Evaluation method of volume of discharge

Flying distance $L(m)$
Based on the flying distance and height, assuming discharged liquid in falling motion, volume of flow is calculated as follows:
$\begin{aligned} & \text { Vertical direction is } \\ & \text { free-fall motion }\end{aligned} \quad \Leftrightarrow=\frac{1}{2} g t^{2} \quad t=\sqrt{\frac{2 h}{g}}$
$\begin{aligned} & \text { Horizontal direction is } \\ & \text { uniform motion }\end{aligned}$
$\left.\begin{array}{l}t \\ \sqrt{\frac{2 h}{g}}\end{array} \quad \begin{array}{l}\text { Volume of } Q=S v=\frac{S L}{\text { flow }} \\ \sqrt{\frac{2 h}{g}}\end{array}\right]=\frac{L}{\sqrt{2}}$
< Premise>
Cross-section area: S=Diameter $3 \mathrm{~cm}=7.07 \times 10^{-4}\left(\mathrm{~m}^{2}\right)$
Flying distance: $\mathrm{L}=0.65$ (m)
H e i g h $\mathrm{t}: \mathrm{h}=0.75(\mathrm{~m})$
Gravity acceleration: $\mathrm{g}=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$

By substituting premise into equation (1), volume of flow is evaluated as fallows:

$$
Q=\frac{S L}{\sqrt{\frac{2 h}{g}}}=\frac{7.07 \times 10^{-4} \times 0.65}{\sqrt{\frac{2 \times 0.75}{9.8}}}=1.17 \times 10^{-3}\left(\mathrm{~m}^{3} / \mathrm{s}\right) \neq 4300(\lambda / \mathrm{h})
$$

