Underground Reservoir Nuclide Analysis Results (As of July 31, 2013)

Underground Reservoir (Drain hole water)

<table>
<thead>
<tr>
<th>Sampled time</th>
<th>Northeast side</th>
<th>Southwest side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride concentration (ppm)</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Radioactive concentration

- **I-131**
 - <2.1E-2
 - <2.9E-2
 - <2.2E-2
 - <2.4E-2
 - <2.7E-2
 - <2.4E-2
 - <2.3E-2
 - <2.9E-2
 - <2.5E-2
 - <2.7E-2
 - <2.6E-2
 - <2.2E-2
- **Cs-134**
 - <4.6E-2
 - <4.8E-2
 - <4.9E-2
 - <4.7E-2
 - <4.8E-2
 - <4.6E-2
 - <5.0E-2
 - <5.2E-2
 - <5.4E-2
 - <5.0E-2
 - <4.7E-2
 - <4.8E-2
- **Cs-137**
 - <6.4E-2
 - <6.6E-2
 - <6.4E-2
 - <6.8E-2
 - <6.6E-2
 - <6.4E-2
 - <6.3E-2
 - <6.9E-2
 - <6.6E-2
 - <6.4E-2
 - <6.4E-2
 - <6.5E-2

γ nuclides other than the major 3 nuclides

- ND

Half-life period

- **I-131**: Approx. 8 days
- **Cs-134**: Approx. 2 years
- **Cs-137**: Approx. 30 years

Underground Reservoir (Leakage detector hole water)

<table>
<thead>
<tr>
<th>Sampled time</th>
<th>Northeast side</th>
<th>Southwest side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride concentration (ppm)</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radioactive concentration

- **I-131**
 - <2.5E-2
 - <2.7E-2
 - <2.2E-2
 - <2.7E-2
 - <2.8E-2
 - <2.9E-2
 - <2.9E-2
 - <2.6E-2
- **Cs-134**
 - <5.6E-2
 - <5.0E-2
 - <4.7E-2
 - <5.0E-2
 - <4.8E-2
 - <5.1E-2
 - <5.4E-2
 - <4.6E-2
- **Cs-137**
 - <6.6E-2
 - <6.8E-2
 - <6.5E-2
 - <6.7E-2
 - <6.4E-2
 - <6.5E-2
 - <6.4E-2
 - <6.4E-2

γ nuclides other than the major 3 nuclides

- ND

Half-life period

- **I-131**: Approx. 8 days
- **Cs-134**: Approx. 2 years
- **Cs-137**: Approx. 30 years

(Note 1) O.OE+0 is the same as O.O x 10^0.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of γ nuclides other than the major 3 nuclides are below the detection limit.
Underground Reservoir Observation Holes Nuclide Analysis Results (As of July 31, 2013)

Underground Reservoir Observation Holes (i - iii)

<table>
<thead>
<tr>
<th>Sampled Time</th>
<th>Chloride Concentration (ppm)</th>
<th>All β(Bq/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:29 AM</td>
<td>10</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:36 AM</td>
<td>10</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>10</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:53 AM</td>
<td>8</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:34 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:43 AM</td>
<td>7</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:50 AM</td>
<td>7</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:10 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:19 AM</td>
<td>8</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:28 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:26 AM</td>
<td>35</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:18 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:12 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:03 AM</td>
<td>10</td>
<td><2.8E-2</td>
</tr>
</tbody>
</table>

Underground Reservoir Observation Holes (vi)

<table>
<thead>
<tr>
<th>Sampled Time</th>
<th>Chloride Concentration (ppm)</th>
<th>All β(Bq/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:55 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:47 AM</td>
<td>13</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>8:38 AM</td>
<td>7</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>9</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:35 AM</td>
<td>10</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:15 AM</td>
<td>11</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:27 AM</td>
<td>3</td>
<td><2.8E-2</td>
</tr>
<tr>
<td>9:43 AM</td>
<td>10</td>
<td><2.8E-2</td>
</tr>
</tbody>
</table>

(1) O.0E±0 is the same as O.0 x 10±0.
(2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.