit 2/3)</td>
</tr>
<tr>
<td>Temperature in the spent fuel pool</td>
<td>Data from temporary instrument, (Non-thermal mode: Urgent Heat Load Mode, SHC mode: Shut down Cooling Mode)</td>
<td>Temporary</td>
<td>1/1Ch (Unit 2), 1/1 system (Unit 1/3/4)</td>
</tr>
<tr>
<td>FPC skimmer surge tank level</td>
<td>Unit 2, 4 are the FPC skimmer surge tank level measured temporary instrument. Unit 1, 3 are the FPC skimmer surge tank level estimated from temporary pressure gages (reference value)</td>
<td>Temporary</td>
<td>1/1 system</td>
</tr>
</tbody>
</table>

Supplemental explanation for notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Status As of 06:00 on November 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument failure</td>
<td>Instrument failure : down of instrument reading (over) scale / failure of instrument</td>
<td>Unit 1 CAMS D/W radiation monitor, Unit 2 Pressure in S/C, CAMS D/W/B radiation monitor, CAMS S/C/B radiation monitor, Unit 3 —</td>
</tr>
<tr>
<td>Not covered for collecting data</td>
<td>Unit 4: Monitoring is not implemented since all fuel are takeoff. Unit 5/6: Monitoring is not implemented since heat removal of reactor is functioning</td>
<td>—</td>
</tr>
<tr>
<td>Continuously monitoring the status</td>
<td>Inaccurate Data defined from relation with other Parameters such as negative figure.</td>
<td>Unit 1 Reactor water level (C) Unit 2 Reactor water level, RPV bellows air temperature, Unit 3 Reactor water level, reactor pressure, RPV bellows air temperature, CAMS D/W/A radiation monitor</td>
</tr>
</tbody>
</table>