Plant Status of Fukushima Daiichi Nuclear Power Station

April 5, 2012 Tokyo Electric Power Company

<1. Status of the Nuclear Reactor and the Primary Containment Vessel> (As of April 5 at 11:00 am)

Unit		Status of water injection	Reactor pressure vessel bottom temp.	Pressure of primary containment vessel*1	Hydrogen density of primary containment vessel
Unit 1	Injecting Fresh water	Core Spray System: Approx.1.9 m ³ /h	24.4 °C	106.0 kPa abs	A system:0.00 vol%
		Feed Water System: Approx.4.8 m ³ /h			B system:0.00 vol%
Unit 2	Injecting Fresh water	Core Spray System: Approx.6.1 m ³ /h	50.5 °C	24.70 kPa g	A system:0.21 vol% B system:0.20 vol%
		Feed Water System: Approx.2.9 m ³ /h			
Unit 3	Injecting Fresh water	Core Spray System: Approx.5.1 m ³ /h	55.5 °C	0.29 kPa g	A system:0.18 vol% B system:0.17 vol%
		Feed Water System: Approx.1.9 m ³ /h			

^{*1:} absolute pressure (kPa abs) = gauge pressure (kPa g) + atmosphere pressure (normal atmosphere pressure 101.3 kPa).

<2. Status of the Spent Fuel Pool > (As of April 5 at 11:00 am)

Unit	Cooling type	Status of cooling	Temperature of water in Spent Fuel Pool	
Unit 1	Circulating Cooling System	Under operation	15.0 °C	
Unit 2	Circulating Cooling System	Under operation	15.4 °C	
Unit 3	Circulating Cooling System	Under operation	15.1 °C	
Unit 4	Circulating Cooling System	Under operation	26°C	

[[]Unit 4] ·4/5 1:20 pm – 4:25 pm we injected hydrazine into the reactor well.

<3. Status of Water Transfer from the Basement Floor of the Turbine Building etc.>

Unit	Draining water source	\rightarrow	Place transferred	Status	
Unit 2	Unit 2 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	10:14 am on March 20 - Transferring	
Unit 3	Unit 3 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)]	10:08 am on April 3 – 2:54 pm on April 5 Transferred.	
Unit 6	Unit 6 T/B	\rightarrow	Temporary tank	10:00 am to 4:00 pm on April 5 - Transferred	

<4. Status of the Treatment Facility and the Storage Facility > (As of April 5 at 7:00 am)

Facility	Cesium adsorption apparatus	Secondary Cesium adsorption apparatus (SARRY)	Decontamination instruments	Water desalinations (reverse osmosis membrane)	Water desalinations (evaporative concentration)
Operating status	Operation	Shutdown *	Shutdown	Operating intermittently according to the water balance	Operating intermittently according to the water balance

- * Cleaning of filter is in progress.
- From June 8, 2011: Large tanks to store contaminated and decontaminated water are transported and installed.
- Around 1:05 am on April 5, 2012: Because the amount of flow which transfer condensed water from the water desalinator (reverse osmosis membrane) to the condensed water storage tank increased, we stopped the operation of the desalinator manually at around 1:10 am considering the possibility of water leakage. In order to prevent water leakage, at around 1:45 am, we closed the valve located before and after the piping (pressure-proof hose) which transfer condensed water from the water desalinator to the condensed water storage tank. TEPCO's employer checked the site and found water leakage from the piping at around 1:50 am. Since the desalinator was stopped its operation and the valve was closed, the employer confirmed that the leakage stopped at around 2:20 am. Because it was confirmed that water leaked from the lagging material of the pressure-proof hose, the employer removed the material, confirming that the pressure-proof horse had been disconnected from the joint flange. Because there was possibility that condensed water amounting to approximately 12 m3 might have flown into sea via the ditch for general water discharge, we conducted sampling of the leaked water, water at the drainage ditch, and seawater around the exit of the ditch for general water discharge which locates around 300 m south from the water outlet ofr Unit 1 – 4. As a result, while gamma nuclide was detected from the leaked water and water at the ditch, the result was below the detection limit for the seawater around the exit of the ditch, we confirmed. Consequently, we plan to analyze the all beta-radioactivity of the sampled water. Although the operation of the water desalinator (reverse osmosis membrane type and evaporative concentration apparatus type) was suspended, there is no significant influence to the water injection into the reactor because there are affluent amount of water which has been already desalinated.
- At 1:05 am on April 5, 2012: 2nd Cesium adsorption apparatus automatically stopped its operation triggered by the alarm. After checked the site, we confirmed there were no leakage. The cause of the alarm is currently under investigation.

<5. Others>

- October 7, 2011~: Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6
 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- February 23, 2012~: Test of drawing water in the Unit 6 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 6, 2012~: Test of drawing water in the Unit 5 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 14, 2012~: In order to prevent the diffusion of ocean soil, we started the full-scale covering work of seafloor by solidification soil (covering material).
- April 5, 2012: Dust sampling was implemented using large crane at the upper part of Unit 3's reactor building.

END