Unit 2 Primary Containment Vessel Investigation at Fukushima Daiichi Nuclear Power Station (By the self-propelled investigation device)
1. Current conditions of Unit 2 Primary Containment Vessel (PCV)

- Nuclear fuel in the Primary Containment vessel (PCV) was exposed to the air and melted from the impact of March 2011 Great Earthquake.
- As a result of the accident analysis, it was found that a portion of melted nuclear fuel might have been fallen inside the pedestal.

- To remove fuel debris, it is necessary to investigate the PCV and clarify the conditions of debris and surrounding structures.
2. Outline of Unit 2 PCV investigation

[Purpose]: ① To obtain feedback information (deformation of platform, etc.) for the design and development of next investigation devices inside the pedestal
② To inspect conditions on the platform inside pedestal, fuel debris fallen to the CRD housing, and conditions of structures inside pedestal.

[Investigation point]: Platform and Control Rod Drive (CRD) will be investigated from the platform inside pedestal
3. Work steps for Unit 2 PCV investigation

Step 1. Drilling device carried in

Step 2. Drilling device set up

Step 3. Drilling on X-6 penetration

Step 4. Pre-investigation of X-6 penetration and CRD rail using guide pipe

Step 5. Pre-investigation inside pedestal using guide pipe

Step 6. Obstacle removal device inserted

Step 7. Investigation using self-propelled investigation device

Images provided from International Research Institute for Nuclear Decommissioning (IRID)
4. Preparatory investigation results from X-6 penetration to CRD rail

- The deposits on the CRD rail was the mixture of black paste and thin pieces of or gravel-sized materials.
- The deposits on the upper part of the CRD rail was soft but it adhered more to the lower part of the rail.
- The deposit removal device could get on the deposits but could not run on them for some parts.
4. Preparatory investigation results at the entrance of pedestal area

There was a gap (about 150 to 40mm) between the CRD rail and platform as expected.

There were some deposits on the platform.

The same part as the picture below

There were deposits all over the end of CRD rail.

A part of the deposits was climbing over the edges of CRD rail.
4. Preparatory investigation results of pedestal area

Digital image of Unit 2 pedestal area obtained from preparatory investigations

Images provided from International Research Institute for Nuclear Decommissioning (IRID)
The investigation will be conducted for the area further than the removed deposits because these will be a possibility that additional information can be obtained inside the pedestal.

Digital images*1

- Halation will not be likely to occur because cameras and lighting are far away from each other.
- The space can be recognized with two cameras of both front and back.
- Radiation levels can be estimated from noise images on the camera screens (marginal error of ±30%).

Temperature

- Temperatures are measured by thermocouple.

Radiation levels

- Radiation levels are measured with an integrating dosimeter, not the estimation from noise images (marginal error of ±20%)
- The dosimeter may be affected by the deposits because it is attached to the connection cable (or touches the floor surface). There is a possibility that the measurement data does not indicate ambient radiation.

*1 If the device can reach to the end of CRD rail, it can view the inside of the pedestal from different angles and find the conditions of interior structures and deposits.
6. Investigation by the self-propelled investigation device to the end of CRD rail

<table>
<thead>
<tr>
<th>Investigation area</th>
<th>Investigation items</th>
<th>Information expected to be obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>On CRD rail</td>
<td>Visual observation</td>
<td>The conditions of interior structures and deposits can be revealed by visually observing the pedestal area from low angles.</td>
</tr>
<tr>
<td>Entrance to the pedestal area</td>
<td>Temperature measurement</td>
<td>Temperatures can be measured up to the vicinity of the pedestal, which will be used for later analysis.</td>
</tr>
<tr>
<td></td>
<td>Radiation measurement</td>
<td>Radiation levels can be measured up to the vicinity of the pedestal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*The dosimeter may be affected by the deposits because it is attached to the connection cable (or touches the floor surface). There is a possibility that the measurement data does not indicate ambient radiation.</td>
</tr>
</tbody>
</table>

- **Access of the device**
 - The device may not be able to go further while running on the deposits.
 - In that case, the device will be retrieved by pulling back the connection cable.

*The self-propelled investigation device has following characteristics compared with the deposit removal device, but it is not guaranteed that the device can run on the deposits because the conditions of the deposits are uncertain.

 - It has long crawler.
 - It weights more.
 - The center of gravity can be changed by shifting positions of the back camera.

*Depending on the deposits’ conditions on the CRD rail, the self-propelled investigation device may not be able to reach the end of the rail, but I will still investigate temperatures and radiation levels on the rail and the conditions of surrounding structures as much as possible.
6. Investigation by the self-propelled investigation device to the end of CRD rail

To the center of RPV

<table>
<thead>
<tr>
<th>Investigation area</th>
<th>Investigation items</th>
<th>Information expected to be obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>On CRD rail</td>
<td>Visual observation</td>
<td>Information can be obtained of the vicinity of the metal grating fallen in.</td>
</tr>
<tr>
<td>Entrance to the pedestal area</td>
<td></td>
<td>• Damage on the bottom of the reactor</td>
</tr>
<tr>
<td>Inside of the pedestal</td>
<td></td>
<td>• Damage on the upper part of the interior structures such as CRD housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Deposits adhered to the structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Damage on the metal grating</td>
</tr>
<tr>
<td>Temperature measurement</td>
<td>Temperatures can be measured up to the vicinity of the pedestal.</td>
<td>--</td>
</tr>
<tr>
<td>Radiation measurement</td>
<td>Radiation levels can be measured up to the vicinity of the pedestal.</td>
<td>The dosimeter may be affected by the deposits because it is attached to the connection cable (or touches the floor surface). There is a possibility that the measurement data does not indicate ambient radiation.</td>
</tr>
</tbody>
</table>

Access of the device (very difficult)

- The device needs to go over the gap between the CRD rail and platform. It may fall in the gap or may not be able to go further.
- The device needs to access the platform only with the images from its own front and back cameras, not with visual observation from the overview camera.
- If the device falls in the gap, it may not be retrieved. It may be stuck with the connection cable being pulled back.
- The device may be left inside the PCV if it takes too much time to retrieve it with priority on the investigation.
Reference: Investigation results on the platform inside the pedestal

CRD rail with deposits

Area where metal grating have not been observed

Area where metal grating fallen in

Area where metal grating exist with deposits