November 12, 2011
Tokyo Electric Power Company

<Draining Water on Underground Floor of Turbine Building (T/B)>

□Status of highly concentrated accumulated radioactive water treatment facility and storage tank facility

[Treatment Facility]

-	-	-
·6/17	20:00	Full operation of radioactive material removal instruments started.
·6/24	12:00	Start of desalination facilities operation (RO membrane system)
·6/27	16:20	Circulating injection cooling started.
· 8/7	16:11	Evaporative Concentration Facility has started full operation.
·8/19	19:33	We activated second cesium adsorption facility (System B) and starte

We activated second cesium adsorption facility (System B) and started the treatment of accumulated water by the parallel operation of cesium adsorption instrument and decontamination instrument. At 19:41, the flow rate achieved steady state.

[Storage Facility]

·6/8 ~ Big tanks to store and keep treated or contaminated water have been transferred and installed sequentially.

□ Accumulated water in vertical shafts of trenches and at basement level of building

Unit	Draining water source→Place transferred	Status
Unit 1	Unit 1T/B Unit 2T/B	·From 15:42 on November 11~ Being transferred
Unit 2	 Unit 2T/B→Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)] 	·From 9:10 on November 10 ~ Being transferred
Unit 3	· Unit 3T/B→Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	·From 10:11 on November 2 to 15:05 on November 8 Transferred
Unit 6	·Unit 6T/B→Temporary tanks	·On November 12 No transfer

Place transferred	Status of Water Level (As of November 12 at 7:00)				
Drocess Main Duilding	Water level: O.P.+ 1,780 mm(Accumulated total increase:2,997 mm)				
Process Main Building	118mm decrease since 7:00 on November 11				
Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)	Water level: O.P.+ 2,259 mm(Accumulated total increase:2,985 mm) 50mm decrease since 7:00 on November 11				

□Water level of the vertical shaft of the trench, T/B and R/B (As of November 12 at 7:00)

	Vertical Shaft of Trench	T/B	R/B
Unit 1	O.P.< + 850 mm	O.P.+ 3,765 mm	O.P.+ 4,627 mm
	(No change since 7:00 on	(203mm decrease since 7:00 on	(24mm increase since 7:00 on
	November 11)	November 11)	November 11)
Unit 2	O.P.+ 3,131 mm	O.P.+ 3,140 mm	O.P.+ 3,231 mm
	(20mm increase since 7:00 on	(19mm increase since 7:00 on	(18mm increase since 7:00 on
	November 11)	November 11)	November 11)
Unit 3	O.P.+ 3,259 mm	O.P.+ 3,053 mm	O.P.+ 3,245 mm
	(21mm increase since 7:00 on	(23mm increase since 7:00 on	(24mm increase since 7:00 on
	November 11)	November 11)	November 11)

		O.P.+ 3,036 mm	O.P.+ 3,050 mm
Unit 4	-	(12mm increase since 7:00 on	(17mm increase since 7:00 on
		November 11)	November 11)

<Monitoring of Radioactive Materials>

Nuclide Analysis of Seawater (Reference) □Since Oct 24, an approach to decrease the detection limits of radioactivity density was started.

Place of sampling	Date of	Time of	Ratio of density limit (times)		
Flace of Sampling	sampling	sampling	I-131	Cs-134	Cs-137
Approx. 30m North of Discharge Channel of 5-6U of 1F	11/11	8:45	ND	0.11	0.07
Approx 330m South of Discharge Channel of 1-4u of 1F	11/11	8:20	ND	0.03	0.01
Around Discharge Channel of 3-4u of 2F	11/11	8:20	ND	0.02	0.02
Approx 7km South of Discharge Channel	11/11	7:55	ND	ND	0.01
of 1-2u of 2F					

[•]Results of nuclide analysis of seawater at 5 offshore points sampled on November 10 are all ND for the 3 major nuclides (iodine-131, cesium-134 and cesium-137).

<Cooling of Spent Fuel Pools> (As of November 12 at 11:00)

Unit	Cooling type	Status of cooling	Temperature of water in Pool
Unit 1	Circulating Cooling System	Under operation(11:22 on August 10 -)	19.5
Unit 2	Circulating Cooling System	Under operation(17:21 on May 31 -)	21.4
Unit 3	Circulating Cooling System	Under operation(18:33 on June 30 -)	20.7
Unit 4	Circulating Cooling System	Under operation(10:08 on July 31 -)	29

[Unit 2] ·11/6 ~ We started operation of radioactive material decontamination instrument of spent fuel pool. ·11/12 10:30 ~ 12:05 We temporarily stopped the operation of radioactive material decontamination instrument in order to replace adsorption instruments, keeping cooling spent fuel pools. We will appropriately replace adsorption instruments.

[Unit 4] \cdot 8/20 ~ 11/8 We implemented the operation of desalinating facility of the spent fuel pool.

<Water Injection to Pressure Containment Vessels> (As of November 12 at 11:00)

<u>Unit</u>	Status of injecting water	Feed-water nozzle Temp.	Reactor pressure vessel Bottom temp.	Pressure of primary containment vessel
Unit 1	Injecting freshwater (Feed Water System: Approx. 7.8 m³/h)	38.0	38.7	121.7 kPaabs
Unit 2	Injecting freshwater (Feed Water System: Approx. 2.9 m³/h,Core Spray System: Approx. 7.2 m³/h)	66.2	69.5	109 kPaabs
Unit 3	Injecting freshwater (Feed Water System: Approx. 2.7 m³/h,Core Spr System: Approx. 8.1 m³/h)	59.1	69.0	101.5 kPaabs

[Unit 4] [Unit 5] [Unit 6] No particular changes in parameters.

<Others>

· 10/7 ~ Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.