
# Development of Base Technology for Robots to Measure Water Levels inside the Suppression Chambers (S/C) and Demonstrative Tests

September 12, 2013
[Remote Technology Taskforce WG1]
S/C Internal Water Level Measurement WG

### 1. Objective

To support the "S/C Internal Water Level Measurement WG (Project Manager: Prof. Matsuhira from Shibaura Institute of Technology) and perform demonstrative tests at **Unit 5 and Unit 2** of remotely operated technology that employees ultrasound to measure water levels inside the S/C developed in accordance with the Agency for Natural Resources and Energy's FY2012 Project for Creating Base Technologies Related to Handling Nuclear Power Generation Reactor Accidents (Development of Remotely Operated Base Technology For Measuring Water Levels inside Cylindrical Containers)



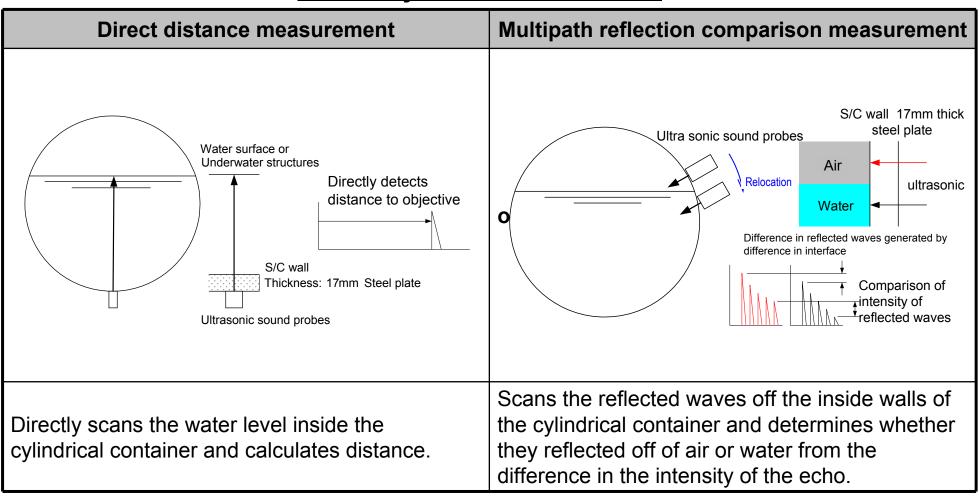
| Details of<br>Demonstration | Concept image of the measurement of water levels inside S/C |                                           |  |
|-----------------------------|-------------------------------------------------------------|-------------------------------------------|--|
| Location of demonstration   | Device used in demonstration                                | Tests performed                           |  |
| Unit 5                      | · Fixed point water level measurement device                | Crawling performance confirmation test    |  |
| Unit 2 <sup>Note)</sup>     | Scanning water level measurement device                     | Water level measurement confirmation test |  |

Note) The order of demonstration tests performed at Unit 2 will be the fixed point device followed by the scanning device. However, the demonstration test for the scanning device will be omitted if it is possible to confirm water level using the fixed point device in order to reduce exposure

#### 2. Developed technology

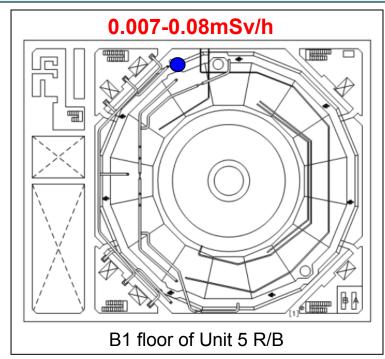
#### (technology for measuring water levels inside cylindrical containers)

#### [Objective]

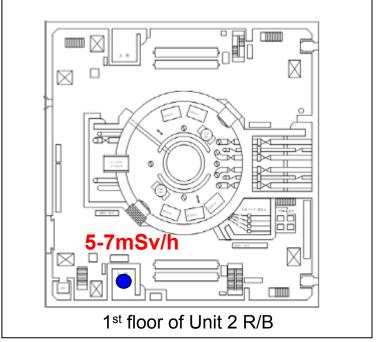

Since technology for measuring water levels inside sealed containers by having a remotely operated device move freely along the outside curve of a cylindrical container and use ultra sonic sounding probes to measure water levels does not exist, the objective is to develop technology for measuring water levels inside sealed cylindrical containers, including the mechanism for remotely moving sound probes. Furthermore, two types of devices, a fixed point device and a scanning device, will be developed so as to improve the reliability of water level detection.

#### Developed devices for measuring water levels inside sealed cylindrical containers

| Model                                             | Fixed point water level me device                                                                 | easurement                                                                                                                | Scanning water level measurement device                                                                                                                                                                                                     |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functions                                         | Magnetic crawler  Sound probes (1) (Fixed)  Sound probe attachment mechanism                      | Moves to<br>measurement<br>point using<br>magnetic<br>crawlers and<br>takes<br>measurements<br>with fixed<br>sound probes | Magnetic crawler  Concept image of scanning sound probes  Sound probes (4) (Move in XY directions)  X direction guide  Takes measurements with sound programs that scan over a 40mm x 30mm area and gradually moves using magnetic crawlers |
| Measurement<br>method<br>(refer to<br>next slide) | <ul><li>Direct distance measurement</li><li>Multipath reflection comparison measurement</li></ul> |                                                                                                                           | -Multipath reflection comparison measurement                                                                                                                                                                                                |


# 2. Developed technology (technology for measuring water levels inside cylindrical containers)

# Methods to be developed for measuring water levels inside sealed cylindrical containers

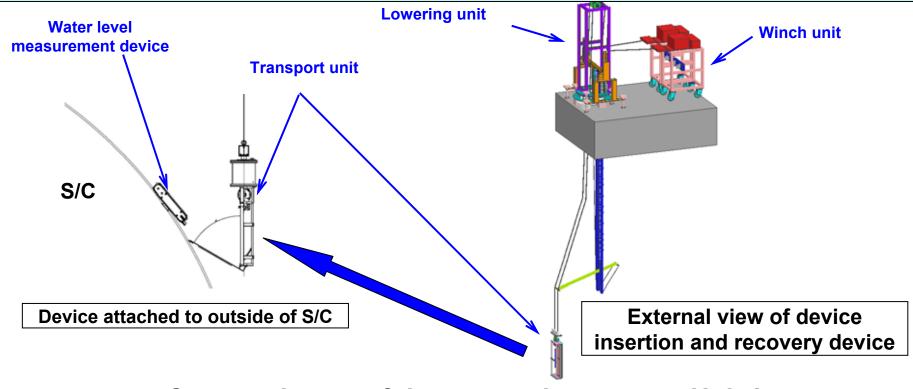



#### 3. Demonstration Methods

- Since the atmospheric doses at Unit 5 are low and the outer surface of the S/C can be accessed directly the developed device will be attached to the outer wall of the S/C in the torus (B1 floor of reactor building) and it will be shown that the water level inside the S/C can be confirmed.
- •At Unit 2 the device will be lowered remotely through a  $\phi$  350 hole drilled in the R/B 1<sup>st</sup> floor south side RHR (B) heat exchanger into the torus, attached to the outer wall of the S/C and it will be shown that the water level inside the S/C can be confirmed.

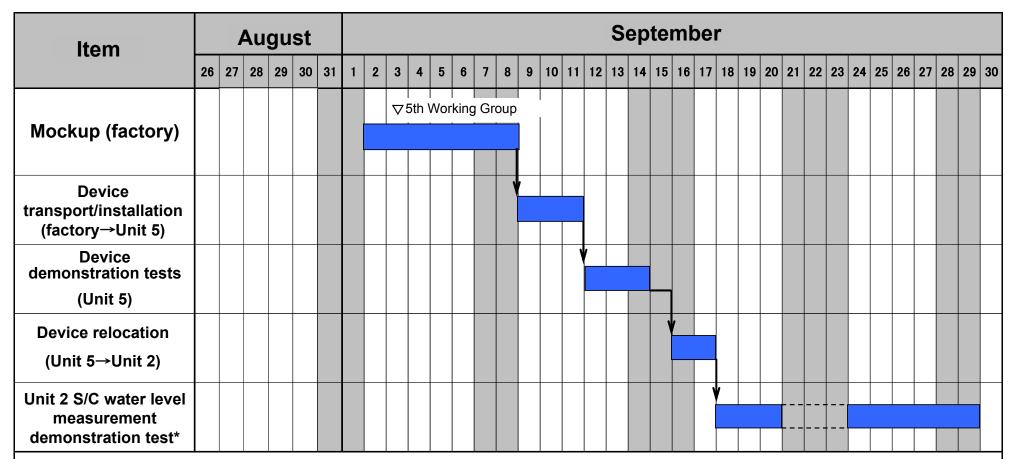


**Unit 5 demonstration test location** 




**Unit 2 demonstration test location** 

## 3. Demonstration Method (Unit 2)


During the demonstration test at Unit 2 a device insertion and recovery device will be used to lower the water level measuring device into the torus, attach it to the outside of the S/C and measure the water level.

Furthermore, if a pre-inspection with a camera reveals dirt, such as oil accretions, on the outside of the S/C, a cleansing robot also developed will be used to remove the dirt after which the water level measuring robot will be inserted.



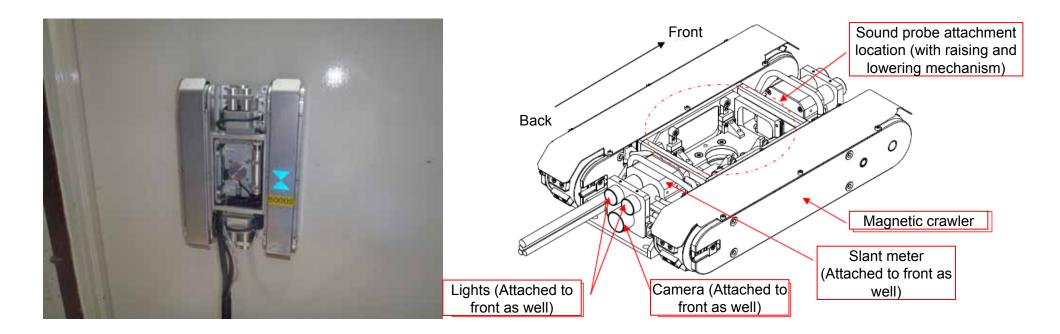
Concept image of demonstration tests at Unit 2

## 4. Schedule (Proposed)



<sup>\*:</sup> The order of demonstration tests performed at Unit 2 will be the fixed point device followed by the scanning device.

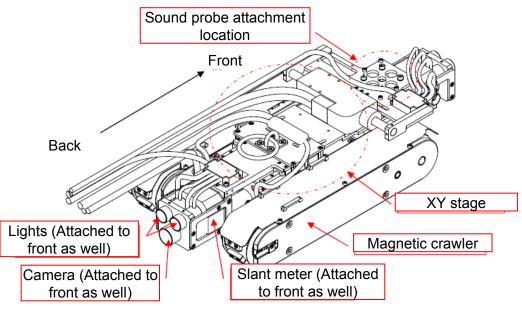
However, the demonstration test for the scanning device will be omitted if it is possible to confirm water level using the fixed point device in order to reduce exposure


#### [Reference] Name changes of developed devices

Originally it was thought that the **fixed point water level measurement device** [post-change name] would **only employ the direct distance method of measurement (direct detection method)** however in the course of development it was found that the **multipath reflection comparison method (indirect detection method) could also be used to measure water level.** During the demonstration test the fixed location water level measurement device will also use the multipath reflection comparison method of measurement.

Therefore, the name of the device was changed from one that differentiated the device by measurement method to a name that differentiates the devices by **function**.

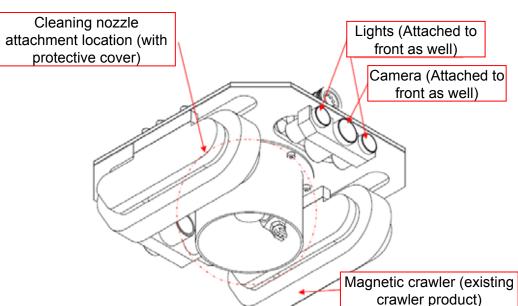
| Prior to change                                                   | After change                                                                            |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Direct detection water level —— measurement device                | Fixed location water level measurement device                                           |
| (Measurement method: direct distance measurement)                 | Measurement method: direct distance measurement, multipath reflection comparison method |
| Indirect detection water level ——                                 | Scanning water level measurement device                                                 |
| measurement device                                                | (Measurement method: multipath reflection comparison                                    |
| (Measurement method: multipath reflection comparison measurement) | measurement)                                                                            |


# [Reference] Device Specifications (fixed location water level measurement device)



| Device Specifications |                                      |  |
|-----------------------|--------------------------------------|--|
| Outer Dimensions      | L364mm × W244mm × H74mm              |  |
| Weight                | Approx. 8kg (excluding cables)       |  |
| Running Speed         | MAX 3m/min                           |  |
| Movement Technology   | Can move Forward, Backward, and Turn |  |

# [Reference] Device Specifications (scanning water level measurement device)






| Device Specifications           |                                      |  |
|---------------------------------|--------------------------------------|--|
| Outer Dimensions                | L519mm × W244mm × H102mm             |  |
| Weight                          | Approx. 12kg (excluding cables)      |  |
| Running Speed                   | MAX 3m/min                           |  |
| Movement Technology             | Can move Forward, Backward, and Turn |  |
| Range of motion of sound probes | X axis: 40mm, Y axis: 80mm           |  |

#### [Reference] Device Specifications (cleansing device)





| Device Specifications |                                            |  |
|-----------------------|--------------------------------------------|--|
| Outer Dimensions      | L260mm × W230mm × H125mm                   |  |
| Weight                | Approx. 6kg (excluding cables)             |  |
| Running Speed         | MAX 9m/min                                 |  |
| Movement Technology   | Can move Forward, Backward, and Turn       |  |
| Cleansing Capability  | Spray pressure: 8MPa, Spray volume: 400L/h |  |