2 特定原子力施設の構造及び設備,工事の計画

2.1 原子炉圧力容器·格納容器注水設備

2.1.1 基本設計

2.1.1.1 設置の目的

原子炉圧力容器・格納容器注水設備(以下,原子炉注水系という)は,建屋に滞留した 汚染水から油分,塩分,放射能を除去した水(以下,処理水という)及びろ過水を水源と し,電動機駆動の注水ポンプにて原子炉への注水を行い,燃料の崩壊熱を除去することを 目的とする。

2.1.1.2 要求される機能

- (1) 原子炉圧力容器・格納容器内での崩壊熱を適切に除去できること。
- (2) 原子炉圧力容器底部温度を概ね100℃未満に維持できる機能を有すること。
- (3) 原子炉注水系は多重性または多様性及び独立性をそなえること。
- (4) 異常時にも適切に対応できる機能を有すること。
- (5) 常設の原子炉注水系が冷却機能を喪失した際は代替冷却機能を有すること。

2.1.1.3 設計方針

- 2.1.1.3.1 新設設備の設計方針
- (1) 構造強度及び機能の維持
- a. 原子炉注水系は,燃料の崩壊熱を除去し冷温停止状態に必要な冷却水を注入できる機能を有し,原子炉圧力容器底部温度を概ね100℃未満に維持できる設計とする。
- b. 原子炉注水系は,系統の多重性及び独立性を備えた設計とする。また,定期的に機 能確認が行える設計とする。
- c. 原子炉注水系は,異なる送電系統で2回線以上の外部電源から受電するとともに,外 部電源喪失の場合でも,所内の独立した電源設備から受電できる設計とする。
- d. 原子炉注水系は、材料の選定、製作及び検査について、適切と認められる規格およ び基準によるものとする。
- e. 原子炉注水系は、漏えいを防止できる設計とする。
- f. 原子炉注水系の設備に異常が生じた場合に検出できるようにする。
- (2) 注水状態の監視
- a. 原子炉注水系は、注水流量を監視し記録できる設計とする。

- (3) 漏えい監視
- a. 原子炉注水系は、設備に漏えいがあった場合に検出できるようにする。
- b. 原子炉注水系は、漏えい箇所を隔離できるとともに注水を継続できる設計とする。
- (4) 異常時への対応機能
- a. 原子炉注水系は、外部電源が利用できない場合にも冷却機能を継続できる設計とする。
- b. 原子炉注水系は、母線によって供給される全ての電源が喪失した場合においても、注 水冷却をすみやかに再開可能とする電源を備えたものとする。
- c. 原子炉注水系は、地震、津波等の発生を考慮しても冷却機能を確保できる設計とする。
- (5) 火災防護
- a. 早期検知に努めるとともに、消火設備を設けることで、初期消火を行い、火災により、 安全性を損なうことのないようにする。
- 2.1.1.3.2 既設設備の設計方針
- (1) 耐震性

原子炉注水系の既設設備は,基準地震動 Ss による地震力に対してその安全機能を確保で きることを確認する。確保できない場合は,多様性を考慮した設計とする。

(2) 系統流量

原子炉等を適切に冷却するのに必要な冷却水の流量を確保できることを確認する。

- 2.1.1.4 供用期間中に確認する項目
- (1) 崩壊熱相当注水量以上で原子炉へ注水できること。
- (2) 原子炉圧力容器底部温度が100℃未満であること。

2.1.1.5 主要な機器

(1) 設備概要(添付資料-1参照)

原子炉注水系は、処理水及びろ過水を水源とし、電動機駆動の注水ポンプにて建屋内の 既設配管(1号機は給水系、炉心スプレイ系、2、3号機は給水系、炉心スプレイ系及び 消火系)を介して原子炉への注水を行い、燃料の崩壊熱を除去する。

水源には、ろ過水タンク、処理水バッファタンク、純水タンク、復水貯蔵タンク(以下、 CSTという)を備え、ポンプは常用高台炉注水ポンプ、非常用高台炉注水ポンプ、純水 タンク脇炉注水ポンプ、タービン建屋内炉注水ポンプ、CST炉注水ポンプにより構成す る。また、原子炉への注水ラインは、処理水バッファタンクから常用高台炉注水ポンプま たは非常用高台炉注水ポンプを介する注水ライン、処理水バッファタンクからタービン建 屋内炉注水ポンプを介する注水ライン,純水タンクから純水タンク脇炉注水ポンプを介す る注水ライン,各号機のCSTからCST炉注水ポンプまたはタービン建屋内炉注水ポン プを介するライン等で構成する。

系統の構成にあたっては、それぞれの設備で多重化を図り、機器の故障等による機能喪 失を防止するよう構成する。

(2) 注水ポンプ

原子炉注水系の常用系は、事務本館海側駐車場に設置された常用高台炉注水ポンプ3台 (1~3号共用)、タービン建屋内に設置されたタービン建屋内炉注水ポンプ6台及びCS T炉注水ポンプ6台で構成する。

また予備としては電源喪失時の注水を確保するため、事務本館海側駐車場に設置され所 内電源系統から独立した専用のディーゼル発電機(以下,D/Gという)から受電する非 常用高台炉注水ポンプの3台(1~3号共用)、純水タンク脇に設置され所内電源及び専用 のD/Gの双方からの受電が可能な純水タンク脇炉注水ポンプ3台(1~3号共用)の計 6台で構成している。各ポンプの操作盤は各ポンプ近傍に設置されており、手動で起動・ 停止を行う。注水ポンプは、燃料の崩壊熱相当注水量を十分確保できる仕様とする(崩壊 熱相当注水量の計算例を添付資料-3に示す)。

(3) タンク

原子炉注水系の水源は,建屋に滞留した汚染水を水処理した処理水とろ過水の2種類が ある。処理水を水源としているタンクは,処理水バッファタンク及びCSTがあり,ろ過 水を水源としているタンクはろ過水タンク,純水タンクがあり,水源に対し多様性を有し ている。

また,処理水バッファタンクは水源として処理水を主としているが,処理装置の不具合 等により,処理水の供給がとぎれた場合に備え,ろ過水タンクから水の供給が可能である。 なお,ろ過水タンクへのろ過水の供給量は,崩壊熱相当注水量に対して十分な供給能力が ある。

これらタンクは1~3号機共用として運用するが,複数のタンクがあり,またタンクか ら原子炉までの注水ラインはそれぞれ独立しているため,十分な多様性及び独立性を有し ている。

(4) 原子炉注水ライン

常用,非常用高台炉注水ポンプ,タービン建屋内炉注水ポンプ,純水タンク脇炉注水ポ ンプ及びCST炉注水ポンプは,ポンプ吐出ラインをそれぞれ独立したラインで構成する 他,常用,非常用高台炉注水ポンプは水源からポンプまでのラインも,処理水バッファタ ンクとろ過水タンクからの独立した系統構成とすることで,多様性を向上させ,系の漏え い等に伴う系統を隔離しての補修作業や系統単独での作動確認が実施できる。

これらの系を構成するラインは、ポンプ定格流量にて注水した場合においても、有意な 圧力損失及び流体振動等が発生しないよう考慮する。また、耐圧ホース及びフレキシブル チューブの敷設にあたっては、許容された半径を満足する様に配置するとともに、ホース 類の敷設にあたっては、温度上昇による強度への影響を考慮し、道路脇の芝生上に敷設す るなど可能な限りアスファルトを避けて敷設する。

(5) 電源

常用高台炉注水ポンプ,タービン建屋内炉注水ポンプ及びCST炉注水ポンプの電源は, 異なる送電系統で2回線の外部電源から受電できる構成とする。

外部電源喪失の場合でも,所内共通ディーゼル発電機から電源を供給することで常用高 台炉注水ポンプ,タービン建屋内炉注水ポンプ及びCST炉注水ポンプのいずれかの運転 が可能な構成とする。

また,非常用高台炉注水ポンプ及び純水タンク脇炉注水ポンプはそれぞれ専用のD/G を有し,外部電源の供給の有無に関わらず運転が可能な構成とする。

(6) その他

複数の設備に損傷が生じた場合であっても,原子炉注水を維持するため,原子炉注水専 用の消防車を3台配備する。水源については,上記のタンクの他,原水地下タンクを利用 できる他,これらの水源が使用できない場合も,海水を水源とした消防車による注水が可 能である。

原子炉注水系の腐食防止対策としては、注水する処理水の水質管理を行うと共に、窒素 バブリングによる脱酸素等を実施する(添付資料-4参照)。

また,原子炉注水系の凍結防止対策としては,保温材の取り付け,水抜き,ハウス設置 を実施する。

原子炉注水系の監視としては,現場,免震重要棟集中監視室等で原子炉の冷却状態及び 注水状態を監視し,これらの変動により有意な漏えい検出も可能と考えている。

また,タンク,または配管等からの微少漏えいによる系外への放射性物質漏えいに関し ては特に監視設備は設けていないが,漏えいリスクが低いPE管への設備変更,土嚢によ る系外放出防止対策を実施すると共に,巡視点検を行うことにより監視している。

接触等による流量変動防止対策として、原子炉注水量調整弁近傍に注意喚起の表示、接触しやすい流量調整弁には接触防止カバーを取付ける。

2.1.1.6 自然災害対策等

(1) 津波

原子炉注水系は、機器の故障等による機能喪失を防止するよう構成しているが、津波等

により万が一,複数設備の機能が同時に喪失した場合は,水源の損傷状況や現場状況に応じて,新たな消防車の配備や注水ラインの再敷設等を行い,原子炉注水を再開する。

(2) 火災

原子炉注水系の非常用高台炉注水ポンプ及び純水タンク脇炉注水ポンプのD/G用燃料 タンク内に危険物が存在するため,初期消火の対応ができるよう,近傍に消火器を設置す る。

2.1.1.7 構造強度及び耐震性(添付資料-2参照)

(1) 構造強度

原子炉注水系は、技術基準上非常用炉心冷却設備に相当するクラス2機器と位置付けら れる。この適用規格は、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(以下,設 計・建設規格という)」で規定されるものであるが、設計・建設規格は、鋼材を基本とした 要求事項を規定したものであり、耐圧ホース等の非金属材についての基準がない。従って、 鋼材を使用している設備については、設計・建設規格のクラス2機器相当での評価を行い、 非金属材料については、当該設備に加わる機械的荷重により損傷に至らないことをもって 評価をおこなう。この際、当該の設備が JIS や独自の製品規格等を有している場合や、試 験等を実施した場合はその結果などを活用し、評価を行う。また、溶接部については、耐 圧試験、系統機能試験等を行い、有意な変形や漏えい等のないことをもって評価を行なう。

また,構造強度に関連して経年劣化の影響を評価する観点から,原子力発電所での使用 実績がない材料の設備を使用する場合は,他産業での使用実績等を活用しつつ,必要に応 じて試験等をおこなうことで,経年劣化の影響についての評価を行う。なお,試験等の実 施が困難な場合にあっては,巡視点検等による状態監視をおこなうことで,健全性を確保 する。

(2) 耐震性

原子炉注水系は,耐震設計審査指針上のSクラス相当の設備と位置づけられるが,新設 設備については,短期間での設計,調達及び設置を行う必要があることから,耐震Sクラ スの要求事項を完全に満足するものとはなっていないものの,今後も継続的に発生すると 思われる地震に対して耐震性を確保する観点から,耐震Bクラス設備に適用される静的地 震力に対して耐震性が確保されることを確認する。

また,既設設備については,基準地震動 Ss による地震力に対してその安全機能を確保で きることを確認する。確保できない場合は,多様性を考慮した設計とする。耐震性に関す る評価にあたっては,「JEAG4601 原子力発電所耐震設計技術指針」に準拠することを基本と するが,必要に応じて試験結果等を用いた現実的な評価を行う。支持部材がない等の理由 によって,耐震性に関する評価ができない設備を設置する場合においては、フレキシビリ ティを有する材料を使用するなどし、可能な限り耐震性を確保する。

- 2.1.1.8 機器の故障への対応
- 2.1.1.8.1 機器の単一故障
- (1) ポンプ故障

常用系ポンプが故障した場合は,待機号機の起動もしくは非常用高台炉注水ポンプ の起動を行うことで炉注水を再開する(注水再開の所要時間:30分程度)。

(2) 電源喪失

常用系ポンプの電源が,外部電源喪失や全母線電源喪失により喪失した場合は,電 源切替には数時間を要することから,非常用高台炉注水ポンプによる原子炉注水(系 統構成及び非常用高台炉注水ポンプの起動)及び予め待機している消防車による原子 炉注水(系統構成及び消防車の起動)を並行して実施する(注水再開の所要時間:3 0分程度)。

(3) 水源喪失

常用系ポンプは,主としてバッファタンクを水源としているが,タンク等が損傷し, 保有水が漏えいする等,タンク機能が喪失した場合は,水源をろ過水タンクに切替え る(注水再開の所要時間:30分程度)。

なお、万が一バッファタンクに加え、ろ過水タンクの機能も喪失した場合(複数設備の機能喪失に該当)は、純水タンクへのろ過水の供給が無くなるため、原水地下タンクを水源とし、予め待機している消防車による注水を行う(注水再開の所要時間: 60分程度)。

(4) 原子炉注水ラインの損傷

常用系ポンプからの注水ラインが損傷した場合は,純水タンク脇炉注水ポンプによる原子炉注水(系統構成及び純水タンク脇ポンプの起動)を行う(注水再開の所要時間:30分程度)。

2.1.1.8.2 原子炉注水系の複数の設備が同時に機能喪失した場合

原子炉注水系は、機器の故障等による機能喪失を防止するよう構成しているが、地 震、津波等により万が一、複数の設備の機能が同時に喪失した場合は、水源の損傷状 況や現場状況に応じて、新たな消防車の配備や注水ラインの再敷設等を行い、原子炉 注水を再開する。消防車は、事務本館海側駐車場、ろ過水タンク脇、厚生棟横にバッ クアップとして設置されている消防車を使用できる他、事務本館山側駐車場に配備さ れている消防車を使用できる。注水再開までの時間は、現場状況等により変動するも のの,ホース敷設距離等を踏まえた作業時間を勘案すると,作業開始から3時間程度 と想定しており,想定以上とならないよう定期的に訓練を実施している。

現行の崩壊熱においては、仮に注水停止が3時間を超える長時間にわたる場合を想 定しても、1プラント当たり10m³/hの注水流量で冷却可能であると評価されており、 現行の設備で冷却を行うことが十分可能である。流量を高めた注水を再開する場合に は、蒸気が急速に凝縮する可能性があることから、窒素封入が行われていることを確 認するとともに、温度や圧力等のパラメータを監視しつつ注水流量の調整を行う。

2.1.1.8.3 異常時の評価

原子炉注水系が異常事象により機能喪失し,原子炉注水が停止した場合について, 評価を実施した(添付資料-5参照)。

敷地境界での年間の実効線量の評価結果は,過渡相当事象(注水停止1時間)で約 9.3×10⁻⁷ mSv,事故相当事象(注水停止7時間)で約4.3×10⁻⁶ mSv であり,周辺の公 衆に対し,著しい放射線被ばくのリスクを与えることはない。

想定を大きく超える、シビアアクシデント相当事象(注水停止 12 時間)における敷 地境界での年間の実効線量は約 2.1×10⁻⁵mSv であり、3 プラント分の放射性物質の放 出を考慮した場合では約 6.3×10⁻⁵ mSv である。また、特定原子力施設から 5km、10km 地点での年間の実効線量は、3 プラント分の放射性物質の放出を考慮した場合でそれぞ れ約 1.1×10⁻⁵ mSv、約 3.6×10⁻⁶ mSv であり、周辺の公衆に対し、著しい放射線被ばく のリスクを与えることはない。

2.1.1.8.4 原子炉注水系の確率論的リスク評価

原子炉注水系に対して影響が大きい事象を選定し、その後の事象進展の確率を、設備構成や故障率を基に推定し、原子炉圧力容器内及び格納容器内の燃料(以下、炉心という)が再損傷に至る頻度を評価した(添付資料-6参照)。

評価の結果, 炉心が再損傷する頻度(点推定値)の内的事象(ハザード発生箇所が 発電所内)の合計値は,約3.2×10⁻⁷/年,外部電源喪失(地震)は,約6.1×10⁻⁹/年, 大津波事象は,約5.8×10⁻⁵/年となっている。評価結果の合計値は約5.9×10⁻⁵/年であ り,寄与割合は,大津波事象が約99%となった。

2.1.2 基本仕様

2.1.2.1 主要仕様

(1) 常用高台炉注水ポンプ(完成品)(外部電源)

台	数	3
型	式	多段渦巻ポンプ
容	量	20m ³ /h(1 台あたり)

揚 程 113m

(2) 非常用高台炉注水ポンプ(完成品)(専用D/G電源)

台	数	3
型	式	多段渦巻ポンプ
容	量	20m³/h(1 台あたり)
揚	程	113m

(3) 純水タンク脇炉注水ポンプ(完成品)(外部電源及び専用D/G電源)

台	数	3
型	式	多段渦巻ポンプ
容	量	37 m³/h(1 台あたり)
揚	程	93m

(4) タービン建屋内炉注水ポンプ(完成品)(外部電源)

1 号機

台	数	2
型	式	多段渦巻ポンプ
容	量	12 m ³ /h(1 台あたり)
揚	程	70m
2, 3	3 号機	
台	数	2 号機 2
		3 号機 2
型	式	多段渦巻ポンプ
容	量	10m ³ /h(1 台あたり)
揚	程	70m

(5) CST炉注水ポンプ(完成品)(外部電源)

台	数	1 号機 2
		2 号機 2
		3号機 2
型	式	単段渦巻ポンプ
容	量	20m³/h(1 台あたり)
揚	程	70m

(6) 非常用高台炉注水ポンプ用 D/G (完成品)

台	数		1		
容	量		125kVA以上		
力	率		約 0.8(遅れ)		
電	圧		約 200V		
周 波	数		50Hz		
燃料タ	マンク容量,	消費量	約 2501 (参考値),	約 26.11/h	(参考値)

(7) 純水タンク脇炉注水ポンプ用 D/G (完成品)

台	数		1			
容	量		125kVA	以上		
力	率		約 0.8	(遅れ)		
電	圧		約 200W			
周 波	数		50Hz			
燃料タ	マンク容量,	消費量	約 2501	(参考値),	約 26.11/h	(参考値)

- (8) 処理水バッファタンク
 - 基数1 容量700m³

(9) 復水貯蔵タンク(CST)

基	数	1 号機 1	
		2号機 1	
		3号機 1	
容	量	1 号機	1893K1
		2/3号機	2448.5K1

(10)	ろ過	水タンク		
	基	数		1
	容	量		8000 m^3
(11)	純水	タンク		
(11)	基	数		2
	容	量		2000 m ³ (1 基あたり)
(12)	原水	地下タンク		
	基	数		1
	容	量		$970 \mathrm{m}^3$
(13)	消防	車		
	基	数		3
	規格放	水圧力		0.7MPa以上
	放水性	能		60m³/h 以上
	高圧放	水圧力		1.0MPa以上
	放水性	能		36m³/h 以上
	燃料タ	ンク容量、	消費量	約 631(参考値),約 371/h(参考値)

名称		仕様
【1~3号機高台炉注水ライン】	呼び径/厚さ	50A/Sch20S
ポンプユニット		65A/Sch20S
(鋼管)		80A/Sch20S
	材質	SUS304TP
	最高使用圧力	1.4MPa
	最高使用温度	50°C
(フレキシブルチューブ)	呼び径	75A 相当
	材質	SUS316 L
	最高使用圧力	1.4MPa
	最高使用温度	50°C
【1~3号機高台炉注水ライン】	呼び径/厚さ	50A/Sch40
注水ライン	,	80A/Sch40
(鋼管)		150A/Sch40
	材質	SUS304TP
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	80A/Sch40
	材質	STPT370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
	材質	STPT370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	300A/Sch40
	材質	STPT410
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch40
		65A/Sch40
		80A/Sch40
	材質	STPG370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
	材質	STPG370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(フレキシブルチューブ)	呼び径	50A 相当
	材質	SUS316L
	最高使用圧力	0.98MPa
	最高使用温度	50°C

表2.1-1 主要配管仕様

名称		仕様
(ポリエチレン管)	呼び径	75A 相当/200A 相当
		/300A 相当
	材質	ポリエチレン
	最高使用圧力	1.0MPa
	最高使用温度	40°C
(消防ホース)	呼び径	65A 相当
	材質	ポリエステル
	最高使用圧力	1.0MPa 以上
【1~3号機純水タンク脇炉注水	呼び径/厚さ	50A/Sch20S
ライン】		65A/Sch20S
ポンプユニット		80A/Sch40
(鋼管)	材質	SUS304TP
	最高使用圧力	1.4MPa
	最高使用温度	50°C
【1~3号機純水タンク脇炉注水	呼び径/厚さ	150A/Sch20
ライン		200A/Sch20
注水ライン	材質	SGP
(鋼管)	最高使用圧力	0.98MPa
	最高使用温度	50°C
(前上ホース)	呼び径	75A 相当
	材質	ボリ塩化ビニル
	最高使用上刀	0.98MPa
	市成市使用温度	50 C
	計谷曲け半径	750mm
(消防ホース)	呼び往	65A 相当 ポリースティ
【1~9	取向使用圧力	1. UMPA KL
1123万機クシビン 建座内炉往	叶い住/ 序で 材質	STPT370
ポンプコーット	竹 貝 	1 4MDo
	最直体田沮庶	50°
(鋼管)	取同区//1価及 呼び径/厚さ	504 / Sch80
	材質	STPT370
	最高使用圧力	1. 4MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
	材質	SUS304TP
	最高使用圧力	1.4MPa
	最高使用温度	50℃
【1~3号機タービン建屋内炉注	呼び径/厚さ	65A/Sch40
水ライン】		80A/Sch40
注水ライン		100A/Sch40
(鋼管)		150A/Sch40
	材質	STPT370
	最高使用圧力	0.98MPa
L	最高使用温度	50°C

名称	仕様		
(鋼管)	呼び径/厚さ	50A/Sch160	
	材質	STPT370	
	最高使用圧力	0.98MPa	
	最高使用温度	50°C	
(鋼管)	呼び径/厚さ	80A/Sch40	
		150A/Sch40	
		300A/Sch40	
	材質	STPG370	
	最高使用圧力	0.98MPa	
	最高使用温度	50°C	
(鋼管)	呼び径/厚さ	50A/Sch80	
	材質	STPG370	
	最高使用圧力	0.98MPa	
	最高使用温度	50°C	
(鋼管)	呼び径/厚さ	50A/Sch80	
		65A/Sch40	
	材質	STPT410	
	最高使用圧力	0.96MPa	
	最高使用温度	66℃	
(ポリエチレン管)	呼び径	75A 相当/150A 相当	
	材質	ポリエチレン	
	最高使用上力	1. OMPa	
	最高使用温度	40°C	
【1~3号機CST原子炉注水フイ	呼び径/厚さ	25A/Sch80	
		50A / Sch80	
ホンノユニット (細葉)	杉筫 見宣は田にも	SIPI4I0	
(如何"官")	取 尚 使 用 庄 <i>门</i> 县 吉 佶 田 泪 庙	0.90MPa	
	取向使用値及	800 (Sab 40	
	呼び佺/ 厚さ	STDT 410	
	17] 貝 具直は田正力	0 06MPo	
	取同使用圧力	66°C	
「1~2号機CST原乙に注水ライ	取同区用価度	$E01 \langle S_{ab} \rangle 0$	
	呼い住/厚さ	50A School	
ント		654 / Sch40	
		804 / Sch40	
		1004 / Sch40	
		150A / Sch40	
	材質	STPT410	
	最高使用圧力	0.96MPa	
	最高使用温度	66°C	
(ポリエチレン管)	取び径	<u>500</u> 相当	
		75A 相当	
		100A 相当	
		150A 相当	
	材質	ポリエチレン	
	最高使用圧力	1.0MPa	
	最高使用温度	40°C	
	· · · · · · · · · · · · · · · · · · ·	I	

2.1.3 添付資料

- 添付資料-1 原子炉圧力容器・格納容器注水設備系統概略図
- 添付資料-2 構造強度及び耐震性について
- 添付資料-3 崩壊熱相当の注水量について
- 添付資料-4 炉注入する処理水の水質目標値について
- 添付資料-5 原子炉注水停止時評価の説明資料
- 添付資料-6 原子炉注水系に関する確率論的リスク評価
- 添付資料-7 原子炉注水系に係る確認事項
- 添付資料-8 処理水バッファタンクの基本仕様
- 添付資料-9 処理水バッファタンク及び処理水バッファタンク接続配管の具体的な 安全確保策
- 添付資料-10 処理水バッファタンクの基礎及び堰に関する説明書
- 添付資料-11 既設処理水バッファタンク及び既設処理水バッファタンク接続配管の 解体・撤去の方法について
- 添付資料-12 原子炉圧力容器・格納容器注水設備の配置

図-2 2号機原子炉圧力容器·格納容器注水設備系統概略図

Ⅱ-2-1-添 1-2

図-3 3号機原子炉圧力容器·格納容器注水設備系統概略図

構造強度及び耐震性について

- 1 新設設備の構造強度及び耐震性
- 1.1 ポンプ
- 1.1.1 常用高台炉注水ポンプ及び非常用高台炉注水ポンプ
- 1.1.1.1 構造強度

常用高台炉注水ポンプ及び非常用高台炉注水ポンプについては,ポンプの最高 使用圧力を上回る試験圧力で耐圧試験を実施し,漏えい等の異常がないことを確 認することから,ポンプの最高使用圧力に十分耐えうる構造強度を有していると 判断する。

1.1.1.2 耐震性

常用高台炉注水ポンプ及び非常用高台炉注水ポンプについては、ポンプユニッ トを、ダンパを有するトラックに搭載することにより耐震性を向上させるととも に、ボルト等で固定することで、転倒防止策を講じる。これを踏まえ、耐震性の 評価として、ボルトの強度が確保されること、及びトラックが転倒しないことの 評価を行った。なお、基準地震動 Ss に対する動的解析を行うことが困難であるこ とから、耐震設計審査指針上の耐震 B クラス設備に適用される静的地震力による 評価を行った。

(1) ボルトの強度評価

原子力発電所耐震設計技術規程(JEAC4601-2008)の横型ポンプの強度評価方法に準拠して評価を行った結果,耐震Bクラス設備に適用される静的地震力に対してボルトの強度が確保されることを確認した。なお,耐震Sクラス設備に適用される静的地震力に対しても,ボルトの強度が確保されることを確認した(表-1,図-1参照)。

	耐震 B クラス	設備に適用さ	耐震Sクラス設備に適用さ			
	れる静的地震	力による評価	れる静的地震力による評価			
	算出応力	許容応力	算出応力	許容応力		
	[MPa]	[MPa]	[MPa]	[MPa]		
引張応力	作用しない	158	5	190		
せん断応力	3	122	5	146		

表-1 常用及び非常用高台炉注水ポンプのボルトの強度評価結果

(2) トラックの転倒評価

ポンプユニット,及びそれを搭載しているトラックについて,地震によるモーメン トと自重によるモーメントを算出し,それらを比較することで転倒評価を行った(図 -2参照)。ポンプユニット及びトラックが転倒するのは,地震によるモーメント>自 重によるモーメントとなる場合であるが,耐震Bクラス設備に適用される静的地震力 による評価の結果,地震によるモーメント<自重によるモーメントとなることから, 耐震Bクラス設備に適用される静的地震力に対してポンプユニット及びトラックが転 倒しないことを確認した。なお,耐震Sクラス設備に適用される静的地震力に対して も、トラックが転倒しないことを確認した。

図-2 トラックの転倒評価モデル

Ⅱ-2-1-添 2-2

地震によるモーメント: $M_1 = W \times g \times C_H \times h$ 自重によるモーメント: $M_2 = W \times g \times \ell$

- 1.1.2 純水タンク脇炉注水ポンプ
- 1.1.2.1 構造強度

純水タンク脇炉注水ポンプについては、ポンプの最高使用圧力を上回る試験圧 力で耐圧試験を実施し、漏えい等の異常がないことを確認することから、ポンプ の最高使用圧力に十分耐えうる構造強度を有していると判断する。

1.1.2.2 耐震性

純水タンク脇炉注水ポンプは、常用高台炉注水ポンプと同様の構造(ポンプユ ニットをトラックに搭載し、ボルト等で固定)であることから、耐震性について も同様に評価を行った。なお、基準地震動 Ss に対する動的解析を行うことが困難 であることから、耐震設計審査指針上の耐震 B クラス設備に適用される静的地震 力による評価を行った。

(1) ボルトの強度評価

常用高台炉注水ポンプと同様の手法でボルトの評価を行った結果,耐震Bクラス設備に適用される静的地震力に対してボルトの強度が確保されることを確認した。なお,耐震Sクラス設備に適用される静的地震力に対しても,ボルトの強度が確保されることを確認した(表-2参照)。

	耐震Bクラス	設備に適用さ	耐震Sクラス設備に適用さ			
	れる静的地震	力による評価	れる静的地震力による評価			
	算出応力	許容応力	算出応力	許容応力		
	[MPa]	[MPa]	[MPa]	[MPa]		
引張応力	作用しない	158	6	190		
せん断応力	3	122	5	146		

表-2 純水タンク脇炉注水ポンプのボルトの強度評価結果

(2) トラックの転倒評価

常用高台炉注水ポンプと同様に,耐震Bクラス設備に適用される静的地震力による 評価を行った結果,地震によるモーメント<自重によるモーメントとなることから, 耐震Bクラス設備に適用される静的地震力に対して純水タンク脇ポンプのポンプユニ ット及びトラックが転倒しないことを確認した。

- 1.1.3 タービン建屋内炉注水ポンプ
- 1.1.3.1 構造強度

タービン建屋内炉注水ポンプについては,通常運転圧力を上回る試験圧力で耐 圧試験を実施し,漏えい等の異常がないことを確認することから,ポンプの通常 運転時の内圧に十分耐えうる構造強度を有していると判断する。

1.1.3.2 耐震性

タービン建屋内炉注水ポンプは、基礎ボルトによりタービン建屋1階の床面に 固定されていることを踏まえ、耐震性の評価として、ボルトの強度が確保される ことの評価を行った。なお、基準地震動Ssに対する動的解析を行うことが困難で あることから、耐震設計審査指針上の耐震Bクラス設備に適用される静的地震力 による評価を行った。

(1) ボルトの強度評価

常用高台炉注水ポンプと同様の手法でボルトの評価を行った結果,ボルトの強度が 確保されることを確認した。なお,耐震Sクラス設備に適用される静的地震力に対し ても,ボルトの強度が確保されることを確認した(表-3参照)。

巴卡約	亡士八海	耐震 Bクラス れる静的地震	設備に適用さ 力による評価	耐震Sクラス設備に適用さ れる静的地震力による評価		
万恢	心力分類	算出応力 [MPa]	許容応力 [MPa]	算出応力 [MPa]	許容応力 [MPa]	
1 15 1	引張応力	作用しない	158	2	190	
1 F - 1	せん断応力	2	122	3	146	
1 E - 9 / 9	引張応力	作用しない	180	3	207	
1 F - 2 / 3	- 2/3 せん断応力	3	139	4	159	

表-3 タービン建屋内炉注水ポンプのボルトの強度評価結果

1.1.4 CST炉注水ポンプ

1.1.4.1 構造強度

CST炉注水ポンプについては,通常運転圧力を上回る試験圧力で耐圧試験を 実施し,漏えい等の異常がないことを確認することから,ポンプの通常運転時の 内圧に十分耐えうる構造強度を有していると判断する。

1.1.4.2 耐震性

CST炉注水ポンプは、基礎ボルトによりタービン建屋1階の床面に固定されていることを踏まえ、耐震性の評価として、ボルトの強度が確保されることの評

Ⅱ-2-1-添 2-4

価を行う。なお、基準地震動 Ss に対する動的解析を行うことが困難であることか ら、耐震設計審査指針上の耐震 B クラス設備に適用される静的地震力による評価 を行う。

(1) ボルトの強度評価

常用高台炉注水ポンプと同様の手法でボルトの評価を行い,ボルトの強度が確保されることを確認した。なお,耐震 S クラス設備に適用される静的地震力に対しても,ボルトの強度が確保されることを確認した(表-4参照)。

已,按该			設備に適用さ 力による評価	耐震Sクラス設備に適用さ れる静的地震力による評価		
	心力分類	算出応力 [MPa]	許容応力 [MPa]	算出応力 [MPa]	許容応力 [MPa]	
1 F —	引張応力	作用しない	180	2	207	
1/2/3	せん断応力	3	139	4	159	

表-4 CST炉注水ポンプのボルトの強度評価結果

- 1.2 タンクの構造強度及び耐震性
- 1.2.1 処理水バッファタンク
- 1.2.1.1 構造強度

処理水バッファタンクは、JSME S NC-1 発電用原子力設備規格 設計・建設規格 (JSME 規格)のクラス2容器に準じた評価を行う。

(1) 胴板の厚さ評価

JSME 規格に準拠し、胴板の厚さ評価を実施した。評価の結果、水頭圧に耐えられる ことを確認した(表-5)。

1) 胴板の計算上必要な厚さ: t

	Di	:	管台の内径
	H	:	水頭
$t = \frac{DiH\rho}{DiH\rho}$	ρ	:	液体の比重
$^{\iota}$ = 0.204S η	S	:	最高使用温度における
			材料の許容引張応力
	η	:	長手継手の効率

ただし, t の値は炭素鋼, 低合金鋼の場合は t =3[mm]以上, その他の金属の場合 は t=1.5[mm]以上とする。また, 内径の区分に応じた必要厚さを考慮する。

表-5 胴板の厚さ評価結果

機器名称	評価部位	必要肉厚[mm]	実厚[mm]
処理水 バッファタンク	タンク板厚 (胴板)	10.7	12.0

(2) 底板の厚さ評価

JSME 規格に準拠し、底板の厚さ評価を実施した。評価の結果、必要板厚を確保していることを確認した(表-6)。

表-6 底板の厚さ評価結果

機器名称	評価部位	必要肉厚[mm]	実厚[mm]
処理水	タンク板厚 (底板)	6. 0 ^{**1}	17.0

※1 地面,基礎等に直接接触するものについては、6.0mm(設計・建設規格)

(3) 管台の厚さ評価

JSME 規格に準拠し、管台の厚さ評価を実施した。評価の結果、水頭圧に耐えられる ことを確認した(表-7)。

1) 管台の計算上必要な厚さ: t

$$t = \frac{DiH\,\rho}{0.204\mathrm{S}\,\eta}$$

Di : 管台の内径

- H : 水頭
- ρ : 液体の比重
- S:最高使用温度における材料の許容引張応力
- η : 長手継手の効率

ただし、管台の外径の区分に応じた必要厚さを考慮する。

管台名称	管台口径	評価部位	必要肉厚[mm]	実厚[mm]
水位計管台1			1.7^{*2}	3.0
N2供給管台	ZƏA		1.7^{*2}	3.0
タンク入口管台1			3. 5^{*3}	7.0
タンク入口管台2	100A		3. 5^{*3}	7.0
タンク入口管台3		管台板厚	3. 5^{*3}	7.0
タンク入口管台4			3. 5^{*3}	10.5
タンク出口管台1	200A		3. 5^{*3}	10.5
タンク出口管台2			3. 5^{*3}	10.5
側マンホール管台	600A		3. 5^{*3}	12.0

表-7 管台の板厚評価結果

※2 管台の外径: 25mm 以上 38mm 未満のものについては 1.7mm

※3 管台の外径:82mm 以上のものについては 3.5mm

(4) 胴板の穴の補強評価

JSME 規格に準拠し、胴板の穴の補強評価を実施した。評価の結果、補強に有効な面 積が補強に必要な面積より大きいため、補強は十分であることを確認した(表-8)。 1)補強が必要な面積:Ar

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$Ar = dt_{sr}F$ At : 補強に有効な面積 (mm ²) A1 : 胴板部分の補強に有効な面積 (mm ²) A2 : 管台部分の補強に有効な面積 (mm ²) A2 : 管台部分の補強に有効な面積 (mm ²) A3 : 強め材部分の補強に有効な面積 (mm ²) A4 : 管台部分の補強に有効な面積 (mm ²) A5 : 浴技部分の補強に有効な面積 (mm ²) A6 : 管台の計算の補強に有効な面積 (mm ²) A5 : 浴技部分の補強に有効な面積 (mm ²) A6 : 節面に現れる穴の径 (mm) A7 : 「前板の最小厚さ (mm) A1 : 「簡板の最小厚さ (mm) A1 : 「簡板の最小厚さ (mm) A2 : 「管台の計算上必要な厚さ (mm) A2 : 「管台の計算上必要な厚さ (mm) A1 : 「簡板の副に有効な範囲 (mm) A2 : 「管台の計算上必要な厚さ (mm) A3 : 「信公司計算上必要な厚さ (mm) A4 : 「管台の計算上必要な厚さ (mm) A5 : 「「個板面に垂直な補強の有効な範囲 (mm) (Imst)p A3 : 「個板面に垂直な補強の有効な範囲 (mm) (Imst)p A3 : 「個板面に垂直な補強の有効な範囲 (mm) A4 : 「Im板面に垂直な補強の有効な範囲 (mm) A5 : 「「個本 W0 A4 : 「Im板の平行面に対して強め材の外側距離 (mm) A4 : 「甘気の和の時(Imt N0 A5 : 「「日本 2 A5 </td <td></td> <td>A_{r}</td> <td>:</td> <td>補強が必要な面積 (mm²)</td>		A_{r}	:	補強が必要な面積 (mm ²)
$A_1 = u_{sr}r$ $A_1 : III_{III}$ III_{III} $A_2 : E^{2} + g_{2}^{2} + g_{2}^{2}$ $A_1 : III_{III}$ $A_1 : E_{IIII}$ $IIII_{IIII}$ $A_2 : E^{2} + g_{2}^{2} + g_{2}^{2}$ $A_2 : E^{2} = 2t_{III} - t_{sr} + f_{sr}$ $A_3 : E_{IIIII}$ $A_4 : E^{2} = E^{2} + g_{2}^{2} + g_{3}^{2}$ $A_1 = A_1 + A_2 + A_3 + A_4 + A_5$ $A_3 : E_{IIIIIIII}$ $A_4 : E^{2} = E^{2} + g_{2}^{2} + g_{3}^{2}$ $A_1 = A_1 + A_2 + A_3 + A_4 + A_5$ $A_5 : E^{2} E^{2} E^{2} + g_{3}^{2}$ $A_4 : E^{2} E^{2} + g_{3}^{2}$ $A_1 = (\eta t_s - F t_{sr})(\ell_a - d)$ $A_5 : IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Ar - dt F	A_{t}	:	補強に有効な面積 (mm ²)
2) 補強に有効な面積: A _t A ₂ : 管台部分の補強に有効な面積 (mm ²) A ₃ : 強め材部分の補強に有効な面積 (mm ²) A ₄ : 管台突出し部分の補強に有効な面積 (mm ²) A ₄ : 管台突出し部分の補強に有効な面積 (mm ²) A ₄ : 管台突出し部分の補強に有効な面積 (mm ²) A ₅ : 溶接部分の補強に有効な面積 (mm ²) A ₅ : 洞板の計算上必要な回答 (mm) t _s : 胴板の計算上必要な厚き (mm) t _s : 管台の計算上必要な厚き (mm) t _n : 管台の計算上必要な厚さ (mm) t _n : 管台の計算上必要な厚さ (mm) t _n : I胴板の同で効な範囲 (mm) (III) t ₁ : III板面に垂直な補強の有効な範囲 (mm) (IIII) A ₃ = t _e ($\ell_a - W_i$) ($\ell_a \le W_o$ の場合) A ₃ = t _e ($W_o - W_i$) ($\ell_a \ge W_o$ の場合) A ₄ = 2t _n ℓ_{b2} ($\ell_{b2} \le h_1$) A ₅ = g ₁ ² + g ₂ ² + g ₃ ² A ₅ = g ₁ ² + g ₂ ² + g ₃ ² A ₅ = g ₁ ² + g ₂ ² + g ₃ ²	$AI = ul_{sr}I$	A_1	:	胴板部分の補強に有効な面積 (mm ²)
2) 補強に有効な面積:At A_{3} : 強め材部分の補強に有効な面積 (mm ²) A_{4} : 管台突出し部分の補強に有効な面積 (mm ²) A_{4} : 管台突出し部分の補強に有効な面積 (mm ²) A_{5} : 溶接部分の補強に有効な面積 (mm ²) A_{5} : 溶板部分の存動な面積 (mm ²) A_{5} : 洞板の最小厚さ (mm) t_{5} : 洞板の計算上必要な厚さ (mm) t_{6} : 副板の計算上必要な厚さ (mm) t_{6} : 僧台の計算上必要な厚さ (mm) t_{7} : 僧台の計算上の要な厚さ (mm) t_{7} : 僧台の計算上の要な厚さ (mm) t_{7} : @台の計算Lの要な範疇 (mm) (mpthyph) t_{7} : 『個板の平行面に対して強め材の外側距離 (mm) h_{1} : 管台突出し高さ (mm) (mpthyph) h_{2} : 管台飛出し高さ (mm) (mpthyph) h_{2} : 管台飛出し高さ (mm) (mpthyph) h_{2} : 管台和溶描是 (mm) g_{3} : 寸み肉溶接の脚長 (mm) g_{3} : 寸み肉溶接の脚長 (mm) g_{3} : 寸み肉溶接の脚長 (mm) η : PVC-3161.2 に規定する効率 (-) F : PVC-3161.2-1 から求めた値 (-)		A_2	:	管台部分の補強に有効な面積 (mm²)
$A_1 = A_1 + A_2 + A_3 + A_4 + A_5$ $A_4 : \text{ e} = \text{e} + $	2) 補強に有効な面積・Δ.	A_3	:	強め材部分の補強に有効な面積 (mm ²)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		A_4	:	管台突出し部分の補強に有効な面積 (mm ²)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		A_5	:	溶接部分の補強に有効な面積 (mm ²)
$A_1 = (\eta t_s - F t_{sr})(\ell_a - d)$ ts : Interpretation in the second system is the se	$A_1 = A_1 + A_2 + A_3 + A_4 + A_5$	d	:	断面に現れる穴の径 (mm)
$\begin{split} A_{1} &= (\eta t_{s} - F t_{sr})(\ell_{a} - d) \\ A_{2} &= 2(t_{n} - t_{nr})\ell_{b1} (\ell_{b1} \leq h_{2}) \\ A_{3} &= t_{e}(\ell_{a} - W_{i}) (\ell_{a} \leq W_{o} \circ J \otimes d) \\ A_{3} &= t_{e}(\ell_{a} - W_{i}) (\ell_{a} \leq W_{o} \circ J \otimes d) \\ A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \geq W_{o} \circ J \otimes d) \\ A_{4} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \\ A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \\ \end{split}$	t 1 2 5 4 5	t_s	:	胴板の最小厚さ (mm)
$\begin{split} A_{1} &= (\eta t_{s} - Ft_{sr})(\ell_{a} - d) \\ fn &: 管台の最小厚さ(mm) \\ fn &: 管台の最小厚さ(mm) \\ fn &: 管台の最小厚さ(mm) \\ fn &: 管台の計算上必要な厚さ(mm) \\ fn &: 管台の計算上必要な厚さ(mm) \\ fn &: 暗极的材の厚さ(mm) \\ fn &: 幅板面に垂直な補強の有効な範囲(mm) \\ fn &: 幅板面に垂直な補強の有効な範囲(mm) (m) \\ fn &: mh{ to i : m$		t_{sr}	:	胴板の計算上必要な厚さ (mm)
$\begin{aligned} A_{2} &= 2(t_{n} - t_{nr})\ell_{b1} (\ell_{b1} \leq h_{2}) \\ A_{3} &= t_{e}(\ell_{a} - W_{i}) (\ell_{a} \leq W_{o} \circ \Im \otimes \oplus) \\ A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \geq W_{o} \circ \Im \otimes \oplus) \\ A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \geq W_{o} \circ \Im \otimes \oplus) \\ A_{4} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \end{aligned} $ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned} $ $\begin{aligned} A_{1} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \\ A_{2} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{1} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \end{aligned} $ $\begin{aligned} A_{2} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \geq W_{o} \circ \Im \otimes \oplus) \\ A_{4} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \end{aligned}$ $\begin{aligned} A_{4} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \end{aligned}$ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$	$A_1 = (\eta t_s - F t_{sr})(\ell_a - d)$	tn	:	管台の最小厚さ (mm)
$\begin{array}{rcl} A_{2} = 2(t_{n} - t_{nr})\ell_{b1} & (\ell_{b1} \leq h_{2}) \\ A_{3} = t_{e}(\ell_{a} - W_{i}) & (\ell_{a} \leq W_{o} \circ \vartheta = h_{0}) \\ A_{3} = t_{e}(W_{o} - W_{i}) & (\ell_{a} \leq W_{o} \circ \vartheta = h_{0}) \\ A_{4} = 2t_{n}\ell_{b2} & (\ell_{b2} \leq h_{1}) \\ A_{5} = g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{array} \qquad \begin{array}{rcl} t_{m} & t_{m} = t_{m} t_{m} t_{m} = t_{m} t_{m} t_{m} \\ t_{a} & t_{m} t_{m} t_{m} = t_{m} t_{m} t_{m} \\ t_{b1} & t_{m} t_{m} t_{m} = t_{m} t_{m} t_{m} t_{m} t_{m} \\ t_{b2} & t_{m} t_{m} t_{m} t_{m} t_{m} t_{m} t_{m} t_{m} \\ t_{b2} & t_{m} \\ t_{b1} & t_{m} \\ t_{b2} & t_{m} \\ t_{b2} & t_{m} \\ t_{1} & t_{1} t_{1} t_{1} t_{1} t_{1} t_{1} t_{m} t_{m} t_{m} t_{m} t_{m} t_{m} t_{m} \\ t_{1} & t_{1} t_{1} t_{1} t_{1} t_{1} t_{1} t_{m} \\ t_{1} & t_{1} t_{1} t_{1} t_{1} t_{1} t_{1} t_{1} t_{m} t$		t_{nr}	:	管台の計算上必要な厚さ (mm)
$\begin{split} A_{2} &= 2(t_{n} - t_{nr})\ell_{b1} (\ell_{b1} \leq h_{2}) \\ A_{3} &= t_{e}(\ell_{a} - W_{i}) (\ell_{a} \leq W_{o} \circ m \otimes h) \\ A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \leq W_{o} \circ m \otimes h) \\ A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \geq W_{o} \circ m \otimes h) \\ A_{4} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \\ A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \\ \end{split}$	(0, 1)	te	:	強め材の厚さ (mm)
$\begin{aligned} A_{3} &= t_{e}(\ell_{a} - W_{i}) (\ell_{a} \leq W_{o} \circ \Im \otimes (\mathbb{A})) \\ A_{3} &= t_{e}(W_{o} - W_{i}) (\ell_{a} \geq W_{o} \circ \Im \otimes (\mathbb{A})) \\ A_{4} &= 2t_{n}\ell_{b2} (\ell_{b2} \leq h_{1}) \\ A_{5} &= g_{1}^{2} + g_{2}^{2} + g_{3}^{2} \end{aligned}$ $\begin{aligned} u^{(1)} &= \lim_{h \to \infty} u^{(1)} (I_{a} \leq W_{o} \circ \Im \otimes (\mathbb{A})) \\ W^{(1)} &= \lim_{h \to \infty} u^{(1)} (I_{a} \otimes W_{o} \circ (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb{A})) \\ W^{(2)} &= \lim_{h \to \infty} u^{(2)} (I_{b2} \otimes (\mathbb$	$A_{2} = 2(t_{n} - t_{nr})\ell_{b1} (\ell_{b1} \le n_{2})$	la	:	補強に有効な範囲 (mm)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		lb1	:	胴板面に垂直な補強の有効な範囲 (mm) (胴より外側)
$ \begin{array}{rcl} A_{3} = t_{e}(\ell_{a} - W_{i}) & (\ell_{a} \ge W_{o} \circ 5\% \mathrm{fr}) & & & & & & & & & & & & & & & & & & &$	$A - t(\ell - W) (\ell < W の 堪合)$	lh2	:	胴板面に垂直な補強の有効な範囲 (mm) (胴より内側)
$ A_{3} = t_{e}(W_{o} - W_{i}) (\ell_{a} \ge W_{o} \text{ 0} $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\Pi_3 = \iota_e(\iota_a \Pi_i) (\iota_a \leq \Pi_o \circ) \in \Pi \square)$	Wo		胴板の平行面に対して強め材の外側距離 (mm)
$A_4 = 2t_n \ell_{b2}$ $(\ell_{b2} \le h_1)$ $A_4 = 2t_n \ell_{b2}$ $(\ell_{b2} \le h_1)$ $A_5 = g_1^2 + g_2^2 + g_3^2$ $(\ell_{b2} \le h_1)$ $A_5 = g_1^2 + g_2^2 + g_3^2$ η PVC -3161.2 (mm) η PVC -3161.2 F PVC -3161.2 PVC -3161.2 $(-)$	$A_3 = t_e(W_o - W_i) (\ell_a \ge W_o $ の場合)	Wi		胴板の平行面に対して強め材の内側距離 (mm)
$A_4 = 2t_n \ell_{b2}$ $(\ell_{b2} \le h_1)$ h1 自日気田(同日気(mm)) (mm)(m板より外側) h_2 : 管台飛出し高さ(mm) (m板より外側) g_1 : すみ肉溶接の脚長(mm) g_2 : すみ肉溶接の脚長(mm) g_3 : すみ肉溶接の脚長(mm) g_3 : すみ肉溶接の脚長(mm) f_4 : PVC-3161.2 に規定する効率(-) F : PVC-3161.2-1 から求めた値(-)		h		管台突出し高さ (mm) (胴板上り内側)
$A_4 = 2t_n \ell_{b2}$ $(\ell_{b2} \le h_1)$ n_2 電白水田 (同日) (nm) g_1 すみ肉溶接の脚長 (mm) g_2 すみ肉溶接の脚長 (mm) g_3 すみ肉溶接の脚長 (mm) η PVC-3161.2 に規定する効率 (-) F PVC-3161.2-1 から求めた値 (-)		h_2	:	管台飛出し高さ (mm) (胴板上り外側)
$a_5 = g_1^2 + g_2^2 + g_3^2$ g1 : 「うの内相協の加快(mm) $g2 : 寸み肉溶接の脚長(mm)$ $g3 : 寸み肉溶接の脚長(mm)$ $\eta : PVC-3161.2$ に規定する効率(-) F : PVC-3161.2-1 から求めた値(-)	$A_4 = 2t_n \ell_{b2} (\ell_{b2} \le h_1)$	0°1	:	さら 本 あ 肉 液 接 の 脚 長 (mm) (mm)
$A_5 = g_1^2 + g_2^2 + g_3^2$ $A_5 = g_1^2 + g_2^2 + g_3^2$ $g_2 = f_0 + $		5- 0°0	:	すみ 肉 液 接 の 脚長 (mm) す み 肉 液 接 の 開 長 (mm)
$A_{5} = g_{1}^{2} + g_{2}^{2} + g_{3}^{2}$ $\eta : PVC-3161.2 に規定する効率 (-)$ F : PVC-3161.2-1 から求めた値 (-)		5- 0-2	:	すみ肉 溶接の 期長 (mm)
F: PVC-3161.2・1 から求めた値 (-)	$A = \sigma^2 + \sigma^2 + \sigma^2$	50 n	:	PVC-31619に担定する効率 (-)
	215 - 81 + 82 + 83	F	:	PVC-3161 9-1 から求めた値 (_)
		T,	•	

なお,補強計算に使用した各数値の読み取り値は図-3参照。

	- /////////////////////////////////////			
機器名称	管台口径	評価部位	$\operatorname{Ar}[mm^2]$	$A_t[\text{mm}^2]$
水位計管台1	054		%4	*4
N2供給管台	ZƏA		%4	%4
タンク入口管台1			727	1930
タンク入口管台2	100A		727	1927
タンク入口管台3		管台	727	1930
タンク入口管台4			1430	3690
タンク出口管台1	200A		1430	3683
タンク出口管台2			1430	3683
側マンホール管台	600A		4339	6805

表-8 胴板の穴の補強評価結果

※4 穴の径が 85mm 以下であり,穴の補強を要しない。

(5) 強め材の取付け強さ評価

JSME 規格に準拠し, 強め材の取り付け強さ評価を実施した。評価の結果, 溶接部の 強度が十分であることを確認した(表-9)。

1) 溶接部の負うべき荷重: W

$$W = d'_o t_{sr} S - (\eta t_s - F t_{sr}) (\ell_a - d'_o) S$$

2) 溶接部の強さ: F₁ ~ F₆

	W :	溶接部の負うべき荷重 (N)
$E = \frac{\pi}{d} d \sigma S n$	\mathbf{F}_1 :	管台外側のすみ肉溶接部断面におけるせん断強さ (N)
$r_1 = 2^{a_0 g_1 S \eta_1}$	${ m F}_2$:	管台壁断面におけるせん断強さ (N)
	\mathbf{F}_3 :	突合せ溶接部断面における引張強さ (N)
$F = \frac{\pi}{dt} dt S n$	\mathbf{F}_4 :	管台内側のすみ肉溶接部断面におけるせん断強さ (N)
$\frac{1}{2} = 2 \frac{\alpha r_n S_n \eta_4}{2}$	F_5 :	強め材のすみ肉溶接部断面におけるせん断強さ (N)
	${ m F}_6$:	突合せ溶接部断面における引張強さ (N)
$F_{2} = \frac{\pi}{d} d' t S n_{2}$	\mathbf{S} :	胴板材料の最高使用温度における許容引張応力 (MPa)
$2^{\alpha_0 \gamma_s \sim \gamma_2}$	\mathbf{S}_n :	管台材料の最高使用温度における許容引張応力 (MPa)
	d :	管台の内径 (mm)
$F_{4} = \frac{\pi}{d} d_{2} g_{2} S \eta_{1}$	d_o :	管台の外径 (mm)
4 2 082 11	d'0 :	胴の穴の径 (mm)
	$t_{ m s}$:	胴板の最小厚さ(mm)
$F_5 = \frac{\pi}{2} W_0 g_3 S \eta_1$	$t_{ m sr}$:	胴板の計算上必要な厚さ (mm)
2 2 2	\mathbf{t}_n :	管台の最小厚さ (mm)
7	ℓ_a :	補強に有効な範囲 (mm)
$F_6 = \frac{\pi}{2} d_o t_s S \eta_2$	$W_{ m o}$:	胴板の平行面に対して強め材の外側距離 (mm)
2	\mathbf{g}_1 :	すみ肉溶接の脚長 (mm)
3) 溶接部の強さ : W1 ~ W6	\mathbf{g}_2 :	すみ肉溶接の脚長 (mm)
	\mathbf{g}_3 :	すみ肉溶接の脚長 (mm)
$W_1 = F_1 + F_2$	W_1 :	予想される破断箇所の強さ (N)
	W_2 :	予想される破断箇所の強さ (N)
$W_2 = F_1 + F_2 + F_4$	W_3 :	予想される破断箇所の強さ (N)
2 1 6 4	W_4 :	予想される破断箇所の強さ (N)
$W_2 = F_5 + F_2$	W_5 :	予想される破断箇所の強さ (N)
5 5 2	W_6 :	予想される破断箇所の強さ (N)
$W_{A} = F_{5} + F_{2}$	η :	PVC-3161.2 に規定する効率 (-)
4 5 5	η_1 :	PVC-3169-1 に規定する強め材の取付け強さ (-)
$W_{5} = F_{1} + F_{2}$	η_2 :	PVC-3169-1 に規定する強め材の取付け強さ (-)
5 1 5	η_4 :	PVC-3169-1 に規定する強め材の取付け強さ (-)
$W_{6} = F_{5} + F_{6} + F_{4}$	F :	PVC-3161.2-1 から求めた値 (-)
0 0 7		

なお,補強計算に使用した各数値の読み取り値は図-3参照。

+4% 0月 友 千小-	管台	溶接部の負 うべき荷重 予想される破断箇所の強さ						
	口径	W	W_1	\mathbf{W}_2	\mathbf{W}_3	W_4	W_5	W_6
		[N]	[N]	[N]	[N]	[N]	[N]	[N]
タンク入口管台1 タンク入口管台2 タンク入口管台3	100A	61500	149000	299000	307000	396000	238000	457000
タンク入口管台4 タンク出口管台1 タンク出口管台2	200A	99300	361000	566000	508000	586000	439000	714000
側マンホール管台	600A	221000	1160000	1590000	1210000	1270000	1210000	1650000

表-9 強め材の取付け強さ評価結果

図-3 補強計算概要図

Ⅲ-2-1-添 2-10

1.2.1.2 耐震評価

(1) 転倒評価

処理水バッファタンク設置エリアの地表面おける基準地震動 Ss-1,2,3 のうち,水平 方向及び鉛直方向の応答加速度の組み合わせが最も厳しい時刻における転倒評価を行 った。評価の結果,タンクが転倒しないことを確認した(表-10)。

転倒評価の内容は下記の通り。

- 1)処理水バッファタンク設置エリアの地表面における基準地震動:Ss-1,2,3 で,水 平方向及び鉛直方向の応答加速度の組み合わせが最も厳しい時刻における転倒モ ーメントをスロッシングによる液面振動を加味して算出する。
- 2)処理水バッファタンク設置エリアの地表面における基準地震動:Ss-1,2,3 で,水 平方向及び鉛直方向の応答加速度の組み合わせが最も厳しい時刻における安定モ ーメントを算出する。
- 3)各基準地震動において、転倒モーメントと安定モーメントを比較し、転倒モーメントが安定モーメントより小さいことを確認する。

 $M = Ch \times g \times W0 \times h0 + 1.2 \times W1 \times g \times \theta h \times h1$ $Mc = m0 \times (1 - Cv) \times g \times r$

- M : 転倒モーメント (kN・m)
- M_c : 安定モーメント (kN・m)
- W0: スロッシングによる衝撃力を加味した全等価質量(t)
- W1: スロッシングによる振動力を加味した内包水の等価質量(t)
- h0 : W0の作用点高さ(m)
- h1 : W1の作用点高さ(m)
- θh : 液体表面の自由振動角度 (rad)
- m0 : 総重量(t)
- r : 底板半径 (m)
- Ch : 水平方向震度(-)
- Cv : 鉛直方向震度(-)
- g : 重力加速度 (m/s²)

Ss-1 地表面応答加速度(水平方向)

最大加速度振幅 5.77m/sec²

Ss-2 地表面応答加速度(水平方向)

最大加速度振幅 5.89m/sec²

時間 [sec]

最大加速度振幅 5.19m/sec²

Ss-3 地表面応答加速度(水平方向)

Ss-1 地表面応答加速度(鉛直方向)

最大加速度振幅 3.46m/sec²

Ss-2 地表面応答加速度(鉛直方向)

時間 [sec]

Se-3 地表面応答加速度(鉛直方向) 最大加速度振幅 3.32m/sed²

	評価	評価	其淮	算出値		
機器名称	部位	「」」「」」	地震動	転倒	安定	単位
		ХI		モーメント	モーメント	
処理水 バッファタンク	本体	転倒	Ss-1	3. 32×10^4	4.85 $\times 10^{4}$	kN•m
			Ss-2	1.90×10^{4}	4. 15×10^4	kN•m
				Ss-3	2. 22×10^4	4. 69×10^4

表-10 転倒評価結果

(2) 応力評価及び座屈評価

JEAC4601-2008 原子力発電所耐震設計技術規程に基づき,タンク胴の応力評価及び座 屈評価を行った。評価の結果,発生する応力が許容値を超えないことを確認した。

1) タンク胴の応力評価

組合せ応力が胴の最高使用温度における許容応力 Sa 以下であること。

応力の種類	許容応力Sa
一次一般膜応力	設計引張強さSuの0.6倍。

応力の計算

応力計算において,静的地震力を用いる場合は絶対値和を用い,動的地 震力を用いる場合はSRSS法を適用する。

a. 静水頭及び鉛直方向地震による応力

$$\sigma_{\varphi 1} = \frac{\rho' g H D_i}{2t}$$
$$\sigma_{\varphi 2} = \frac{\rho' g H D_i C_v}{2t}$$

$$\sigma_{x1} = 0$$

b. 運転時質量及び鉛直方向地震による応力

胴がベースプレートと接合する点には胴自身の質量による圧縮応力と 鉛直方向地震による軸方向応力が生じる。

$$\sigma_{x2} = \frac{m_e g}{\pi (D_i + t) t}$$
$$\sigma_{x3} = \frac{m_e g C_v}{\pi (D_i + t) t}$$

c. 水平方向地震力による応力

水平方向の地震力により胴はベースプレート接合部で最大となる曲げ モーメントを受ける。この曲げモーメントによる軸方向応力と地震力に よるせん断応力は次式で求める。

$$\sigma_{x4} = \frac{4C_H m_0 g\ell_g}{\pi (D_i + t)^2 t}$$

$$\tau = \frac{2C_H m_0 g}{\pi (D_i + t) t}$$

d. 組合せ応力

a~cによって求めた胴の応力は以下のように組み合わせる。

- (a) 一次一般膜応力
 - a)組合せ引張応力

$$\sigma_{\varphi} = \sigma_{\varphi 1} + \sigma_{\varphi 2}$$

$$\sigma_{0t} = \frac{1}{2} \left\{ \sigma_{\phi} + \sigma_{xt} + \sqrt{(\sigma_{\phi} - \sigma_{xt})^2 + 4\tau^2} \right\}$$

ここで, 【絶対値和】

$$\sigma_{xt} = \sigma_{x1} - \sigma_{x2} + \sigma_{x3} + \sigma_{x4}$$

【SRSS法】

$$\sigma_{xt} = \sigma_{x1} - \sigma_{x2} + \sqrt{\sigma_{x3}^2 + \sigma_{x4}^2}$$

b)組合せ圧縮応力

 $\sigma_{\varphi} = -\sigma_{\varphi 1} - \sigma_{\varphi 2}$

σ xc が正の値(圧縮側)の場合は,組合せ圧縮応力は次式で 求める。

$$\sigma_{0c} = \frac{1}{2} \left\{ \sigma_{\phi} + \sigma_{xc} + \sqrt{(\sigma_{\phi} - \sigma_{xc})^2 + 4\tau^2} \right\}$$

ここで,

【絶対値和】

$$\sigma_{xc} = -\sigma_{x1} + \sigma_{x2} + \sigma_{x3} + \sigma_{x4}$$

【SRSS法】

$$\sigma_{xc} = -\sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x3}^2 + \sigma_{x4}^2}$$

したがって, 胴の組合せ一次一般膜応力の最大値は, 絶対値和, SRSS法それぞれに対して, 次による。

 $\sigma_0 = Max$ {組合せ引張応力 (σ_{0t}), 組合せ圧縮応力 (σ_{0c})}

一次応力の評価は算出応力が一次一般膜応力と同じ値であるので 省略する。

機器名称	部材	材料	応力	算出応力 [MPa]	許容応力 [MPa]
処理水 バッファタンク	胴板	SM400B	一次一般膜	69.6	236

表-11 タンク胴の応力評価結果

2) タンク胴の座屈評価

圧縮膜応力(圧縮応力と曲げによる圧縮側応力の組合せ)は次式を満足する こと。

$$\frac{\eta \left(\sigma_{x2} + \sigma_{x3}\right)}{f_c} + \frac{\eta \sigma_{x4}}{f_b} \leq 1$$

ここで、
$$f_{c}$$
は次による。
$$\frac{D_{i}+2t}{2t} \leq \frac{1200g}{F}$$
のとき $f_{c} = F$

$$\frac{1200g}{F} < \frac{D_i + 2t}{2t} < \frac{8000g}{F} \text{ Observed}$$
$$f_{c} = F \left[1 - \frac{1}{6800g} \left\{ F - \phi_1 \left(\frac{8000g}{F} \right) \right\} \left(\frac{D_i + 2t}{2t} - \frac{1200g}{F} \right) \right]$$

$$\frac{8000g}{F} \leq \frac{D_i + 2t}{2t} \leq 800 \text{ O } \geq 3$$

$$f_{c} = \phi_1 \left(\frac{D_i + 2t}{2t}\right)$$

ただし、
$$\phi_1$$
 (x) は次の関数とする。

$$\phi_{1}(\mathbf{x}) = 0.6 \frac{E}{x} \left[1 - 0.901 \left\{ 1 - \exp\left(-\frac{1}{16}\sqrt{x}\right) \right\} \right]$$

また、 f_{b} は次による。 $\frac{D_{i}+2t}{2t} \leq \frac{1200g}{F}$ のとき

$$f_{\rm b}=F$$

$$\frac{1200g}{F} < \frac{D_i + 2t}{2t} < \frac{9600g}{F} \text{ Observed}$$
$$f_{b} = F \left[1 - \frac{1}{8400g} \left\{ F - \phi_2 \left(\frac{9600g}{F} \right) \right\} \left(\frac{D_i + 2t}{2t} - \frac{1200g}{F} \right) \right]$$

$$\frac{9600g}{F} \leq \frac{D_i + 2t}{2t} \leq 800 \text{ Obs}$$

$$f_{\rm b} = \phi_2 \left(\frac{D_i + 2t}{2t}\right)$$

Ⅲ-2-1-添 2-17

ただし、 ϕ_2 (x) は次の関数とする。

$$\phi_2$$
 (x) = $0.6\frac{E}{x} \left[1 - 0.731 \left\{ 1 - \exp\left(-\frac{1}{16}\sqrt{x}\right) \right\} \right]$

ηは安全率で次による。

$$\frac{D_i + 2t}{2t} \leq \frac{1200 \text{g}}{F} \text{のとき}$$

 $\eta = 1$

$$\frac{1200 \text{g}}{F} < \frac{D_i + 2t}{2t} < \frac{8000 \text{g}}{F} \text{O} \succeq \overset{}{\approx} \eta = 1 + \frac{0.5F}{6800 \text{g}} \left(\frac{D_i + 2t}{2t} - \frac{1200 \text{g}}{F} \right)$$

$$\frac{8000 \text{g}}{F} \leq \frac{D_i + 2t}{2t} \text{Obs}$$

$$\eta = 1.5$$

表-12 タンク胴の座屈評価結果

機器名称	部材	材料	座屈評価結果
処理水バッファタンク	胴板	SM400B	0.24

記号の説明

記号	記号の説明	単 位
Сн	水平方向設計震度	—
C v	鉛直方向設計震度	—
D i	胴の内径	mm
Е	胴の縦弾性係数	MPa
\mathbf{F}	設計・建設規格 SSB-3121.1又はSSB-3131に定める値	MPa
f c	軸圧縮荷重に対する許容座屈応力	MPa
f b	曲げモーメントに対する許容座屈応力	MPa
g	重力加速度(=9.80665)	m/s^2
Н	水頭	mm
ℓ g	基礎から容器重心までの距離	mm
m 0	容器の運転時質量	kg
m _e	容器の空質量	kg
${f S}_a$	胴の許容応力	MPa
\mathbf{S}_{u}	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
t	胴板の厚さ	mm
η	座屈応力に対する安全率	—
π	円周率	—
ρ′	液体の密度(=比重×10 ⁻⁶)	kg/mm^3
σ 0	胴の一次一般膜応力の最大値	MPa
σ 0t	胴の組合せ引張応力	MPa
σ 0c	胴の組合せ圧縮応力	MPa
σ_{x1}	静水頭により胴に生じる軸方向応力	MPa
σ _{x2}	胴の空質量による軸方向圧縮応力	MPa
σ _{x3}	胴の鉛直方向地震による軸方向応力	MPa
σ x4	胴の水平方向地震による軸方向応力	MPa
σ_{xc}	胴の軸方向応力の和(圧縮側)	MPa
σ xt	胴の軸方向応力の和(引張側)	MPa
${f O}\phi$	胴の周方向応力の和	MPa
σ_{ϕ} 1	静水頭により胴に生じる周方向応力	MPa
$\sigma_{\phi}2$	静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
τ	地震により胴に生じるせん断応力	MPa
ϕ_1 (x)	圧縮荷重に対する許容座屈応力の関数	MPa
ϕ_2 (x)	曲げモーメントに対する許容座屈応力の関数	MPa
1.2.1.3 スロッシング評価

円筒型の処理水バッファタンクについて地震発生時のタンク内包水のスロッシ ング評価を実施した。速度ポテンシャル理論に基づきスロッシング波高の評価を 行った結果,スロッシング時のタンク内の液位がタンク天板に到達しないことを 確認した。

スロッシング評価の内容は下記の通り。

- 1)速度ポテンシャル理論に基づき、スロッシング固有周期(水面の一次固有周期) を算出する。
- 2) 処理水バッファタンク設置エリアの地表面における基準地震動:Ss-1,2,3 に対 する速度応答スペクトルから、スロッシング固有周期に応じた速度応答値を求 める。
- 3)速度ポテンシャル理論に基づき、速度応答値からスロッシング波高を算出する。
- 4) 運用上の上限液位に対してスロッシング波高を考慮してもタンク高さを超えな いことを確認する。

$$T_s = 2\pi \sqrt{\frac{D}{3.68g} \operatorname{coth}\left(\frac{3.68H}{D}\right)}$$

$$\eta = 0.837 \left(\frac{1}{2g} \right) \left(\frac{1}{T_s} \right) S_v$$

- D : タンク内径 [m]
- H : タンク液位 [m]
- g : 重力加速度 [m/s²]
- T_s: スロッシング固有周期 [s]
- S_v : 速度応答值 [m/s]
- η : スロッシング波高 [m]

速度応答スペクトル (水平方向・減衰なし)

• •			
松巴太子	スロッシング	スロッシング時	タンク高さ
(成 奋 ⁄ 印 / 竹	波高 [mm]	液位 [mm]	[mm]
処理水バッファタンク	795	9108	13868

表-13 スロッシング評価結果

- 1.3 管の構造強度及び耐震性
- 1.3.1 鋼管
- 1.3.1.1 構造強度

鋼管については、「設計・建設規格」におけるクラス2配管の規定に基づき、最 高使用圧力に対して十分な厚さを有していることを確認しており、原子炉注水系 における使用条件に対し、十分な構造強度を有していると評価している(表-1 4参照)。

	公称肉厚 [mm]	必要最小厚さ [mm]
【1~3号機高台炉注水ライン】	3.5	0.33
ホンノユニット	3.5	0.42
	4.0	0.49
【1~3号機高台炉注水ライン】	3.9	0.24
	5.5	0.35
	7.1	0.64
	5.5	3.0
	5.5	2.4
	10.3	3.8
	3.9	2.4
	5.2	2.7
	5.5	3.0
	5.5	2.4
【1~3号機純水タンク脇炉注水ライン】 ポンプユニット	3.5	0.33
	3.5	0.42
	5.5	0.49
【1~3号機純水タンク脇炉注水ライン】	5.0	3.8
	5.8	3.8
【1~3号機タービン建屋内炉注水ライン】 ポンプユニット	5.2	2.7
	5.5	2.4
	5.5	0.33
【1~3号機タービン建屋内炉注水ライン】	5.2	2.7
	5.5	3.0
	6.0	3.4
	7.1	3.8
	8.7	2.4

表-14 原子炉注水系における鋼管の構造強度評価結果

	5.5	3.0
	7.1	3. 8
	10.3	3.8
	5.5	2.4
	5.5	2.4
	5.2	2.7
【1~3号機CST炉注水ライン】	4.5	1.7
<i>ホンノユーツト</i>	5.5	2.4
	5.5	3. 0
【1~3号機CST炉注水ライン】	5.5	2.4
	3.9	2.4
	5.2	2.7
	5.5	3.0
	6.0	3.4
	7.1	3.8

■ 内圧を受ける直管

最高使用圧力に対する直管の厚さは、(式1-1)により計算した値及び表-15に定める値のいずれか大きい方の値以上でなければならない。

$$t = \frac{PD_0}{2S\eta + 0.8P} \qquad (\vec{\texttt{x}} \ 1\text{-}1)$$

t:管の計算上必要な厚さ(mm)

- P:最高使用圧力(MPa)
- D₀:管の外径 (mm)
- S:最高使用温度における「設計・建設規格 付 録材料図 表 Part5 表 5」に規定する材料 の許容引張応力(MPa)
- η:長手継手の効率で、「設計・建設規格
 PVC-3130」に定めるところによる。

管の外径 (mm)	管の厚さ (mm)
25 未満	1.4
25 以上 38 未満	1.7
38 以上 45 未満	1.9
45 以上 57 未満	2.2
57 以上 64 未満	2.4
64 以上 82 未満	2.7
82 以上 101 未満	3.0
101 以上 127 未満	3. 4
127 以上	3.8

表-15 炭素鋼鋼管の必要最小厚さ

1.3.1.2 耐震性

鋼管は分岐ヘッダ等の短い部分に使用するが,その前後はフレキシビリティを 有したポリエチレン配管等と接続されており地震変位による有意な応力は発生し ないと考える。

変更の工事に伴う新設設備の耐震性については,基準地震動 Ss による地震力に 対してその安全機能を確保できることを確認する。

1.3.1.2.1 計算条件

鋼管は、アンカ及びレストレイントにより支持される。

1.3.1.2.2 計算方法

固有周期及び地震力による応力計算には、計算機コード SOLVER を用いる。解析 範囲における設計条件を表-16に示す。

解析範囲	最高使用 圧力 (MPa)	最高使用 温度 (℃)	外径 (mm)	厚さ (mm)	材料
	1.00	40	216.3	15.1	STPT410
2 号機	0.98	50	216.3	15.1	STPT410
給水系(B系)	0.98	50	216.3	15.1	STPT370
取合部	0.98	50	114.3	6.0	STPT370
	0.98	50	60.5	8.7	STPT370
	1.00	40	216.3	15.1	STPT410
3号機	0.98	50	216.3	15.1	STPT410
給水系(B系)	0.98	50	216.3	15.1	STPT370
取合部	0.98	50	114.3	6.0	STPT370
	0. 98	50	60.5	8.7	STPT370

表-16 設計条件

1.3.1.2.3 評価結果

解析により算出した応力が許容応力以下であることを確認した(表-17 参照)。

	一次応力 (MPa)	
	算出応力	許容応力
2号機給水系(B系) 取合部	109	329
3号機給水系(B系) 取合部	102	329

表-17 鋼管の応力評価結果

1.3.2 フレキシブルチューブ

1.3.2.1 構造強度

フレキシブルチューブは設計・建設規格に記載がない機器であるが,通常運転 状態における漏えい確認試験を行い,有意な変形や漏えいがないことを確認する ことから,必要な構造強度を有しているものと判断する。

1.3.2.2 耐震性

フレキシブルチューブは,フレキシビリティを有しており,地震変位による有 意な応力は発生しないと考えられる。

1.3.3 ポリエチレン配管

1.3.3.1 構造強度

ポリエチレン管の材料である高密度ポリエチレンは非金属材であるため、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」による規定はなく、ISO TR9080 及び ISO 12162 により「PE100」として規定、分類される。ポリエチレン管の性能 (引張降伏強さや引張による破断時の伸び等)や寸法については、日本水道協会 規格(JWWA K 144 等)及び配水用ポリエチレンパイプシステム協会規格(PTC K 03 等)に詳しく規定されている。

内圧に対する強度設計としては、設計内圧による発生応力が、材料(PE100)の 50年後クリープ強度 σ_{50} に安全率を見込んだ値を上回らないような外径と管厚 の組み合わせを、JWWA K 144 等で規定している(下式)。この強度設計式において、 設計内圧は 1.0MPa であり、常用高台炉注水ポンプ等の通常運転圧力(現在までの 実績ベースで 1.0MPa 以下)を上回っていることから、ポリエチレン管の規格品は、 原子炉注水系での内圧条件に対して十分な管厚を有する(表-18にポリエチレ ン管の寸法の例を示す)。

また、ポリエチレン管の耐圧性は温度依存性があるが、50℃の温度条件においても、原子炉注水系の最高使用圧力を上回る耐圧性能が確保できることを数値シ ミュレーションにより確認している。具体的には、①ポリエチレン管に加わる内 圧による応力、②使用環境温度、及び③破壊時間に関する関係式を用いて、環境 温度が 20℃~50℃のときに、1MPa の内圧が加わった場合の破壊時間を算出したと ころ、破壊時間が最も短くなる 50℃の場合でも、10年以上の寿命が確保できる ことを確認した。

さらに,通常運転状態における漏えい確認を行い,有意な変形や漏えいがない ことを確認している。以上のことから,ポリエチレン管は原子炉注水系における 使用条件に対し,十分な構造強度を有していると判断する。

σ₅₀ PE100の50年後クリープ強度(MPa)

 $\frac{\sigma_{50}}{S_{f}} = \frac{P(D-t)}{2t} \qquad \begin{array}{c} S_{f} & \text{ $\varpi \neq \approx $} \\ P & \text{ \mathcal{B} \mathcal{B} \mathcal{I} \mathcal{B} $\mathcal{B}$$

呼び径	外径:D	管厚: t
	[mm]	[mm]
50	63.0	5.8
75	90.0	8.2
100	125.0	11.4
150	180.0	16.4
200	250.0	22.7
300	355.0	32.2

表-18 ポリエチレン管の寸法の例 (JWWA K 144, PTC K 03)

1.3.3.2 耐震性

ポリエチレン管の耐震設計については、土中に埋設された状態における耐震計 算が日本水道協会規格等で規定されているのみであり、福島第一原子力発電所の ように地上に設置したポリエチレン管の耐震計算に関する規定はない。しかしな がら、ポリエチレン管は、フレキシビリティを有しており、地震変位による有意 な応力は発生しないと考える。

1.3.4 耐圧ホース及び消防用ホース

1.3.4.1 構造強度

耐圧ホースは設計・建設規格に記載がない材料であるが,通常運転状態におけ る漏えい確認試験を行い,有意な変形や漏えいがないことを確認していることか ら,必要な構造強度を有しているものと判断する。

消防用ホースも同様に設計・建設規格に記載がない材料であるが,消防法により規定される耐圧性能(1.6MPa)を満足していることから,原子炉注水系における使用条件(1.0MPa以下)に対し,十分な構造強度を有していると判断する。

2 既設設備の耐震性

- 2.1 配管
- 2.1.1 耐震性評価

原子炉注水系のラインとしては、表-19の既設配管を使用することから、これらの耐震性について評価を行った。評価にあたっては、原子力発電所耐震設計技術指針(JEAG4601)に規定される許容応力状態IV_ASに対する許容値を評価基準値として用いた。その結果、1~3号機の炉心スプレイ系配管に接続される復水補給水系配管については、算出応力が評価基準値を上回るものの、1号機、2号機及び3号機の給水系配管については、算出応力が評価基準値を満足することを確認した(表-20参照)。

また,既設配管の内, PCV 内等に敷設されている配管については,現時点で目視等 による健全性確認は実施できていないが,現時点でも当該配管を用いた注水により, 原子炉圧力容器等が冷却されていること等の状況から,原子炉冷却に必要な健全性は 確保されているものと考えられる。

号機	原子炉注水配管
1 号機	給水系 (A系, B系)
	復水補給水系~炉心スプレイ系 (B系)
り早越	給水系(B系)
乙万懱	復水補給水系~炉心スプレイ系(B系)
2 早越	給水系 (B系)
こ万傚	復水補給水系~炉心スプレイ系 (B系)

表-19 原子炉注水系で使用する既設配管

表 - 20	基準地震動 Ss に	こよる地震力に対す	る既設配管の耐震性評価結果

号機	系統	耐震 クラス	1 次応力の 算出値 「MPa]	評価 基準値 「MPa]
1 号機	給水系(A系,B系)	В	204	369
2 号機	給水系 (B系)	В	266	369
3 号機	給水系 (B系)	В	229	432

2.1.2 配管支持構造物の点検結果(代表例を記載)

【1号機】

RE-FDW-16R

図-4 1号機の配管支持構造物の点検結果

図-5 2号機の配管支持構造物の点検結果

FDWR6-1, FDWR7-1

図-6 3号機の配管支持構造物の点検結果

2.2 ろ過水タンク,純水タンク,原水地下タンク

ろ過水タンク,純水タンク,原水地下タンクは、本震で基準地震動 Ss 相当の地震 力が加わったことで、純水タンク1基に漏えいが確認されたが、ろ過水タンク2基、 純水タンク1基、原水地下タンクについては、機能は維持されていた。また、全ての タンクが機能喪失に至った場合でも注水ができるように、海水を水源とした消防車に よる注水を行えるようにする。

2.3 復水貯蔵タンク(CST)

CSTは、1号機は耐震Bクラス(工事計画認可 昭和44年4月9日付け 43 公第13820号)にて、2/3号機は耐震Aクラス(2号機:工事計画認可 昭和 46年2月10日付け 45公第11897号 3号機:工事計画認可 昭和46 年12月22日付け 46公第16351号,工事計画軽微変更届出 昭和48年1 0月23日付け 総官発871号)にて設計・製作されている。本震で基準地震動Ss 相当の地震力が加わるとともに、スロッシングによる応力も加わったと想定されるが、 CSTについては、有意な変形等もなく、機能は維持されていた。また、全てのタン クが機能喪失に至った場合でも注水ができるように、海水を水源とした消防車による 注水を行えるようにする。 崩壊熱相当の注水量について

崩壊熱相当の注水量 $W[m^3/h]$ は下式で計算されるものであり、 $T_{in}[\mathbb{C}]$ から $T_{out}[\mathbb{C}]$ までの顕熱で崩壊熱を冷却可能な注水量である。

 $W = Q \times \rho \times 1,000 \times 3,600 / (hw_{out} - hw_{in})$

- Q :崩壊熱[kW]
- T_{in} : 注水温度[℃]
- T_{out} :崩壊熱を除熱後の注水温度[℃]
- hw_{out} :水 (T_{out}℃) の比エンタルピー[J/kg]
- hw_{in} :水 (T_{in}℃)の比エンタルピー[J/kg]
- ρ :水の比容積[m³/kg]

なお,平成24年12月7日時点で,T_{in}を20℃,T_{out}を80℃とした場合の,各号機の 崩壊熱と崩壊熱相当の注水量の計算例を以下にしめす。

号機	崩壊熱	崩壊熱相当の注水量₩
1 号機	0.25 MW	3.6 m^3/h
2 号機	0.33 MW	4.8 m ³ /h
3 号機	0.33 MW	4.8 m ³ /h

以上

炉注入する処理水の水質目標値について

- 1. 原子炉注水ラインや原子炉圧力容器(RPV)及び原子炉格納容器(PCV)の一部 には塩化物イオンによる腐食への影響が認められている SUS304 材を使用しているこ とから、念のため塩化物イオン濃度の目標値を 100ppm 以下とする。
- 2. 原子炉注水の水源である処理水バッファタンク水及び3号機復水貯蔵タンク水の塩化 物イオン濃度を1回/3ヶ月の頻度で確認する。なお,確認は導電率測定によるもの とし,塩化物イオン濃度100ppmに相当する導電率40mS/m^{1),2)}を超える場合は,塩化物 イオン濃度の測定を行う。
- <100ppmの根拠>

塩化物イオンによるステンレス鋼の局部腐食発生限界を考慮。SUS304 と SUS316 が使用 されているが塩化物イオンの腐食への影響がより大きい SUS304 の腐食抑制を検討。 ①原子炉注水ライン

- ▶ 図-1中の曲線の下の領域が腐食の発生しない環境である。
- ▶ 原子炉注水ラインの温度は処理水バッファタンクまたは復水貯蔵タンクが水源であるから、大気温度を大きく超える可能性はなく、猛暑期を想定しても40℃以下と考えられる。
- > 40℃における局部腐食臨界電位に相当する塩化物イオン濃度を評価すると、図-1 より 160ppm となる。

Ⅱ-2-1-添 4-1

② 原子炉圧力容器(RPV)内及び原子炉格納容器(PCV)内

- ▶ RPV及びPCV内の温度は 80℃程度と評価されているが、窒素ガスの封入が行われていることから水中の溶存酸素濃度は低減しているものと考えられる。
- ▶ 現在,溶存酸素濃度は測定できないものの,注入されている N2 濃度は 99.99%以上であるので,酸素濃度を 0.01%と仮定すると分圧から水中の溶存酸素濃度は 1ppb 程度で平衡するものと推定される。保守的に 100ppb (0.1ppm)と仮定すると,腐食 電位は 100mV(SHE)以下と推定される。⁵⁾
- > 図-2によれば、80℃、100mV (SHE)における局部腐食臨界電位に相当する塩化 物イオン濃度は135ppm と評価される。

③水質目標値の設定

以上より水質管理目標値を保守的に 100ppm とする。なお,今後RPVやPCV内の 腐食環境に関する新たな情報が得られた時点で,根拠及び目標値を再評価してゆく。

図-2 SUS 304 鋼のすきま腐食臨界電位 *E*R, CREV と定常腐食電位 *E*SP との比較に よる対すきま腐食可使用条件評価^{3),6)}

1)日本化学会編: "化学便覧 基礎編 改訂 5 版," 丸善, p. II-563 (2004).

2)日本学術振興会編: "金属防食技術便覧," 日刊工業新聞社, p. 177 (1972).

3) M. Akashi, G. Nakayama, T. Fukuda: CORROSION/98 Conf., NACE International, Paper No. 158 (1998).

4) T. Fukuda, M. Akashi: Proc. Nuclear Waste Packaging –FOCUS'91, ANS, p. 201 (1991)

5) R. W. Staehle et al.: EPRI RP311-1, Final Summary Report (1977).

6) T. Fukuda, M. Akashi: Proc. Nuclear Waste Packaging -FOCUS'91, ANS, p. 201 (1991)

原子炉注水停止時評価の説明資料

1. 評価方法

評価は、大きく分けて三段階で実施する。第一段階では時間依存のエネルギーバランス 評価によって原子炉注水停止後及び注水再開時の燃料や炉内構造材の温度変化を評価し、 第二段階では温度評価結果を入力として核分裂生成物の放出量を評価し、第三段階では放 出される環境中への線量影響評価を実施する。

評価プラントについては、1~3号機のうち崩壊熱の評価結果が最大である2号機を代表として対象とする(平成24年12月7日時点の崩壊熱:1号機0.25 MW,2号機0.33 MW,3号機0.33 MW)。

- 1.1 燃料温度評価
- (1) 炉心燃料からの崩壊熱による発熱と、炉心燃料、上部構造材、シュラウド、原子炉圧 力容器側部、原子炉圧力容器底部のそれぞれの間の輻射熱伝達を考慮する(図-1)。
- (2) 各部の温度は一点近似とする。
- (3) 原子炉注水停止時の原子炉圧力容器内の保有水量は保守的に 0 m³とし,原子炉注水停止と同時に全燃料が露出するものとする。
- (4) 評価に用いる式を以下に示す(注水再開前)。
- a. 炉心燃料のエネルギーバランスの式

$$M_{1}Cp_{1}\frac{dT_{1}}{dt} = Q_{d} - Q_{1} - Q_{5}$$

- M_1 : 炉心燃料質量[kg]
- *Cp*₁ : 炉心燃料比熱[kJ/(kg-K)]
- *T*₁ : 炉心燃料温度[K]
- Q_d : 炉心燃料崩壞熱[kW]
- Q_1 : 炉心燃料(上面)における輻射伝熱量[kW]
- *Q*₅ : 炉心燃料(下面)における輻射伝熱量[kW]
- b. 上部構造材のエネルギーバランスの式

$$M_2Cp_2 \frac{dT_2}{dt} = Q_2$$

 M_2 : 上部構造材質量[kg]
 Cp_2 : 上部構造材比熱[kJ/(kg-K)]
 T_2 : 上部構造材温度[K]
 Q_2 : 上部構造材における輻射伝熱量[kW]

c. シュラウドのエネルギーバランスの式

$$M_{3}Cp_{3} \frac{dT_{3}}{dt} = Q_{3} - Q_{4}$$

$$M_{3} : \stackrel{i}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow$$

d. 原子炉圧力容器側部のエネルギーバランスの式

$$M_4 C p_4 \frac{dT_4}{dt} = Q_4$$

 M_4 : 原子炉圧力容器側部質量[kg]
 $C p_4$: 原子炉圧力容器側部比熱[kJ/(kg-K)]
 T_4 : 原子炉圧力容器側部温度[K]

e. 原子炉圧力容器底部のエネルギーバランスの式

$$M_{5}Cp_{5}\frac{dT_{5}}{dt} = Q_{5}$$

 M_{5} : 原子炉圧力容器底部質量[kg]
 Cp_{5} : 原子炉圧力容器底部比熱[kJ/(kg-K)]
 T_{5} : 原子炉圧力容器底部温度[K]

- (5) 注水再開後には注水による燃料冷却を考慮する。注水量の全てが炉心燃料の冷却に寄 与するものとし、また、発生蒸気によって上部構造材が冷却されるものとする。飽和 温度以下の水により燃料が冷却される場合には、水の顕熱により燃料の崩壊熱が除去 されるものとする。
- (6) 評価に用いる式を以下に示す(注水再開後)。
- a. 炉心燃料のエネルギーバランスの式

$$M_{1}Cp_{1}\frac{dT_{1}}{dt} = Q_{d} - Q_{1} - Q_{5} - Q_{c}$$

ここで、 $Q_{c} = W_{g}(H_{g} - H_{f}) + W_{in}(H_{f} - H_{in})$
 Q_{c} : 注水による炉心燃料除熱量[kW]
 W_{in} : 注水流量[kg/s]

W。: 発生蒸気量[kg/s]

- *H_{in}*:注水の比エンタルピ[kJ/kg]
- H_{g} : 飽和蒸気の比エンタルピ[kJ/kg]
- H_f : 飽和水の比エンタルピ[kJ/kg]
- b. 上部構造材のエネルギーバランスの式

$$M_{2}Cp_{2}\frac{dI_{2}}{dt} = -Q_{2} - Q_{2g}$$
ここで、 $Q_{2g} = h_{2g}A_{2g}(T_{2} - T_{g})$

$$Q_{2g} : 上部構造材から蒸気流への対流伝熱量[kW]$$

$$T_{g} : 飽和蒸気温度[K]$$

$$h_{2g} : 上部構造材の熱伝達率[kW/(m^{2}-K)]$$

$$A_{2g} : 上部構造材伝熱面積(蒸気への対流伝熱)[m^{2}]$$

- 1.2 核分裂生成物の放出量評価
- (1) 上部構造材に付着しているセシウムが温度上昇に伴い飽和蒸気圧で蒸発し、環境中へ 放出された場合の線量影響を評価する。セシウムの放出量は、上部構造材温度の時間 変化にしたがって放出量を積分して評価する。 上部構造材としては、スタンドパイプと気水分離器を考慮しており、燃料からの輻射 熱の影響を考慮し、燃料に近いこれらの部位に炉心燃料インベントリ全量のセシウム が付着しているという保守的な設定としている。
- (2) 希ガスは既にほぼ完全に放出されていること、また、ヨウ素は減衰していることから、 これらの被ばく評価上の影響は無視できるため、本評価では考慮しないこととする。
- (3) 燃料残存の核分裂生成物(FP)については,平成23年3月の事故時に燃料温度は約3,000℃近くの高温に達していると評価されており,揮発性の高いものは既に放出されているものと考えられる。よって,今回の評価結果の範囲である500℃程度の燃料温度では,FPの有意な追加放出がないと考えられることから,これらについては本評価では考慮しないこととする。
- (4) 対象とするセシウムの化学形態は水酸化セシウム(CsOH)とし、その飽和蒸気圧は熱 力学データベース(MALT)による評価結果を引用するものとする(図-2)。
- (5) CsOH のキャリアガスは,発生する蒸気量とする。また,炉心燃料が冷却するまで放出 が継続するものとする。
- (6) 評価に用いる式を以下に示す。

 $M_{CsOH} = P_{CsOH}V_g / (RT)$ $C_{CsOH} = M_{CsOH} / (V_g + v_{grav}A_{grav} + v_{dif}A_{dif})$

$M_{leak} = C_{Csc}$	$_{OH}V_g$
M_{CsOH}	:CsOH 発生量[mol/s]
P_{CsOH}	: CsOH 飽和蒸気圧[N/m ²]
V_{g}	:発生蒸気流量[m³/s]
R	:気体定数[J/(mol-K)]
Т	:上部構造材温度[K]
C _{CsOH}	:CsOH 平衡濃度[mo1/m ³]
${\cal V}_{grav}$:重力沈降速度[m/s]
A_{grav}	:重力沈降面積[m²]
${\cal V}_{dif}$:ブラウン拡散沈着速度[m/s]
A_{dif}	:ブラウン拡散沈着面積[m²]
M_{leak}	:CsOH放出量[mol/s]:

- (7) 上記の原子炉格納容器での重力沈降とブラウン拡散沈着は考慮するが、その他の原子 炉格納容器内や原子炉建屋での除染係数については、保守的に考慮しないこととする。
- 1.3 線量影響評価
- (1) 大気中へ放出されるセシウムは,原子炉建屋から地上放散されるものとし,周辺の公衆に対する,放射線被ばくのリスクを年間の実効線量を用いて評価する。
- (2) 評価対象核種はセシウム 134 とセシウム 137 とする。
- (3) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算する。被ばく経路としては、放射性雲中のセシウムからの外部被ばくと内部被ばくと、地表沈着したセシウムによる外部被ばくと内部被ばくを考慮する。
- (4) 放射性雲のセシウムからの γ 線の外部被ばくによる実効線量の評価に用いる式を以下 に示す。
 - $H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$
 - H_ν: 放射性雲のセシウムからの γ 線の外部被ばくによる実効線量[mSv]
 - *K* : 空気カーマから実効線量への換算係数[Sv/Gy]
 - E_{γ} : γ 線の実効エネルギー[MeV]
 - D/Q:相対線量[Gy/Bq]
 - *Q_{Cs}*:事故期間中のセシウムの大気放出量[Bq]
- (5) 放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量の評価に用いる式を 以下に示す。

 $H_{Cs} = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_{Cs}$ H_{Cs} :放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量[mSv]

Ⅱ-2-1-添 5-4

K_{in}:内部被ばく線量換算係数[mSv/Bq]

 R_1 :呼吸率[m³/s]

 χ/Q :相対濃度[s/m³]

(6) 地表沈着したセシウムからの外部被ばくによる実効線量の評価に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。

$G_{ex} = K_{ex} \cdot \chi / Q \cdot V \cdot f \cdot Q_{Cs} \cdot T \cdot 1000$ G_{ex} : 地表沈着したセシウムからの外部被ばくによる実効線量[mSv] K_{ex} : 外部被ばく線量換算係数[(Sv/s)/(Bq/m²)] V : 沈降速度[m/s] f : 残存割合[-] T : 被ばく時間[s]

(7) 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばくの実効線 量の評価に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量 を評価する。セシウムの崩壊については保守的に考慮しない。

$G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$

- G_{in} :地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部 被ばくの実効線量[mSv]
 - R_2 :呼吸率[m³/s]
 - F : 再浮遊率[m⁻¹]
- (8) 相対濃度と相対線量については、本事象では核分裂生成物は主排気筒より放出されないことから、地上放散を想定し、下表の値を用いる。

	敷地境界	5km 地点	10km 地点
相対濃度[s/m ³]	2. 6×10^{-5}	4. 3×10^{-6}	1.5×10^{-6}
相対線量[Gy/Bq]	3. 0×10^{-19}	8.9 $\times 10^{-20}$	3. 8×10^{-20}

2. 評価条件

2.1 燃料位置

燃料の位置については、不確定性はあるものの、1~3号機のいずれについても原子炉 圧力容器もしくは原子炉格納容器内に燃料は存在しているものと推定されており、本評価 では、実効線量の評価を厳しくする観点から、原子炉圧力容器内に燃料の全量があるとい う条件で評価している。

平成23年3月の事故時の炉心損傷過程で放出されたセシウムの大部分は原子炉圧力容 器内の上部構造材に付着していると考えられるため、本評価では、上部構造材に付着した セシウムの再蒸発による環境放出を前提とする。原子炉格納容器に燃料が落下している場 合と比較して、原子炉圧力容器内に燃料を想定する場合の方が上部構造材の温度上昇を大 きく見積もるため、保守的な結果を与えることとなる。

2.2 初期温度

現状の原子炉圧力容器や原子炉格納容器の各部位の温度推移から,原子炉圧力容器内及 び原子炉格納容器内は十分に冷却されており(平成24年12月7日時点で概ね50℃以下), 露出した過熱部分が有意な割合で存在している状況ではないと推定される。よって,初期 燃料温度については,100℃と設定することが妥当と考えられるが,燃料位置等の不確かさ を考慮して,保守的に150℃と設定する。原子炉圧力容器上部等の構造材については,初期 温度を100℃と設定する。

2.3 燃料の崩壊熱

燃料の崩壊熱については, 平成 24 年 12 月 7 日時点の 2 号機の崩壊熱(0.33MW)を用いる。

2.4 注水停止時間

注水停止してから注水再開までの注水停止時間は以下の条件とする。

(1) 過渡相当

過渡相当事象としては,機器等の単一の故障を想定する。想定される原子炉注水系 の単一の故障(ポンプ故障,電源喪失,水源喪失,原子炉注水ライン損傷)が発生し た場合の注水再開までの所要時間は,以下に示すようにいずれも30分程度であるので, これに余裕をとり原子炉注水の停止時間は1時間とする。

a. ポンプ故障

常用系ポンプが故障した場合は、待機号機の起動もしくは非常用高台炉注水ポンプの起動を行うことで、原子炉注水を再開する(注水再開の所要時間:30分程度)。

b. 電源喪失

常用系ポンプの電源が,外部電源喪失や全母線電源喪失により喪失した場合は,電 源切替に数時間を要することから,非常用高台炉注水ポンプによる原子炉注水(系統 構成及び非常用高台炉注水ポンプの起動)及び予め待機している消防車による原子炉 注水(系統構成及び消防車の起動)を並行して実施する(注水再開の所要時間:30 分程度)。 c. 水源喪失

常用系ポンプは,主としてバッファタンクを水源としているが,タンク等が損傷し, 保有水が漏えいする等,タンク機能が喪失した場合は,水源をろ過水タンクに切替え る(注水再開の所要時間:30分程度)。

d. 原子炉注水ライン損傷

常用系ポンプからの注水ラインが損傷した場合は,純水タンク脇炉注水ポンプによる原子炉注水(系統構成及び純水タンク脇炉注水ポンプの起動)を行う(注水再開の 所要時間:30分程度)。

(2) 事故相当

原子炉注水の流量低下や注水ポンプの電源喪失を検知した際は,免震重要棟内で警 報を発して異常時の対応を促す仕組みとしているが,事故相当事象としては,これら の警報では検知できない原子炉注水系の異常が生じた場合を想定する。この場合には, 原子炉圧力容器周辺や原子炉格納容器周辺の温度計の指示上昇によって異常の兆候を 検知することとなるが,仮に,このような事態が生じた場合には,各部位の温度計が 全体的に顕著な上昇傾向を示すと考えられるため,異常の検知は可能であると考えら れる。

温度上昇の幅としては、本評価では保守的に 30℃と設定する。また、対象とする温 度については、異常時には全体的に顕著な温度上昇傾向が想定されるため、上述の評 価方法によって求めた原子炉圧力容器底部の温度を代表として検知対象とする。原子 炉圧力容器底部の温度変化を図-3に示すが、原子炉圧力容器底部の温度上昇幅が 30℃を超過するのは注水停止からの経過時間が約6時間の時点である。これに注水再 開に要する時間(注水再開の所要時間:30分程度)を考慮し、事故相当での原子炉注 水の停止時間は7時間とする。

事故相当事象としては、原子炉注水系の複数の設備が同時に機能喪失した事象も想定される。このような事象が発生した場合には、水源の損傷状況や現場状況に応じて、 新たな消防車の配備や注水ラインの再敷設等を行い、原子炉注水を再開する。注水再開までの時間は、現場状況等により変動するものの、ホース敷設距離等を踏まえた作業時間を勘案すると、作業開始から3時間程度と想定しており、上述の炉注水関係の 警報では検知できない異常事象に包絡される。

(3) シビアアクシデント相当

施設の安全性を評価する観点では,異常時の評価としては過渡相当事象と事故相当 事象の評価をすることで十分と考えられるが,ここではより長期にわたる原子炉注水 停止の影響評価を行うため,想定を大きく超えるシビアアクシデント相当事象につい ても評価を実施することとする。 シビアアクシデント相当としては,何らかの原因によって原子炉注水が長時間停止 し,注水停止時間が事故相当事象を超える事象を想定する。

東北地方太平洋沖地震時の最長の原子炉注水停止時間は,1号機の実績で約14時間 であり、この時間が1つの目安として考えられる。下表に1号機の当時の時系列を示 しているが、全交流電源喪失から消防車による淡水注入開始までの約14時間を注水停 止時間としている(非常用復水器の動作については不明な点があるものの、全交流電 源喪失以降について機能が喪失しているものとしている)。

1号機 事象発生時の主要経緯(時系列)

(「福島第一原子力発電所 東北地方太平洋沖地震に伴う原子炉施設への影響について(平 成23年9月 東京電力株式会社)」からの抜粋)

日時	主要経緯
平成 23 年 3 月 11 日	
14:46	東北地方太平洋沖地震発生,原子炉スクラム。
15:37	全交流電源喪失。
17:12	発電所長(発電所緊急時対策本部長)は、アクシデントマネジメ
	ント策として設置した消火系(FP)ライン,及び消防車を使用し
	た原子炉への注水方法の検討開始を指示。
17:30	ディーゼル駆動消火ポンプ(DD-FP)起動(待機状態)。
平成 23 年 3 月 12 日	
1:48	不具合による DD-FP 停止を確認。消防車から FP ラインへの送水
	ロにつなぎこむことを検討開始。
5:46	原子炉内に FP ラインから消防車による淡水注入開始。

表に示すように,消防車から FP ラインへの送水口につなぎこむことの検討開始は, ディーゼル駆動消火ポンプ(DD-FP)の停止を確認した後に実施しており,原子炉注水 途絶直後から消防車による注水のみに専念することを想定する場合には,DD-FPの起動 から停止までの時間(約7時間)を短縮することが可能であると考えられる。また, 当時と比較して,消防車の配備や手順書の整備がなされており,定期的な訓練も実施 されていることから,消防車による原子炉注水についても事故当時と比較すると短期 間で実施することが可能と考えられる。

これらを踏まえて、本評価では実績の約 14 時間を短縮した 12 時間をシビアアクシ デント相当事象の注水停止時間として設定する。 2.5 注水再開時の注水流量と注水温度

注水再開時の注水流量は,事故相当事象とシビアアクシデント相当事象では 10 m³/h と 設定する。これは,平成 24 年 12 月 7 日時点の崩壊熱相当注水量(Ⅱ.2.1 添付資料-3) の約 2 倍の流量である。また,過渡相当事象では崩壊熱相当注水量と同程度の 5 m³/h を 注水再開時の注水流量として設定する。また,注水温度は 30℃とする。

- 3. 評価結果
- 3.1 過渡相当

炉心燃料温度と上部構造材温度の時間変化を図-4に示す。原子炉注水停止から炉 心燃料温度は上昇し,注水停止から1時間の注水再開の時点で約170℃まで上昇するが, 注水再開により速やかに冷却され,事象は収束する。また,事象期間を通じて上部構 造材温度はほとんど上昇しない。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおりとなる。

セシウム 134 放出量	約 5.0×104 Bq
セシウム 137 放出量	約 6.1×104 Bq
年間の実効線量	約 9.3×10 ⁻⁷ mSv

3.2 事故相当

炉心燃料温度と上部構造材温度の時間変化を図-5に示す。原子炉注水停止から温度は上昇し、注水停止から7時間の注水再開の時点で炉心燃料温度は約260℃、上部構造材温度は約110℃まで上昇するが、注水再開により速やかに冷却され、事象は収束する。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおりとなる。

セシウム 134 放出量	約 2.3×10 ⁵ Bq
セシウム 137 放出量	約 2.8×10 ⁵ Bq
年間の実効線量	約 4.3×10 ⁻⁶ mSv

3.3 シビアアクシデント相当

炉心燃料温度と上部構造材温度の時間変化を図-6に示す。原子炉注水停止から温度は上昇し、注水停止から12時間の注水再開の時点で炉心燃料温度は約330℃、上部構造材温度は約120℃まで上昇するが、注水再開により速やかに冷却され、事象は収束する。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果 は下表のとおりとなる。

セシウム 134 放出量	約 1.1×10 ⁶ Bq
セシウム 137 放出量	約 1.4×10 ⁶ Bq
年間の実効線量	約 2.1×10 ⁻⁵ mSv

また,特定原子力施設から 5km, 10km 地点での年間の実効線量はそれぞれ約 3.5×10⁻⁶ mSv,約 1.2×10⁻⁶ mSv となる。3 プラント分の放射性物質の放出を考慮した場合においても、敷地境界での年間の実効線量は約 6.3×10⁻⁵ mSv,特定原子力施設から 5km 地点で約 1.1×10⁻⁵ mSv, 10km 地点で約 3.6×10⁻⁶ mSv となる。

以下余白

Q:正味の熱交換量

図-1 原子炉圧力容器輻射モデルの概要

図-2 CsOH 蒸気圧の温度依存性

図-6 炉心燃料温度と上部構造材温度の時間変化(シビアアクシデント相当)

原子炉注水系に関する確率論的リスク評価

1.1 目的

事故後の原子炉の状況において最も重要な原子炉を冷やす機能である原子炉注水系に ついて,多重故障等の厳しい条件に基づき,原子炉注水系の機能が喪失した際の相対的 な脆弱性を体系的に把握することは,安全性を向上させる上で有用な役割を果たすもの である。

ここでは、原子炉注水系に対して影響が大きい事象を選定し、その後の事象進展の確率を、設備構成や故障率を基に推定し、原子炉圧力容器内及び格納容器内の燃料(以下、 炉心という)が再損傷に至る頻度を評価する(別紙-1,2参照)。

1.2 方針

1号機から3号機は、津波襲来後の数日の間にシビアアクシデントに至ったものとみら れており、その間で一定量の放射性物質(FP)が環境に放出されたものと考えられる。 このような状況を考慮し、ここでの評価方針としては、原子炉圧力容器内及び格納容器 内に残存している FP の相当量が環境へ放出される事象を対象とする。

1.3 評価対象

本評価では、原子炉圧力容器内及び格納容器内に残存している FP の相当量が環境へ放 出される事象として、炉心再露出及び炉心再損傷に至る頻度を評価対象とする。なお、 原子炉注水系が一定時間停止すると、炉心再露出に至ることから、原子炉注水系が停止 する事象を原子炉注水系機能喪失と呼ぶ。

また,格納容器の気密性を確保できていないと考えられることから,炉心の再損傷後 から放出までの評価は炉心の再損傷頻度と同等として取り扱う。

評価対象とした原子炉注水系の構成を図-1に,原子炉注水系の電源構成を図-2に 示す。

原子炉注水系機能喪失に至る起因事象は,安定的な原子炉への注水を阻害する要因(ハ ザード)が発電所内,所外のどちらに起因するかに分けて選定し,以下のとおりとした。 〇ハザード発生箇所が発電所内の場合

- (1) 常用高台炉注水ポンプトリップ
- (2) 注水ライン機能喪失
- (3) 一次水源からの供給機能喪失
- (4) 外部電源喪失(地震を除く)
- (5) 所内共通 M/C(1A)/(1B) 盤火災

○ハザード発生箇所が発電所外の場合

- (6) 外部電源喪失(地震)
- (7) 大津波事象

Ⅱ-2-1-添 6-2

1.4 原子炉注水系機能喪失の判定条件

これまで比較的安定して冷却してきた燃料が露出すると、燃料温度は上昇する。ただ し、原子炉停止から時間が経過していることから、炉内の崩壊熱量は大幅に低減してお り、燃料が露出しても直ちに燃料が溶融し、FP が環境に放出されることにはならない。 ここで、炉心再損傷の判定条件として、炉心の温度が上昇し、3 プラント同時に炉心損 傷した際の敷地境界の線量が 5mSv 以下となることとした。添付資料-1の手法により原 子炉注水系機能喪失からこの判定条件に至るまでの時間を評価した結果、原子炉注水系 機能喪失から、34 時間後までに炉心への注水に成功すれば、炉心再損傷を防止できるも のとし、34 時間以内に注水を復旧できない場合を炉心再損傷とした。

1.5 評価結果

起因事象発生から炉心再損傷に至るまでの頻度を評価した。

炉心再損傷が発生する頻度(点推定値)は表-1及び図-3に示すとおりであった。 各起因事象の評価結果の概要について以下に示す。

(1)常用高台炉注水ポンプトリップ
 常用高台炉注水ポンプの共通原因故障による3台の機能喪失により、ポンプトリップし、炉注水の再開に失敗することにより炉心が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(2) 注水ライン機能喪失

注水ラインの破損により炉注水が中断し、炉注水の再開に失敗することにより炉心 が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(3) 一次水源からの供給機能喪失

ー次水源(バッファタンク)への給水が途絶えること等で,一次水源が枯渇するこ とにより炉注水が中断し,炉注水の再開に失敗することにより炉心が再損傷に至るシ ナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

- (4) 外部電源喪失(地震を除く)外部電源喪失(地震を除く)により外部電源の供給が途絶え、炉注水の再開に失敗
- することにより炉心が再損傷に至るシナリオである。 本モードの炉心再損傷頻度への寄与割合は1%未満である。
- (5) 所内共通 M/C(1A)/(1B) 盤火災 所内共通 M/C(1A)/(1B) 盤火災により、常用高台炉注水ポンプへの電源の供給が途絶 え、炉注水の再開に失敗することにより炉心が再損傷に至るシナリオである。
- 本モードの炉心再損傷頻度への寄与割合は1%未満である。
- (6) 外部電源喪失(地震) 地震により外部電源の供給が途絶え,炉注水の再開に失敗することにより炉心が再

損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(7) 大津波事象

大津波が襲来したことにより, 注水ラインが流され, 炉注水が中断し, 注水ライン の復旧に失敗し, 炉注水の再開に失敗することにより炉心が再損傷に至るシナリオで ある。大津波事象の発生頻度を 700 年に一回と見込んだこと, 漂流物等により注水ラ インが損傷した場合代替手段が少なくなること, 及び, 注水ライン損傷後の復旧作業 が難航(漂流物による作業環境の悪化, 滞留水の漏えいに伴う線量上昇による作業環 境の悪化) することにより, 注水ラインの復旧に失敗し, 炉注水の再開に失敗する割 合が大きくなるため, 炉心再損傷頻度が大きくなる。

本モードの炉心再損傷頻度への寄与割合は約99%である。

ハザード	起因事象	起因事象発生	炉心再損傷頻	寄与割合
発生箇所		頻度(/年)	度(/年)	(%)
発電所内	常用高台炉注水ポンプトリップ	4.8 $\times 10^{-3}$	4.8 $\times 10^{-11}$	1%未満
	注水ライン機能喪失	1.2×10^{-2}	3. 1×10^{-7}	1%未満
	一次水源からの供給機能喪失	2. 0×10^{-1}	2. 0×10^{-9}	1%未満
	外部電源喪失(地震を除く)	1.0×10^{-1}	1.0×10^{-9}	1%未満
	所内共通M/C(1A)/(1B)盤火災	4. 5×10^{-2}	4.5 $\times 10^{-10}$	1%未満
発電所外	外部電源喪失(地震)	5. 7×10^{-1}	6. 1×10^{-9}	1%未満
	大津波事象	1. 4×10^{-3}	5.8 $\times 10^{-5}$	99%
_	合計	_	5.9 $\times 10^{-5}$	100%

表-1 炉心再損傷頻度の評価結果

図-3 炉心再損傷頻度の評価結果

- 1.6 別紙
 - 別紙-1 確率論的リスク評価手法
 - 別紙-2 事故シーケンスの定量評価

確率論的リスク評価手法

1. 評価手法

評価手法ではまず,安定的な原子炉圧力容器及び格納容器への注水を阻害する起因事 象の選定を行い,成功基準を決定し,事象の進展を考慮してイベントツリーを作成した。 イベントツリーの各要素(以下,「ヘディング」という。)に対してフォールトツリー等 によりシステムをモデル化し,従属故障及び人間信頼性の解析を行うとともに必要なデ ータベースを作成した後,事故シーケンスを定量化して炉心再損傷頻度を評価した(図 -1参照)。

2. 起因事象の選定と成功基準の設定

2.1. 起因事象

炉心再損傷に至る要因は,燃料の冷却不良によるものであり,原子炉注水系の機能が 喪失し,炉心に冷却水が供給されないことにより発生する。原子炉注水系の機能が喪失 に至る起因事象及び起因事象発生頻度は,表-1のとおりとする。

なお、今回の評価では、設備の故障、人的過誤等により、システムの信頼性が損なわれることにより炉心が再損傷する事象を選定している。

選定にあたり,安定的な原子炉への注水を阻害する要因(ハザード)が発電所内,所 外どちらに起因するかに分類した。ここで,発電所内に起因するものとしては,内的事 象,内的溢水,内的火災のハザードグループが考えられ,一方,発電所外に起因するも のとしては,地震,強風,外部溢水,その他の外的事象などのハザードグループが考え られる。

発電所内に起因するハザードグループのうち,内的事象としては,常用高台炉注水ポ ンプによる安定的な原子炉への注水を直接的に阻害する「常用高台炉注水ポンプトリッ プ」,「注水ライン機能喪失」,「一次水源からの供給機能喪失」,「外部電源喪失(地震を 除く)¹」を代表して選定することとした。なお,「内的溢水」については,発電所内の各 機器(ポンプ,電源盤,タンクなど)の配置から,発生可能性が小さいと考え,評価対 象外としている。また,「内的火災」として,常用高台炉注水ポンプを始め,比較的多く の炉注水ポンプが所内共通 M/C(1A)/(1B)盤より受電されているため,これを代表して選 定することとした。

発電所外に起因するハザードグループのうち,実際に東北地方太平洋沖地震によって 発生した外部電源喪失及び大津波事象を踏まえ,「外部電源喪失(地震)」,「大津波事象」 を選定することとした。なお,上記以外のハザード及びハザード随伴事象は,地震によ る外部電源喪失及び大津波事象に比べれば無視しうるものとして,評価対象外とした。

Ⅱ-2-1-添 6-7

¹ 発電所外での落雷、台風等のハザードによる発電所内への電源供給喪失も含まれる。
ハザード発生箇所	起因事象	要因	頻度(/年)	備考
発電所内	常用高台炉注 水ポンプトリ ップ	共通原因故障に よる全台ポンプ トリップ	4.8×10 ⁻³	仮設ポンプの時間故障率 (実績と故障件数0.5件 (仮定)から算出)と共通 要因故障データから算出
	注水ライン機 能喪失	R/B内 T/B内	9. 0×10^{-4} 8. 4×10^{-4}	EPRIのTechnical Report 1013141を参考に算出。
	 一次水源から の供給機能喪 失 	<u> タンクの破損・損</u> 傷等による一次 水源枯渇等	$\frac{1.0 \times 10^{-2}}{2.0 \times 10^{-1}}$	仮設ポンプ(実績と故障件 数0.5件(仮定)から算出), タンク破損及び閉塞の時 間故障率((社)日本原子 力技術協会「故障件数の不 確実さを考慮した国内一 般機器故障率の推定」を参 照)から算出
	外部電源喪失 (地震を除く) 所内共通	発電所外での落 雷,台風等 所内共通	1.0×10^{-1} 4.5×10^{-2}	停止時PSR-PSA(平成20年 度実績)での9.4×10 ⁻³ /年 の10倍程度と仮定 NUREG/CR-6850を参考に設
発電所外	M/C(IA)/(IB) 盤火災 外部電源喪失	M/C(IA)/(IB)盛 火災 地震	5. 7×10^{-1}	ルー 外部電源喪失の実績から
	<u>(地震)</u> 大津波事象	大津波	1.4×10 ⁻³	 算出 「科学」2011年10月号(岩波書店)「東北地方太平洋沖地震の断層モデルと巨大地震発生のスーパーサイクル」(東京大学地震研究所:佐竹健治氏)による700年に1回を適用

表-1 起因事象及び起因事象の発生頻度

2.2 成功基準

原子炉注水系の機能に発生した異常事象を収束させるために必要な安全機能を抽出し, 各緩和系の成功基準を設定した。1~3 号機全ての炉心の崩壊熱を除去するために必要な 注水を行うために必要な最小設備数は表-2,水源は表-3のとおりとしている。具体 的には,平成24年12月7日時点での注水量1号機4.5m³/hr,2号機6m³/hr,3号機6m³/hr で十分に冷却できていることから,3基共用のポンプは20m³/hr1台,1基用のポンプは 10m³/hr1台を成功基準としている。

緩和系	成功基準	備考
常用高台炉注水ポンプ	3台中1台運転	
タービン建屋内炉注水ポンプ	2台中1台運転	1 プラント当たり
CST 炉注水ポンプ	2台中1台運転	1·2 号機共用
	2台中1台運転	3 号機用
非常用高台炉注水ポンプ	3台中1台運転	
事務本館海側駐車場消防ポンプ	1台中1台運転	
(FT-A1)		
ろ過水タンク脇消防ポンプ (FT-B2)	2台中2台運転	
及び厚生棟脇消防ポンプ(FT-B1)	(FT-B1, FT-B2)	
純水タンク脇炉注水ポンプ	3台中1台運転	
事務本館海側駐車場バックアップ	3台中1台運転	
消防ポンプ		

表-2 各緩和系の成功基準

表-3 各緩和系とその水源の関連性

緩和系	水源
常用高台炉注水ポンプ	処理水バッファタンク
	ろ過水タンク
タービン建屋内炉注水ポンプ	処理水バッファタンク
	3 号機 CST
CST 炉注水ポンプ	3 号機 CST
非常用高台炉注水ポンプ	処理水バッファタンク
	ろ過水タンク
事務本館海側駐車場消防ポンプ(FT-A1)	ろ過水タンク
ろ過水タンク脇消防ポンプ(FT-B2)及び厚生	原水地下タンク
棟脇消防ポンプ(FT-B1)	ろ過水タンク
純水タンク脇炉注水ポンプ	純水タンク
事務本館海側駐車場バックアップ消防ポンプ	— (海水可)

2.3. イベントツリーの作成

炉心再損傷頻度の評価に際しては, 選定した起因事象に対して各緩和系の作動や故障 を考慮して, 炉心再損傷に至る事象の進展をイベントツリーとして展開し, 定量化する 方法を採用した。

イベントツリー解析では、まず起因事象の発生から炉心再損傷に至るまでの設備の故 障や緩和操作等をヘディングとして列挙した。次に、事象の進展を考慮し個々のヘディ ングにおける分岐の有無を決定し、さらに各ヘディングの分岐確率を設定した。ヘディ ングの分岐確率は、成功基準や時間余裕を考慮して実績データ及び後述するフォールト ツリー解析を用いて評価した(図-2参照)。

2.4. システムのモデル化

イベントツリーの定量化においては,各へディングに対して,対象となるシステムの 非信頼度を得るために,フォールトツリー手法によりシステムのモデル化を行った。

フォールトツリーは,成功基準に基づき,頂上事象を明確にして系統の機能喪失に至 る原因を展開し作成した。フォールトツリー解析では,系統や機器の運転状態や待機状 態を考慮して各状態におけるシステムの非信頼度を評価した。

フォールトツリーの作成においては,機器の故障及びその復旧,従属故障,人的過誤 等の構成要素を考慮した。

(1) 機器の故障及びその復旧

フォールトツリー解析において,主要な機器故障として待機中の機器の起動失敗,起 動後の運転継続失敗を考慮した。

・起動失敗

デマンド故障確率を用いた。

· 運転継続失敗

系統起動後も引き続き機能が必要な機器については、時間あたりの運転継続失敗率 を考慮して、運転継続失敗確率 q'として、下記の式を用いた。

$q' = \lambda' \times T_{M}$

ここで、 T_Mは使命時間であり、24時間を使用した。λ'は故障率である。

使命時間については、3月11日の東北地方太平洋沖地震・大津波において、原子炉 注水系機能喪失後、24時間以内に注水を再開できていることから、24時間あれば、多 重化等の新たな対応が可能と考え、24時間を設定している。

・復旧

バックアップ操作や, 故障の復旧が期待できる場合には, これらによる機能回復を 考慮した。 (2) 従属故障の解析

システム信頼性評価で考慮すべき従属故障は、系統間の従属性と、機器間の従属性で ある。これらの従属性については、イベントツリー及びフォールトツリーの定量化の過 程で考慮した。

なお,機器間従属性として共通原因故障を考慮しており,その評価対象は,仮設ポンプ等の2台又は3台起動失敗,2台又は3台継続運転失敗,仮設D/G等の2台起動失敗, 及び2台継続運転失敗等である。

(3) 人間信頼性解析

人間信頼性解析は、以下のように分類し、ヒューマンエラーハンドブック (NUREG/CR-1278)のTHERP 手法に基づき、作業環境を考慮に入れた工学的判断値を含め て失敗確率を算定した。なお、ここでは操作のための時間余裕等を考慮している。また、 監視・復旧チームについては、福島第一原子力発電所免震棟にて、24 時間体制で十分な 能力のあるメンバーが常駐している。

・事象発生後の人的過誤

事象発生後,操作員に対して要求される手動操作や,操作員が対応可能なバックア ップ操作について,その操作失敗を考慮した。

- 2.5. データベースの作成
- (1) 起因事象の発生頻度

各起因事象の発生頻度は、原子炉注水系の実績及び文献値等を用いた(表-1参照)。

- (2) 機器故障率関連データ 機器故障率関連データに関しては,原子炉注水系の実績及び文献値等を基に設定した。
- (3) 共通原因故障データ

共通原因故障の評価に用いた β ファクタ値等は、米国 LER に基づく分析結果等のデー タソースを参考にした。

なお、 β ファクタ値等は、福島第一・1~3 号機の様な状況を想定したものでないこと から、仮設ポンプ、仮設 D/G 等に設定した β ファクタ値を一桁大きくして感度解析(点 推定値)を実施した。その結果、各起因事象の中で、機器の多重故障による影響が比較 的高かった常用高台炉注水ポンプトリップ、注水ライン機能喪失及び外部電源喪失(地 震)時の炉心再損傷頻度に対する感度(常用高台炉注水ポンプトリップ時の炉心再損傷 頻度は約 4.8×10⁻¹¹/年から約 9.6×10⁻¹⁰/年、注水ライン機能喪失は約 3.2×10⁻⁷/年から 約 1.9×10⁻⁶/年、外部電源喪失(地震)時の炉心再損傷頻度は約 6.1×10⁻⁹/年から約 2.3 ×10⁻⁸/年)が認められ、評価結果の合計値への感度(約 5.9×10⁻⁵/年から約 6.1×10⁻⁵/

- 年)も若干増加することから、データの不確実さとして認識しておく必要がある。
- (4) 人的過誤確率データ

人的過誤の評価は、ヒューマンエラーハンドブック(NUREG/CR-1278)の THERP 手法 を用いた。従ってこの評価に用いるデータも NUREG/CR-1278 の値,及び,炉注水停止後 の時間余裕 34 時間を考慮した工学的判断値を用いた。

(5) 時間余裕データ

時間余裕は,燃料の崩壊熱の大きさから評価され,崩壊熱が小さいほど,時間余裕が 大きくなる。

 イベントツリーの定量化 選定された起因事象ごとに作成したイベントツリーに、起因事象の発生頻度を設定し、 イベントツリーの分岐にフォールトツリーを結合することにより、各事故シーケンスを 定量化した(別紙-2参照)。

図-1 作業フロー

図-2 イベントツリー解析の流れ

事故シーケンスの定量評価

(1) 常用高台炉注水ポンプトリップ

常用高台炉注水ポンプトリップ時は、図-1に示すとおり、十分な能力を有する要 員が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリ オの頻度の寄与は大きい。

一方,図-1に示すとおり,十分な能力を有する要員が待機している場合には,注 水設備の多重性は十分に確保されているため,緩和設備の多重故障により炉心再損傷 に至るシナリオの頻度の寄与は小さい。

常用高台 炉注水ポ ンプトリッ プ	復旧作業 の着手	タ ー ビン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
									1	-	
4.8E-03		1.7E-03							2	-	
			1.1E-03						3	-	
				7.6E-02					4	-	
					1.0E-02				5	-	
						2.2E-02			6	-	
							1.5E-04		7	-	
								1.4E-04	8	CD	9.7E-19
	1.0E-08							-	9	CD	4.8E-11
'											
										合計値	4.8E-11

図-1 常用高台炉注水ポンプトリップのイベントツリー

略語(以下,同様) CD:炉心再損傷

Ⅱ-2-1-添 6-15

(2) 注水ライン機能喪失

単一箇所の配管等の破損により, 注水ラインが 3 プラントとも使用不能となる想定 をしており, 表-2-1に示すとおり, 破損箇所は原子炉建屋内 (R/B) 内, タービン 建屋内 (T/B内), 屋外に場合分けしている。なお, 給水系及び CS 系を併用して注水し ているが, 起因事象発生時には, どちらの系の注水も中断している保守的な仮定を置 いている。

起因事象発生の検知など、復旧作業の着手に成功する場合には、図-2-1から図 -2-3に示すとおり、注水ラインとは異なる複数の注水ラインが利用可能であるた め、緩和設備の多重故障により、炉心再損傷に至るシナリオの頻度の寄与は小さい。

一方,起因事象発生の検知に失敗するなど,復旧作業(機能喪失注水ライン隔離を 含む)の着手に失敗した場合には,図-2-1から図-2-3に示すとおり,炉心再 損傷に至るシナリオの頻度の寄与は大きい。

なお、タービン建屋内(T/B内)及び原子炉建屋内(R/B内)の注水ラインは、炉注 水状態を監視する流量計(FI)や圧力計(PI)がなく、建屋内の注水ライン機能の喪 失時には、原子炉圧力容器内及び格納容器内の温度・圧力の上昇により検知するため、 屋外注水ラインより検知できる確率は相対的に小さく設定している。

発生頻度 [/年]	位置	配管割合 [%]	最終的な
			起因事象発生頻度 [/年]
1.2E-02	R/B	8%	9.0E-04
	T/B	7%	8.4E-04
	屋外	85%	1.0E-02

表-2-1 注水ライン機能喪失の起因事象発生頻度

図-2-1 注水ライン機能喪失のイベントツリー (R/B内) (1/3)

図-2-2 注水ライン機能喪失のイベントツリー(T/B内) (2/3)

注水ライ ン機能喪 失(屋外)	復旧作業 の着手	アクセス	復旧	タービン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	No.	終状態	発生頻度 (/年)
								1	-	
1.0E-02			1.0E-04					2	-	
				1.7E-03				3	-	
					1.1E-03			4	-	
					_	2.2E-02		5	-	
							1.5E-04	6	CD	2.6E-17
		1.0E-04						7	-	
				1.7E-03				8	-	
					1.1E-03	-		9	-	
						2.2E-02		10	-	
							1.5E-04	11	CD	2.6E-17
	1.2E-05							12	-	
				1.0E+00	-			13	-	
					1.0E+00			14	-	
						1.0E+00		15	-	
							1.0E+00	16	CD	1.2E-07
									스탠셔	1.05.07
									合計個	1.2E-07
	$\boxtimes -2$	-3 注	水ライン	ン機能喪	失のイ~	ドントツ リ	リー (屋	外)	(3/3)	

(3) 一次水源からの供給機能喪失

一次水源からの供給機能喪失時は、図-3に示すとおり、十分な能力を有する要員 が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリオ の頻度の寄与は大きい。

一方,図-3に示すとおり、十分な能力を有する要員が待機している場合には、水 源の多重性は十分に確保されているため、緩和設備の多重故障により炉心再損傷に至 るシナリオの頻度の寄与は小さい。

ー次水源 からの供 給機能喪 失	復旧作業 の着手	常用高台 炉注水ポ ンプ	タ ー ビン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水仮設ポ ンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
										1	-	
2.0E-01		2.6E-03								2	-	
			4.1E-03							3	-	
			-	1.1E-03						4	-	
				-	7.8E-02					5	-	
						1.0E-02				6	-	
							2.2E-02			7	-	
								1.5E-04		8	-	
								-	1.4E-04	9	CD	4.0E-16
	1.0E-08									10	CD	2.0E-09
											合計値	2.0E-09

図-3 一次水源からの供給機能喪失のイベントツリー

(4) 外部電源喪失(地震を除く)

外部電源喪失(地震を除く)時は、図-4-1に示すとおり、十分な能力を有する 要員が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナ リオの頻度の寄与は大きい。

一方,図-4-2及び図-4-3に示すとおり,十分な能力を有する要員が待機し ている場合には,非常用D/G,電源車及び消防車のように,代替電源の多重性及び 多様性が十分に確保されているため,緩和設備の多重故障により炉心再損傷に至るシ ナリオの頻度の寄与は小さい。

外部電源 喪失(地 震を除く)	復旧作業 の着手	外電復旧	No.	終状態	発生頻度 (/年)
			1 – 9	TE1へ	-
1.0E-01		1.0E-01	10 - 18	TE2へ	-
	1.0E-08		19	CD	1.0E-09
				合計値	1.0E-09

図-4-2 外部電源喪失(地震を除く)時のイベンツツリー(2/3) (TF1:外雷復旧成功時)

				(12	- • / I · 🖸	1000					
外電復旧 失敗	常用高台 炉注水ポ ンプ再起 動	タ ー ビン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇生 び厚生防ポ ンプ車	純水タン ク脇炉注 水ポンプ	事務本館 海側転車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
									10	-	
	1.8E-04								11	-	
		1.8E-03							12	-	
			1.2E-03						13	-	
				7.6E-02					14	-	
					1.0E-02				15	-	
						2.2E-02			16	-	
							1.5E-04		17	-	
								1.4E-04	18	CD	4.4E-15
										合計値	4.4E-15
	図 <u>-</u> 4	4 - 3	外部雷	源軭失	(抽霊な	·除く)	時のイィ	ベンツツ	11 - (3)	(/3)	

(TE2:外電復旧失敗時)

(5) 所内共通 M/C(1A)/(1B) 盤火災

所内共通 M/C(1A)/(1B)盤火災時には、図-5に示すとおり、十分な能力を有する要員が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリオの頻度の寄与は大きい。

一方,図-5に示すとおり、十分な能力を有する要員が待機している場合には、非 常用D/G,電源車及び消防車のように、代替電源の多重性及び多様性は十分に確保 されているため、緩和設備の多重故障により炉心再損傷に至るシナリオの頻度の寄与 は小さい。

図-5 所内共通 M/C(1A)/(1B) 盤火災時のイベントツリー

(6) 外部電源喪失(地震)

地震による外部電源喪失には、図-6-1に示すとおり、十分な能力を有する要員 が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリオ の頻度の寄与は大きい。また、図-6-3に示すとおり、外電復旧が失敗した場合に は、地震の影響により、注水設備の再起動が困難になっていることから、炉心再損傷 に至るシナリオの頻度の寄与は大きい。

一方,図-6-2に示すとおり、十分な能力を有する要員が待機していることにより、外電復旧に成功する場合には、緩和設備の多重故障により炉心再損傷に至るシナリオの頻度の寄与は小さい。

	外部電源 喪失(地 震)	復旧作業 の着手	外電復旧	No.	終状態	発生頻度 (/年)
				1 - 9	STE1~	-
	5.7E-01		5.0E-01	10 - 18	STE2~	-
		1.0E-08		19	CD	5.7E-09
					合計値	5.7E-09
, '	1 //			味のく。	S 1 1 1 1	(1 / 2

図-6-2 外部電源喪失(地震)時のイベントツリー(2/3) (STE1:外電復旧成功時)

図-6-3 外部電源喪失(地震)時のイベントツリー(3/3) (STE2:外電復旧失敗時)

(7) 大津波事象

大津波(2011年3月11日に発生した津波規模を想定)が襲来した際には、建屋エリ アの地上高付近に設置されている、タービン建屋内炉注水ポンプ、CST 炉注水ポンプ、 純水タンク脇炉注水ポンプによる注水機能が失われているとした保守的な仮定を置い ている。

図-7に示すとおり、津波対策により強化した建屋エリアの地上高にある炉注水ラ インに損傷がない場合には、高台に設置している注水設備による注水は継続可能であ る。

一方,図-7に示すとおり,注水ラインが損傷した場合には,原子炉圧力容器及び 格納容器への注水が途絶え,津波被害(漂流物による作業環境の悪化,滞留水の漏え いに伴う線量上昇による作業環境の悪化)により現場にアクセスすることが困難にな ることが予想され,事務本館海側駐車場バックアップ消防車のための新しい注水ライ ンの確保に失敗すること,及び,並行で作業を進めると想定される常用高台炉注水ポ ンプ,非常用高台炉注水ポンプ,事務本館海側駐車場消防ポンプ及びろ過水タンク脇 及び厚生棟脇消防ポンプからの炉注水ラインの復旧にも失敗することにより,炉心再 損傷に至るシナリオの頻度の寄与は大きい。

大津波事 象	炉注水ラ イン機能 喪失	復旧作業 の着手	常用高台 炉注水ポ ンプ再起 動	タ ー ビン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
											1	-	
1.4E-03	5.0E-01										2	-	
			4.4E-01								3	-	
				1.0E+00							4	-	
					1.0E+00						5	-	
						6.4E-01					6	-	
							4.6E-01				7	-	
								1.0E+00			8	-	
									1.0E+00)	9	-	
										1.9E-01	10	CD	5.8E-05
		0.0E+00									11	CD	0.0E+00
1													1
												合計値	5.8E-05

図-7 大津波事象時のイベントツリー

原子炉注水系に係る確認事項

原子炉注水系の構造強度・耐震性及び機能・性能等に関する確認事項を表-1~7に示 す。

確認事項	確認項目	確認内容	判定
	材料確認	主な材料について確認する。	実施計画のとおりであること。
	寸法確認	主要寸法について確認する。	実施計画のとおりであること。
推准改改	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度• 耐震性	据付確認	配管の据付状態について確認す る。	実施計画のとおり施工・据付され ていること。
	耐圧・漏えい 確認	確認圧力で保持した後,確認圧力 に耐えていることについて確認 する。 耐圧確認終了後,耐圧部分からの 漏えいの有無を確認する。	確認圧力に耐え,かつ構造物の変 形がないこと。 耐圧部から漏えいがないこと。
機能	通水確認	通水されていることを確認する。	通水されていること。

表-1 確認事項(主配管(ポリエチレン管))

確認事項	確認項目	確認内容	判定
	材料確認	実施計画に記載した主な材料に ついて記録を確認する。	実施計画のとおりであること。
	寸法確認	実施計画に記載した外径,厚さに ついて記録を確認する。	実施計画のとおりであること。
推准改改	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度 • 耐震性	据付確認	配管の据付状態について確認す る。	実施計画のとおり施工・据付され ていること。
	耐圧・漏えい 確認	確認圧力で保持した後,確認圧力 に耐えていることについて確認 する。 耐圧確認終了後,耐圧部分からの 漏えいの有無を確認する。	確認圧力に耐え,かつ構造物の変 形がないこと。 耐圧部から漏えいがないこと。
機能	通水確認	通水されていることを確認する。	通水されていること。

表-2 確認事項(主配管(鋼管))

表-3 確認事項(管の溶接検査)

確認項目	確認内容	判定
材料確認	材料が溶接規格等に適合するものであり,溶接施工法の母材の区分に適合する ことを確認する。	材料が溶接規格等に適合するものであり,溶接施工法の母材の区分に適合する ものであること。
開先確認	開先形状等が溶接規格等に適合するも のであることを確認する。	開先形状等が溶接規格等に適合するものであること。
溶接作業 確認	あらかじめ確認された溶接施工法又は 実績のある溶接施工法又は管理された プロセスを有する溶接施工法であるこ とを確認する。あらかじめ確認された溶 接士により溶接が行われていることを 確認する。	あらかじめ確認された溶接施工法およ び溶接士により溶接施工をしているこ と。
非破壊 確認	溶接部について非破壊検査を行い,その 試験方法及び結果が溶接規格等に適合 するものであることを確認する。	溶接部について非破壊検査を行い,その 試験方法及び結果が溶接規格等に適合 するものであること。
耐圧・漏えい 確認 外観確認	検査圧力で保持した後,検査圧力に耐え ていることを確認する。 耐圧確認終了後,耐圧部分からの漏えい の有無を確認する。	検査圧力で保持した後,検査圧力に耐え ていること。 耐圧確認終了後,耐圧部分からの漏えい の有無及び外観上,傷・へこみ・変形等 の異常がないこと。

確認事項	確認項目	確認内容	判定
	材料確認	実施計画に記載した主な材料につ いて記録を確認する。	実施計画のとおりであること。
	寸法確認	実施計画に記載した主要寸法に ついて記録を確認する。	寸法が許容範囲内であること。
構造強度	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
・ 耐震性	据付確認	機器の据付位置, 据付状態につい て確認する。	実施計画のとおり施工・据付され ていること。
	耐圧・ 漏えい 確認	確認圧力で保持した後,確認圧力 に耐えていることを確認する。 耐圧確認終了後,耐圧部分からの 漏えいの有無を確認する。	圧力に耐え,かつ構造物の変形等 がないこと。 また,耐圧部から漏えいがないこ と。
機能 • 性能	警報確認	液位「高高」側の信号により警報 が発生することを確認する。	液位「高高」側の信号により警報 が発生すること。

表-4 確認事項(処理水バッファタンク)

表-5 確認事項(処理水バッファタンク基礎)

確認事項	確認項目	確認内容	判定	
構造強度	据付確認	タンク基礎の不陸について確認 する。	異常な不陸がないこと。	
・耐震性	地盤支持力 確認	支持力試験にてタンク基礎の地 盤支持力を確認する。	必要な支持力を有していること。	

表-6 確認事項(処理水バッファタンク堰)

確認事項	確認項目	確認内容	判定
	寸法確認	主要寸法の記録を確認する。	寸法が許容範囲内であること。
漏えい 防止	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
	据付確認	堰その他の設備の据付位置,据付 状態について確認する。	実施計画のとおり施工・据付され ていること。

確認項目	確認内容	判定
材料確認	材料が溶接規格等に適合するもの であり,溶接施工法の母材の区分に 適合することを確認する。	材料が溶接規格等に適合するもの であり,溶接施工法の母材の区分に 適合するものであること。
開先確認	開先形状等が溶接規格等に適合す るものであることを確認する。	開先形状等が溶接規格等に適合す るものであること。
溶接作業 確認	あらかじめ確認された溶接施工法 又は実績のある溶接施工法又は管 理されたプロセスを有する溶接施 工法であることを確認する。あらか じめ確認された溶接士により溶接 が行われていることを確認する。	あらかじめ確認された溶接施工法 および溶接士により溶接施工をし ていること。
非破壊 確認	溶接部について非破壊検査を行い, その試験方法及び結果が溶接規格 等に適合するものであることを確 認する。	溶接部について非破壊検査を行い, その試験方法及び結果が溶接規格 等に適合 するものであること。
機械試験	溶接部を代表する試験片にて機械 試験を行い,当該試験片の機械的性 質が溶接規格等に適合しているも のであることを確認する。	溶接部を代表する試験片にて機械 試験を行い,当該試験片の機械的性 質が溶接規格等に適合しているも のであること。
耐圧・ 漏えい 確認 外観確認	検査圧力で保持した後,検査圧力に 耐えていることを確認する。 耐圧確認終了後,耐圧部分からの漏 えいの有無を確認する。	検査圧力で保持した後,検査圧力に 耐えていること。 耐圧確認終了後,耐圧部分からの漏 えいの有無及び外観上,傷・へこ み・変形等の異常がないこと。

表-7 確認事項(容器の溶接検査)

	名称		処理水バッファタンク
	種類	—	たて置円筒形
	容量	3	700
	(公称容量)	m°	(1000)
最	と 高使用圧力	MPa	大気圧
튝	占 高使用温度	°C	50
主要寸法	胴内径	mm	11,000
	胴板厚さ	mm	15
	底板厚さ	mm	22
	高さ	mm	14, 900
	水位計管台1		外径 34.0×厚さ 4.5
N2供給管台		mm	外径 34.0×厚さ 4.5
	タンク入口管台1		外径 114.3×厚さ 8.6
タンク入口管台2		mm	外径 114.3×厚さ 8.6
	タンク入口管台3		外径 114.3×厚さ 8.6
	タンク入口管台4	mm	外径 216.3×厚さ 12.7
	タンク出口管台1	mm	外径 216.3×厚さ 12.7
	タンク出口管台2	mm	外径 216.3×厚さ 12.7
	側マンホール管台	mm	外径 609.6×厚さ 15.0
材料	胴板	_	SM400B
	底板	—	SM400B
	管台	_	SM400B, STPT410
	個数	_	1

処理水バッファタンクの基本仕様

処理水バッファタンク及び処理水バッファタンク接続配管の具体的な安全確確保策

処理水バッファタンク及び処理水バッファタンク接続配管の準拠規格及び基準,漏えい 発生防止対策,自然災害対策,環境条件対策等について具体的な安全確保策を以下の通り 定め,実施する。

1. 準拠規格及び基準

処理水バッファタンク及び処理水バッファタンク接続配管は,設計,材料の選定,製作 及び検査について,原則として適切と認められる規格及び規準によるものとする。

2.構造強度及び耐震性(添付資料-2参照)

(1) 構造強度

処理水バッファタンク及び処理水バッファタンク接続配管は、「実用発電用原子炉及び その附属施設の技術基準に関する規則(平成25年6月28日原子力規制委員会規則第 6号)」上、非常用炉心冷却設備に相当するクラス2機器と位置付けられ、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(以下、JSME 規格という。)」、日本工業規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用、または、これらと同等の技術 的妥当性を有する規格での設計・製作・検査を行う。また、JSME 規格で規定される材料 の JIS 規格の年度指定は、技術的妥当性の範囲において材料調達性の観点から考慮しな い場合もある。さらに、JSME 規格に記載のない非金属材料(ポリエチレン管)について は、現場の作業環境等から採用を継続する必要があるが、これらの機器については、日 本水道協会規格(JWWA 規格)や配水用ポリエチレンパイプシステム協会規格(PTC 規格)、 製品の試験データ等を用いて設計を行う。

(2) 耐震性

処理水バッファタンク及び処理水バッファタンク接続配管は、「発電用原子炉施設に関する耐震設計審査指針」のSクラス相当の設備と位置付けられ、「JEAC4601-2008 原子力 発電所耐震設計技術規程」等に準じた構造強度評価を行うことを基本とするが、評価手 法、評価基準については、実態にあわせたものを採用する。

ポリエチレン管は、材料の可撓性により耐震性を確保する。

- 3. 放射性物質の漏えい防止に対する考慮
- (1) 漏えい発生防止
- a. 処理水バッファタンク及び処理水バッファタンク接続配管は,設置環境や内部流体 の性状に応じた適切な材料を使用する。また,処理水バッファタンクは,水位の検 出器を設け,タンク水位を免震重要棟集中監視室に表示し,異常を確実に運転員に 伝え適切な措置をとれるようにする。

- b. 処理水バッファタンクは、十分な肉厚を有する鋼材を基本とする。また、処理水バ ッファタンク接続配管は、耐腐食性を有するポリエチレン管もしくは十分な肉厚を 有する炭素鋼の鋼管を基本とする。
- c. 鋼管もしくはポリエチレン管の継手部は,溶接構造もしくは融着構造を基本とする。 また,堰が設置されない配管や弁の継手部がフランジ構造となる場合には,継手部 に漏えい拡大防止カバーを設置し,シール材又は発泡剤の充填を実施する。
- d. 使用開始までに漏えい確認等を実施し,施工不良による大規模な漏えいの発生を防止する。
- (2) 漏えい検知・漏えい拡大防止
 - a. 処理水バッファタンクは,漏えい拡大防止として堰を設ける。堰の容量は,処理水 バッファタンクからの想定漏えい量を全量受けきれるものとする(添付資料-10 参照)。
 - b. 処理水バッファタンク接続配管の継手部のうち、フランジ構造となる場合には、漏 えい拡大防止カバーで覆った上で中に吸水シートを入れ、漏えい水の拡大防止に努 める。
 - c. ポリエチレン管とポリエチレン管の接合部は漏えい発生を防止するため融着構造と することを基本とし、取合いがフランジ接続となる箇所については養生を行い、漏 えい拡大防止を図る。
 - d. 処理水バッファタンク接続配管から漏えいが確認された場合は、ポンプ停止及び隔 離弁の閉止操作を行い、系統の隔離及び土嚢の設置等により漏えいの拡大防止を図 る。
 - e.処理水バッファタンクは、水位の検出計を設け、受入時の溢水を防止すると共に水 位状況を監視し、漏えい検知に努める。また、巡視点検により漏えいの有無を確認 する。処理水バッファタンク接続配管の継手部のうち、フランジ構造部は、ガスケ ットの経年劣化により微小漏えいの発生が懸念されることから、漏えい検知のため、 架空化により視認性を向上させ、巡視点検により漏えいの有無を確認する。
- (3) 放射線遮へいに対する考慮

処理水バッファタンク及び処理水バッファタンク接続配管の表面線量当量率の表示に より注意喚起することで,放射線従事者の被ばく低減を図る。

(4) 敷地境界における実効線量

処理水バッファタンクが敷地境界における実効線量に対して与える影響は,最も近い 敷地境界評価地点 No. 71 において約 1.0×10⁻⁷mSv/y 未満であり,線量評価上有意な値で はない。 4. 自然災害対策

(1) 津波

処理水バッファタンク及び処理水バッファタンク接続配管は、アウターライズが到達 しないと考えられる高さ以上の場所に設置する(設置位置は添付資料-12参照)。

アウターライズ津波を上回る津波が発生した場合は,水源の損傷状況や現場状況に応じて,消防車の配備や注水ラインの再敷設等を行い,原子炉注水を再開する。

(2) 台風・竜巻

台風・竜巻により処理水バッファタンク及び処理水バッファタンク接続配管の損傷が 予見される場合は、ポンプ停止及び隔離弁の閉止操作を行い、内包水の漏えい防止及び 漏えい水の拡大防止を図る。

(3) 豪雨

処理水バッファタンクは、タンク頂部マンホール、管台の上向きの開口部について、 容易に雨水が侵入しない構造とする。また、タンクのベント配管については、開口部が 下向きになるように設置することで、雨水の侵入を防止する。

(4) 火災

処理水バッファタンク及び処理水バッファタンク接続配管は,火災発生を防止するため,実用上可能な限り,不燃性又は難燃性材料を使用する。

5. 環境条件対策

(1) 腐食

処理水バッファタンクは、十分な肉厚を有する鋼材を用いる。処理水バッファタンク 接続配管は、耐腐食性を有するポリエチレン管もしくは十分な肉厚を有する炭素鋼の鋼 管を用いる。処理水バッファタンク及び処理水バッファタンク接続配管は予備の設備で あり、定例試験時を除き内包水は静止しているため、腐食の速度は遅く、腐食の影響は 少ないと考えられる。

(2) 凍結

処理水バッファタンク接続配管は、凍結による破損が懸念されるため、保温材を取り 付けて凍結防止を図る。

(3) 生物汚染

処理水バッファタンク及び処理水バッファタンク接続配管の内包水は,処理装置を経 由した処理水またはろ過水であるため,有意な生物腐食の懸念はない。

Ⅱ-2-1-添 9-3

(4) 紫外線防止

処理水バッファタンク接続配管は,紫外線による劣化を防止するため,紫外線防止効 果のある保温材を取り付ける。

(5) 耐放射線性

処理水バッファタンク接続配管のうち、ポリエチレン管については、放射線影響が考 えられるが、内包水である処理水は、照射線量率が十分低いため、放射線の影響は軽微 と考えられる。なお、ポリエチレン管の照射線量率を 1Gy/h と仮定した場合、ポリエチ レンは、集積線量が 2×10⁵Gy に達すると、引張強度は低下せず、破断時の伸びが減少す る傾向を示すが、これに到達する時間は 2×10⁵ 時間(22.8 年)と評価されるため、数 年の使用では影響をうけることはないと考えられる。

6. 検査可能性に対する設計上の考慮

処理水バッファタンク及び処理水バッファタンク接続配管は,適切な方法で検査ができ るよう,漏えい検査・通水検査等が可能な設計とする。

7. 設備保全に対する考慮

処理水バッファタンク及び処理水バッファタンク接続配管は,機器の重要度に応じた有 効な保全を計画し,実施が可能な設計とする。 処理水バッファタンクの基礎及び堰に関する説明書

- 1. タンク基礎の支持力
- (1)評価方法

タンクの鉛直荷重と極限支持力を比較して評価を行う。支持力の算定式は「社団法人 日本道路協会(2002):道路橋示方書・同解説IV下部構造編」に基づき次式を用いる。 計算した結果,①タンクの鉛直荷重<②タンク基礎底面地盤の極限支持力であり,安全 性を有していることを確認する。

① $タンクの鉛直荷重: W = m \times g$

②タンク基礎底面地盤の極限支持力:
$$Q_u = A_e \left(\alpha k c N_c S_c + k q N_q S_q + \frac{1}{2} \gamma_1 \beta B_e N_r S_r \right)$$

- *m* :機器質量
- *g* : 重力加速度
- Ae : 有効載荷面積
- *α*, *β* : 基礎の形状係数
 - k : 根入れ効果に対する割増し係数
 - *c* : 地盤の粘着力
- *N_c*, *N_q*, *N_r*:荷重の傾斜を考慮した支持力係数
- S_c, S_q, S_r:支持力係数の寸法効果に関する補正係数
 - q : 上載荷重 $(q=\gamma_2 D_f)$
 - γ1, γ2 : 支持地盤及び根入れ地盤の単位重量 (γ1, γ2=15.9kN/m²)
 - Df : 基礎の有効根入れ深さ
 - *Be* :荷重の偏心を考慮した基礎の有効載荷幅(*Be*=*B*-2*e*_{*B*})
 - *B* : 基礎幅
 - *eB* :荷重の偏心量
- (2)管理

地盤改良後,簡易支持力測定器(キャスポル)*により地盤の強度を測定し,上記式 により必要な極限支持力を有していることを確認する。

※ ランマー(重鎮)を一定の高さから地盤に自由落下させたときに生ずる衝撃加速度の 最大値と地盤強度特性値と相関させる衝撃加速度法を基本原理とした簡易な測定器。 2. タンク基礎の不陸

(1)評価方法

タンクの設置高さが、設計高さに対して許容値以内*であることを確認する。※ 設計高さ±30mm(社内基準値)

(2)管理

タンク基礎高さ(レベル)を測量し、当該高さが設計高さに対して±30mm以内である ことを確認する。

3. 処理水バッファタンクの堰内容量

処理水バッファタンクから漏えいが生じた際に漏えい水の拡大を抑制するための処理水 バッファタンクの堰内容量は、タンクの運用水量と設備の構造上、運用に使用出来ない水 量を確保できる容量に、大雨時の作業等を考慮した余裕高さ(堰高さで20 cm)分の容量と の合計とする。処理水バッファタンクの堰高さ及び堰内容量を表-1に示す。

対象設備	想定漏	えい量		(計	画値)
	海田水昌	信田乙司业县	基礎外周堰	基礎外周	基礎外周堰
	理用水重 (2)	使用个可不里	の堰内容量	堰内面積	の高さ
	(m ³)	(m ³)	(m^3)	(m^2)	(m)
	1	2	3*1	4	$(5)^{*2}$
処理水					
バッファ	700	90	889 以上	494 以上	1.800 以上
タンク					

表-1 処理水バッファタンク堰高さ及び堰内容量

※1 ③=④×5

※2 ⑤= (①+②) /④+0.2 (余裕分 20cm)

既設処理水バッファタンク及び既設処理水バッファタンク接続配管の 解体・撤去の方法について

既設処理水バッファタンク(フランジタンク)及び既設処理水バッファタンク接続配管 は、貯留している RO 処理水を新設処理水バッファタンクに移送した後、汚染拡大防止を図 った上で解体・切断し、構内で保管する。

- 1. 既設処理水バッファタンク
- (1) 残水回収処理作業時の漏えい防止策及び漏えい拡大防止策

R0 処理水の移送後にタンク底部に残る残水及び散水により発生する残水の回収処理作 業では、仮設ホース、仮設ポンプ、バキュームカー及び底部残水回収装置等を使ってタ ンク底部より残水を回収し、他の貯槽へ移送した後、多核種除去設備等により処理する。

なお、散水により発生する残水の量は、1回に1m³程度であり、ダスト上昇の追加対策 として実施する追加散水を考慮しても最大で5m³程度であり、汚染水の貯留に支障をきた すことはない。

当該作業を行う際の、漏えい防止策及び漏えい拡大防止策は以下の通り。

- a. 漏えい防止策として、仮設ホースを使用する場合は、仮設ホースの継手部をカムロ ック式とし、さらに番線等で固縛して、継手の外れ防止を行う。また、タンクの撤 去にあたり実施する残水回収処理作業にバキュームカーを使用する場合には、バキ ュームカーとホースの接続にロック機構を有するものを使用し、確実にロックされ ていることを確認する。
- b. 漏えい拡大防止策として,仮設ホースの接続部に水受けを設けることにより,漏え い時に残水を受けられるようにした上で,残水移送中には作業員による常時監視を 行う。
- (2) 解体作業時の汚染拡大防止策

解体作業手順の概要を図―1に示す。

- a. タンク上部のマンホールからタンク内表面に散水し、表面の汚染をできるだけ洗い 流すことにより、放射性物質の飛散のリスクを低減する。
- b. 局所排気装置を設置し、タンク下部のマンホールからタンク内部の空気を吸引し、 フィルタでろ過することにより、タンク上部から放射性物質が飛散するリスクを抑 制する。
- c. タンク解体片は、地面に降ろした後、周辺の汚染レベルを上昇させないように養生 等を実施し運搬する。
- d. 最下段の側板及び底板の解体は,残水が完全に除去されていることを確認した後に 着手する。

- e. 解体作業の期間中は、タンク上部の空気中の放射性物質濃度を定期的に確認する。
 なお、測定値に異常が確認された場合には、作業を中断し、追加散水や集塵の強化
 等の対策を実施し、測定値が通常時に戻ったことを確認してから再開する。
- f. 追加散水や集塵の強化等の対策を施しても測定値が通常時に戻らない場合には,作 業を中止し,タンク上部に仮天板を取り付ける。その後,原因を調査し,必要に応 じて対策を施した上で再開する。
- (3) 減容作業・保管時の汚染拡大防止策
- a. 切断作業は既設建屋内で実施し、切断に伴い発生するダストを局所排風機で回収す ることにより汚染の拡大防止とする。
- b. タンク解体片を切断した減容片は、20ft コンテナ(以下、容器)に収納し保管する。
- c. 切断作業の期間中は,既設建屋周辺の空気中の放射性物質濃度を定期的に確認する。 なお,測定値に異常が確認された場合には,速やかに作業を中止し,原因を調査し, 必要に応じて対策を施した上で再開する。
- (4) 作業員の被ばく低減
- a. タンク内の残水処理では、底部残水回収装置を用いて可能な限り遠隔操作を行うこ とにより、被ばく低減を図る。
- b. タンク底部の解体では、ゴムマット等を敷くことにより、β線の被ばく低減を図る。
- c. タンク切断では、可能な限り遠隔作業により被ばくの低減を図る。
- d. 解体作業中にダスト濃度が万が一上昇した場合に備えて、念のため全面マスクを着 用する。
- (5) 瓦礫類発生量
- a. フランジタンクの解体・撤去に伴い、約240m³の瓦礫類が発生する見込みである。
- b. 瓦礫類は 0. 1mSv/h 以下の表面線量率であり、表面線量率に応じて定められた屋外の 一時保管エリア(受入目安表面線量率 0. 1mSv/h 以下のエリア(一時保管エリア C, N, 0, P1, AA)) へ搬入する。ただし、タンク減容片を保管した容器については、一時 保管エリア P1 または AA へ搬入する。
- c. 今後発生する瓦礫類の保管容量が逼迫する場合は、受入目安表面線量率を満足す る他の線量区分のエリアに瓦礫類を一時保管することにより保管容量を確保する。 また、固体廃棄物貯蔵庫第9棟等の設置を行うことにより容量不足を解消していく。
- (6) 保管時の安定性評価
- a. 容器は、4段積みし、一時保管エリア P1 において、4 行×4 列×4 段または1 行×4
 列×4 段を1 ブロックとして、容器間を連結し固定した上で、保管する。また、一時

Ⅱ-2-1-添 11-2

保管エリア AA では、1 行×1 列×4 段で保管する。保管の状態図を図-2-1, 2, 3 に示す。

- b. 保管場所は、表面線量率 0.1mSv/h 以下の瓦礫類の一時保管エリア P1 または表面線 量率 0.001mSv/h 以下の瓦礫類の一時保管エリア AA とする(図-3)。
- c. 容器は、内部に汚染水がない状態であるため、耐震Cクラス相当と考えて、地震による転倒評価を実施した。容器は4行×4列×4段または1行×4列×4段を1ブロックとして一体で評価した。評価の結果、地震による転倒モーメントが、1ブロックの自重による安定モーメントより小さいことから、転倒しないことを確認した。(表 -1-1,2)また、一時保管エリアAAでは、容器の転倒・落下により内容物が容器から出たとしても、屋外集積している状況と変わらないため、耐震性は考慮せず、4段積みを行う。

図-1 解体作業のフロー

図-2-3 容器の保管状態

図-3 容器を保管する一時保管エリア (エリア P1, AA)

Ⅱ-2-1-添11-5

m: 機器質量

- g: 重力加速度 (9.80665 m/s²)
- H: 据付面からの重心までの距離
- L: 転倒支点から機器重心までの距離
- C_H: 水平方向設計震度(0.24)

地震による転倒モーメント: M1[N・m] = $m \times g \times C_H \times H$

自重による安定モーメント: M2[N・m] = m×g×L

表-1-1 転倒評価結果

機器名称	評価 部位	評価 項目	水平方向 設計震度 C _H	算出値 M1	許容値 M2	単位
容器(20ft コンテナ) 1 ブロック	本体	転倒	0.24	4. 60×10^3	1.80×10^{4}	kN•m

表-1-2 転倒評価結果

機器名称	評価 部位	評価 項目	水平方向 設計震度 C _H	算出値 M1	許容値 M2	単位
容器(20ft コンテナ) 1 ブロック	本体	転倒	0.24	1.15×10^{3}	2.79 $\times 10^{3}$	kN•m

- 2. 既設処理水バッファタンク接続配管
- (1) 配管撤去時の漏えい防止策及び漏えい拡大防止策
 - a. 漏えい防止策として,汚染水を内包している配管の開放作業は,隔離処理及び水抜 き後に実施する。
 - b. 汚染拡大防止策として,汚染水を内包している配管は,開放作業時に受けパン及び 飛散防止カバー等を設置する。
 - c. 抜き取った水の移送時において仮設ホース及び仮設ポンプを使用する際には,継手 部に養生を行い,監視員による漏えい確認を行う。
 - d. 残水がある場合に備えて配管取り外し部には受け養生を実施する。

- (2) 作業員の被ばく低減
 - a. 配管の取り外しまたは切断時においては,開放端部をゴム質のキャップ等で養生し, 作業時の被ばく低減を図る。
 - b. 作業を行わない間は作業エリアを区画し, 放射線業務従事者が容易に近付けないよ うにする。
- c. 配管の切断作業時においては,全面マスクを着用して作業を実施する。なお,切断 作業時におけるダストの舞い上がりは少ないと考えるものの,適宜,空気中の放射 性物質濃度を測定し,必要に応じて局所排風機,ハウスを設置する。
- (3) 瓦礫類発生量
- a. 既設処理水バッファタンク接続配管の撤去に伴い,約 50m3 の配管類が発生する見込 みである。
- b. 配管類は 0.1mSv/h 以下の表面線量率であり、表面線量率に応じて定められた屋外の 一時保管エリア(受入目安表面線量率 0.1mSv/h 以下のエリア(一時保管エリア C, N, 0, P1, AA)) へ搬入する。

原子炉圧力容器・格納容器注水設備の配置

CST炉注水ポンプ(1号機) 復水貯蔵タンク(2号機) 純水タンク脇炉注水ポンプ 復水貯蔵タンク (3号機) 復水貯蔵タンク (1号機) 純木タンク #3/4 S/B #1/2 S/B #3 T/B #2 T/B 消防車 #1 T/B タービン建屋内 炉注水ポンプ(2号機) 純水タンク脇炉注水ポンプ用D/G タービン建屋内 炉注水ポンプ(3号機) #1 #1 #2 C/B C/B #3 C/B Ď -#1 R/B 理旧 建屋 処 厚生楝 #3 R/B #2 R/B #1 #2 #3 Rw/8 Rw/B Rw/E 旧事務本館 C ービン建屋内炉注水ポンプ(1号機) CST炉注水ボンブ (2号機) CST炉注水ポンプ(3号機) ■T.P. 33.5m盤 ■T.P. 8.5m盤 情報棟 1.P. & omage
 ・純木タンク脇炉注水ボンブ
 ・タービン建屋内炉注水ボンブ (1~3号機)
 ・(ST炉注水ボンブ (1~3号機)
 ・復水貯蔵タンク (1~3号機) ・常用高台炉注水ポンプ ・非常用高台炉注水ポンプ
 ・非常用高台炉注水ポンプ用D/G
 ・処理水バッファタンク 処理水バッファタンク 非常用高台炉注水ポンプ ・純水タンク ·消防車 消防車 ■T.P. 39, 3m盤 ・ろ過水タンク ・原水地下タンク ・消防車 常用高台炉注水ポンプ ■T.P. 21.5m盤 ろ過水タンク ・純水タンク脇炉注水ポンプ用D/G 消防車 ・消防車 Γ 非常用高台炉注水ポンプ用D/G 原水地下タンク 図-1 原子炉圧力容器·格納容器注水設備配置図

原子炉圧力容器・格納容器注水設備の配置を図-1に示す。

処理水バッファタンク接続配管の範囲を図-2に示す。処理水バッファタンク接続配管は T.P.33.5m盤に設置する。

T.P.33.5m 盤の処理水バッファタンク周辺

図-2 処理水バッファタンク接続配管の範囲