野夕火	作美	美内容	これまで1ヶ月の動きと今後1ヶ月の予定	4月		5	月				6月	-	7月	8月 備
8	1. 発生量低 減対策の推進	持込抑制策の 検討	 (実績) ・運用開始準備 ・足場材貸出による再使用 (予定) ・足場材貸出による再使用 	23 35 枝枝 35 BD BD BD	》 る再使用					4	13 14 14 14 14 14 14 14 14 14 14 14 14 14		Φ Τ	■ * U) I) I) I) I) I) I) I) I) I) I) I) I I) I)
			 (実 績) ・固体廃棄物貯蔵庫第9棟にかかる建屋工事 躯体工事 	(송) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) (신) () () () () () () () () ()										・2015年7月17日 認可申請認可
		固体廃棄物貯 蔵庫の設置	内外装工事 (予定) ・固体廃棄物貯蔵庫第9棟にかかる建屋工事 躯体工事 内外装工事	固体廃棄物貯蔵属 躯体工事(地上1 ^現		5建屋工事								• 2018年1日:她
				作業内外装工事	躯体工事(找	屋階)								• 2018419 - 18
固体廃棄物の		覆土式一時保 管施設 3,4槽 の設置	 (実績) (予定) ・設置工事(3槽) ・設置工事(4槽) 	検 討 - 設 計 現 環 作 業										・2014年8月12日 づく事前了解 ・2015年11月13 (3槽) ・ガレキの発生量だ 槽の保管容量に満た 時中断。 再開時期は2018年
の保管管理、処理・処分試の保管管理、処理・処分試	2. 保管適正 化の推進	ー時保管エリ アの追設/拡 張	 (実績) ・伐採木一時保管槽の追設・拡張に向けた準備 ・伐採木一時保管槽への受入(枝葉) (予定) ・伐採木一時保管槽への受入(枝葉) ・伐採木一時保管槽蓋締め施工 	模 討 設 計 世 援 世 環 環 環 環 環 で 見 計 一 で し 記 計 一 で し 日 の 一 の し 日 の 一 の し 日 の 一 の し 日 の 一 の の 日 の 一 の の 一 の の 一 の の 一 の の 一 の の の の	槽への受入(支葉)		最新工程反映 (展新工程反映 (枝葉受入的	5月下旬→6月7	「旬)、新規追加			
Ē		推固体廃棄物 焼却設備	 (実績) ・停止 (A・B系) (予定) ・停止 (A・B系) ・処理運転 (A・B系) 	理 理 作業 (B系) 停止(定	期点検)							処理運転) ・【A系及びB系】 2017年2月12日: (エキスパンション 2017年6月中旬: #
			 (実績) ・建屋設計 ・機電設計 ・建築確認申請・審査 ・準備工事 (予定) ・機電設計 	楼 83 88 81 81 81 81 81 81 81 81 81 81 81 81										● ・2020年度上期: ・2017年4月11日
		·	 準備工事 仮設事務所設置、安全通路の整備等 掘削工事 	現 週 場 作 業	工程細分化 安全通路の整	備等							掘削コ	iā I
		除染装置 (AREVA) スラッジ	 (実績) ・調査内容検討 (予定) ・線量分布確認における準備作業 ・エリアの線量分布確認 ・データ解析・評価 	楼 調査内容検討 ¹ 22 ¹ 23 ¹								記載 デーー 線量分布確認 エリア級	の細分 夕解析 におけ 量分す	化 評価 する準備作業 5確認

放射性廃棄物処理・処分 スケジュール

東京電力ホールディングス株式会社 放射性廃棄物処理・処分 2017/5/25現在

分野名	括 り	作業内容	これまで1ヶ月の動きと今後1ヶ月の予定	23	4月	30	7	5.	月 ₄	21 28	4	6月	7	7) ± ¢	3 8F	∃(i
	保管管理計画	 瓦礫等の管理・発電所全体 から新たに放出される放射性物 質等による敷地境界線量低減 	(実績) ・一時保管エリアの保管量確認/線量率測定および集計 ・ガレキ等の将来的な保管方法の検討 ・ガレキ・伐採木の保管管理に関する諸対策の継続 (予定) ・一時保管エリアの保管量確認/線量率測定および集計 ・ガレキ等の将来的な保管方法の検討 ・線量低減対策検討 ・ガレキ・伐採木の保管管理に関する諸対策の継続	検討・設計 現場作業	ガレキ等の将 線量低減対策 一時保管エリ ガレキ・伐採	要来的な を検討 リアの保 、 木の保 、	 一時保管エリ! 保管方法の検討 管量確認、線量 管理に関する 	アの保管 す す 諸対策の#	 線量率集計 (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(線量率集計 ▶ ▶ ▶
固体廃棄物の保管管理、処理・処分計画	処理・処分	4.固体廃棄物の性状把握	(実 績) ・【研究開発】廃ゼオライト・スラッジ・ガレキ等の性状調査 ・ ・【研究開発】固体廃棄物のサンブリング・分析 ・ ・【研究開発】JAEAにて試料の分析(現場:JAEA東海等) ・ (予 定) ・ ・【研究開発】廃ゼオライト・スラッジ・ガレキ等の性状調査 ・ ・【研究開発】 DAEAにて試料の分析(現場:JAEA東海等) ・ ・【研究開発】 B本廃棄物のサンブリング・分析 ・ ・【研究開発】JAEAにて試料の分析(現場:JAEA東海等) ・	 使 討 ・ 設計 現 場 作業	【研究開発】廃せ 【研究開発】固体 固体廃棄物のサン 汚染水(原子が の分析(α核種	オライ 本廃棄 サプリン 炉 建 <i>B</i> 材	「ト・スラッジ」 加のサンプリン? ッグ 器留水、ALPS 線種、 r 核種)	・ガレキ等 グ・分析 処理水、水	の性状調査	如(吸着材等)		汚染水(PCV	滞留水、ALF	PSWE	■水等)	・多核種除去設 て順次試料を採 これまでの分析 ページにまとの分析 http://fukush atives/catO5/
	分計画	5. JAEA分析・研究施設の整備 (施設管理棟、第1棟、第2棟)	(実績) 施設管理棟建設工事 * ・第1棟建屋準備工事 * (予定) * ・施設管理棟建設工事 * ・第1棟建屋現地工事 * ・第1棟建屋現地工事 * ・第1棟建屋現地工事 * ・第1棟建屋現地工事 * ・第1棟建屋現地工事 * ・第1棟建屋現地工事 * ・ * * *	検討・設計 現場作業	施設管理棟建設」 第1棟建屋現地工 杭打準備作業	工事	杭工	· \$		新規追加(建設工事細分化)						2017年3月7 JAEA分析研究 実施計画変更認 (原規規発第1 [*] ・2017年度峻

- **凡 例** : 検討業務・設計業務・準備作業
- : 状況変化により、再度検討・再設計等が発生する場合
 - : 現場作業予定
- : 天候状況及び他工事調整により、工期が左右され完了日が暫定な場合
- : 機器の運転継続のみで、現場作業(工事)がない場合
 - : 1月以降も作業や検討が継続する場合は、端を矢印で記載
- こころの

红予定

東京電力ホールディングス株式会社 放射性廃棄物処理・処分 2017/5/25現在

瓦礫類・伐採木・使用済保護衣等の管理状況(2017.4.30時点)

	分類	保管場所	保管方法	エリア境界 空間線量率 (mSv/h)	保管量 [※]	1	前回報告比 ^{※2} (2017.4.27)	空 変 理	動 ^{※3} 由	エリア 占有率	保管量/保管容量 (割合)	トピックス		
		В	屋外集積	0.01	2,800	m ³	0 m	3 –	-	85 %			1	
		С	屋外集積	0.01未満	54,800	m ³	+500 m	3 12)3	87 %			1	
		F	屋外集積	0.01未満	6,400	m ³	0 m	3 –	-	85 %			1	
		J	屋外集積	0.01	4,300	m ³	0 m	3 _	-	53 %		 ・フランジタンク解体片 エリアPにて一時保管由 (2015年6月15日~) 	1	
	屋外集積 (01mSy/bN下)	Ν	屋外集積	0.01	4,500	m ³	0 m	3 _	-	45 %	147900 / 214300	2017年4月末時点で380基(コンテナ)保管。		
	(0,11100/112419)	0	屋外集積	0.01未満	31,600	m ³	+5,400 m	3 (4)	5	61 %	(69%)	・2017年4月3日より、新設エリアV追加、エリアJ・Oは保管容量増 hn.	1	
		Р	屋外集積	0.01	42,100	m ³	+200 m	3 (3	3)	66 %		200	1	
		U	屋外集積	0.01未満	0	m ³	-700 m	3 6	5	0%			1	
		V	屋外集積	0.01	1,400	m ⁴	+1,400 m	4 ④	5	23 %			1	
瓦		D	シート養生	0.01未満	2,600	m ³	0 m	3 _	-	58 %			1	
礫		E	シート養生	0.02	13,000	m ³	+100 m	3 (3	3)	81 %		・エリマいけ 東面留体 (ゴレフ笑) 及びエリア内配置教理に上り保管	1	
頖	シート養生 (01a,1mSy/h)	Р	シート養生	0.02	5,500	m ³	微増 m	3 _	-	62 %	30900 / 71000	「エッジアがは、単画解体(シレスキ)及びエッジア的配置主体により体質	1	
	(0,1/* 11130/11)	W	シート養生	0.05	9,000	m ³	-500 m	3 7	8	31 %	(44%)	・2017年4月3日より、新設エリアX追加、エリアDは保管容量増加。	1	
		Х	シート養生	0.01未満	800	m ⁵	+800 m	5 26	9	7%			1	
		L	覆土式一時保管施設	0.01未満	12,000	m ³	0 m	3 _	-	100 %				
	覆土式一時保管施設、	А	仮設保管設備	0.30	2,200	m ³	+200 m	3 (2)	31 %			r	
	仮設保管設備、容器	E	容器 ^{※4}	0.02	300	m ³	0 m	3 –	-	19 %	20800 / 27700	・主な瓦礫類は、1~3号機工事等で発生した瓦礫類。		
	(1~30mSv/h)	F	容器	0.01未満	600	m ³	0 m	3 –	-	99 %	(75%)			
		Q	容器	0.09	5,700	m ³	0 m	3 _	-	93 %			E	
	固体廃棄物貯蔵庫	固体廃棄物 貯蔵庫	容器 ^{※4}	0.02	8,300	m ³	+100 m	3 (2)	10	69 %	8300 / 12000 (69%)	・主な瓦礫類は、1~3号機工事等で発生した瓦礫類。	2	
		合計(ガ	しキ)		207,900	m ³	+7,500 m	3 _	-	64 %				
		G	屋外集積	0.01未満	7,100	m ³	+7,100 m	3 (1)	18 %				
		1	屋外集積	-	0	m ³	0 m	3 -	-	0%			₩ ● F	
伐	屋外集積 (幹・根・枝・葉)	Н	屋外集積	0.01未満	32,900	m ³	+18,200 m	3 1	5	77 %	79500 / 144500	・2017年4月3日より、新設エリアG(幹・根・枝・葉)追加、エリア Hは保管容量増加。	Š 🕺	
採		М	屋外集積	0.01未満	39,500	m ³	微増 m	3 _	-	88 %	(55%)			
木		V	屋外集積	0.01	0	m ³	-4,300 m	3	D	0%				
	一時保管槽	G	伐採木一時保管槽	0.01未満	8,500	m ³	0 m	3 –	-	65 %	19600 / 24900		0 7	
	(枝・葉)	Т	伐採木一時保管槽	0.01未満	11,100	m ³	0 m	3 _	-	94 %	(79%)		Õ ^濃	
		合計(伐	採木)		99,100	m ³	+21,000 m	3 _	-	59 %				
保護衣	屋外集積		容器	0.03	67,500	m ³	+700 m	3	2	95 %	67500 / 71200 (95%)	 ・2017年2月12日〜雑固体焼却設備点検停止中 ・使用済保護衣等焼却量 1519t(2017年4月末累積) ・焼却灰のドラム缶数 280本(2017年4月末累積) 	G	
合計(使用済保護衣等)		67,500	m ³	+700 m	3 _	-	95 %							
仮	瓦礫類	U(仮設分)	屋外集積		700	m ³	+700 m	3 6	5)			・タンク設置スペース確保に伴い、エリアしより持込み。		
設	伐採木(枝・葉)	V(仮設分)	屋外集積		4,300	m ³	+4,300 m	3	D			・伐採木のチップ化処理作業に伴い、エリアVより持込み。	Н	
合計(仮設運用エリア)			5,000	m ³	+5,000 m	3 _	-							

※1 端数処理で100m³未満を四捨五入しているため、合計値が合わないことがある。

※2 100m³未満を端数処理しており、微増・微減とは100m³未満の増減を示す。

※3 主な変動理由:①敷地造成関連工事 ②1~4号建屋周辺瓦礫撤去関連工事 ③タンク関連設置工事 ④焼却対象物の受入 ⑤実施計画変更認可により正式運用開始 ⑥タンク設置に伴い瓦礫の取出

⑦車両解体工事 ⑧エリア整理 ⑨一時保管エリアWから瓦礫の受入 ⑩水処理二次廃棄物(小型フィルタ等)の保管 ⑪チップ化処理のため伐採木の取出 ⑫使用済保護衣等の受入

※4 水処理二次廃棄物(小型フィルタ等)を含む。

水処理二次廃棄物の管理状況(2017.5.18時点)

-										_
分類	保管場所	種類		保管量		前回報告 (2017.4.2	比 7)	保管量/保管容量 (割合)	トピックス	固体廃棄物
		セシウム吸着装置使用済ベッセル		758	本	0	本			
		第ニセシウム吸着装置使用済ベック	セル	188	本	+2	本			
	使用済吸着塔 保管施設	冬枝種除土設備竿炉筒突架	既設	1,365	基	+8	基	3628 / 6239		Per-
		夕 恆裡际公設備守床自台站	増設	1,044	基	+16	基	(58%)	・ 收着塔一時保管施設の増容量が認可(2015年12月14日)	
水		高性能多核種除去設備使用済ベッセル	高性能	73	本	0	本			使用済セシ
処		多核種除去設備処理カラム	既設	9	塔	0	控			-
生		モバイル式処理装置等使用済ベッセル	191	本	+1	本				
一次廃棄物	廃スラッジ 貯蔵施設	廃スラッジ 濃縮廃液		597	m ³	0	m ³	597 / 700 (85%)	 ・除染装置の運転計画は無く、新たに廃棄物が増える見込みは無い。 ・準備が整い次第、除染装置の廃止について実施計画の変更申請を行う。 	使用済保調
	濃縮廃液タンク			9,379	m ³	+23	m ³	9379 / 10700 (88%)	・タンク水位の変動は、計器精度±1%の誤差範囲内。(現場パトロール異常なし) ・水位計0%以上の保管量:9279 [㎡] タンク底部〜水位計の保管量(DS):約100[㎡]	

0

MP-6

•

福島第一原子力発電所の固体廃棄物試料分析 (現状までの成果報告)

平成29年5月25日

技術研究組合 国際廃炉研究開発機構 / 日本原子力研究開発機構

本資料には、経済産業省平成25年度発電用原子炉等廃炉・安全技術基盤整備事業(事故廃棄物処理・処分概念構築に係る 技術検討調査)、平成25年度補正予算「廃炉・汚染水対策事業費補助金(事故廃棄物処理・処分技術の開発)」および平成26 年度補正予算「廃炉・汚染水対策事業費補助金(固体廃棄物の処理・処分に関する研究開発)」の成果の一部が含まれてい る。

概要

- 事故後に発生した固体廃棄物は、従来の原子力発電所で発生した廃棄物と性状が異なるため、廃棄物の処理・処分の安全性の見通しを得る上で性状把握が不可欠である。
- 処理・処分の技術検討のために、放射性核種による汚染の特徴 を明らかにする必要があり、瓦礫類や汚染水などの分析を継続している。
 - ◆ 処分の安全性を確保する上で重要と考えられる核種を対象 として、約70点/年の廃棄物試料を詳細分析してきている。
 - ◇ 分析結果は、廃棄物インベントリ(放射能量)評価、処理方法の検討、廃棄物の分類方法の検討などに順次活用している。
- ■平成29年(2017年)3月末までに得られたデータとその値に基づく 核種組成の傾向を報告する。

1

分析とその結果の利用についての流れ

互礫類、滞留水、水処理二次廃棄物等の分析試料を福島第一原子力 発電所から所外分析施設へ輸送し分析を行った。

分析試料 - 結果の発表に関する実績(2017年3月31日時点) -

分類		武料						
瓦礫類	原子炉建屋内	1号機 1•5階	瓦礫等	29				
		2号機 1・5階	瓦礫等	7				
		3号機 1階	瓦礫等	11				
		4号機使用済燃料プール	瓦礫	2				
	タービン建屋内	1号機 地下	スラッジ・砂	7				
	原子炉建屋周辺	1•3•4号機周辺	瓦礫	15				
	覆土式一時保管施設	第1·2槽	瓦礫	10				
汚染水	原子炉建屋内	2•3号機格納容器内	滞留水	4				
	タービン建屋内	1号機 地下	スラッジ・滞留水	6				
	集中廃棄物処理建屋内	地下	滞留水	12				
	処理装置	セシウム吸着装置(第二含む)	処理水	27				
		除染装置	処理水	3				
		淡水化装置 (RO)	処理水	2				
		蒸発濃縮装置	処理水	3				
		多核種除去設備(増設含む)	処理水	18				
水処理二次廃棄物	多核種除去設備(増設含む	;)	スラリー	6				
可燃物	保護衣等焼却灰		-	5				
土壌	土壌			6				
植物	伐採木	採木						
	立木	枝葉、落葉、表土		123				

原子炉・タービン建屋の分析状況(実績)

今後も継続して瓦礫等の分析を進める予定である。
 特に、格納容器内の固体試料については、内部の調査に合わせて採取できた場合に、入手、分析する予定である。原子炉建屋内の試料については、高線量環境下における採取方法を検討している。

原子炉・タービン建屋の汚染の傾向

■ 汚染の傾向を分析結果に基づいて推定した。今後、試料採取・分析を通じて検証を進めていくことが必要。

滞留水・処理水・水処理二次廃棄物の分析状況(実績)

今後も継続して汚染水と二次廃棄物の分析を進める予定である。 特に除染装置スラッジについては、採取方法を検討している。

* 図の出典:東京電力,福島第一原子力発電所水処理設備について,2015年1月15日,4/13の原子炉注水量は3機合計で212 m³/日.

滞留水・処理水・水処理二次廃棄物の汚染の傾向

■ 汚染の特徴を分析結果に基づいて推定した。今後、試料採取・分析を通じて検証を進めていくことが必要。

滞留水

- 集中廃棄物処理建屋滞留水では、¹³⁷Csと⁹⁰Sr 濃度が高く同程度であり、³H がこれらに次ぐ傾向にある。他のβ、α核種濃度はより低い。
 CsとSr 核種の濃度は時間とともに減少しているものの、減少の割合が小さくなっている。(参考資料7)
- タービン建屋滞留水は、汚染の度合いが号機により異なる傾向にある。(参考資料8図1)
- 2及び3号機の格納容器内滞留水では、下流(タービン建屋、集中廃棄物処理建屋)の滞留水に比べ、α核種の¹³⁷Csに対する放射能濃度 比が高い傾向にある。(参考資料8図2)

©International Research Institute for Nuclear Decommissioning

* 図の出典: 東京電力, 福島第一原子力発電所水処理設備について, 2015年1月15日. 4/13の原子炉注水量は3機合計で 212 m³/日.

土壌と植物の分析状況(実績)

今後土壌については、採取済みの試料を順次分析し、植物については、焼却処理後の焼却 灰を分析する予定である。

エリア	土壌*	植物(立木)						
		枝葉	落葉	表土				
А	0	3	2	3				
В								
С		3(草)		3				
D	1	3	3	6				
ш		1	1	1				
F	1	5	3	6				
G	0	1	1	1				
H	0	3	1	3				
Ι	1	3	2	6				
J	0	1	1	1				
K	1	1	1	1				
L	1	1	1	4				
М		1	1	1				
Ν	0	3	3	6				
0	0	3	3	6				
Р	1	2	2	2				
Q	0	1	1	1				
R	0	1	1	1				
S	0	1	1	3				
Т	0	1	1	1				

表土壌と植物の分析試料数

* エリア B、C、E、M はフェーシングなどの工事に伴い採取対象がない。

土壌・植物の汚染の傾向

■ 汚染の特徴を分析結果に基づいて推定した。今後、試料採取・分析を通じて検証を進めていく。

構内土壌(地表から0-5 cmの表土)*1

- ¹³⁷Csが主な核種であり、⁹⁰Sr、²³⁵U、²³⁸Uが全ての 試料で検出された。(図1)
- Uはその同位体組成から天然由来の影響が大きく、
 事故による影響は確認されていない。(図1)
- ²³⁸Pu濃度はほとんどが検出下限値未満あるいは 10⁻³ Bq/g 程度のごく低い濃度であった(環境のフォ ールアウト相当)。

図1 土壌の放射性核種濃度^{*1}

立木(枝葉、落葉、表土·腐葉土)^{*2}

- ¹³⁷Cs、⁹⁰Srの他に、原子炉建屋の近傍では³H、¹⁴C、⁷⁹Se が検出された(図2)。
- Dエリアの落葉とEエリアの表土からPu核種が検 出された(10⁻³ Bq/g 程度であり環境のフォールア ウト相当)。
- Cs 核種濃度は、枝葉に比べて落葉や表土(腐葉 土を含む場合がある)で高い傾向にある。

図2構内における立木(枝葉)中の放射能濃度分布*2

*1 廃炉・汚染水対策チーム会合/事務局会議(第40回)資料から引用。
 *2 廃炉・汚染水対策チーム会合/事務局会議(第16回)資料から引用。

まとめと今後の検討

- ◆ 種々の廃棄物のインベントリを推定するために、廃棄物・汚染物を分析し、放射性核種 濃度等のデータを蓄積する必要がある。また、分析データが得られない場合に、分析デ ータを補完するために汚染プロセスの推定が必要である。
- ◆ これまでに、汚染水、水処理二次廃棄物、瓦礫、焼却灰、土壌、植物を分析し、得られた分析データを基にして、汚染の核種組成が分かりつつある。
- ◆ しかしながら、高線量のために試料が採取できない領域があること、分析試料の代表 性を検討するために廃棄物の分類ごとに相当数の分析点数を要すること等の観点から、 さらなる試料の採取と分析が必要である。
- ◆ また、汚染プロセスの推定に関しては、これまでに得られた分析データのみでは、汚染 プロセスを推定するモデルの確立には不十分である。
- ◆ 今後の検討課題には次のことが挙げられる。
 - ◇ 分析データの蓄積のために、多数の正確な分析データを継続して得ていくことを 念頭に、高線量試料の採取・輸送方法の確立、分析方法の合理化が必要である。
 - ◆ 汚染プロセスを推定するためには、汚染の核種組成等の情報をもとにして汚染プロセスを仮定、モデルを検討して、分析データによってこれを検証する必要がある。

分析の方法

- 東京電力が採取した試料の一部を分析施設(原子力機構、NDC社、NFD社)に輸送し分析している。
- 研究施設等廃棄物の放射能分析に関する体系的な分析フローを適用し、分析している*。

廃棄物試料分析結果の報告状況

年度		試料	試料数	発表等
23 - 27	水処理設備 出入口水	 1~4号機タービン建屋滞留水等 滞留水(集中RW地下、高温焼却炉建屋地下) 淡水化装置濃縮水 処理水(セシウム吸着装置、第ニセシウム吸着装置、多核種除去設備) 	51	 http://www.tepco.co.jp/nu/fukushima-np/images/handouts_110522_04-j.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/120924/120924_01jj.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/130627/130627_02kk.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/131128/131128_01ss.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2015/pdf/0730_3_4c.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2016/pdf/0331_3_4f.pdf
	瓦礫	 1、2、3号機原子炉建屋内瓦礫 1、2号機原子炉建屋内ボーリングコア 1、3、4号機周辺瓦礫 覆土式一時保管施設で採取した瓦礫 1号機タービン建屋砂 	60	 http://www.meti.go.jp/earthquake/nuclear/pdf/130828/130828_01nn.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/150326/150326_01_3_7_04.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2015/pdf/0827_3_4c.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2016/pdf/0128_3_4d.pd http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2016/pdf/0128_3_4d.pd
	伐採木、立木、 落葉、土壌	 ・ 伐採木(枝、葉) ・ 構内各所の立木(枝葉)及び落葉、土壌 	128	 http://www.meti.go.jp/earthquake/nuclear/pdf/140130/140130_01tt.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/140227/140227_02ww.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/150326/150326_01_3_7_04.pdf
	水処理 二次廃棄物	• 多核種除去設備スラリー(既設、増設)	4	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2015/pdf/0827_3_4c.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2016/pdf/0128_3_4d.pdf
28	水処理 二次廃棄物	• 増設多核種除去設備スラリー	3	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2016/09/3-04-05.pdf
	瓦礫、スラッジ	 1号機タービン建屋内スラッジ 1号機原子炉建屋内瓦礫 	8 20	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2016/09/3-04-05.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2017/02/3-04-04.pdf
	水処理設備 出入口水	 滞留水(集中RW地下、高温焼却炉建屋地下) 処理後水(セシウム吸着装置、第ニセシウム吸着装置、多核種除去設備) 	4 20	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2017/03/3-04-03.pdf
	滞留水	 2、3号機PCV滞留水 1号機タービン建屋内滞留水 	4 6	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2017/02/3-04-04.pdf
	焼却灰	• 焼却灰(雑固体廃棄物焼却設備)	5	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osens uitaisakuteam/2017/03/3-04-03.pdf
	土壌	 構内の土壌 	6	 http://www.meti.go.jp/earthquake/nuclear/decommissioning/ committee/osensuitaisakuteam/2017/03/3-04-03.pdf
IR	ID (JAEA)			

参考資料3

IRID

((JAEA)

原子炉建屋内の瓦礫試料の分析データ

図 原子炉建屋内で採取された瓦礫試料に検出された核種の濃度(137Csに対するプロット)*1

核種の濃度は、137Csとの関係(相関)を見るために137Cs濃度に対してプロットし、直線を加えた。(以後の参考資料においても同様。)

1号機及び2号機の1階と5階、3号機1階で、¹³⁷Csのほか、³H、⁹⁰Sr、¹²⁹I等の核分裂生成物、²³⁸Pu等のα核種、¹⁴C、⁶⁰Co等の放射化生成物を検出した。

^{参考資料4}格納容器・使用済燃料プール内試料の分析データ

 2号機及び3号機の格納容器滞留水では、下流(集中廃棄物処理建屋のプロセス主建屋と高温焼却 炉建屋)の滞留水に比べて、Coやα核種の¹³⁷Csに対する放射能濃度比が高い傾向にある。(図1)
 4号機燃料プールでは、放射化生成物である⁶⁰Coの¹³⁷Csに対する放射能濃度比が原子炉建屋内 の他の試料と比べて大きい傾向にある。(図2)

*1 廃炉・汚染水対策チーム会合/事務局会議(第36回)資料から引用。
*2 廃炉・汚染水対策チーム会合/事務局会議(第2、29回)資料から引用して作成。

図 タービン建屋内のスラッジ試料に検出された核種の濃度(137Csに対するプロット)*1

表 タービン建屋地下滞留水中のスラッジ試料に検出された核種の濃度*2

		放射能濃度〔Bq/g〕									
試料名		試料名 ⁶⁰ Co		⁹⁰ Sr	²³⁵ U	²³⁸ U	²³⁸ Pu	U/U 哲景H			
		(約5.3年)	(約30年)	(約29年)	(約7.0×10 ⁸ 年)	(約4.5×10 ⁹ 年)	(約88年)	貝里儿			
フニッパン	LI-1TB5-1	< 1 × 10 ³	$(3.7\pm0.1) \times 10^{6}$	$(4.7\pm0.2) \times 10^4$	(1.5±0.1)×10 ⁻²	$(3.2\pm0.1) \times 10^{-1}$	$(1.1\pm0.3)\times10^{0}$	7.1 × 10 ⁻³			
ヘノック	LI-1TB5-2	$(3.1\pm0.4) \times 10^2$	$(3.7\pm0.1) \times 10^{6}$	$(7.1\pm0.2) \times 10^3$	$(9.2\pm0.5)\times10^{-3}$	$(2.1\pm0.1) \times 10^{-1}$	$(7.0\pm0.8) \times 10^{-1}$	6.9×10^{-3}			
滞留水中	LI-1TB5-7	< 2 × 10 ³	$(4.1 \pm 0.1) \times 10^5$	$(1.2\pm0.1) \times 10^{5}$	$(7.3\pm0.4) \times 10^{-3}$	(1.6±0.1)×10⁻¹	< 5 × 10 ⁰	6.9 × 10 ⁻³			
固形分	LI-1TB5-8	< 3 × 10 ³	$(2.1\pm0.1) \times 10^{6}$	$(1.4 \pm 0.1) \times 10^{5}$	$(5.0\pm0.3) \times 10^{-3}$	(1.0±0.1)×10⁻¹	< 5 × 10 ⁰	7.4 × 10 ⁻³			

- タービン建屋内は、原子炉建屋内に比べて⁹⁰Sr の¹³⁷Cs に対する放射能濃度比が高い傾向にある。 (図)
- タービン建屋の地下滞留水から沈降したスラッジは、Cs、Srやα核種を含む傾向にある。Uは、その 核種の比から天然Uの影響が大きい。(表)

IRID

原子炉建屋周辺瓦礫試料の分析データ

図 建屋周辺の瓦礫試料に検出された核種の濃度(137Csに対するプロット)*1

1及び3号機周辺の瓦礫は、汚染の核種組成が原子炉建屋内と似た傾向にある。4号機周辺の瓦礫は、90Srが似た傾向にある。

参考資料7

IRID

汚染水試料の分析データ(1)

図 汚染水試料に検出された核種の濃度の変化^{*1} (滞留水がセシウム吸着装置並びに第ニセシウム吸着装置の入口水となる)

集中廃棄物処理建屋滞留水では、¹³⁷Cs と⁹⁰Sr 濃度が高く同程度であり、³H がこれらに次ぐ傾向に ある。他のβ(¹²⁹I)、α 核種(²³⁸Pu)の濃度はより低い。Cs と Sr 核種の濃度は時間とともに減少して いるものの、減少の割合が小さくなっている。

汚染水試料の分析データ(2)

- タービン建屋滞留水は、汚染の度合いが号機により異なる傾向にある。15年9月以降では、1,2,3号機と比較し、3号機で¹³⁷Cs 濃度が高い。また、上流の格納容器滞留水と濃度が異なる傾向がみられる。(図1)
- 2及び3号機の格納容器内滞留水では、下流(タービン建屋、集中廃棄物処理建屋)の滞留水に比べ、α核種(²³⁸Pu)の¹³⁷Csに対する放射能濃度比が高い傾向にある。(図2)

IRID

汚染水試料の分析データ(3)

滞留水と処理した水(処理後水)の濃度を比べ、差が小さい場合にはその核種は吸着されていない ものと考えられる。⁶⁰Co、⁶³Ni、⁷⁹Se、¹²⁹I濃度は差が小さく、吸着材中の濃度は低い傾向にある。

	採取日			放射	放射能 濃度〔Bq/cm³〕							
試料名		³ Н	⁶⁰ Co	⁶³ Ni	⁷⁹ Se	⁹⁰ Sr	¹²⁹	¹³⁷ Cs				
		(約12年)	(約5.3年)	(約1.0x10 ² 年)	(約6.5×10 ⁴ 年)	(約29年)	(約1.6×10 ⁷ 年)	(約30年)				
集中RW地下高污	2011年11日1日	3.3×10^{3}	4.9×10 ⁰	6.3 × 10 ⁻¹	8.3 × 10 ⁰	2.9×10⁵	2.5×10⁻¹	7.4 × 10⁵				
染水(滞留水)	2011411510	$\pm 3 \times 10^{0}$	± 4 × 10 ⁻¹	±1×10⁻¹	±2×10 ⁻¹	$\pm 8 \times 10^{2}$	±2×10 ⁻³	$\pm 1 \times 10^{3}$				
セシウム吸着装置	2011年11日2日	4.0×10^{3}	7.4×10 ⁰	7.4 × 10 ⁻¹	2.5 × 10 ⁰	2.0 × 10 ⁵	2.7×10 ⁻¹	7.7×10^{0}				
処理後水(単独)	2011年11月0日	$\pm 3 \times 10^{0}$	$\pm 9 \times 10^{-2}$	±1×10⁻¹	$\pm 9 \times 10^{-2}$	$\pm 4 \times 10^{2}$	$\pm 3 \times 10^{-3}$	± 1 × 10 ⁻¹				
第ニセシウム吸着	2011年11日2日	3.3 × 10 ³	4.6×10⁻¹	~2 0×10-1	1.6 × 10 ¹	1.0 × 10⁵	1.3×10⁻¹	<2.7×10 ⁻¹				
装置処理後水	2011年11月0日	$\pm 3 \times 10^{0}$	$\pm 4 \times 10^{-2}$	<3.0×10 ·	±1×10 ⁻¹	$\pm 3 \times 10^{2}$	$\pm 1 \times 10^{-3}$	~2.7~10				
淡水化装置出口	2011年11日1日	3.9 × 10 ³	$< 6.0 \times 10^{-2}$	<2 1×10-1	8.1 × 10⁻¹	4.0 × 10 ¹	$<2.1 \times 10^{-2}$	<1.3×10 ⁻¹				
水	2011年11月1日	$\pm 3 \times 10^{0}$	SO.0A TO	~ 3.1 ~ 10	$\pm 3 \times 10^{-2}$	$\pm 8 \times 10^{-2}$	\$2.1410	\$1.5^10				
蒸発濃縮装置入	2011年11日1日	6.1 × 10 ³	1.4 × 10 ¹	1.1×10 ⁰	3.0×10^{0}	2.3×10 ⁴	1.8×10⁻¹	6.6×10 ⁰				
口水	2011年11月1日	$\pm 4 \times 10^{0}$	± 1 × 10 ⁻¹	±1×10 ⁻¹	$\pm 9 \times 10^{-2}$	$\pm 2 \times 10^{1}$	±2×10 ⁻³	$\pm 9 \times 10^{-2}$				
蒸発濃縮装置 出	2011年11日1日	5.4 × 10 ³	$< 6.1 \times 10^{-2}$	$< 3.2 \times 10^{-1}$	7.8 × 10⁻¹	3.5 × 10 ⁻¹	$<2.1 \times 10^{-2}$	<1 3×10 ⁻¹				
口水	2011年11月1日	$\pm 4 \times 10^{0}$	<u>\0.1\10</u>	~3.2×10	$\pm 3 \times 10^{-2}$	±9×10 ⁻³	~2.1~10	<1.3×10				
蒸発濃縮装置 濃	2011年11日3日	6.2×10^{3}	2.7×10 ⁰	<2 1×10-1	9.4 × 10 ¹	3.2 × 10 ³	1.3×10 ⁰	5.3×10^{1}				
廃水	2011年11月3日	$\pm 4 \times 10^{0}$	$\pm 5 \times 10^{-2}$	S. 1×10	$\pm 3 \times 10^{-1}$	$\pm 6 \times 10^{0}$	$\pm 3 \times 10^{-2}$	$\pm 2 \times 10^{-1}$				

表 セシウム吸着装置等の処理水試料中の核種濃度*1

滞留水と濃縮廃液(濃廃水)の濃度を比べ、79Seと129l濃度が滞留水よりも高い傾向にある。

- セシウム吸着装置の吸着材(ゼオライト)は、Cs 核種を含む一方で、⁶⁰Co、⁶³Ni、⁷⁹Se、¹²⁹I 濃度は ¹³⁷Cs に比べて低い傾向にある。
- 蒸発濃縮装置の濃縮廃液(濃廃水)は、⁷⁹Seと¹²⁹l 濃度が滞留水よりも高い傾向にある。

汚染水試料の分析データ(4)

表 除染装置処理水試料中の核種濃度*1 (除染装置はセシウム吸着装置処理水を処理する。)

	採取日		放射能 濃度〔Bq/cm³〕							
試料名		³ H	⁶⁰ Co	⁶³ Ni	⁷⁹ Se	⁹⁰ Sr	¹²⁹	¹³⁷ Cs		
		(約12年)	(約5.3年)	(約1.0x10 ² 年)	(約6.5×10 ⁴ 年)	(約29年)	(約1.6×10 ⁷ 年)	(約30年)		
セシウム吸着装置	2011年8月9日	6.0×10^{3}	1.7 × 10 ¹	1.5 × 10 ⁰	2.7×10 ⁰	1.2×10 ⁵	8.3×10 ⁻²	1.1 × 10 ⁴		
	2011-00101	$\pm 4 \times 10^{\circ}$	± 1 × 10 ^⁰	±1×10 ⁻¹	±9×10 ⁻²	$\pm 3 \times 10^{2}$	±2×10⁻³	$\pm 2 \times 10^{1}$		
除染生置机理後水	2011年8日0日	6.3×10^{3}	9.9 × 10 ⁰	4.4 × 10 ⁻¹	3.1 × 10 ⁰	1.2 × 10 ⁴	8.5×10 ⁻²	5.3 × 10⁻¹		
际未表直处理极小	2011-40790	$\pm 4 \times 10^{0}$	$\pm 9 \times 10^{-2}$	±1×10 ⁻¹	$\pm 8 \times 10^{-2}$	$\pm 2 \times 10^{1}$	$\pm 1 \times 10^{-3}$	$\pm 6 \times 10^{-2}$		

セシウム吸着装置処理後水と除染装置により処理した水(処理後水)の濃度を比べ、 差が小さい場合にはその核種はスラッジに含まれていないものと考えられる。⁶⁰Co、 ⁶³Ni、⁷⁹Se、¹²⁹I濃度は差が小さく、吸着材中の濃度は低い傾向にある。

除染装置のスラッジは、SrとCs 核種を含む一方で、⁶⁰Co、⁶³Ni、⁷⁹Se、¹²⁹I 濃度は ¹³⁷Cs や ⁹⁰Sr に比べて低い傾向にある。

汚染水試料の分析データ(5)

- 多核種除去設備スラリーは、⁹⁰Sr が主要核種であり、²³⁸Pu と²³⁹⁺²⁴⁰Pu 濃度は1 Bq/cm³ 未満である。
 (図1)
- 多核種除去設備吸着材は、チタン酸塩吸着材が Sr と Cs核種を含む一方で、⁶⁰Co と⁹⁹Tc 濃度は⁹⁰Sr や¹³⁷Cs に比べて低い傾向にある。(図2)

平成26年度補正予算「廃炉・汚染水対策事業費補助金」 (固体廃棄物の処理・処分に関する研究開発)

スラリー安定化技術の検討状況について

平成29年5月25日

技術研究組合 国際廃炉研究開発機構/株式会社アトックス

本資料には、平成26年度補正予算「廃炉・汚染水対策事業費補助金(固体廃 棄物の処理・処分に関する研究開発)」成果の一部が含まれている。

©International Research Institute for Nuclear Decommissioning

スラリーの特徴

既設ALPS前処理スラリー分析結果の例

項目	特徴						
	含水率	86.3 %					
物性	物性 pH 11.2						
初任	成分	CaCO₃とMg(OH)₂で、固形 分の約9割を占める					
粒度	平均径:3.62 μm						
粘度 (模擬スラリー の測定結果)	3.3Pa∙s						
放射能濃度 〔Bq/cm³〕	⁹⁰ Sr : 1.3 × 10 ⁷ ¹³⁷ Cs : 2.7 × 10 ² ⁶⁰ Co : 1.4 × 10 ²						

・分析値は粘度を除き、平成28年1月28日「汚染水処理二次廃棄物の放射能評価のための多核種除去設備スラリー試料の分析」(IRID/JAEA)より抜粋

下記のプロセスフローを想定し、主要なプロセスについて模擬スラリーを用いて確認

IRID

©International Research Institute for Nuclear Decommissioning

①安定化処理確認試験(1)

一般産業界で実績のある「円盤加熱乾燥」と「加圧圧搾ろ過」の実規模装置を用いて安定化処理確認試験を実施した。(平成28年4月28日報告済み)

処理技術	用いた処理装置	原理·特徴
円盤加熱 乾燥	CDドライヤ」による処理 回転円盤 スラリー供給ロ スラリー供給 乾燥物 排出	<原理> 〇ゆっくり回転している加熱円盤の表面にス ラリーを塗布し、一回転以内で乾燥させる。 円盤表面の乾燥物をスクレイパーで剥離し 粉末状で排出 〇分離水は蒸気として排出 く特徴> ・スラリーの粒径に関係なく処理が可能 ・スラリー供給時、粘度調整(希釈)が必要
加圧圧搾 ろ過	「フィルタプレス」による処理 フィルタプレス機 5布部 レージーンでは、5週物 非出	<原理> Oろ布によりスラリーをろ過し、さらに加圧し てろ過物を搾る。ろ過物は装置下部から固形 板状で排出 <特徴> ・処理速度が速い ・ろ布の洗浄が必要

IRID

①安定化処理確認試験(2)

模擬スラリーを用いた安定化処理確認試験により、固体状の脱水物(安定化物)が 得られることを確認した。(平成28年4月28日報告済み)

処理技術	得られた脱水物	脱水物性状
円盤加熱 乾燥	鉄共沈 炭酸塩	〇粉末状 〇加熱条件の設定で含水率を調整可能 (1%未満~20%程度) 〇含水率1%未満となると飛散しやすくなる 〇スラリー中の塩分は乾燥過程で脱水物 内に残存
加圧圧搾 ろ過	分4.097674885à: KK#E 皮酸塩 含水率: 50%未満	〇固形(板)状 〇含水率50%程度であっても、液等の浸み 出しは無い 〇スラリー中の塩分は大部分がろ液側に 排出

IRID

©International Research Institute for Nuclear Decommissioning

②抜出·移送確認試験

高粘性スラリーに適応できるポンプを用い、模擬スラリーを入れたHICからタンクへの 抜出・移送確認試験を実施した。吸込揚程と移送能力の結果より、HICからスラリーを抜 出・移送できることを確認した。(参考資料1)

HICからの抜出・移送確認試験

高粘性用ポンプ外観写真(例)

▶ 試験結果

- •吸込揚程:4.5m(最大)
- 移送能力:70L/min以上(HIC1本のスラリーを約1hで抜出)

③HIC洗浄確認試験

HIC内面の各所に模擬スラリーを塗布した試験片を設置し、高圧水発生装置と自動 回転洗浄ノズルを用いて洗浄試験を実施した。洗浄後のスラリーの残存状況から、ス ラリーを除去できることを確認した。(参考資料2)

・主成分の除去率: 炭酸塩(カルシウム、マグネシウム) 約97%
 : 鉄共沈(鉄) 約99%

①~③の試験結果をもとに、スラリー安定化処理設備の概念的な検討を行った。 各処理のイメージは下記の通り。(処理能力は参考資料3参照)

IRID

まとめ及び今後の課題

【まとめ】

スラリー安定化の処理プロセスを想定し、模擬スラリーを用いて 安定化処理(乾燥・ろ過)、抜出・移送、HIC洗浄の確認試験を実施 した。その結果、処理プロセスのうち、上記主要な3要素について 成立する可能性があることが分かった。

【今後の課題】

スラリー脱水物の特徴(放射能濃度が高い、水分を完全に除去 できない)を考慮し、保管を検討する上で、海外の知見も踏まえ水 素発生の評価・容器のベント機能について検討する必要がある。

抜出•移送確認試験

参考資料1

HICからの高粘性スラリーの抜出・移送については、装置規模を小さくできる上部からの吸出しによる方法で確認試験を実施し、成立性を確認することとした。ポンプは作業性・メンテナンス性等を考慮し、スラリー内に浸漬せず、HIC外に設置するものとした。

➤ 試験条件·内容

①選定ポンプ

ー般ホンプの中から粘性物の移送性能、耐摩耗性、耐腐食性、メンテナンス性等より、高粘性物移送に適応 できるポンプを選定した。(往復動式・ネジ式・偏心式の3機種を選定)

②使用模擬スラリー(高粘性)

福島第一多核種除去設備と同じクロスフローフィルタで作製した模擬スラリーは粘度3.3Pa・s(炭酸塩)だった ことから安全側の粘度4.0Pa・sの模擬スラリーとした。

③確認内容

ポンプ吸込み楊程を2.5~7.5m(1m毎)に変えて、下記のポンプ性能を確認した。

吸込揚程:2.5m以上(ポンプ設置可能位置【HIC高さ1.8m+作業床までの距離0.7m】を想定)

移送能力:70L/min以上(HIC3000本8400m3を2年間[400日×5h/日稼動]で抜出すとした場合の必要流量)

▶ 試験結果

試験項目	往復動式ポンプ	ネジ式ポンプ	偏心式ポンプ
吸込揚程(最大)	4.5m	4.5m	2.5m
移送能力(最大吸込揚程時)	73L/min	83L/min	236L/min

©International Research Institute for Nuclear Decommissioning

HIC洗浄確認試験

参考資料2

二次廃棄物となる空HICの線量低減を目的とした内部洗浄方法を検討し、洗浄効果の確認試験を実施した。

➤ 試験条件·内容

①試験片作製

高粘性スラリーを調製し、HIC容器の口10cm片に塗布し、垂直に立掛け一定時間経過後、自重により落ちたスラリーを除き試験片とした。

2洗浄試験

試験片をHIC容器の上部、側面等に設置し洗浄試験を実施した。

③試験片前処理

試験片表面の残留付着物を前処理(酸溶解)した。

④原子吸光分析

前処理した酸溶液を原子吸光分析し、洗浄後の残留成分を定量した。

▶ 試験結果

	スラリー付着量[ml/100cm ²]		スラリー	スラリー
	洗浄前	洗浄後	残存率*[%]	除去率*[%]
炭酸塩スラリー	0.6137	0.0186	3.03	97.0
鉄共沈スラリー	2.109	0.0021	0.10	99.9

※<残存率計算方法>

洗浄後付着量/洗浄前付着量×100(%) <除去率計算方法> 1-残存率(%)

▶ 洗浄確認試験での残存率より、HIC内部の床表面及び床から高さ1mの線量率を求めた。

HIC内言	平価点	洗浄前線量率 [mSv/h]	残存率 [%]	洗浄後線量率 [mSv/h]
ᆂᇓᇥᇥᆿᆖᇿ	床表面	4.89	3.03	0.148
火酸塩入フリー) — 床から高さ1m	1.94		0.0588
がまたってい	床表面	1.23	0.10	1.23E-03
武共沈入フリー	床から高さ1m	0.528	0.10	5.28E-04

©International Research Institute for Nuclear Decommissioning

スラリー安定化処理設備 概略性能

確認試験結果をもとにしたスラリー安定化処理設備の処理能力は以下のとおりである。

項目		乾燥処理	ろ過処理	
主要機器		円盤加熱型乾燥機(伝熱面積32m ²)×1台	加圧圧搾ろ過装置(ろ過面積60m ²)×1台	
目標含水率		5%以下	60%以下	
処理能力	処理スラリー量※1	炭酸塩:8.4m ³ /日 HIC 3本/日 鉄共沈:8.4m ³ /日 HIC 3本/日	炭酸塩:27.9m ³ /日 HIC 10本/日 鉄共沈:20.1m ³ /日 HIC 7本/日	
	保管容器発生量 ^{※2}	炭酸塩:18本/日 鉄共沈:11本/日	炭酸塩:62本/日 鉄共沈:34本/日	
	処理日数※3	1,000日/HIC3000本 (炭酸塩778日+ 鉄共沈222日、24h稼働)	327日/HIC3000本 (炭酸塩234日+ 鉄共沈93日、24h稼働)	

※1 HIC 1本2.8m³として算出

※2 遮へい付き200Lドラム缶(容積125L)に80%充填と仮定し、脱水物の嵩密度より算出 ※3 メンテナンス日数は含まず

