March 11, 2012 Tokyo Electric Power Company

<1. Status of the Nuclear Reactor and the Primary Containment Vessel> (As of March 11 at 11:00 am)

Unit		Status of Water injection	Bottom temp. of Reactor pressure vessel	Pressure of primary containment vessel	Hydrogen density of Primary containment vessel
Unit 1	Injecting Fresh water	Core Spray System: Approx.1.7 m ³ /h	22.0 °C	106.1 kPaabs	0.00 vol%
		Feed Water System: Approx.4.8 m ³ /h	23.0 C		
Unit 2	Injecting Fresh water	Core Spray System: Approx.6.0 m ³ /h	41.2 °C	121 kPaabs	0.06 vol%
		Feed Water System: Approx.2.8 m ³ /h			
Unit 3	Injecting Fresh water	Core Spray System: Approx.5.2 m ³ /h	52.8 °C	101.6 kPaabs	
		Feed Water System: Approx.1.8 m ³ /h			

[Unit 4] [Unit 5] [Unit 6] · No major change

2. Status of the Spent Fuel Pool> (As of March 11 at 11:00 am)

Unit	Cooling type	Status of cooling	Temperature of water in Spent Fuel Pool	
Unit 1	Circulating Cooling System	Under operation*	27.0 °C	
Unit 2	Circulating Cooling System	Under operation	14.4 °C	
Unit 3	Circulating Cooling System	Under operation	14.3 °C	
Unit 4	Circulating Cooling System	Under operation	26 °C	

* System secondary air fin cooler: out of service

[Unit 2] Desalination equipment has been activated in order to reduce density of salt from the spent fuel pool since 11:50 am on January 19.

<3. Status of water transfer from the basement floor of the Turbine Building etc.>

Unit	Draining water source	\rightarrow	Place transferred	Status
Unit 2	Unit 2 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Process Main Building]	From 1:55 pm on March 7 to 8:30 am on March 11: Transferred
	Unit 2 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	From 8:47am on March 11: Transferring
Unit 3	Unit 3 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	From 10:10 am on March 10: Transferring

<4. Status of the Treatment Facility and the Storage Facility> (As of March 11 at 7:00 am)

Facility	Cesium adsorption apparatus	Secondary Cesium adsorption apparatus (SARRY)	Decontamination instruments	Water desalinations (reverse osmosis membrane)	Water desalinations (evaporative concentration)
Operating status	Out of service	Under operation	Out of service	Operating intermittently according to the water balance	Operating intermittently according to the water balance

• June 8, 2011 ~ Large tanks to store contaminated and decontaminated water are transported and installed.

- March 1, 2012, In order to conduct the work to improve the reliability of water treatment facilities, we stopped the cesium adsorption apparatus. (It will be out of service until March 15.)
- March 10 We started the 2nd cesium adsorption apparatus after the improvement works. At 6:34 pm on March 10, the water injection volume reached at normal level (approx.42 m^3/h).

*We confirmed that water level would be below the limit based on the water level impact study. We also have sufficient volume of treated water. Therefore there will be no impact on the water injection to the reactors.)

<5. Others>

- October 7, 2011~: Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- February 23, 2012~: Test of drawing water in the Unit 6 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 6, 2012~: we have been conducting the transfer test of sub-drain Water of Unit 5 to the temporary tank via the interim storage tank.

 Around 10:00 am on March 11, 2012: TEPCO's employees found the water leaks from the ceiling near the wall of the west side in the heater room at 1st floor of T/B of Unit 1 during their sampling works for the accumulated water. The puddle of water at the floor is approx. 5m × 7m and we found the water flow into near funnel*. As the result of the inspection, the water came from the damaged part of the pipe," we assumed the roof drain pipe", which was set at the upper of the ceiling and we assumed that the water was rain or melted snow. The radiodensity of the water was Cs-134:1.1×10¹Bq/cm³ and Cs-137:1.7×101Bq/cm³. The leakage water was staying in the underground of T/B as the accumulated water and it is considered that there was no leakage to the ocean.

*water inlet which gather the water and lead the water from the pipe or facilities in the building to the drain tank