Underground Reservoir Nuclide Analysis Results (As of June 21, 2013)

			Underground Reservoir (Drain hole water)												
			i		ii	i	ii		iv	,	/		vi	٧	/ii
		Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side
Sampled time		8:25 AM	8:35 AM	8:19 AM	8:29 AM	8:14 AM	8:23 AM	8:09 AM	8:14 AM	8:15 AM	8:10 AM	8:28 AM	8:20 AM	8:35 AM	8:40 AM
Chloride cor	Chloride concentration (ppm)		7	10	9	10	5	11	10	10	8	11	11	7	10
	I-131	<2.5E-2	<2.9E-2	<2.4E-2	<2.9E-2	<2.7E-2	<2.1E-2	<2.8E-2	<2.5E-2	<2.7E-2	<2.5E-2	<2.2E-2	<2.1E-2	<2.2E-2	<2.4E-2
Radioactive	Cs-134	<4.8E-2	<5.1E-2	<5.2E-2	<5.0E-2	<4.7E-2	<4.7E-2	<5.3E-2	<4.7E-2	<5.4E-2	<5.0E-2	<4.8E-2	<5.1E-2	<5.0E-2	<5.1E-2
concentration	Cs-137	<6.6E-2	<6.8E-2	<6.4E-2	<6.7E-2	<6.7E-2	<6.8E-2	<6.5E-2	<6.7E-2	<6.4E-2	<6.8E-2	<6.5E-2	<6.8E-2	<6.7E-2	<6.9E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	5.4E+0	<3.0E-2	2.5E-1	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	8.7E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

	Underground Reservoir (Leakage detector hole water)														
		i		ii		iii		iv		v /		vi		vii	
											/ / / /		Southwest		/
Sampled time		side 8:00 AM	side 8:05 AM	side 8:05 AM	side 8:13 AM	side 8:10 AM	side 8:19 AM	side 8:04 AM	side Not sampled	side	side	side 8-25 AM	side Not sampled	side	sid/e
Can	ipica time	0.00 AW	0.03 AW	0.03 AW	0.13 AW	0.10 AW	0.13 AW	U.UT AIVI	Not sampled	ı		0.23 AW	Not sampled		
Chloride cor	Chloride concentration (ppm)		6	32	10	9	9	9				5			
	I-131	<3.1E-2	<2.8E-2	<3.3E-2	<3.3E-2	<2.8E-2	<2.5E-2	<2.9E-2		/	Ŷ	<2.3E-2		/	1
Radioactive	Cs-134	<5.8E-2	<4.9E-2	<5.1E-2	<4.9E-2	<4.6E-2	<4.8E-2	<5.0E-2				<5.0E-2			
concentration	Cs-137	<6.5E-2	<6.8E-2	<6.6E-2	<6.7E-2	<6.5E-2	<6.8E-2	<6.9E-2				<6.7E-2			
	γ nuclides other than the major 3 nuclides	1.0E-1*	ND	ND	ND	ND	ND	ND				ND			
(Bq/cm ³)	All β	3.1E+2	<3.0E-2	4.6E+2	<3.0E-2	<3.0E-2	7.3E+0	<3.0E-2				<3.0E-2			

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of γ nuclides other than the major 3 nuclides are below the detection limit.

^{*} Sb-125: 1.0E-1

Underground Reservoir Observation Holes Nuclide Analysis Results (As of June 21, 2013)

	Underground reservoir observation holes (i - iii)													
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:36 AM	8:44 AM	8:54 AM	8:33 AM	8:44 AM	8:51 AM	9:00 AM	9:07 AM	9:32 AM	9:15 AM	9:23 AM	8:58 AM	9:05 AM	9:14 AM
Chloride concentration (ppm)	9	10	10	8	8	7	7	9	9	9	36	8	8	10
All β(Bq/cm³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

	Under	ground rese	ervoir obser	Underground reservoir observation holes (vi)				
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	9:24 AM	9:33 AM	9:41 AM	8:36 AM	8:48 AM	9:18 AM	9:30 AM	9:42 AM
Chloride concentration (ppm)	8	13	8	7	9	24	4	8
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.