Plant Status of Fukushima Daiichi Nuclear Power Station

April 18, 2012 Tokyo Electric Power Company

<1. Status of the Nuclear Reactor and the Primary Containment Vessel> (As of April 18 at 11:00 am)

Unit	Status of water injection		Reactor pressure vessel bottom temp.	Pressure of primary containment vessel*1	Hydrogen density of primary containment vessel
Unit 1	Injecting Fresh water	Core Spray System: Approx.1.8 m ³ /h	26.8 °C	107.2 kPa abs	A system:0.00 vol%
		Feed Water System: Approx.4.8 m ³ /h			B system:0.02 vol%
Unit 2	Injecting Fresh water	Core Spray System: Approx.6.0 m ³ /h	45.7 °C	30.64 kPa g	A system:0.22 vol% B system:0.22 vol%
		Feed Water System: Approx.2.6 m ³ /h			
Unit 3	Injecting Fresh water	Core Spray System: Approx.5.2 m ³ /h	56.0 °C	0.28 kPa g	A system:0.22 vol%
		Feed Water System: Approx.1.8 m ³ /h			B system:0.20 vol%

*1: absolute pressure (kPa abs) = gauge pressure (kPa g) + atmosphere pressure (normal atmosphere pressure 101.3 kPa).

[Unit 1] April 17 We confirmed that the density of Xe-135 was $1.3 \sim 2.8 \times 10^{-3} \text{Bq/cm}^3$ by the noble gas monitor of the PCV gas management system, which did not exceed the criteria for recriticality of 1Bq/cm^3 .

(Unit 2) April 17

We conducted sampling of the gas from the PCV gas management system. As the result of the analysis, we confirmed that the density of Xe-135 was below the detection limit $(1.0 \times 10^{-1} \text{Bq/cm}^3)$ at the inlet of the system, and that it did not exceed the criteria for recriticality of 1Bq/cm^3 . Also, we confirmed that the density of Xe-135 was below the detection limit $(2.3 \sim 2.4 \times 10^{-1} \text{Bq/cm}^3)$ by the noble gas monitor, which did not exceed the criteria for recriticality of 1Bq/cm^3 .

[Unit 3] April 17

We confirmed that the density of Xe-135 was below the detection limit $(3.5 \times 10^{-1} \text{Bq/cm}^3)$ by the noble gas monitor of the PCV gas management system, which did not exceed the criteria for recriticality of 1Bq/cm^3 .

<2. Status of the Spent Fuel Pool > (As of April 18 at 11:00 am)

Unit	Cooling type	Status of cooling	Temperature of water in Spent Fuel Pool
Unit 1	Circulating Cooling System	Under operation	16.5 °C
Unit 2	Circulating Cooling System	Under operation	17.9 °C
Unit 3	Circulating Cooling System	Under operation	17.8 °C
Unit 4	Circulating Cooling System	Under operation	25°C

<3. Status of Water Transfer from the Basement Floor of the Turbine Building etc.>

Unit	Draining water source	Place transferred	Status
Unit 2	Unit 2 T/B	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	4/14 15:27 - Being transferred
Unit 6	Unit 6 T/B	Temporary Tank	4/18 10:00 - 16:00, Transferred

[·]From 9:25 – 15:45 on April 18, we transferred the accumulated water from the On-site Bunker Building to the Process Main Building, in the Central Radioactive Waste Treatment Facility

<4. Status of the Treatment Facility and the Storage Facility > (As of April 18 at 7:00 am)

Facility	Cesium adsorption apparatus	Secondary Cesium adsorption apparatus (SARRY)	Decontamination instruments	Water desalinations (reverse osmosis membrane)	Water desalinations (evaporative concentration)
Operating status	Operation	Operation *	Shutdown	Operating intermittently according to the water balance	Operating intermittently according to the water balance

^{*} Cleaning of filter is in progress.

From June 8, 2011: Large tanks to store contaminated and decontaminated water are transported and installed.

<5. Others>

- October 7, 2011~: Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- February 23, 2012~: Test of drawing water in the Unit 6 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 6, 2012~: Test of drawing water in the Unit 5 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 14, 2012~: In order to prevent the diffusion of ocean soil, we started the full-scale covering work of seafloor by solidification soil (covering material).
- April 18, 2012~: Works for blocking of the discharge valve pit of Unit 2 circulating water pump and the Unit 2 power source cable trench were started.

END