February 13, 2012 Tokyo Electric Power Company

<u>Unit</u>		Status of Water injection	Bottom temperature of Reactor pressure vessel	Pressure of primary containment vessel	Hydrogen density Of Primary containment vessel
Unit 1	Injecting Fresh water	Core Spray System: Approx. 1.8 m ³ /h Feed Water System: Approx. 4.3 m ³ /h	24.3 ℃	107.4 kPaabs	0.01 vol%
Unit 2	Injecting Fresh water	Core Spray System: Approx.9.9 m ³ /h Feed Water System: Approx. 7.8 m ³ /h	93.7 °C	111 kPaabs	0.07 vol%
Unit 3	Injecting Fresh water	Core Spray System: Approx. 6.0 m ³ /h Feed Water System: Approx. 3.0 m ³ /h	48.8 ℃	101.6 kPaabs	

<1. Status of the Nuclear Reactor and the Primary containment vessel> (As of February 13 at 11:00)

[Unit 2]

- Since February 2, a significant temperature rise at the bottom of the PCV of Unit 2 has been observed. The current temperature is 93.3°C (at 1:00 pm of February 13, for reference). We will continue monitoring the temperature tendency.
- At 5:01 pm on February 12, we sampled the gas of the gas control system of Unit 2 Primary Containment Vessel. The density of Xenon 135 at the entrance of the system was below the detection limit (9.3× 10⁻²Bq/cm³). Since it is below 1Bq/cm³, which is the threshold for judging re-criticality, we confirmed the reactor didn't go re-critical.
- Since we confirmed a change in the amount of water injection to the Unit 2 nuclear reactor, at 7:30 pm on February 12, we changed the amount of the water injection from the feed water system from 7.1m³/h to 7.5m³/h and water injection from the core spray system from 10.0m³/h to 9.9m³/h.
- Since we confirmed a change in the amount of water injection to the Unit 2 nuclear reactor, at 9:50 am on February 13, we changed the amount of the water injection from the feed water system from 7.0m³/h to 7.5m³/h (water injection from the core spray system maintained at 9.9m³/h).
- From 2:02 pm to 2:54 pm on February 13 we conducted a DC resistance test on this device. We are currently evaluating the results.

[Unit 4] [Unit 5] [Unit 6]

• No significant incidents have happened.

<2. Status of the Spent Fuel Pool> (As of February 13 at 11:00)

Unit	Cooling type	Status of cooling	Temperature of water in Spent Fuel Pool	
<u>Unit 1</u>	Circulating Cooling System	Under operation ^{* 1}	24.0 °C	
<u>Unit 2</u>	Circulating Cooling System	Under operation	12.1 °C	
Unit 3	Circulating Cooling System	Under operation	28 .4 °C	
<u>Unit 4</u>	Circulating Cooling System	Under operation	24 °C	

*1 System secondary air fin cooler: Shut down

[Unit 2]

- A desalination equipment has been activated in order to reduce density of salt from the spent fuel pool since 11:50 on January 19.
- From 1:29 pm to 3:07 pm on February 13, we injected approx. 2m³ of hydrazine (a corrosive) to the spent fuel pool of Unit 2 through the circulating cooling system.

【Unit 3】

- A radioactive material removal equipment has been activated in order to remove radioactive materials from the spent fuel pool since 3:18 pm on January 14.
- From 10:07 am on February 8 to 10:08 am on February 13, we stopped the operation of the secondary cooling tower in order to prevent overcooling of alternative cooling system of spent fuel pool.

<3. Status of water transfer from the Vertical Shaft of the Trench and the basement floor of the Turbine Building>

Unit	Draining water source	\rightarrow	Place transferred	Status
Unit 2	Unit 2 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)]	14:43 on February 10 - Transferring
Unit 3	Unit 3 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)]	9:57 on February 12 - Transferring
Unit 6	Unit 6 T/B	\rightarrow	Temporary tanks	No plan to transfer

<4. Status of the Treatment Facility and the Storage Facility> (As of February 13 at 7:00)

Facility	Cesium adsorption apparatus	Secondary Cesium adsorption apparatus (sarry)	Decontamination instruments	water desalinations (reverse osmosis membrane)	water desalinations (evaporative concentration)
Operating status	Under operation	Under operation	Shut down	Operating intermittently according to the water balance	Operating intermittently according to the water balance

• H23/6/8~ Large tanks to store contaminated and decontaminated water are transported and installed.

<5. Others>

- October 7, 2011~: Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- January 11, 2012~: As finding accumulated water including radioactive materials (December 18, 2011) at the trench between Process Main Building of Central Radioactive Waste Treatment Facility and Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building), we started inspection of the other trenches in the site. *Please refer to the other reference materials for the result of daily inspection.