Underground Reservoir Nuclide Analysis Results (As of December 14, 2013)

		Underground Reservoir (Drain hole water)													
			i		ii		iii		iv		٧		vi		vii
			Southwest		Southwest				Southwest		Southwest				Southwest
		side	side	side	side	side	side	side	side	side	side	side	side	side	side
Sampled time		8:24 AM	8:18 AM	8:02 AM	8:11 AM	7:58 AM	7:50 AM	7:38 AM	7:45 AM	8:01 AM	7:57 AM	8:17 AM	8:06 AM	8:24 AM	8:39 AM
Chloride cor	Chloride concentration (ppm)		7	10	10	9	6	12	16	8	5	10	8	5	9
	I-131	<2.2E-2	<2.3E-2	<2.4E-2	<2.4E-2	<2.1E-2	<2.6E-2	<2.4E-2	<2.0E-2	<2.6E-2	<3.0E-2	<2.9E-2	<2.4E-2	<2.1E-2	<2.1E-2
Radioactive	Cs-134	<4.5E-2	<4.5E-2	<3.8E-2	<4.4E-2	<4.1E-2	<4.6E-2	<4.0E-2	<4.4E-2	<4.0E-2	<4.3E-2	<4.0E-2	<4.5E-2	<3.7E-2	<4.5E-2
concentration	Cs-137	<5.5E-2	<6.7E-2	<5.4E-2	<6.5E-2	<5.7E-2	<6.6E-2	<5.6E-2	<6.6E-2	<5.6E-2	<6.7E-2	<5.6E-2	<6.5E-2	<5.7E-2	<6.6E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	3.6E-1	<2.8E-2	5.4E-2	<2.8E-2	3.7E-1	4.1E-2	<2.8E-2	<2.8E-2	<2.8E-2	6.9E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underground Reservoir (Leakage detector hole water)												
		i		ii		iii		iv		v /		vi		\	⁄ii
									Southwest				Southwest		Southwest
Sampled time		side 7:37 AM	side 8:15 AM	side 7:41 AM	side 8:08 AM	side 7:55 AM	side 7:45 AM	side 7:40 AM	side Not sampled	side	side	side 8:10 AM	side Not sampled	side 8:28 AM	side 8:34 AM
Can	ipica time	7.57 AW	0.13 AW	7. 7 1 /\livi	0.00 AW	7.55 AW	7. 4 3 AW	7. 4 0 AW	140t Sampicu			0.10 AW	Not sampled	0.20 AW	U.UT AIVI
Chloride cor	Chloride concentration (ppm)		6	13	16	16	12	11				9		9	8
	I-131	<2.8E-2	<2.4E-2	<2.5E-2	<2.8E-2	<3.1E-2	<2.8E-2	<2.1E-2		/		<1.8E-2		<2.2E-2	<2.5E-2
Radioactive	Cs-134	<5.0E-2	<4.6E-2	<4.0E-2	<4.5E-2	<6.3E-2	<4.9E-2	<4.5E-2				<4.2E-2		<4.0E-2	<4.9E-2
concentration	Cs-137	<5.7E-2	<6.5E-2	<5.7E-2	<6.7E-2	<5.6E-2	<6.5E-2	<5.6E-2				<5.6E-2		<5.4E-2	<6.7E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND				ND		ND	ND
(Bq/cm ³)	All β	4.9E+2	<2.8E-2	1.0E+2	6.5E-2	3.3E+2	8.1E+1	<2.8E-2				<2.8E-2		<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of y nuclides other than the major 3 nuclides are below the detection limit.

Underground Reservoir Observation Holes Nuclide Analysis Results (As of December 14, 2013)

		Underground reservoir observation holes (i - iii)												
	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:31 AM	8:41 AM	8:51 AM	9:01 AM	9:29 AM	9:19 AM	9:11 AM	9:04 AM	8:57 AM	8:51 AM	9:08 AM	9:01 AM	8:53 AM	8:45 AM
Chloride concentration (ppm)	10	10	11	7	10	9	10	10	10	14	34	10	8	11
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

	Under	ground rese	ervoir obser		rground reservation hole			
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	8:37 AM	8:29 AM	8:20 AM	8:34 AM	8:42 AM	9:18 AM	9:28 AM	9:39 AM
Chloride concentration (ppm)	9	12	7	7	11	21	4	9
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.