Underground Reservoir Nuclide Analysis Results (As of November 15, 2013)

		Underground Reservoir (Drain hole water)													
			i		ii		iii		iv		V		vi		/ii
			Southwest						Southwest		Southwest				Southwest
		side	side	side	side	side	side	side	side	side	side	side	side	side	side
Sampled time		8:18 AM	8:31 AM	8:04 AM	8:24 AM	8:00 AM	8:07 AM	7:54 AM	8:00 AM	8:12 AM	8:09 AM	8:22 AM	8:15 AM	8:26 AM	8:37 AM
Chloride cor	Chloride concentration (ppm)		6	9	7	8	7	11	18	8	4	9	8	5	8
	I-131	<2.7E-2	<2.4E-2	<2.7E-2	<2.5E-2	<2.5E-2	<2.7E-2	<3.1E-2	<2.8E-2	<2.6E-2	<2.8E-2	<3.1E-2	<2.0E-2	<2.3E-2	<2.7E-2
Radioactive	Cs-134	<4.8E-2	<4.6E-2	<4.6E-2	<4.6E-2	<4.5E-2	<4.7E-2	<5.1E-2	<5.3E-2	<4.9E-2	<4.5E-2	<4.6E-2	<4.6E-2	<4.6E-2	<4.4E-2
concentration	Cs-137	<6.5E-2	<6.5E-2	<6.6E-2	<6.5E-2	<6.6E-2	<6.4E-2	<6.7E-2	<6.4E-2	<6.4E-2	<6.5E-2	<6.5E-2	<6.4E-2	<6.6E-2	<6.5E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	9.1E-1	<2.8E-2	3.0E-2	<2.8E-2	1.2E-1	4.3E-2	<2.8E-2	<2.8E-2	<2.8E-2	5.4E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underground Reservoir (Leakage detector hole water)												
		i		ii		iii		iv		v /		vi		\	/ii
									Southwest				Southwest		Southwest
Sampled time		side 7:50 AM	side 8:28 AM	side 7:54 AM	side 8:21 AM	side 7:58 AM	side 8:12 AM	side 7:57 AM	side Not sampled	side	sid⁄e	side 8:18 AM	side Not sampled	side 8:30 AM	side 8:34 AM
Can	ipica time	7.50 AW	0.20 AW	7.54 AIVI	0.2 I AW	7.30 AIVI	0. 12 AIVI	7.57 AW	Not sampled			0. 10 AW	Not sampled	0.50 AW	0.5 4 Alvi
Chloride cor	Chloride concentration (ppm)		6	11	17	10	10	11				9		7	7
	I-131	<3.1E-2	<2.5E-2	<2.7E-2	<2.6E-2	<2.6E-2	<2.7E-2	<2.6E-2		/		<2.4E-2		<2.8E-2	<2.2E-2
Radioactive	Cs-134	<4.9E-2	<4.6E-2	<4.8E-2	<4.5E-2	<4.6E-2	<4.7E-2	<4.9E-2				<4.4E-2		<4.6E-2	<4.8E-2
concentration	Cs-137	<6.5E-2	<6.4E-2	<6.5E-2	<6.5E-2	<6.4E-2	<6.6E-2	<6.8E-2				<6.5E-2		<6.5E-2	<6.6E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND				ND		ND	ND
(Bq/cm ³)	All β	2.3E+2	<2.8E-2	2.6E+1	<2.8E-2	1.3E+0	3.8E+1	<2.8E-2				<2.8E-2		<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of y nuclides other than the major 3 nuclides are below the detection limit.

Underground Reservoir Observation Holes Nuclide Analysis Results (As of November 15, 2013)

	Underground reservoir observation holes (i - iii)													
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:19 AM	8:29 AM	8:39 AM	8:50 AM	9:22 AM	8:56 AM	8:49 AM	8:42 AM	8:37 AM	8:31 AM	9:28 AM	9:19 AM	9:10 AM	9:01 AM
Chloride concentration (ppm)	8	10	11	7	9	8	9	9	10	14	35	10	10	15
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

	Under	ground rese	ervoir obser	Underground reservoir observation holes (vi)				
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	8:53 AM	8:44 AM	8:35 AM	9:14 AM	9:05 AM	9:08 AM	9:18 AM	9:29 AM
Chloride concentration (ppm)	9	13	5	7	10	18	5	9
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.