福島第一原子力発電所の状況

平成25年8月26日東京電力株式会社

<1. 原子炉および原子炉格納容器の状況> (8/26 11:00 時点)

号機	注水状況		原子炉圧力容器 下部温度	原子炉格納容器 圧力 [*]	原子炉格納容器 水素濃度		
1 号機	淡水	炉心スプレイ系:約1.9 m³/h	33.2	105.6 kPa abs	A系:	0.03	vol%
אמר כי י	注入中	給水系:約2.4 m³/h	33.2	103.0 Kra abs	B系:	0.03	vol%
2 号機	淡水 注入中	炉心スプレイ系:約3.4 m³/h	44.1	10.31 kPag	A系:	0.04	vol%
		給水系:約1.9 m³/h		10.31 Kray	B系:	0.03	vol%
3 号機	淡水	炉心スプレイ系:約3.4 m³/h	43.0	0.24 kPag	A系:	0.08	vol%
	注入中	給水系:約1.9 m³/h		U.24 KFay	B系:	0.09	vol%

^{*:}絶対圧(kPa abs) = ゲージ圧(kPa g) + 大気圧(標準大気圧 101.3 kPa)

<2. 使用済燃料プールの状況> (8/26 11:00 時点)

号機	冷却方法	冷却状況	使用済燃料プール水温度
1号機	循環冷却システム	運転中	30.0
2号機	循環冷却システム	運転中	28.5
3号機	循環冷却システム	運転中	27.2
4号機	循環冷却システム	運転中	38

[※] 各号機使用済燃料プールおよび原子炉ウェルヘヒドラジンの注入を適宜実施。

<3. タービン建屋地下等のたまり水の移送状況>

号機	排出元	→ 移送先	移送状況
1号機	1号機 タービン建屋	1号機 廃棄物処理建屋	8/25 10:33 ~ 16:02 移送実施 8/26 10:28 ~ 16:02 移送実施
2号機	2 号機 タービン建屋	3号機 タービン建屋	8/18 11:25 ~ 8/24 9:37 移送実施
3号機	3 号機 タービン建屋	集中廃棄物処理施設(雑固体廃棄物 減容処理建屋 [高温焼却炉建屋])	8/24 10:38 ~ 移送実施中

^{•7/16 13:00~ 5,6}号機屋外の仮設タンク(9基)には、震災時に5,6号機各建屋に流入した海水および地下水(メガフロート水)を貯蔵しているが、本仮設タンク水を5,6号機タービン建屋滞留水と同様に淡水化処理(RO)を行うため、6号機北側にあるFエリアタンクへ移送を開始。なお、本移送は8月下旬までの日中時間帯に行う予定。

<4. 水処理設備および貯蔵設備の状況> (8/26 7:00 時点)

設備	セシウム 吸着装置	第二セシウム 吸着装置 (サリー)	除染装置	淡水化装置 (逆浸透膜)	淡水化装置 (蒸発濃縮)
運転状況	停止中	運転中*	停止中	水バランスをみて 断続運転	水バランスをみて 断続運転

^{*}フィルタの洗浄を適宜実施。

^{※8/24 10:05、3}号機タービン建屋地下から集中廃棄物処理施設(雑固体廃棄物減容処理建屋[高温焼却炉建屋])への溜まり水の移送を1台運転から2台運転とするため一旦、移送を停止。その後、10:38 に同建屋への移送を再開。

[・]H23/6/8~ 汚染水・処理水を貯蔵・保管するための大型タンクを順次輸送、据付。

- ・H25/3/30 9:56~ 多核種除去設備(ALPS)の3系統(A~C)のうちA系統において、水処理設備で処理した廃液を用いた試験(ホット試験)を開始。なお、6/15 に発生したバッチ処理タンクからの水漏れの対応のため、ホット試験を中断中。8/6、多核種除却設備A系の吸着塔(6A)の吸着材を抜き取り、内部点検を行ったところ、フランジ面のすき間腐食と、吸着塔内溶接線近傍に腐食に起因すると推定される変色を確認。今後、腐食が確認された原因および影響範囲を評価するため、継続して調査を実施。
- •H25/6/13 9:49~ 多核種除去設備(ALPS)の3系統(A~C)のうちB系統において、水処理設備で処理した廃液を 用いた試験(ホット試験)を開始。
- H25/8/8 12:55~ 6/15 に多核種除去設備A系で発生したバッチ処理タンクからの水漏れについて、現在A系で実施している腐食防止対策をB系でも実施するため、同設備B系を停止。
- ・H25/7/22 5:00 頃 淡水化装置(逆浸透膜式)3-1 の高圧ポンプ付近で油が漏えいしていることを協力企業作業員が発見。当該ポンプを停止し、漏えいが停止していることを確認。漏えいした油は潤滑油で、漏えい量は約1.5 リットル(約1.5m×約1m×約1mm)で、堰のあるコンクリート床面にとどまっている。また、同日5:45 に富岡消防署へ連絡。なお、漏えいした油については、同日11:30 頃、拭き取りを完了。その後、現場調査の結果、原因は当該高圧ポンプ潤滑油の劣化等によりポンプ駆動部が加熱し、その影響で給油キャップおよび油ゲージが変形したことにより油漏れが発生したものと推定。今後、当該ポンプを新品に交換するとともに、同型のポンプである他の高圧ポンプ3台については潤滑油交換を行った上で試運転を実施し、運転状態に異常がないことを確認する。また、高圧ポンプの潤滑油について点検・交換を適切な時期に実施する。なお、現場調査の中で漏れた油の量を再確認したところ約8リットル(約2.5m×約1m×約3mm)であった。
 - 7/23 淡水化装置(逆浸透膜式)3-3、3-4の高圧ポンプの潤滑油交換を行った上で、11:30 から 14:45 に試運転を実施し、異常がなかったことから運用を開始。
 - 8/26 淡水化装置(逆浸透膜式)3-2 の高圧ポンプの潤滑油交換および 3-1 の当該ポンプの新品への 交換完了に伴い、9:20 から 13:15 に試運転を実施。運転状態に異常がないことから運用を開始。

<5. その他>

- ・H23/10/7~ 伐採木の自然発火防止や粉塵飛散防止のため、5,6号機滞留水の浄化水を利用し、散水を適宜実施中
- ・H24/4/25~ 地下水による海洋汚染拡大防止を目的として、遮水壁の本格施工に着手。
- ・H25/7/9 10:25~ 1号機サプレッションチェンバ内残留水素の排出、およびサプレッションチェンバ内の水の放射線 分解による影響を確認するため、サプレッションチェンバ内への窒素ガス封入を再開。
- ・H25/7/25~8/23 3号機原子炉建屋1階南西エリアにおいて、遠隔操作重機によるがれきなど障害物の撤去作業を 実施。
- ・H25/8/19 10:04頃、免震重要棟前に設置している連続ダストモニタで放射能濃度が高いことを示す警報(放射能高高警報)が発生。そのため、同日 10:15 に発電所内の全面(半面)マスク着用省略可能エリアでのマスク着用を指示。
 - 8/23 連続ダストモニタの放射能高高警報が発生した原因調査のため、3号機原子炉建屋上部瓦礫撤去作業を実施していない状況で、3号機原子炉建屋上部における空気中の放射性物質(8/22採取)の核種分析を実施。分析の結果、3号機原子炉上西南西側において2回測定したうちの1回目の下方向で採取した1試料において、下記の通り過去の値に比較して若干高い値を検出。その他の分析結果については過去の変動範囲内であることを確認。

<3号機原子炉建屋上部[原子炉上 西南西側(下方向)]>

- ・8/22 11:35~12:05(採取時刻) セシウム 134:1.2×10⁻³Bq/cm³ セシウム 137:2.6×10⁻³Bq/cm³
- ・H25/8/19 9:50 頃、当社社員が、汚染貯蔵タンクエリアのパトロールを実施していたところ、H4エリアの堰内には1~2 cm程度の水溜まりがあり、堰のドレン弁の外側に約3m×約3m×約1cm と約 0.5m×約 6m×約1cm の水溜まりを確認。なお、汚染した水の発生源は特定できていないものの、汚染水を貯留しているタンク周辺の堰内に溜まっていた水がドレン弁を通じて堰外へ漏えいしたこと、タンクに貯留した水がタンクから漏えいしたことが否定できないこと、および堰外に漏えいした水溜まりにおいて高いベータ線、ガンマ線が検出されたことから、14:28 に法令に該当する漏えいと判断。その後、同日 19:00 から堰内に溜まっている水の回収作業を開始。水の回収については、仮設ポンプにて仮設タンクに汲み上げるとともに、堰内に吸着材を設置。8/20 0:00 までに回収された水は約4m³。
 - 8/20 7:00 頃、同エリア内のIグループNo. 5タンク近傍の底部で水の広がりがあることから、当該タンクの水位を確認した結果、タンク上部から3m40cm 程度まで低下していることを確認。近接するタンクの水位は上部から50cm程度であることから、現時点で約3m水位が低下していることを確認。なお、約3mの水位低下分

の水量は、約 300m³。漏えいしたと思われる水については、堰内の水は一部回収を実施しているが、ドレン弁を通して堰外へ出ていると思われることから周辺の土壌の回収を行うとともに広がりの範囲について引き続き調査を実施。

21:55から No.5タンク内の水および仮設タンクに回収していた水(堰内に溜まっていた水)を同エリア内のBグループNo.10タンクへ移送を開始。8/21 21:13、No.5タンク内の水の移送を終了。8/22 15:00、仮設タンクに回収していた水の移送を完了。

- 8/21 H4エリアタンクの東側にある排水路の壁面において筋状の流れた痕跡が確認されたことから、当該部の表面線量当量率を測定した結果、最大で 6.0mSv/h(γ + β 線(70 μ m線量当量率))であることを確認。このことから、汚染した土砂等が排水路に流れた可能性があるとし、今後、詳細な調査および評価を行う。なお、今回の漏水発見当時においては、当該排水路近傍の地表面で水が流れていないことを確認。
- 8/22 11:00 から 15:00 頃にかけて、漏えいしたタンクと同様のフランジ型の他エリアのタンクについて総点検(外観点検、線量測定)を実施。タンクおよびドレン弁の外観点検において、漏えい及び水溜まりは確認されなかったが、H3エリアのタンク周辺において、部分的に線量が高い箇所(2箇所)を確認。なお、当該箇所は乾燥しており、堰内および堰外への流出は確認されなかった。また、当該タンクの水位は受け入れ時と変化がないことを確認している。

[高線量箇所及び表面線量当量率測定結果(γ + β 線(70 μ m線量当量率))、水位レベル]

- ・H3エリアBグループ No.4 タンク底部フランジ近傍:100mSv/h、水位レベル約 97%
- ・H3エリアAグループ No.10 タンク底部フランジ近傍:70mSv/h、水位レベル約 95%

上記以外のタンク及びドレン弁については、高線量の箇所は確認されていない。

8/25 漏えいが発生したH4エリア内のH4エリア I グループ No.5タンクについて確認を行っていたところ、当該タンク含む3基(H4エリア I グループ No.5タンク、H4エリア I グループ No.10タンク、H4エリア II グループ No.3タンク)が当初H1エリアに設置されていたこと、H1エリアで当該タンクが設置された基礎で、地盤沈下が起こったため、H2エリアに設置する計画であったが、実際には、H4エリアに設置されていることが判明。No.5タンクからの水漏れと、H1エリアの基礎が地盤沈下した際に設置していた経過があることの因果関係は不明であるが、漏えいリスクの低減対策として、8/25 15:57 よりH4エリア I グループ No.10 タンクから、H4エリア B グループ No.10 タンクへの移送を開始。今後、H4エリア II グループ No.3タンク内の水移送についても実施予定。

今回のタンクからの漏えいを踏まえ、以下の場所で水を採取し、核種分析を実施(8/23,24,25 採取)。分析結果は、前日(8/22 採取)の測定結果と比較して大きな変動はない。至近の分析結果は以下のとおり。

<福島第一南放水口付近海水(排水路出口付近)>

(採取日時:8/25 11:05)

セシウム 134: 検出限界値未満【検出限界値:1.2 Bq/L(1.2×10⁻³[Bq/cm³])】 セシウム 137: 検出限界値未満【検出限界値:1.5 Bq/L(1.5×10⁻³[Bq/cm³])】 全ベータ : 検出限界値未満【検出限界値:18 Bq/L(1.8×10⁻²Bq/cm³])】

<B-C排水路合流地点前(合流地点の上流側)>

(採取日時:8/25 11:20)

セシウム 134: 検出限界値未満【検出限界値:19 Bq/L(1.9×10⁻²[Bq/cm³])】 セシウム 137: 検出限界値未満【検出限界値:27 Bq/L(2.7×10⁻²[Bq/cm³])】 全ベータ :150 Bq/L(1.5×10⁻¹[Bq/cm³])

・H25/8/24 13:00 頃、2号機において原子炉格納容器の圧力低下および原子炉格納容器ガス管理システムの排気流量の減少傾向を確認したことから、原子炉格納容器ガス管理システム等の現場確認を実施。確認の結果、当該システムの系統入口側に設置されている排水ラインのUシール部*に空気の流れが確認されたことから、Uシール上流側にある弁を 10:40 に閉止して、状況の監視を継続。

弁閉止操作後、15:00 時点で、原子炉格納容器の圧力および原子炉格納容器ガス管理システムの排気流量についていずれも上昇傾向となっており、引き続きパラメータの監視を実施していく。なお、本件に伴うモニタリングポストの指示値に有意な変動はなく、あわせて念のため排水ラインUシールの出口部にあたるタービン建屋1階のダスト測定を実施し、異常がないこと(検出限界値未満)を確認。

<2号機原子炉格納容器圧力の推移>

 •8/23 23:00
 :13.19Kpa g

 •8/24 11:40 (弁閉止操作後)
 : 6.62Kpa g

 •8/24 15:00
 : 7.18Kpa g

<2号機原子炉格納容器ガス管理システムの流量の推移>

•8/23 23:00 :16.03Nm3/h •8/24 11:40 (弁閉止操作後) :12.66Nm3/h ·8/24 15:00

- :12.66Nm3/h
- *Uシール部:ガス管理システムと外気を隔離しつつ系統内のドレン水を自動排水するための構造。 ラインをU形状に保持し、U部の封水により系統の内外を隔離するもの。
- ・H25/8/24 14:54 頃、ろ過水タンクから4号機原子炉ウェルへの水張り作業中に、当社社員が3・4号機開閉所前において、水漏れを発見。その後、移送ポンプを停止し、漏えいが止まったことを確認。漏えいした水はろ過水で、原因等については調査中。漏えい量は、ろ過水タンクの水位からの換算で、約8m³と推定。プラントデータ(炉注水流量、燃料プール水温等)の異常、モニタリングポスト指示値の有意な変動は確認されていない。
- ・H25/8/24 16:29 頃、正門連続ダストモニタが高圧電源単体異常を示す警報が発生し、停止。正門連続ダストモニタ については2台あり、1台は正常に作動しており、数値についても問題なし。なお、装備等については、発 電所内の全面(半面)マスク着用省略可能エリアでのマスク着用を指示しており、影響はない。8/25 12:20、 予備品と交換し、復旧。

【タービン建屋東側の地下水調査状況について】

•1~4号機タービン建屋東側に観測孔を設置し採取した地下水を分析したところ、1,2号機間の観測孔 No.1 において、トリチウムおよびストロンチウムが高い値*で検出。今後も引き続き採取分析を行い、監視強化を実施。

※ トリチウム:4.6×10⁵~5.0×10⁵Bq/L(採取日:5/24、5/31、6/7) ストロンチウム 90:1×10³Bq/L(採取日:5/24)

- •H25/8/9 14:10~ 1・2号機タービン建屋東側に設置した集水ピット(南)から地下水をくみ上げ、2号機立坑Cへの移送を開始。
 - 8/15 11:35~ 1・2号機タービン建屋東側に設置したウェルポイント(バキュームによる強制的な揚水設備)の1箇所から地下水を汲み上げ、2号機立坑Cへの移送を開始(移送において漏えい等の異常がないことを確認)。その後、8/16 11:10 に 12 箇所、8/17 11:05 に9箇所、8/21 14:10 に1箇所、8/23 8:20 に4箇所を追加し、予定していた 28 箇所すべてのウェルポイントから地下水を汲み上げ、2 号機立坑Cへの移送を実施。
 - 8/22 14:55 2号機タービン建屋東側に設置されている2号機分岐トレンチ(立坑Bおよび電源ケーブルトレンチ)の閉塞を行うため、当該トレンチ内に滞留している汚染水を2号機タービン建屋へ移送開始。 8/24 13:16 移送を停止(移送終了)。
 - 8/24 13:55 ウェルポイントから汲み上げた地下水の移送先について、2号機立坑Cより2号機タービン建屋へ 切替を実施。

【移送量*: 8/26 16:00 時点までの立坑Cおよび2号機タービン建屋への移送量は約 893m³。】 *集水ピット(南)およびウェルポイントの総量

【地下貯水槽からの漏えいに関する情報および作業実績】

・H25/7/1 に地下貯水槽の汚染水は全て移送を終了しているが、拡散防止対策およびサンプリングは継続実施中。

<拡散防止対策>

- ・地下貯水槽漏えい検知孔水(No.1 北東側、No.2 北東側、No.3 南西側)の全ベータ放射能濃度の低下が緩やかであることから、地下貯水槽 No.1~3にろ過水または淡水化装置(RO)処理水(全ベータ放射能濃度:約1×101Bq/cm³)を移送し希釈する処置を適宜実施。
- ○最新の希釈実績:地下貯水槽 No.1(6/19~) 8/3、約60m³のろ過水を注水。

地下貯水槽 No.2(6/27~) 8/1、約60m3のろ過水を注水。

地下貯水槽 No.3(7/24~) 8/12、約 107m3の当該地下貯水槽ドレン孔水(北東側)を注水。

- ※8/5 に約 60m³、8/11 に約 51m³、8/12 に約 107m³を希釈および地下貯水槽底面に作用する 水圧(揚圧力)の低減を目的に注水。
- ・8/24,25,26 地下貯水槽 No.1~3の漏えい検知孔内に漏えいした水を仮設地上タンクへ、地下貯水槽 No.1、No.2のドレン孔に漏えいした水を当該地下貯水槽内へ移送する処置を実施。

<サンプリング実績>

・8/23~25 地下貯水槽 No.1~7のドレン孔水(14箇所)、地下貯水槽 No.1~4,6の漏えい検知孔水(10箇所のうち2 箇所は試料採取不可)、地下貯水槽観測孔(22箇所)についてサンプリングを実施。分析結果については、 前回(8/22)実施したサンプリングの分析結果と比較して大きな変動は確認されていない。