福島第一原子力発電所1・2号機トーラス室調査について

平成25年1月25日 東京電力株式会社

1. 目的およびこれまでの経緯

目的

1、2号機のトーラス室の雰囲気、滞留水および堆積物の基礎データを取得し、格納容器調査・補修装置設計へのフィードバックおよびトーラス室への燃料デブリ拡散の有無を確認(試行)するため。

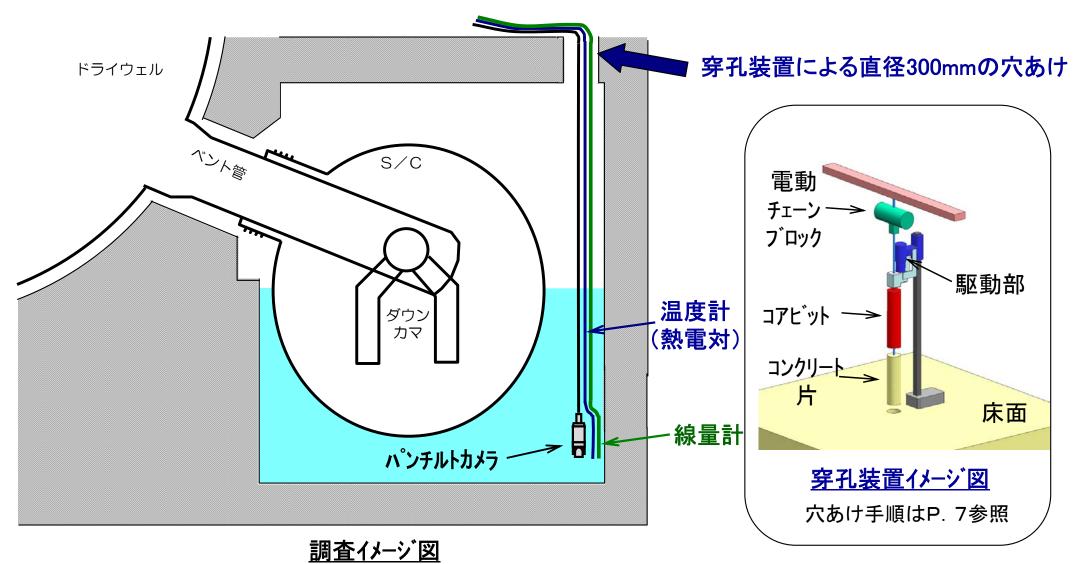
これまでの経緯

【1号機】

H24.6月に、原子炉建屋1階床面の既存の配管貫通部を利用し滞留水水位・室内気温・滞留水温、雰囲気・滞留水線量データ等を取得(しかしながら、途中で線量計が故障)

【2号機】

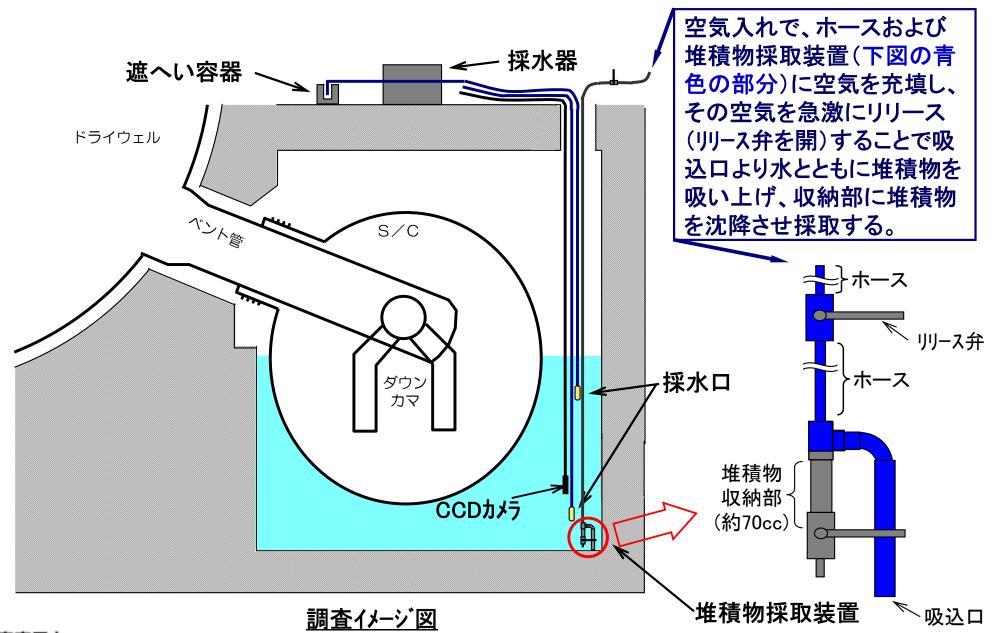
H24.6月に、原子炉建屋1階床面のすべて貫通部(スリーブ)内に詰め物等が確認されたため、調査を延期

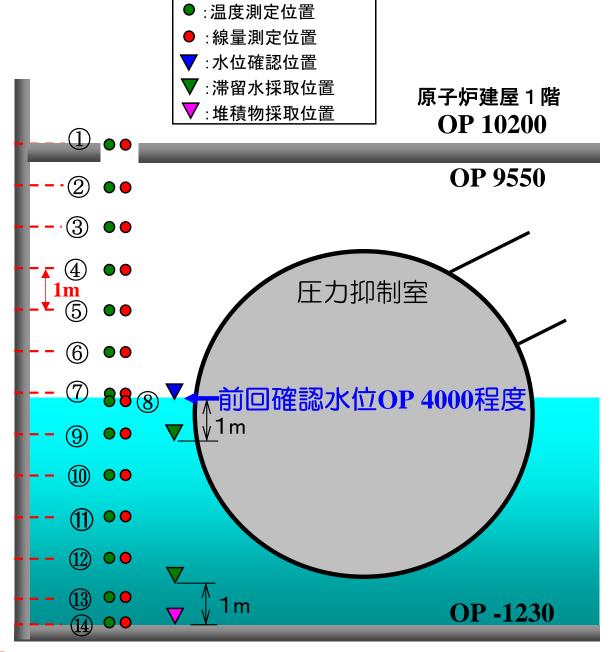

2. 調査項目

雰囲気(気中)・滞留水(水中)の温度、線量測定および滞留水・堆積物採取等を計画。

	調査項目	使用機材	
太中	温度	温度計	
	線量	線量計	
	構造物目視確認	カメラ	
	透明度	カメラ	
	温度	温度計	
	線量	線量計	
	滞留水採取	滞留水サンプリング装置	
	底部堆積状況確認	カメラ	
	堆積物採取	堆積物サンプリング装置	

3. 調査方法(温度・線量・カメラ)

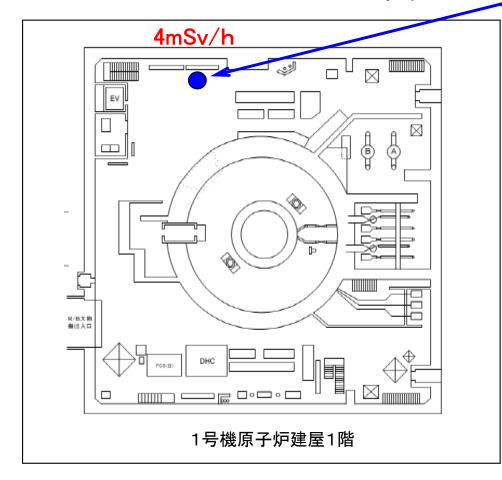

穿孔装置により、原子炉建屋1階床面に直径300mmの穴をあけ、温度計、線量計、カメラを挿入し調査。

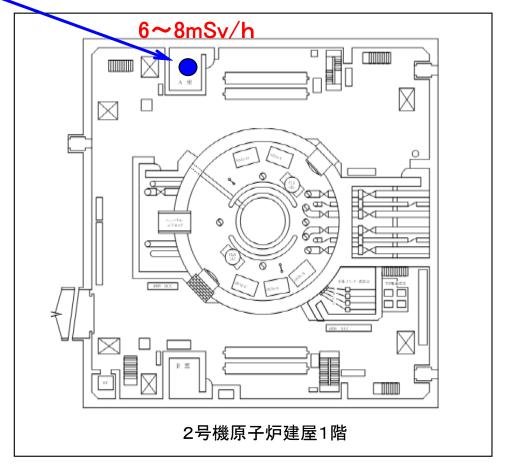


4. 調查方法(滯留水・堆積物採取)

直径300mmの穴より、CCDカメラ、滞留水採水用ホース、堆積物採取装置を挿入し調査。

5. 測定箇所案(1号機の例)

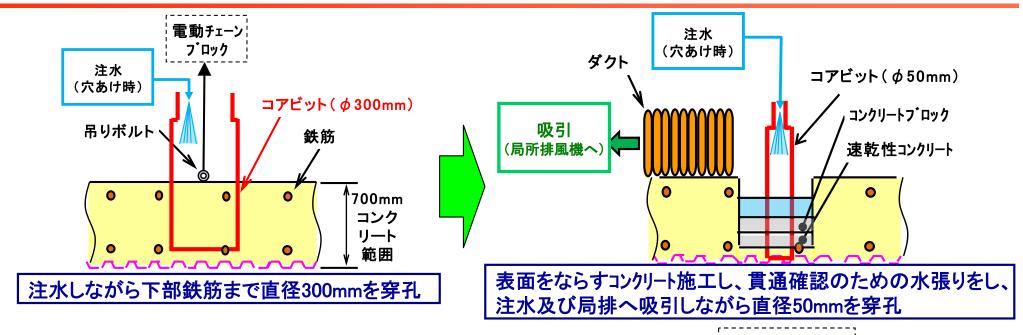


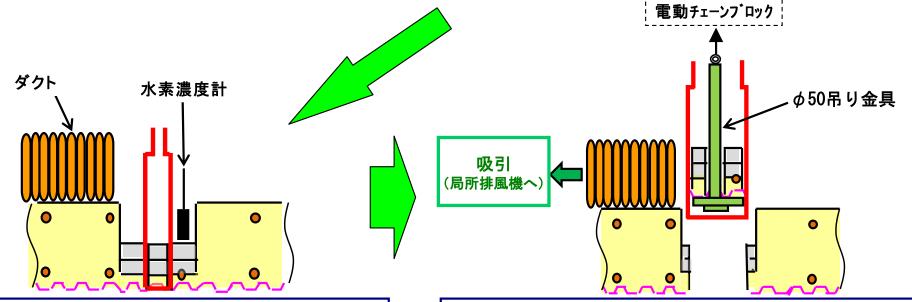

位置		温度	線量
1	OP.10200		
2	OP.9200程度		
3	OP.8200程度		
4	OP.7200程度		
5	OP.6200程度		
6	OP.5200程度		
7	OP.4200程度		
8	水位確認レベル		
9	OP.3200程度		
10	OP.2200程度		
11)	OP.1200程度		
12	OP. 200程度		
13	OP800程度		
14)	OP1230程度		

6. 調査箇所

設計情報より、建屋地下階床面まで、配管等の調査干渉物がない場所として 1号機は建屋北西エリア北壁付近、2号機は建屋北側RHR(A)熱交換器室を 選定。

直径300mm穴穿孔箇所




1号機穴穿孔場所

2号機穴穿孔場所

(参考)穴あけ概略手順

一部貫通により水の落下を確認後、水素濃度測定

直径50mm吊り金具を設定し、下部鉄筋の配置に応じて 直径300mmまたは直径200mmを穿孔、コンクリート片回収

(参考)想定リスクとその低減策

想定リスク	リスク低減策
床面穿孔時のコアドリルの異物咬み込みによる穴あけ 不能	・上部鉄筋は金属探知器で確認後、穿孔 ・下部鉄筋の直前でコアを抜き、鉄筋の咬み込みの可能性がある場合は穿孔径を直径200mmにして 穿孔
地下階(トーラス室)の水素滞留による穴あけ時の水素 爆発	・既存貫通部の水素測定・穴あけのモックアップでの火花が出ないことを確認・注水しながらの穿孔
穴穿孔箇所における干渉 物の発見	設計データより干渉物がない場所に穿孔
滞留水・堆積物サンプルが高 線量のため採取不能	サンプルが100mSv/h以上の場合はリリース
堆積物採取装置の採取口 が地下階床底面に採取可 能な位置に設置不能	事前のモックアップ訓練による設置方法の習熟