福島第一原子力発電所 プラント関連パラメータ

D +##	15	号機	2 -	号機	3 +	4号機		
亏懱	9月25日	10月30日	9月25日	10月30日	9月25日	10月30日	9月25日	10月30日
原子炉注水状況	給水系:2.5㎡/h CS系:1.9㎡/h (9/25 11:00 現在)	給水系:2.5㎡/h CS系:1.9㎡/h (10/30 11:00 現在)	給水系:1.8㎡/h CS系:3.4㎡/h (9/25 11:00 現在)	給水系:1.9㎡/h CS系:3.4㎡/h (10/30 11:00 現在)	給水系:1.8㎡/h CS系:3.4㎡/h (9/25 11:00 現在)	給水系:5.4㎡/h CS系:0.0㎡/h 6 (10/30 11:00 現在)		
原子炉圧力容器 底部温度	VESSEL BOTTOM HEAD (TE-263-69L1):32.4 原子炉 SKIRT JOINT 上部 (TE-263-69H1):32.5 VESSEL DOWN COMMER (TE-263-69G2):32.4 (9/25 11:00 現在)	VESSEL BOTTOM HEAD (TE-263-69L1):28.4 原子炉 SKIRT JOINT 上部 (TE-263-69H1):28.5 VESSEL DOWN COMMER (TE-263-69G2):28.4 (10/30 11:00 現在)	VESSEL WALL ABOVE BOTTOM HEAD (TE-2-3-69H3):43.0 R P V温度 (TE-2-3-69R):41.4 (9/25 11:00 現在)	VESSEL WALL ABOVE BOTTOM HEAD (TE-2-3-69H3): 37.5 R P V温度 (TE-2-3-69R): 35.3 (10/30 11:00 現在)	RPV下部ヘッド温度 (TE-2-3-69L1):42.6 スカートジャンクション上部温度 (TE-2-3-69F1):41.8 RPV底部ヘッド上部温度 (TE-2-3-69H1):37.3 (9/2511:00現在)	RPV下部ヘッド温度 (TE-2-3-69L1):37.2 スカートジャンクション上部温度 (TE-2-3-69F1):36.6 RPV伝部ヘッド上部温度 (TE-2-3-69H1):33.1 (10/30 11:00 現在)		
原子炉格納容器 内温度	HVH-12A RETURN AIR (TE-1625A): 33.1 HVH-12A SUPPLY AIR (TE-1625F): 32.1 (9/25 11:00 現在)	HVH-12A RETURN AIR (TE-1625A):29.1 HVH-12A SUPPLY AIR (TE-1625F):28.0 (10/30 11:00 現在)	RETURN AIR DRYWELL COOLER (TE-16-114B):42.9 SUPPLY AIR D/W COOLER HVH2-16B (TE-16-114G#1):43.2 (9/25 11:00 現在)	RETURN AIR DRYWELL COOLER (TE-16-114B): 37.6 SUPPLY AIR D/W COOLER HVH2- 16B (TE-16-114G#1): 37.8 (10/30 11:00 現在)	格納容器空調機戻り空気温度 (TE-16-114A):40.4 格納容器空調機供給空気温度 (TE-16-114F#1):39.6 (9/2511:00現在)	格納容器空調機戻り空気温度 (TE-16-114A):35.5 格納容器空調機供給空気温度 (TE-16-114F#1):34.1 (10/30 11:00 現在)	-	-
原子炉格納容器 圧力	105.3kPa abs (9/25 11:00 現在)	106.2kPa abs (10/30 11:00 現在)	8.03kPa g (9/25 11:00 現在)	11.50kPa g (10/30 11:00 現在)	0.23kPa g (9/25 11:00 現在)	0.22kPa g (10/30 11:00 現在)		
窒素封入流量 1	RPV:27.93N㎡/h PCV:-N㎡/h 2 (9/25 11:00 現在)	RPV:28.19Nm [*] /h PCV:-Nm [*] /h 2 (10/30 11:00 現在)	RPV:15.45N㎡/h PCV:-N㎡/h 2 (9/25 11:00 現在)	RPV:15.82N㎡/h PCV:-N㎡/h 2 (10/30 11:00 現在)	RPV:16.40N㎡/h PCV:-N㎡/h 2 (9/25 11:00 現在)	RPV:16.80N㎡/h PCV:-N㎡/h 2 (10/30 11:00 現在)		
原子炉格納容器 水素濃度 3	A系:0.02vol% B系:0.06vol% (9/25 11:00 現在)	A系:0.05vol% B系:0.05vol% (10/30 11:00 現在)	A系:0.04vol% B系:0.04vol% (9/25 11:00 現在)	A系:0.04vol% B系:0.04vol% (10/30 11:00 現在)	A系:0.08vol% B系:0.10vol% (9/25 11:00 現在)	A系:0.10vol% B系:0.09vol% (10/30 11:00 現在)		
原子炉格納容器 放射能濃度 (Xe135)	A系:2.04E-03Bq/cm ³ B系:1.80E-03Bq/cm ³ (9/25 11:00 現在)	A系:1.70E-03Bq/cm [*] B系:1.52E-03Bq/cm [*] (10/30 11:00 現在)	A系:- 5 B系:ND(2.1E-01Bq/c㎡以下) (9/25 11:00 現在)	A系:ND(2.2E-01Bq/c㎡以下) B系:ND(2.1E-01Bq/c㎡以下) (10/30 11:00 現在)	A系:ND(3.2E-01Bq/c㎡以下) B系:ND(3.3E-01Bq/c㎡以下) (9/25 11:00 現在)	A系:ND(3.2E-01Bq/c㎡以下) B系:ND(3.2E-01Bq/c㎡以下) (10/30 11:00 現在)		
使用済燃料 プール水温度	27.0 (9/25 11:00 現在)	20.5 7 (10/30 5:00 現在)	24.9 (9/25 11:00 現在)	19.3 (10/30 11:00 現在)	23.6 4 (9/24 5:00 現在)	18.7 (10/30 11:00 現在)	31 (9/25 11:00 現在)	26 (10/30 11:00 現 在)
FPC スキマサージタンク 水位	4.57m (9/25 11:00 現在)	4.04m 7 (10/30 5:00 現在)	4.16m (9/25 11:00 現在)	3.31m (10/30 11:00 現在)	4.23m 4 (9/24 5:00 現在)	4.82m (10/30 11:00 現在)	41.45×100mm (9/25 11:00 現在)	37.68×100mm (10/30 11:00 現 在)

1:使用状態の温度・圧力で流量補正した値を記載する。

2:窒素封入停止中

3:指示値がマイナスの場合は0.00vol%と記載する。(水素濃度が極めて低い場合は、計器精度によりマイナス表示される場合があるため)

4:3号機使用済燃料プール代替冷却システム停止中の為、3号機使用済燃料プール水温度とFPCスキマサージタンク水位に関しては

至近のデータを記載。なお、使用済燃料プールの温度上昇率は0.131 /h程度と評価。

5:計器校正作業に伴いデータ欠測。

6:作業に伴い原子炉注水流量変更中

7:1号機使用済燃料ブール代替冷却システム停止中の為、1号機使用済燃料プール水温度とFPCスキマサージタンク水位に関しては

至近のデータを記載。なお、使用済燃料プールの温度上昇率は0.069 /h程度と評価。

注水冷却を継続することにより、1~3号機の原子炉圧力容器底部温度、格納容器気相部温度は、号機や温度計の位置によって異なるものの、 至近1ヶ月において、約30 ~約60 で推移。

格納容器内圧力や格納容器からの放射性物質の放出量等のパラメータについては有意な変動はなく、冷却状態の異常や臨界等の兆候は確認 されていない。

以上より、総合的に冷温停止状態を維持しており、原子炉が安定状態にあることを確認。

1 1 1 1

11/3

1 1 1 1

1 1 1

1.1

1 1 1 1

1 1 1 1

1 1 1 1

11/3

2号機 原子炉圧力容器まわり温度(7/26~10/30)

2,3号機タービン建屋及びプロセス主建屋,高温焼却炉建屋の水位グラフ

処理装置の稼働状況

東京電力株式会社 平成25年10月31日

稼働率(処理量) *1	約	19%				
稼働率(時間)*1	約37%					
累積処理量	約782	,760m ³				
*1 H25.10.307時時点 (並列運転における第二セシ 運転時間は除く)	′ウム吸着装置処理ź	分、				
核種	試料湯	農度 *2				
プロセス主建屋	5.5E+04 Bq/c	m ³ (7/9採取)				
セシウム吸着装置出口	5.2E+00 Bg/cm ³ (7/9採取)					
高温焼却炉建屋	3.8E+04 Bq/cm ³ (10/8採取)					
第二セシウム吸着装置出口	1.1E+00 Bq/cm ³ (10/8採取)					
*2 表記はCs-137のデータ						
	RO処理前	RO処理後				
塩素濃度 *3	300ppm	3ppm				
*3 10/8の採取データ						
	蒸発濃縮処理前	蒸発濃縮処理後				
塩素濃度 *4	6,900ppm	2ppm				
*4 H23/12/20の採取データ	1					

各エリア別タンク一覧

1~4号機用汚染水貯蔵タンク

エリア	基数	1基あたり 容量(公称) 〔m3〕	タンク型	貯蔵水	備考
В	5	450	鋼製円筒型タンク(フランジ接合)	淡水	
	15	300	鋼製円筒型タンク(フランジ接合)	淡水	
С	26	40	鋼製角型タンク(溶接)	濃縮塩水	
	52	40	鋼製角型タンク(溶接)	淡水	
	13	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	
D	6	16	鋼製角型タンク(溶接)	淡水	
	19	35	鋼製角型タンク(溶接)	淡水	
	114	42	鋼製角型タンク(溶接)	淡水	
E	49	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	
G1	72	100	鋼製横置きタンク(溶接) 土中埋設	淡水	
G3	<u>44</u>	1000	鋼製円筒型タンク(溶接)	多核種除去設備 処理済水	設置済みの44基の内、10基は運用前
	<u>26</u>	1000	鋼製円筒型タンク(溶接)	濃縮塩水	<u>G3エリア70基中、26基について、用途を濃縮</u> <u>塩水用とした</u>
G4	<u>19</u>	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	19基設置完了、内3基は運用前
G6	37	500	鋼製円筒型タンク(フランジ接合)	濃縮塩水	漏えいが確認されたため、1基使用停止 38-1=37
H1	170	120	鋼製横置きタンク(溶接)	濃縮塩水	
	12	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	
H2	100	100	鋼製横置きタンク(溶接)	濃縮廃液	
	28	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	
H3	10	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	高線量箇所が確認されたため、1基使用停止 11-1=10
H4	20	500	鋼製円筒型タンク(フランジ接合)	濃縮塩水	
	33	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	漏えいが確認されたこと等から、2基使用停止 35-2=33
H5	31	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	00 2-00
H6	24	1000	鋼製円筒型タンク(フランジ接合)	濃縮塩水	
H8	16	1000	鋼製円筒型タンク(溶接)	濃縮塩水	
H 9	12	1000	鋼製円筒型タンク(フランジ接合)	淡水	
ALPS	4	1000	鋼製円筒型タンク(フランジ接合)	多核種除去設備 処理済水	
水処理	1	8000	No.1ろ過水タンク	濃縮塩水	側板の一部に変形が認められたため、耐震 評価を行い貯水限度を4600m ³ とした。
合計	<u>958</u>				(平成25年10月29日現在) 下線部は前回報告からの変更点

高濃度滞留水受けタンク

G 1	28	100	鋼製横置きタンク(溶接)	土中埋設	高濃度滞留水	非常用の受けタンクであり、現在未使用		
地下水	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー							
H 3	9	1000	鋼製円筒型タンク(フラン)	· ジ接合)	地下水			

5,6号機用汚染水貯蔵タンク

エリア	基数	1基あたり 容量(公称) 〔m3〕	タンク型	貯蔵水	備考
F	6	35	鋼製角型タンク(溶接)	5,6号機滞留水	
	6	42	鋼製角型タンク(溶接)	5,6号機滞留水	
	4	110	鋼製角型タンク(溶接 + フランジ接合)	5,6号機滞留水	
	5	160	鋼製円筒型タンク(フランジ接合)	5,6号機滞留水	
	2	200	鋼製円筒型タンク(フランジ接合)	5,6号機滞留水	
	3	299	鋼製円筒型タンク(フランジ接合)	5,6号機滞留水	
	18	508	鋼製円筒型タンク(フランジ接合)	5,6号機滞留水	
	1	600	鋼製円筒型タンク(フランジ接合)	5,6号機滞留水	総数9基、内8基移設のため解体中 9-8=1
	5	1100	鋼製円筒型タンク(溶接)	5,6号機滞留水	
H4	3	1100	鋼製円筒型タンク(フランジ接合)	5,6号機滞留水	
合計	53				(平成25年10月29日現在)

(平成25年10月29日現在)

下線部は前回報告からの変更点

福島第一・1~3号機 原子炉格納容器内の冷却状態について

平成25年10月31日 東京電力株式会社

原子炉の冷却状態と監視概要

- 事故により炉心は溶融し,燃料デブリは RPV底部またはPCV底部に落下してい ると推定
 - 落下の過程で、その中間にある構造物に 付着している熱源も微量存在すると想定
- 炉心スプレイ系(CS系),給水系(FDW 系)からの注水によって熱源を冷却
 RPVへの注水により RPV内の熱源を冷却
 - RPV内の熱源の冷却に寄与した水は,損 傷したRPV底部からPCVに落下し,PCV 内の熱源を冷却

■熱源の冷却状態をRPV底部温度, PCV雰囲気温度によって監視

- ●RPV内の熱源の除熱した水の温度により近いと考えられるRPV底部温度
- ●PCV内の熱源により近いと考えられる,PCVの比較的下部の雰囲気温度
- ■その他RPV, PCV各部温度, 圧力等を補助的に監視

PCV内の冷却状態の監視

■ P C V 内の冷却状態の監視として,熱源により近いと考えられる, P C V の比較的下部の雰囲気温度を監視

●監視温度計としてΗVH温度を選定

- ■また,以下のパラメータも補助的に監視
 - P C V 上部に設置されている温度計(ベローシールなど)
 - 直接的にPCV内の温度を測定しているものではないが、PCV内に異常な 温度上昇があった場合に影響が想定される、ガス管理設備の排気温度
- ■さらに,信頼性向上対策として,PCV内への新設温度計の設置 も順次行ってきている(下表参照)

	1号	2号	3号				
PCV内 雰囲気温度 PCV内 滞留水温度	新設温度計設置済み (平成24年10月)	新設温度計設置済み (平成25年8月) 内部調査時に測定 (平成24年3月) 新設温度計設置を検討中 ¹	建屋除染完了次第 , PCV 内部調査を計画中 ²				

PCV内の滞留水温度

- ■1号機のPCV内の新設温度計のトレンドは下図(グラフ)の通り●滞留水温度は雰囲気温度よりやや高めを推移
 - 帯留水温度と雰囲気温度の挙動はほぼ同様の傾向を示している

■2号機はPCV内部調査時(平成24年3月)に温度測定を実施

●PCV内の滞留水温度は約50 ,雰囲気温度は約45 で滞留水の方がお よそ5 高い結果

PCVのペデスタル内の冷却状態について

- ■現状,ペデスタル内部の状況は直接確認できていないものの,以下の理由 から,ペデスタルに落下している燃料デブリは,安定的に冷却できていると考 えている
 - ●PCV内の雰囲気温度は冷温状態(およそ35~45 以下)で推移していること
 - ●PCVの床面に水位が形成されていること(3号は推定)
 - ●1号機については, PCV内の滞留水の水温も冷温状態(およそ35 以下)で推移していること
- ■2号機ペデスタル内部調査に向けて準備作業を実施
 - P C V 内部調査で,ペデスタル上部の開口部付近を調査
 - ペデスタル開口部付近の雰囲気温度はおよそ45 であり、PCV雰囲気温度(42 ~ 44 程度)と大きな差はなかった

■RPV底部温度,PCV雰囲気温度の監視により,原子炉注水に よって適切に燃料デブリの除熱が出来ていることを確認している

PCV(ペデスタル)に落下している燃料デブリも,安定的に冷却できていると考えている

■今後も内部調査等によって,炉内状況の把握に努め,冷却状態の監視の信頼性を向上していきたい

【参考】1号機PCV温度トレンド(監視温度計)

【参考】2号機PCV温度トレンド(監視温度計)

【参考】3号機PCV温度トレンド(監視温度計)

東京電力-

【参考】RPVの冷却状態(RPV底部温度)

3号機原子炉建屋オペレーティングフロアからの 湯気らしきものの発生について (瓦礫撤去後の調査結果)

2013年10月31日 東京電力株式会社

1. 事象経緯

- 7/18早朝、3号機原子炉建屋オペレーティングフロア(以下、「オペフロ」という)にて瓦礫撤去作業開始時に湯気らしきもの(以下、「湯気」という)を確認
- ■敷地境界のMPの値に変化無し
- ■プラントパラメータに変化無し
 - ●RPV関連温度
 - ●PCVガス管理設備パラメータ
 - ●原子炉は未臨界を確認
- ■気象状況
 - ●7/18: 気温約21°C、湿度約92%
 - ●7/23: 気温約20°C、湿度約91%
 - ●7/24: 気温約20℃、湿度約91%
 - ●7/25: 気温約21℃、湿度約91%
 - ※その後も降雨後の比較的低温多湿時に 湯気発生

原子炉建屋5階平面イメージ

湯気らしきものの写真(7/18)

2. 調査概要

■瓦礫を撤去したため、湯気の調査として、下記を実施。

●温度計測

赤外線サーモグラフィを用いて湯気が確認された箇所を中心に5mで測定。

雰囲気線量

ポータブル線量計を用い、湯気が確認された箇所を含むウェル等に対し、高さ1m 程度で測定。

●ダスト測定

ダストサンプリングポンプを用い、湯気が確認された箇所や雰囲気線量測定結果 が高い箇所等に対して測定。

赤外線サーモカメラ

ダストサンプリングポンプ

3. 調査結果(温度·雰囲気線量)

- オペフロ温度計測(赤外線サーモグラフィ)
 湯気が出ていた部位:34.5℃(前回:34.3℃)
 シールドプラグつなぎ目(最大):26.2℃(前回:24.7℃)
 線量測定
 湯気が出ていた部位:717(前回:562)(mSv/h)
 - ●シールドプラグつなぎ目(最大):1920(前回:2170) (mSv/h)
- ■湯気が出ていた部位が最大の温度であり、 前回から温度は殆ど変わらない
- ■湯気は確認されていないが、他にもシールドプラグ つなぎ目から若干気体が出ている可能性がある
- オペフロ上の線量は、瓦礫を撤去したものの、 その後も湯気が確認されており、全体的に線量が 高い状況に変わりがなく、湯気が出ていた部位の 線量は周辺と比べて同程度である

4. 調査結果(ダスト)

- 湯気が出ていた部位(Bq/cm³)
 Cs-134:3.5×10⁻⁵~2.7×10⁻⁴
 - Cs-137: 7.6 \times 10⁻⁵ \sim 6.3 \times 10⁻⁴
- ■シールドプラグつなぎ目(線量最大部)(Bq/cm³)
 - ●Cs-134:約2.1×10⁻⁴
 - ●Cs-137:約4.5×10⁻⁴
- ■DSピット付近(Bq/cm³)(比較用)
 - ●Cs-134:約3.5×10⁻⁴
 - ●Cs-137:約7.7×10⁻⁴

瓦礫撤去前

- ■オペフロ上部ダスト測定(Bq/cm³) (7月測定)
 - Cs-134: $9.3 \times 10^{-6} \sim 1.4 \times 10^{-5}$
 - Cs-137:2.3 \times 10⁻⁵ \sim 3.3 \times 10⁻⁵

3号機上部空気中放射性物質測定位置

- ■湯気が出ていた部位のダスト測定結果は、周辺とほぼ同じ
- ■瓦礫撤去後のオペフロ上部ダスト測定結果は、全体的に前回よりも少し高めの値
 ■オペフロ上部ダスト測定結果は過去の定例測定の範囲内
- ■がれき撤去前後のダスト調査結果から、オペフロ上部のダストについては、 湯気による直接的な影響がないものと推定

5. まとめ

■調査結果から得られた知見

- ●湯気は降雨後の低温・多湿時に多く見られることから、ウェル内に浸入した雨水が支配的であると推定。
- ●瓦礫の撤去により、湯気の発生箇所はシールドプラグ北側のDSピットゲート廻りである ことが明確となった。ただし、湯気発生箇所以外の比較的温度の高いシールドプラグ つなぎめからも可視化されていない湯気のような微量な流れがある可能性がある。
- 瓦礫撤去後の線量・ダスト濃度分布から、現状の線量・ダスト濃度と湯気との 直接的な因果関係はないと推定。
- ●7/18以降も湯気の発生が散見されているが、プラントパラメータは安定しており、
 外部への影響はない。

■今後の対応

- これまでの調査結果および湯気発生状況から、湯気の発生・確認がプラント内外に影響
 を及ぼすものでないことが確認できた。
- ●よって、これまで湯気発生確認の都度、第25条に基づく関係各所への通報を行っていたが、本通報だけでは社会的安心・プラント安全の判断材料にならないことから、原子炉関連温度、PCV雰囲気温度、未臨界監視パラメータ、オペフロダストモニタに異常が確認された際には通報することとしたい。

(参考-1-①)シールドプラグ、DSPプラグ寸法

(参考-2-①) 1F-3 R/B上部 赤外線サーモグラフィ測定 8

原子炉建屋5階平面イメージ

測定日時:平成25年10月10日 6:22~7:12 気象状況(6時30分時点):気温21.7℃、湿度95.7% 測定高さ:R/Bオペフロ上 5m 測定方法:

 ・連続自動撮影状態にした赤外線カメラ1台を原子炉建屋上部へクレーンにて吊り下げ、高さ5m 位置でウエルカバー上のクレーン動線(赤点線)上を移動して撮影(ウエルカバー全体を撮影)
 ・同じく比較測定点へ移動し高さ5m位置で撮影

(参考-2-②) 1F-3 R/B上部 赤外線サーモグラフィ測定 ?

比較的温度が高い箇所の拡大画像(写真番号は前ページ全体図と合致)

(参考-2-③) 1F-3 R/B上部 赤外線サーモグラフィ測定 10

所 見

◎湯気らしきものが出ている部位(DSPゲート西側)については、

測定値で34.5℃(最大値)

◎その他の部分で周囲より若干温度が高めの箇所としては、

シールドプラグ上つなぎ目付近:26.2℃(最大値)

DSPゲート東側: 31. 3℃(最大値)

SFPゲート周辺: 28. 7℃(最大値)

◎比較測定点については、20℃前後であった

温度が比較的高い部分については、全てシールドプラグに隙間のある部分であり、シー ルドプラグ下部にて発生した蒸気が隙間より噴出する際に、周囲の構造物を暖めている と考えられる。

(参考-2-④) 1F-3 R/B上部 赤外線サーモグラフィ測定 11

【参考】

◎赤外線サーモグラフィには以下のような特性がある。

- ・蒸気については濃密度でなければ蒸気自体の温度は表示されない
- ・構造物については表面温度を計測する(内部温度は測定不可)
- ・同一温度の物でも、その放射率・反射率の違いにより測定値に違いがでる
- ・放射率・反射率は被測定物の材質・色・表面の粗さ・測定角度などにより変化する
- ・同一箇所の測定結果でも被測定物までの距離により最小検知寸法の相違で異なる値となる場合がある。

最小検知寸法内の温度にむらがあると表示温度は平均値が表示される(下図参照)

(参考-3-①)3号機オペフロシールドプラグ近傍線量調査結果¹²

線量測定箇所および測定方法は、前回(7月23日、24日)と同じ。

原子炉建屋5階平面イメージ

- 測定日 : 平成25年10月10日
- 測定箇所:オペフロ床面から約1mの高さを測定 1箇所あたりの測定時間:約30秒間

測定方法:

京電力

- ・遠隔操作式大型クレーンにて線量計を測定箇所へ移動。
- ・雰囲気線量測定後、線量計を回収し、データ確認を実施。

(参考-3-2)3号機オペフロシールドプラグ近傍線量調査結果¹³

天井クレーンおよびSFP養生撤去に伴い、線量測定位置を見直す。(⑦,⑪,①,⑭,③~③)

シールドプラグ周辺の雰囲気線量測定位置

雰囲気線量測定結果

m								
		7/23、24	10/10		7/23、24	10/10		
	1	398	420	19	2170	886		
	2	562	717	20	1330	723		
	3	413	449	21	1100	711		
	4	679	728	22	534	440		
	5	685	914	23	287	471		
	6	528	481	24	925	745		
	7	445	298	25	774	907		
	8	137	369	26	633	727		
	9	352	224	27	1630	941		
	10	522	645	28	1860	638		
	11	1040	1920	29	1520	844		
	12	1090	905	30	963	1230		
	13	382	950	31	1380	630		
	14	731	1150	32	1770	982		
	15	301	511	33	1690	1210		
	16	657	664	34	1320	1120		
	17	824	814	35	1110	1430		
	18	1590	885	36	787	825		

(参考-4-①)3号機 ダスト測定結果

3号機原子炉上部 ダスト測定結果

● 東京電力-

(参考-5-①)気象データ

(参考-5-2)気象データ(7~8月湯気発生時)

(参考-5-③)気象データ(9~10月湯気発生時)

(参考-6-①) RPV底部温度

■注水温度の変化等に応じて温度変化はしているものの,全体的に安定して推移している。

●熱源の除熱不足を示すような温度上昇はない

●不自然な温度低下はなく、注水による除熱量が減った(除熱できなくなった熱源がある)とは考えにくい 東京電力

(参考-6-2)) PCV温度(HVH温度)

■注水温度の変化等に応じて温度変化はしているものの,全体的に安定して推移している。
 ●熱源の除熱不足を示すような温度上昇はない

●不自然な温度低下はなく、注水による除熱量が減った(除熱できなくなった熱源がある)とは考えにくい
 東京電力

(参考-6-③)RPV上部温度

■注水温度の変化等に応じて温度変化はしているものの,全体的に安定して推移している。

(参考-7)湯気発生時の気象と湯気の発生条件

■湯気発生時の気象データ これまでの漫気発生時の		2012年 7月15日	2013年 7月18日	2013年 7月23日	2013年 7月24日	2013年 7月25日
気象はほぼ同じ	気温(9時)	20.1°C	21.4°C	20.3°C	19.8°C	20.5°C
	湿度(9時)	95.2%	92.3%	91.2%	91.2%	91.1%
■低温多湿の复场	降雨量	Omm	23mm	17.5mm	2 5mm	1.0mm
●前日夜の降雨	(19時~8時)	Unin	2311111	T7.5mm	2.500	1.0mm

■湯気の発生条件

- 湿った温かい空気が低温多湿の空気と接触し、露点温度以下となる
- 飽和水蒸気を超える水分が粒子と なり、湯気(霧)として可視化される

(参考-8-①)湯気発生の推定メカニズム

湯気の発生源

- ① 炉内又はPCV内のデブリ燃料状態変化 による蒸気の発生
- PCVヘッド周辺の水分の蒸発や、PCVの リークにより持ち込まれた湿分がシールド プラグ下部に滞留し、シールドプラグの隙 間からオペフロに放出
- ③シールドプラグ隙間のPCVから放出され た放射性物質による発熱
- → 湯気の発生源は②が最も可能性が高い

■湯気発生のメカニズム

- シールドプラグ下部に滞留していた湿った空気が、PCVのリークによる押し出し等でシールド プラグの隙間からオペフロ上に放出される
- ●放出された空気が、低温、多湿(約20℃、約92%)であったオペフロ上の外気と接触し、 露点温度以下となる
- 飽和蒸気を超える水分が粒子となり、湯気 (霧)として可視化される

