原子力安全改革プラン
2018年年度第2四半期進捗報告

東京電力ホールディングス株式会社
2018年11月12日
目次

はじめに .. 2
1 発電所の安全対策等の進捗状況 .. 3
 1.1 廃炉事業の進捗状況 ... 3
 1.2 柏崎刈羽における安全対策の進捗状況 .. 11
2 原子力安全改革プランの進捗状況 ... 16
 2.1 組織全体のベクトル合わせを強化するための活動 ... 17
 2.2 安全意識向上のための取り組み ... 23
 2.3 対話力向上のための取り組み .. 32
 2.4 技術力向上のための取り組み .. 37
3 進捗状況の評価 .. 49
 3.1 原子力部門による評価 .. 49
 3.2 重点課題に対する自己評価 ... 49
 3.3 原子力安全監視室の監視結果 .. 51
4 KPI・PIの実績 ... 61
 4.1 KPIの実績 .. 61
 4.2 PIの実績 ... 62
おわりに .. 67
略号 ... 68
はじめに

福島原子力事故およびその後の事故トラブル等により、福島第一原子力発電所周辺地域のみなさまをはじめ、広く社会のみなさまに、大変なご迷惑とご心配をおかけしておりますことを心より深くお詫びいたします。引き続き、全社一丸となって、「賠償の円滑かつ早期の貫徹」、「福島復興の加速」、「着実な廃炉の推進」、「原子力安全の徹底」に取り組んでまいります。

当社は、2013 年 3 月 29 日に「福島原子力事故の総括および原子力安全改革プラン」を取りまとめ、原子力安全改革を進めております。その進捗状況を四半期ごとに確認し、取りまとめた結果をお知らせすることとしており、今回は 2018 年度第 2 四半期（2018 年 7 月～9 月）の進捗状況について、ご報告します。

当社は、8 月に花角新潟県知事、桜井柏崎市長、品田刈羽村長らと会談し、柏崎刈羽原子力発電所の安全対策の進捗など、意見交換させて頂きました。9 月には花角新潟県知事に柏崎刈羽原子力発電所をご観察頂き、安全対策工事の進捗や緊急時の対策訓練の実施状況等を説明させて頂きました。また、8 月からは柏崎市、刈羽村のみなさまの御宅を訪問し、地域のみなさまから直接お話しを聞かせて頂いております。引き続き、地域のみなさまとの対話活動や情報発信を継続し、柏崎刈羽原子力発電所の安全性向上に努めてまいります。

1 以下、特に年表示がない月日は 2018 年を指す。

● 本文中の【 】内には、原子力安全改革プランの該当する 6 つの対策を記載した。

● 英語の略記は、説明の一覧を文末に示す。
1 発電所の安全対策等の進捗状況

1.1 廃炉事業の進捗状況

福島第一では、「東京電力ホールディングス（株）福島第一原子力発電所の廃止措置等に向けた中長期ロードマップ（2017年9月26日改訂）」に基づいて、着実かつ安全に廃炉事業を進めている。

(1) 燃料デブリの取り出し

燃料デブリ取り出しに向けて、ロボットやミュオン等による1〜3号機の原子炉格納容器内部調査を実施している。先行して着手すべき初号機の燃料デブリ取り出しに向け、「燃料デブリ取り出し方針」に基づき、「気中・横から」工法に軸足を置き、小規模な取り出しさから開始して段階的に規模を拡大するステップ・バイ・ステップアプローチにて、取り出し方法を検討していく。2019年度には1/2号機のPCV内部調査を行い、PCV底部の堆積物の少量サンプリングを行う計画。2020年度には2号機において、燃料デブリ取得量を増やしたサンプリング、また、3号機では、前回使用した水中遊泳式調査装置を活用した更なる調査の必要性を検討している。

(2) 使用済燃料プールからの燃料取り出し

◆ 1号機

使用済燃料プールの周辺ガレキ撤去等の計画を立案するために、プール周辺のガレキ表面線量測定、空間線量測定および3D計測器を使用したガレキ内の寸法計測を実施した（7月23日〜8月2日）。調査の結果、現場の動気線量、作業時の干渉物の有無および作業空間の寸法を確認した。今後、得られた情報から作業時のダストの影響や作業性を評価したうえで、プール周辺のガレキ撤去等の作業計画を立案する。また、使用済燃料プールへのアクセスルートを確保するために、9月19日より原子炉建屋西側のXブレースの撤去を開始し、9月25日に完了した。今後、南側（1箇所）、東側（2箇所）のXブレースの撤去を予定している。引き続き、作業を進める上でのリスク評価と管理をしっかりと行い、放射性物質の飛散防止をはじめ、安全・安心のための対策の徹底を図りながら、2023年度の燃料取り出しの開始を目指す。
2号機

2号機は、1、3号機と異なり、水素爆発による原子炉建屋の損傷を免れたことから、使用済燃料プールからの燃料の取り出しに向けた準備工事の一環として、原子炉建屋の西側に、オペレーティングフロアへアクセスするための開口部を設置している。7月2日から7月18日にかけて、開口部近傍のエリアを中心に、遠隔ロボットを使用した放射線量測定やカメラ撮影による残置物等の状況確認等の調査を実施した。調査の結果、空間線量率は2012年2月の調査と比較し大きく減少していることや床面にロボットの走行を妨げるような大きな散乱物はなく、残置物の移動・片付け作業に支障がないことを確認した。8月23日からは、遠隔操作が可能な重機やロボットを使用して、オペレーティングフロア内の残置物を移動させる作業を開始しており、9月10日には、過去の調査で建屋内に残されていた装置（Warrior）の移動を完了した。建屋外への影響はないものの、作業中にオペレーティングフロア内において、ダスト濃度の上昇傾向が確認されたことから、作業範囲に散水を実施し、ダスト飛散抑制効果を確認する。今後、オペレーティングフロア全域に調査範囲を拡げ、使用済燃料プールからの燃料の取り出しに必要な、原子炉建屋上部解体作業計画を立案する予定である。
３号機

使用済燃料プールからの燃料の取り出しに向け、燃料取扱機、クレーン、全8個のドーム屋根の設置を完了しており、燃料取扱機の試運転を実施しているが、5月に発生したクレーンの不具合事象に引き続き、第2四半期にも燃料取扱い設備において、立て続けに不具合が確認されている。

8月8日、原子力規制委員会による燃料取扱機の使用前検査中に、燃料取扱機の燃料把握機（マスト）を使用済燃料プールに降下させていたところ、制御系に関する異常を示す警報が発報し、燃料取扱機が停止した。調査の結果、燃料取扱う機器につながっている制御系ケーブルに腐食や断線が確認された。また、屋外のケーブル設置状況を調査した結果、ケーブルダクト内に開口部があり、雨水等が浸入しやすい構造であることを確認した。不具合の発生メカニズムは、ケーブル接続部内部に雨水等が浸入したことから、水分より腐食し、断線に至ったと推定している。ケーブル接続部の部品は、防滴仕様であったが、内部に雨水等が浸入して腐食、断線に至ったことから、工場製作時の製造不良であることが確認された。

8月15日、燃料取扱い設備の試運転中に、クレーンを使用してオペレーティングフロアの資機材を片付けていたところ、制御系に関する異常を示す警報が発報し、クレーンが停止した。調査の結果、テストウェイトと模擬燃料を同時に吊り上げた際、定格荷重50トンに対し、約51トンの重量であったことから、定格重量を超えていたことを確認した。定格重量を超えた原
因は、当初、テストウェイトと模擬燃料は別作業にて取扱う予定であったが、台風12号の影響により屋外作業が制限されたことから、同時に取扱うように計画が変更された際、定格荷重超過の有無を確認せずに作業を実施したと推定している。また、発報した警報は、「制御系の異常」を示すものであり、定格重量超過による「過負荷」を示すものではないことが確認されている。テストウェイトを用いた再現性確認を実施したところ、異常は確認されなかったことから、警報発報の原因は引き続き調査する。

3号機の燃料取扱い設備については、3月の試運転開始以降、複数の不具合が連続して発生しており、共通要因として、メーカーおよび当社の品質管理上の問題があると考えられる。燃料取扱い設備は、多くの機器から構成されており、調達先も多岐に渡っていることから、メーカーは燃料交換機およびクレーンの機能確認並びに主要な機器の品質記録の確認等をもって、燃料取扱い設備が品質上問題ないと判断してきたが、福島第一での使用環境を考慮した機器仕様の確認と品質管理が不十分であったことから、複数の不具合が連続していると考えている。設備の潜在的な不具合を抽出するため、9月27日に不具合箇所の仮復旧を完了し、年内を目途に安全点検(動作確認、設備点検)の実施および品質管理について確認する予定である。

燃料取り出し開始時期は、少なくともこれまで目指してきた11月中旬の開始は難しいと判断し、設備の健全性確認および品質管理上の問題の確認結果を踏まえ、どの程度燃料取り出し開始時期に影響があるかを改めて精査する。

(3) 汚染水対策

「汚染源を取り除く」、「汚染源に水を近づけない」、「汚染水を漏らさない」という3つの基本原則に基づき、発電所港湾内への汚染水流出やタンクからの汚染水漏えい問題等への対策に継続して取り組んでいる。

◆ 建屋滞留水処理の進捗状況

1~4号機の原子炉建屋（R/B）、タービン建屋（T/B）および廃棄物処理建屋（Rw/B）に溜まっている滞留水（建屋滞留水）は、建屋外への漏えいを防止するため、周辺地下水位より建屋滞留水の水位が低くなるように水位管理を実施している。2020年の滞留水処理完了（循環注水を行っている1~3号機原子炉建屋以外の建屋の最下階床面露出）に向けて、7月中旬から建屋滞留水の水位を順次低下させており、1号機と2号機側の滞留水水位が1号機廃棄物処理建屋の床面（東京湾平均海面-36）を下回り、安定的に低い位置で水位を制御できていることを確認したことから、1/2号機間の連通部の切り離しを達成したと判断した（9月13日）。3/4号機間の滞留水の連通部の切り離しは、2017年12月の水位低下時（タービン建屋最下階中间部の床面露出
時）に達成していることから、2018年内の目標をとしていた「1/2号機間および3/4号機間の連通部の切り離し」を達成できた。「2020年内に建屋内滞留水の処理完了」という大きな目標を達成するため、今後も安全を最優先に、慎重かつ着実に対策を進めていく。

T.P.; 東京湾平均海面
1/2号機間の連通部の切り離し

◆ サブドレン水位の監視不能による運転上の制限からの逸脱

7月25日、免震重要棟に設置されている集中監視システムにおいて、プロセス主建屋および雑団体廃棄物減容処理建屋近傍のサブドレン水位監視用のデジタルレコーダの伝送異常を示す警報が発報した。両建屋近傍のサブドレン水位の監視ができなくなったことから、実施計画に定める運転上の制限からの逸脱を判断した。その後、現場に設置してある記録計にて、滯留水水位が近傍のサブドレン水位を超えていないこと、滯留水水位とサブドレン水位の水位差について、監視不能前とほぼ同等の水位差であることから、運転上の制限逸脱からの復帰を判断している。調査の結果、発生当日、集中監視システムのネットワークへ新たなるサーバを追設する作業を実施しており、追設するサーバがネットワークへ接続したところ、一部のデジタルレコーダが伝送不能に至っている。デジタルレコーダはサーバ2系統までしか接続できない設備仕様であったが、接続時にサーバが4系統となり、設備仕様を超えたことが伝送不能の直接原因と推定している。また、背後要因として、サーバ接続時の関連設備への影響を十分確認していなかったことが考えられることから、運用中の設備に新たな機器を追加する工事について、既設設備への影響評価を実施し、手順を確実に要領書に反映を行うことで再発防止を図る。

また、8月12日、サブドレンピットNo.206において、2個ある水位計の偏差に異常を示す警報が発報した。サブドレンピットNo.206の水位の監視ができなくなったことから、実施計画に定める運転上の制限からの逸脱を判断した。現場を確認したところ、水位計を固定している金具の内側にある緩衝材が剥がれ落ち、水位計の検出部が下にずれた状態であることが確認された。その後、サブドレンピットNo.206の水位のトレンドデータを確認したところ、ピット近傍の建屋滞留水の水位とサブドレンピットNo.206の水位の逆転がなかったことが確認されたことから、運転上の制限逸脱を取り下げて行っている。原因は、緩衝材の接着力が低下し、水位計の検出部が下にずれた
際、2個ある水位計の偏差が設定値を超えたことから警報が発報したと推定している。対策として、全てのサブドレンピットの水位計について、結束バンドによる補助固定の応急措置を実施するとともに、水位計の固定箇所を従来の垂直方向1箇所に加え、水平方向2箇所を追加する恒久対策を実施する。

(4) 1、2号機排気筒解体に向けた準備状況

1、2号機排気筒は、筒身を支える鉄塔の上部に損傷・破断箇所が確認されていることから、遠隔解体装置を使用した解体を計画している。解体作業を円滑に実施するため、発電所構外に排気筒の代表部材を組み合わせた高さ18mの模擬排気筒を設置し、モックアップ作業に着手した（8月28日）。モックアップ作業では、模擬排気筒を使用した遠隔解体装置の性能検証作業を実施し、10月よりも実際の解体作業を模擬した作業手順や所要時間等の施工計画の検証を行う予定。12月より福島第一構内での準備作業を開始し、2018年度中には実際の排気筒解体作業に着手できるよう、安全最優先を徹底の上、取り組んでいく。

(5) 2号機原子炉格納容器圧力の減圧試験の実施

2号機の原子炉格納容器内は、水素濃度の上昇を抑制するため、窒素を封入して不活性雰囲気を維持し、大気圧よりも高い圧力状態になるよう運用している。原子炉格納容器からの放射性物質の放出リスクの低減や格納容器内部調査時における作業性向上を目的に、原子炉格納容器圧力の減圧試験(STEP1)を実施した（7月24日～8月31日）。減圧試験(STEP1)では、通常の圧力（大気圧+約4.25Pa程度より）1kPa程度減圧し、水素濃度等の監視パラメータに有意な変動がないことを確認した。第3四半期には、減圧試験(STEP1)の結果をふまえ、安全上問題ないことを確認した上で、減圧試験(STEP2)として、通常の圧力より約2kPa程度減圧する試験を予定している。

(6) 津波対策の実施状況

引き波による建屋滞留水の流出防止および押し波による建屋滞留水の増加の抑制を目的に、建屋開口部の閉止作業を実施しており、第2四半期までに122ヶ所のうち61ヶ所の閉止を完了している。また、重要設備の被害を最小限に抑え、廃炉作業全体の遅延リスクを緩和させるため、
切迫性の高いとされている千島海溝津波に対して、既設の防潮堤を北側へ延長することを検討中。引き続き、開口部閉止作業は、安全最優先で進め、防潮堤については、廃炉作業に対する影響を極力小さくし、早期に完成させることを念頭に具体的な検討を進めていく。

(7) 多核種除去装置処理水の取扱い

多核種除去設備については、汚染水貯留時のリスクや線量を早期に低減するため、放射性物質等による敷地境界での追加的な実効線量（1mSv/年）に影響を与えなるよう、放射性核種を十分低い濃度まで取り除く運転を実施している。多核種除去設備処理水の取扱いについては、科学的・技術的な視点のみならず、社会的な安心や福島の復興推進に十分配慮する必要があり、現在、国の有識者会議（「多核種除去設備等処理水の取扱いに関する小委員会」）で総合的な検討が行なわれている。国は、国民のみなさまのご意見をお聴きし、小委員会での検討を深めるため、8月30～31日に、多核種除去装置等処理水の取扱いに関する説明・公聴会を福島・東京（計3会場）で開催するとともに、広く意見募集を行なった。

8月の公聴会を踏まえ、多核種除去設備処理水の性状等について、2013年度以降の処理水分析結果および2017年度以降に実施しているタンク群毎の分析結果を取りまとめてある。処理水のデータは、これまで当社のHP上で公開してきたが、処理水の約8割が告示濃度を超える放射性核種を含んでいることを積極的に説明できていなかった。昨今の報道や公聴会でのご意見を鑑みると、これまで以上に丁寧かつわかりやすくお伝えしていくことが重要と改めて認識している。なお、多核種除去設備の処理水を環境に放出する場合は、処分前に告示比総和1未満になるように、二次処理を実施する方針である。当社は、多核種除去設備等処理水に関する情報公開を継続するとともに、小委員会での検討・議論を経て国が示す大きな方向性を踏まえ、地元をはじめ関係者のみなさまのご意見を伺いつつ、丁寧なプロセスを踏みながら、みなさまの安全を確保するだけでなく、みなさまに安心して頂けるよう適切に対応していく。
(8) 被ばく線量低下に向けた取り組み

改訂された「中長期ロードマップ」では、リスクの起源となり得る放射性物質について、それぞれの現状を踏まえ、優先順位を付けて最適な対策を実施していくとされている。福島第一では、この考え方のもと、作業に係る被ばく線量を作業実施前に想定し、リスクの増減を評価した上で作業実施の可否を判断し、被ばく線量低減に取り組んでいる。

第2四半期には、2号機原子炉建屋開口部近傍のエリアにて実施した、遠隔ロボットを使用した放射線量測定やカメラ撮影による残置物等の状況確認等の調査において、3号機原子炉格納容器内部調査で使用した「リモートモニタリングシステム」を使用し、約10%の被ばく低減効果が得られた。また、2号機にて引き続き実施している原子炉建屋オペレーティングフロア内残置物移動・片付作業においても、「リモートモニタリングシステム」を継続使用している。2号機の高線量作業においても、3号機の作業と同程度の被ばく線量低減効果が確認されたことから、「リモートモニタリングシステム」を増設し、今後開始される原子炉建屋内や周辺の高線量作業等において、積極的に活用していく。

(9) 使用済燃料取扱作業におけるダスト測定の未実施

福島第一の使用済燃料共用プールにおいて、8月20日から9月5日にかけて、使用済燃料のプール内作業を実施したところ、9月5日の使用済燃料移動作業に伴う、実施計画で要求されているダスト測定を実施していなかった。原因は、当初予備日としていた9月5日の作業に対する分析依頼表によるダスト測定の指示が、関係会社に伝達されなかったことと推定している。なお、9月4日までのダスト濃度は検出限界値未満で、9月5日の作業は9月4日までと同様であり、9月5日の共用プールのエリアモニタ、構内ダストモニタ、モニタリングポストのトレンドに有意な変動はなかったことから、安全性への影響はなかったと考えられる。
対策として、関係会社がシステム上で分析依頼表を直接確認できるように、ダスト測定の指示の伝達方法を改善する。また、予防対策として、前日にダスト測定の指示や工程変更などの情報が漏れていないことを確認できるように、翌日のダスト測定作業予定を関係会社と相互確認を行う。また、第2四半期からは、福島第一の化学・環境管理分野においても、CFAM/SFAM活動を展開しており、このような事象における改善策の立案にも積極的に関与し、再発防止に努める。

1.2 柏崎刈羽における安全対策の進捗状況

(1) 安全対策の進捗状況

柏崎刈羽では、2017年12月27日に6・7号機の原子炉設置変更許可を原子力規制委員会より頂き、これにより基本設計の方針が確定し、この方針に基づいて6号機および7号機を中心に福島原子力事故の経験を教訓とした様々な設備の詳細な設計や安全対策工事を進めている。

＜安全対策工事の進捗状況＞

<table>
<thead>
<tr>
<th>安全対策（※：当社の主導的な取り組みとして実施している対策）</th>
<th>6号機</th>
<th>7号機</th>
</tr>
</thead>
<tbody>
<tr>
<td>津波・内部溢水への備え</td>
<td>防潮堤（堤防）の設置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>防潮壁の設置（防潮板含む）</td>
<td>海抜15m以下に開口部なし</td>
</tr>
<tr>
<td></td>
<td>原子炉建屋等の水密扉化</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>開閉所防潮壁の設置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>津波監視カメラの設置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>海水防止対策の信頼性向上（内部溢水対策等）</td>
<td>工事中</td>
</tr>
<tr>
<td></td>
<td>貯留槽の設置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>重要機器室における常設排水ポンプの設置</td>
<td>完了</td>
</tr>
<tr>
<td>電源喪失への備え</td>
<td>空冷式ガスタービン発電機車等の追加配備</td>
<td>工事中</td>
</tr>
<tr>
<td></td>
<td>緊急用の高圧配電盤の設置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>緊急用高圧配電盤から原子炉建屋への常設ケーブルの布設</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>代替直流電源（バッテリー等）の配備</td>
<td>工事中</td>
</tr>
<tr>
<td></td>
<td>送電鉄塔基礎の補強・開閉所設備等の耐震強化工事①</td>
<td>完了</td>
</tr>
<tr>
<td>炉心損傷・使用済燃料破損への備え</td>
<td>大容量送水車および代替海水熱交換器設備の配置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>高圧代替注水系の設置</td>
<td>工事中</td>
</tr>
<tr>
<td></td>
<td>水源（貯水池）の設置</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>大幅側純水タンクの耐震強化②</td>
<td>完了</td>
</tr>
<tr>
<td></td>
<td>フィルタ設備（地上式）の設置</td>
<td>工事中</td>
</tr>
<tr>
<td></td>
<td>フィルタ設備（地下式）の設置③</td>
<td>工事中</td>
</tr>
</tbody>
</table>
第2四半期に進捗した安全対策は、次のとおり。

◆ 耐震強化（地盤改良による液状化対策含む）
 - 屋外設備・配管等の耐震評価・工事

現在、安全対策の一つとして、近近の自然災害でも話題となっている液状化対策にも取り組んでいる。現地進める取水路の液状化対策は基本的には、地盤セメント系の材料で固めることで液状化を発生しにくくして、構造物の浮き上がりを抑える等の考えで設計している。引き続
き、設備の詳細な設計についても、より高いレベルの安全性を目指して、対策に取り組んでいる。

【液状化対策の一例】（取水路の断面）

【取水路の液状化対策工事状況】

① 地中を掘削機で箱状に掘り抜き、その後、改良材を投入して、改良体を造成

② 地中での砂とセメントミルクを機械的に攪拌・混合して、改良体を造成

(2) 花角新潟県知事の発電所ご視察

花角新潟県知事に当発電所を直接ご覧頂き、福島第一原子力発電所事故の反省や教訓を踏まえた安全対策、緊急時の対応力強化のために所員が訓練に取り組んでいる姿をご覧頂いた（9月6日）。知事からは、次の趣旨のご発言があった。

- 初めて原子力発電所を視察し、施設の概要を知ることができた。
- 安全対策に努力していることは理解したが、取り組みが十分かどうかは技術委員会で議論を深めてもらいたい。

引き続き、安全性向上の取り組みを着実に進めるとともに、そのような取り組みについて、県の検証委員会も含め、地域のみなさまへの情報発信を充実して、3つの検証について、十分な検
証ができるよう、最大限の協力をさせて頂く。

(3) 防火区画貫通部の調査、是正状況

2号機原子炉建屋において、防火区画として設定している壁の貫通部に防火処置が施されていない箇所が2箇所確認されたことから（2017年7月）、1〜7号機およびその他の共用施設等の点検を行ったところ、防火処置が施されていない箇所が60箇所確認された（2017年11月）。防火処置が施されていない60箇所については、内容を精査した結果、建築基準法に抵触する防火区画貫通部は24箇所であり、2017年7月に確認された2号機の2箇所を含みこれまでに26箇所全ての防火処置を完了した（5月9日）。また、4月末より、調査の結果の精度を高めるため、点検内容の見直し再調査を実施しており、7号機において2箇所の防火処理未実施箇所を確認した。なお、当該2箇所は、9月21日に是正を完了している。

調査、是正状況については次の通り。

＜建築基準法に抵触する防火区画貫通部の調査・是正状況＞（10月10日時点）

<table>
<thead>
<tr>
<th>号機</th>
<th>調査状況</th>
<th>調査進捗率</th>
<th>防火処置未実施箇所数</th>
<th>未実施箇所のうち是正実施済箇所数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1号機</td>
<td>準備中</td>
<td>-</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>2号機</td>
<td>準備中</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3号機</td>
<td>調査中</td>
<td>0%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4号機</td>
<td>調査中</td>
<td>0%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5号機</td>
<td>調査中</td>
<td>0%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6号機</td>
<td>調査中</td>
<td>65%</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7号機</td>
<td>調査中</td>
<td>90%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>その他</td>
<td>調査中</td>
<td>85%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>
＜防火処置未実施 2箇所＞（8月9日）

7号機 タービン建屋1階 熱交換器エリア（非管理区域）

取水槽のベント管① 取水槽のベント管②

(4) 北海道電力への支援

9月6日に発生した北海道胆振東部地震で全域が停電した北海道電力に対し、福島第一、福島第二、柏崎刈羽から応援を派遣した。発電所の安全確保に必要な車両を残した上で、電源車5台、タンクローリー1台、業務車両6台と本社を含む要員40名が、北海道電力の支援要請に従い、現地で給油方法等の電源車の仕様の違いを確認し、緊急事態に備えた。
2 原子力安全改革プランの進捗状況

2013年3月に公表した原子力安全改革プランに基づき、原子力部門が対策を講じた。いわゆる“負の連鎖”を断ち切るための6つの対策に加え、2016年度に実施した自己評価の結果、さらなる改善が必要と判断した。ガバナンスの強化・内部コミュニケーションの充実に取り組んでいる。

事故への備えが不足した“負の連鎖”の遮断

また、ガバナンス強化の取り組みとして、原子力部門マネジメントモデルを制定し（2017年6月）、これに基づいて業務を遂行している。原子力安全改革プランの進捗状況の報告もこれに合わせ、「組織としてのベクトル合わせ（ガバナンス強化）」とマネジメントモデルの価値観である「安全意識」、「対話力」、「技術力」に整理して記載している。
2.1 組織全体のベクトル合わせを強化するための活動

2.1.1 ガバナンス強化

(1) マネジメントモデルの展開と浸透

原子力・立地本部では、職員全員が、部門の目標や相互の役割について共通の理解を持って業務に取り組むべく、そのよりどころとなるマネジメントモデルを策定した（2017年6月）。2018年度は、このマネジメントモデルに基づき業務計画を策定し、エクセレンスを目指した活動を進めている。

本年6月には、このマネジメントモデルに基づき策定した業務計画の確実な遂行に向けて、職員の理解と関与の強化を図るために、TV会議システムを利用して、本社と各発電所および新潟本部合同で重要課題説明会を開催した。当日の様子は社内テレビで撮影し、説明会に参加できなかった職員および7月の定期異動で着任した職員とも共有した。説明会終了後に実施したアンケートでは、参加者の7割以上が「自身の業務に役立つ情報を得られた」と回答し、リーダー層からの直接の発信などに対して好意的な意見が寄せられた一方、課題選定の背景についての説明や、より具体的な説明をしてほしい、各課題の進捗についても共有してほしい、等の今後に向けた改善提案も寄せられた。
9月24日には、第4回原子力リーダーセッションを開催し、今後の原子力部門の目指す姿や組織運営上の課題、2019年度に取り組むべき事項を議論した。第3四半期には、ここでの議論をふまえて2019年度の業務計画骨子を作成し、2018年度の重要課題の進捗報告とあわせて、原子力リーダーやから説明する機会を設ける予定である。

マネジメントモデルの構成要素の1つであり、全ての人たちが知っておくべき日々の業務に関わる心得や原則をまとめた「ファンダメンタルズ」については、CFAM/SFAMを中心にこれまでの使用実績を踏まえた表現の適正化や制定する分野の追加などの改訂をした。現在、改訂版の冊子を作成・配布の準備を進めており、第3四半期ではコミュニケーションプランを立てながら原子力部門および協力企業への展開を進めていく。

(2) CFAM/SFAMによる改善活動

マネジメントモデルの機能分野ごとにCFAM/SFAMを設置し、それぞれが海外のエクセレンスの把握、解決すべき課題の抽出、改善策の立案、実施といった活動を行っている（2015年4月より）。

第1四半期に行われたWANOフォローアップレビューに引き続き、第2四半期にはJANSIレビューが実施された。これらの第三者評価においては、準備段階からCFAMが参画し、マネジメントオブザベーション（MO）の展開状況や異物混入防止の対応状況等、CFAM/SFAMを中心とした改善活動状況についての説明、議論が円滑に行えるように発電所を支援している。レビューを通じて、異物混入防止の取り組みを評価して頂くなど、これからの改善に資する貴重な提言も頂いた。今後も自己満足に陥ることなく、外部の提言を積極的に取り入れ、CFAMが旗振り役となり、更なる技術の向上に取り組んでいく。
昨年度までの第三者評価やセルフアセスメントなどを踏まえ、以下の４案件について今年度部門大で重点的に取り組んでいる。第1四半期では各機能分野CFAMがSFAMと連携しつつサイトでの展開を含む全体戦略とアクションプランを策定、第2四半期ではアクションプランに基づき段階的に実行に移している。以下にその取り組み状況を示す。

◆ リスク管理の強化

原子力安全の更なる向上を図るために、これまで運転、ワークマネジメント、エンジニアリングなどの機能分野毎に実施してきた活動（工事実施前のTBM-KY、運転員による重要設備保護など）を、発電所を含む原子力・立地本部の業務全体で想定されるリスクについて共通の尺度を持って管理できるよう、改善を進めている。具体的には、リスク管理・PRA CFAMが、関係するCFAM/SFAMと協働して抽出、評価、対応および監視を体系的に行うためのアクションプランを取りまとめており、既に実行段階へ移行し、進捗管理も開始している。各機能分野において進めている取り組み状況を以下に示す。

運転分野では、周辺作業等により重要設備が影響を受けないよう、運転員が設備ガードを設置して保護を行う運用を実施している。ワークマネジメントでは、運転員による重要設備の保護状況を作業工程へ反映し、作業工程策定断面でのリスク回避措置を実施している。また、系統構成情報を基にしたLCO逸脱・EAL発生・炉心損傷のリスクを週毎に評価し、経営層を含めた情報共有会議にてリスク情報の周知・社内インター掲載を実施している。

さらに、設計標準プロセス導入の検討（エンジニアリング）や、プロジェクト管理関連手順書および教育資料の作成（プロジェクトマネジメント）、各機能分野を一貫する共通プロセスの検討（リスク管理基本マニュアル）を実施している。

◆ 運転フォーカスの浸透

組織全体で最も重要な機能分野である運転を支えるために、運転に関する意思決定、作業の優先順位設定などに運転の要求事項を確実に反映できるよう、運転フォーカスの考え方の浸透とあわせて既存の仕組みを強化している。運転分野の職員には取り組みを率先垂範し、他の機能分野の手本となることで発電所をリードしていくことを期待していることから、運転CFAMと教育訓練部門が連携し、運転フォーカス浸透のための教育教材を開発し、教育を開始した。さらに、運転員の行動や振る舞いが発電所員の模範となるために、運転員はヒューマンパフォーマンステールに関するトレーニングを行っている。加えて、日々の使用と振り返りによる磨き込みを繰り返し行うことにより、ヒューマンエラーが減少するなど、運転員のパフォーマンスが向上している。
運転分野以外への活動として、新入社員への運転フォーカスの研修を開始した。また、発電所職員に対して「運転フォーカス理解浸透度アンケート」を実施しており、第三四半期以降にアンケート結果を詳細に分析・フィードバックすることにより発電所職員に対する効果的な浸透活動を行う予定である。さらに、運転フォーカスに関する項目をファンドメンタルズに追加し、実践と振り返りを日々行うことにより、全職員への運転フォーカスの浸透を加速させていく。

◆ 是正措置プログラム（CAP）の改善

不適合やOE情報に限定せず、原子力安全に資するパフォーマンス向上に有用なさまざまな情報、例えば不適合やOE情報、マネジメントオブザベーション（MO）結果などを活用し、より効率的・効果的な改善を図ることを目指している。第２四半期では、CAPに登録した情報を分析し、共通的な弱みを特定して是正する活動を運転や保全などの分野で試行しており、第３四半期からは、その他分野に展開していく。また、協力企業による要望・推奨事項のCRによる報告を第２四半期から開始し、現場の改善に繋がる報告が増加している。

◆ ヒューマンエラー防止

ヒューマンパフォーマンスマツールを広めるとともに、ヒューマンエラーの発生要因を分析し組織的に対策を取ることで、エラーの発生を最小限に止めて、安全性向上に繋げる取り組みを展開している。保全分野において、ヒューマンエラー防止ツールに関する研修の協力企業工事担当者への展開を開始。第３四半期以降、ヒューマンエラー防止のための教育などを原子力部門全体や協力企業にも拡大するための計画を検討し、実行に移していく。

2.1.2 内部コミュニケーション

(1) 内部コミュニケーション推進の取り組み

各部署での重要な取り組みや課題、知見などを社内で幅広く共有することを目的に、業務計画の重要課題説明会をはじめとして、社内説明会の機会を増やしている。

本社では、内部コミュニケーションチームの活動の一つとして、広く社員から関心が高く、重要と思われるテーマを選定し、説明会を開催。7月には原子力規制検査（ROP）を、9月にはトリチウムをテーマに説明会を開催した。説明会の内容は、福島第二、柏崎刈羽にTV会議を通じて配信している。参加者からは、引き続きこのような機会を要望する声が多く寄せられており、今後も継続して社内説明会の機会を設けていく。
また、部署間の壁を越えた幅広い人脈づくりを促す目的で、部署間を跨いだレクリエーションの場を設定した。参加者からは、部署間の親睦が高まった、コミュニケーションが取りやすくなったとの声があった。次期以降についても、継続的な開催を検討している。

福島第二では、2002年原子力不祥事を振り返る活動である「8.29再生の日」の一環として、2つのグループが合同でグループ討議を実施（組み合わせは抽選にて決定）。2002年当時を振り返る発言やなんでも言い合える職場について率直な意見交換が行われた。また、業務上の接点がなくはじめて会話する方もおり有意義であったとの声も寄せられた。今後ともコミュニケーションの活性化を図るべく交流の場を設けていく。

柏崎刈羽では、地元本位・社会目線を意識した業務運営を行うことを目的に、地域の方が発電所に対してどのように受け止めているのか、日頃の地域対応・活動で得られたご意見をとりまとめ、毎月、全所員へ情報共有し、内部のコミュニケーションを図っている。7月には、この取り組みに関する所員へのアンケートを実施し、アンケートに回答した所員のうち、約98％が「地域の意見が参考になった」と回答し、さらに、「地域のみなさまの期待を裏切らないよう業務に取り組んでいく必要性を感じることができた」との意見も出ている。今後もこのようなコミュニケーション活動を継続し、所員が地域を意識した業務を行うことを目指していく。

(2) 社内メディアを通じた原子力関係の情報の共有

ホールディングスおよび基幹事業会社社員との情報共有のために、社内メディアを通じて以下を実施した。

◆ 社内イントラネット動画配信
- 「廃炉に取り組むみなさんの方針説明会〜変革方針説明会〜」（8月21日配信）
- 「柏崎刈羽原子力発電所での猛暑対策〜空調服導入〜」（8月21日配信）
◆ 東京電力グループ報
- 廃炉プロジェクト・レポート 第8回
 2号機オペレーティングフロアの放射性物質の状況調査（7月30日発行）
- 廃炉プロジェクト・レポート 第9回
 2号機オペレーティングフロアの調査が進んでいます（9月26日発行）

◆ 社内イントラネット「経営層からのメッセージ」発信
- 「福島原子力事故の事実と教訓を伝える全社員研修開始」増田　尚宏　執行役副社長
 （7月27日掲載）
- 「今を知るパーキャル・ツアー」　廣瀬　直己　執行役副会長　（8月6日掲載）

7月27日に発刊したグループ報に対する社員アンケート結果において、福島第一や柏崎刈羽に関する情報発信のニーズがあった。
今後も社員のニーズに沿った情報発信をするとともに、それぞれの社内メディアの利点を生かし、動画やグループ報など効果的なメディアミックスによる情報共有を続けていく。

(3) 原子力部門における重要な業務課題等に対する情報共有の強化

2016年7月から、各発電所長および本社部長が、重要な業務課題について定期的に原子力部門の全員に対してメールで配信している。2年という一定の期間が経過したため、本取り組みの有効性評価を実施した。これまでの配信内容は概ね対策に合致していること、メールの受信状況と内容の理解度、内容に対する意見を収集する電子アンケートの返信率の上昇傾向の結果から、
問題解決の1つの仕組みとして有効に機能しつつあるが、課題の吸い上げが十分ではない可能性があると評価している。

このため、情報発信の垣根を低くし、共有すべき業務課題をより多く知る機会を生み出すよう運用を改善した。具体的には、サイト各部・グループ、本社各グループが他部署に知ってもらいたい課題、または解決へのアドバイスが欲しい課題を主体的に発信することができる仕組みとした。返信率の伸び悩みに対しては、読者から賁きたい話題、共有してほしい内容を記載できるリクエスト欄をアンケートに追加し、共有すべき課題をより多く抽出して双方向の情報共有を強化することを試みる。

なお、情報共有については、内部コミュニケーション CFAM のギャップ分析の結果を踏まえたアクションと整合を取るために、2018年度中に発信方法と PI を見直す計画である。

2.2 安全意識向上のための取り組み

2.2.1 原子力安全文化醸成

(1) 経営層および組織全体の安全意識の向上【対策1】

◆ 原子カリーダー間の直接対話

組織全体の安全意識を向上するために、2015年度第4四半期より、本社原子カリーダー（原子力・立地本部長、本社部長）が発電所に赴き、発電所幹部（発電所長、副所長、ユニット所長、原子力安全センター所長、発電所部長）と直接対話する活動を継続して実施している。第2四半期は、リスク情報の共有を進めるための方策やより高みを目指すための第三者評価の活用方法についての議論などを行った。（柏崎刈羽：7月27日、8月22日、福島第二：7月24日、9月25日）

例えば、リスク情報の共有に関しては、既存の情報伝達ルートがマニュアル等で定まっていないケースにおいても、技術部門と対外対応部門の間で情報が流通するように、標準的な伝達フローを定める方向性が打ち出された。また、第三者評価活用の議論では、外部機関の専門家の指摘に対する個別の受動的なレビュー対応だけではなく、外部機関のレビューの視点を当社の視点に取り入れるなど、レビューや広く学べる好機と捉え、自社の力量を高めるよう活用していくと言う意見が出て、これを原子カリーダーと幹部の共通認識とした。
原子力・立地本部長と各職場との直接対話回数

原子力リーダーからのメッセージ発信

原子力安全改革を推進するためには、原子力リーダーの期待事項およびその背景等を的確に伝え、これを浸透させる必要がある。このため、原子力リーダーは、ビデオメッセージ、イントラネットメッセージ、メール、会議の場、朝礼時の講話などの手段によって、期待事項を伝達するためのメッセージを発信している。

インターネットを通じた原子力リーダーのメッセージに対する社員の閲覧の状況は、次のとおり。
イントラネットを通じたメッセージに対する1件あたり閲覧数／参考になった評価率

第2四半期のメッセージ1件あたりの閲覧数は約1,614人で前期より減ったが、「参考となった」と評価している割合は約34%で、3.11のメッセージで最も高かった2017年度第4四半期を上回った。

原子力・立地本部長、福島第一廃炉推進カンパニープレジデントによる表彰

2015年度より、原子力安全改革プランの実現をはじめ、各々のミッション達成等について「率先して大きなチャレンジを行った人」、「高い目標を達成するために頑張った人」を対象とした原子力・立地本部長および福島第一廃炉推進カンパニープレジデントによる表彰を実施。実績件数は以下のとおり。

原子力・立地本部長、福島第一廃炉推進カンパニープレジデント 表彰実績

<table>
<thead>
<tr>
<th>時期</th>
<th>本社</th>
<th>福島第一</th>
<th>福島第二</th>
<th>柏崎刈羽</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015年度</td>
<td>24(2)</td>
<td>47</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>2016年度</td>
<td>25(1)</td>
<td>19</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>2017年度</td>
<td>21(2)</td>
<td>5</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>2018年度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第1四半期</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>3²</td>
</tr>
<tr>
<td>第2四半期</td>
<td>5(1)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

（ ）内は東通の件数（内数）

2 前回の誤記を修正
（2）個人・組織による Traits 振り返り【対策 1】

原子力部門では、健全な原子力安全文化の 10 の特性と 40 のふるまい（10 Traits）を自然と振りる舞えるようになることを目指して活動している。昨年度に引き続き、原子力部門全員が、インタラネットのシステムを使って Traits を体現しているかという視点で振り返りを行っている。また、それらの結果や至近のパフォーマンス情報を参考に、2 週間に一度、グループ単位で対話をし、改善アクションを検討・実施することで、Traits と自身の振る舞いの差を埋めていくことを目指している。以下に示す通り、活動は継続的に実施されている。

(3) 協力企業とのコミュニケーション・理解浸透活動

当社発電所の原子力安全を高めていくためには、協力企業においても原子力安全改革の理解や原子力安全文化的醸成が必要である。特に、協力企業本社や製品調達先の工場など、発電所で直接働く機会が少ない方に対しては、自身の業務と原子力安全のつながりを認識する事が重要であると考えているため、発電所に納める製品やサービス内容に応じた説明資料を作り、対話を実
施。「品質向上が安全向上につながる事を再認識した」「製品やサービスの安全性／信頼性向上のためには、企業の安全文化にまで落とし込んだ活動が必要であることを学ぶことが出来た」など肯定的な反応を頂いている。

(4) 福島原子力事故の反省と教訓を共有する取り組み

福島原子力事故の反省と教訓を世界の原子力事業者と共有する取り組みを、原子力カリーダーを中心に進めている。

◆ IAEA 技術ワーキンググループ 第1回会合

IAEAに技術ワーキンググループが新たに設立され、第1回会合が9月に開催された。ワーキンググループは、世界の原子カーリーダーが一同に会して、原子力発電所の安全性や持続可能性に関するIAEAの諸活動に助言とサポートを提供することが目的としている。当社は、原子力・立地本部長が参加。開会の挨拶に合わせて福島原子力事故の概要、反省および教訓を紹介したほか、設備の信頼性を高めて故障や是正処置を最小限に抑える取り組みが重要であることなどを提言し、世界の原子カーリーダーとの意見交換を進めた。

◆ IAEA 年次総会 パネルディスカッション「Fukushima-Daiichi D&D Today」

IAEAの年次総会のサイドイベントとして、9月に開催されたパネルディスカッション「Fukushima-Daiichi D&D Today」に、福島第一廃炉推進カンパニープレジデントが参加した。福島第一の現状と今後の計画について、ホームページに公開している動画等も用いて説明している。他の参加者からは、追加の津波対策や汚染水対策、福島第一の近辺に居住している人の数や土壤汚染等について質問があり、活発な議論を行った。
2.2.2 パフォーマンス向上（CAP）

(1) CAP の運用による改善活動の推進【対策 3】

◆ CAP プロセスの強化

不適合や OE 情報に限定せず、原子力安全のパフォーマンス向上に有用な情報（マネジメント オブザベーション（MO）結果、ベンチマーク結果、第三者評価結果、ニアミス情報など）を CAP として一元的に管理し、より根本的な対策を講じることにより効率的・効果的な改善を図ることを目指している。

第 1 四半期は、MO 結果等の報告について、その傾向を監視して劣化の兆候を特定するため に、事象コード、プロセスコード、原因コード等などの分類コードを用いた分析を開始した。第 2 四半期では分析の精度を上げるために PICO（パフォーマンス向上コーディネーター）への継 続的なコード研修を行っている。

さらに発電所の各分野 PICO が中心となって、CAP に登録した情報を分析し、共通的な弱み を特定して是正する活動を継続的に実施している。福島第二原子力発電所の保全部等で試行的に
これら評価を実施した。第３四半期からは、その他分野にてさまざまな情報の統合的な評価を実施する。

協力企業による CR 入力を第２四半期から開始し、これまでに「作業現場の改善要望」など、改善ための情報について報告されている。

第３四半期より、不適合情報について重要度を振り分ける運用において、これまでの不適合管理の運用に加え、原子力安全に焦点を当てた振り分けの試行を柏崎刈羽にて開始した。これにより、原子力安全の改善をより強力に推進する運用を目指す。

(2) マネジメントオブザベーション【対策 2】

◆ マネジメントオブザベーション（MO）（CAP へのインプット）

原子力安全改革を推進し原子力安全を向上させるために、管理職が現場の実態を観察して課題を正確に把握し、海外の優良な原子力事業者が積極的に取り入れているマネジメントオブザベーション（MO）を当社も活用している。

前四半期から福島第二と柏崎刈羽で、MO で指摘した事項について、CAP の入力情報として CR の起票して問題を改善するとともに、これら情報の分析を継続的に実施している。

第２四半期の MO 実績は以下のとおり。

<table>
<thead>
<tr>
<th>項目</th>
<th>福島第一</th>
<th>福島第二</th>
<th>柏崎刈羽</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施回数</td>
<td>1,122 回</td>
<td>792 回</td>
<td>1,277 回</td>
</tr>
<tr>
<td>管理職 1 人あたり</td>
<td>3.90 回/月・人</td>
<td>4.26 回/月・人</td>
<td>3.98 回/月・人</td>
</tr>
<tr>
<td>1 ヶ月回数</td>
<td>-</td>
<td>67%</td>
<td>64%</td>
</tr>
</tbody>
</table>

*Good MO 率： PICO（パフォーマンス向上コーディネーター）が、好事例として評価した MO の割合。ただし、福島第一では行っていない。

2.2.3 運転経験情報の活用

(1) 国内外の運転経験（OE）情報の活用【対策 3】

◆ OE 情報の収集と共有

福島原子力事故の教訓の一つに「他者の失敗に学ぶ」がある。世界のどこかで起こったことは当社の発電所でも起こり得ると考え、教訓を抽出し、対策を検討・実施する。
福島原子力事故以前は、国内外の運転経験（OE）情報の収集および対策検討の先送りが見られたため、この迅速化を図り、原子力部門全員がこれを活用するように取り組んでいる。

第2四半期は、28件のOE情報を新たに収集し、過去に収集したOE情報を含む26件について分析を完了した。3か月を超えて分析待ちとなったものは1件であった。

OE情報収集・分析実績の推移
（注：2013年度の件数が多いのは、福島原子力事故前のOE情報を処理したため）

社内イントラネット上に社内外で至近に発生したOE情報を掲載し、全ての原子力部門員がOE情報に触れやすい環境を提供しており、原子力安全改革のPIである新着OE情報の第2四半期の閲覧率は、原子力部門全体で55%であった。

◆ SOERと国内外の重大事故情報の勉強会

SOERと国内外の重大事故情報は、特に重要なOE情報3として集中的な学習会を開始し、これら事故やトラブルの概要と教訓を理解することに取り組んでいる。

- 「SOERの概要を学ぶ研修」は、一般職を含めた原子力部門の全社員がSOERを幅広く理解する研修であり、これまでに発行されたSOERは全て研修が完了した。
- 今年度は、国内外の重大事故情報としてチェルノブイリ事故の教訓を学ぶことを第3四半期に予定している。

3 ブラウンズフェリー原子力発電所ケーブル火災事故など、22件の事故トラブルを対象として設定。
2.2.4 深層防護提案力の向上（リスク管理）

(1) 安全向上提案力強化コンペの実施【対策 3】

◆ 第 8 回コンペ

深層防護の観点から多角的な検討を加えて費用対効果の大きい安全対策を提案し、これを迅速に実現する技術力を習得することを目的として「安全向上提案力強化コンペ」を実施している。

2018 年度は、現場からの提案やリスクを新たに募集する第 8 回コンペを開催することとし、5月 21 日から 7 月 27 日まで提案を募集し、発電所や本社の原子力部門に加え、他部門からの提案もあり、合計 270 件の応募があった。今後、事務局による審査、原子力部門全社員による投票、原子力リーダーによる審査を行い、優良提案を決定する。

第 8 回までの応募と第 7 回まで優良提案の実現状況は、次のとおり。

優良提案の実施状況
- 第 2 四半期に実施した優良提案は、第 4 回コンペの優良提案（11 件）の 1 件。
- （福島第一）津波発生時等において、使用済燃料プール等の冷却に必要なホース搬出の安全性向上を目的に、仮設ディーゼル発電機およびジブクレーンの配備によって、大物搬入口への吊り降しの省力化し、迅速性を向上させた。
福島第一の仮設ディーゼル発電機及びジブクレーンの配備

引き続き、優良提案が実現するまでの過程をモニタリングし、円滑に実現されていない場合はフォローアップを行う。

(2) ハザード分析による改善プロセスの構築【対策 3】

発生頻度の不確かさが大きく、クリフエッジ性が高い事故・ハザードに備える考え方、仕組みを整備し、事故の発生を前提とした対策の立案、実施に取り組んでいる。

- 柏崎刈羽における約 30 件のハザード事象の分析を 2014 年度に終えており、策定した計画に従って対策を検討している。
- 2015 年度以降に認識したハザード（高高度核爆発による電磁波等）の影響については、対策を含め追加検討している。

2.3 対話力向上のための取り組み

2.3.1 リスクコミュニケーション活動の力量向上【対策 4】

(1) 広報室と S C 室の機能統合

7 月 1 日から、渉外・広報ユニットの広報室に、同ユニットのソーシャル・コミュニケーション室の組織と経営層への提言機能、原子力部門のコミュニケーション活動に対するオーバーサイト機能を統合することで、一層の情報発信の強化につなげた。

4 共通の要因によって安全機能の広範な喪失が同時に生じ、致命的な状態に陥る状況になること。
(2) RC の力量向上の研修

4 名の新任 RC を対象に、コミュニケーション活動の向上・改善を目的としたプレゼンテーション研修を実施（7月）。各自が社外講師の前でプレゼンテーションを実施し、社外講師によるスキル評価・フィードバックを行い、自身の課題について認識を図った。

社内外の過去事例を用いたケーススタディを行い、RC 同士の議論を通じてレビュー・テーションリスクに対する感度を高める研修を実施（8月 24 日、8月 31 日、9月 14 日のいずれかに全員が参加）。

2.3.2 リスクコミュニケーションの実施【対策 4】

(1) 立地地域とのコミュニケーション【対策 4】

◆ 福島地域の活動状況

大倉福島復興本社代表と小野福島第一廃炉推進カンパニーブレジデートが、福島第一廃炉の進捗状況や復興推進活動について、「国際高校生放射線防護ワークショップ」に参加した高校生等と意見を交換した。県立福島高校が NPO 法人や企業と協力して主催したワークショップでは、県内外に加えフランスやフィリピンなどの海外を含む 10 校計 72 名の参加者が福島第一を見学（8月 8 日）。実際に目で見て直接話を聞けたのが大きかった」、「事故後の情報が伝わってこないので実際に見て印象深かった。帰国したら、自分が見たことや感じたことを親やクラスメイトに伝える」となどの感想を頂いた。

「国際高校生放射線防護ワークショップ」に参加した高校生等による福島第一の見学

また、9月 3 日には、福島県が国や東京電力の福島第一の廃炉に向けた取り組み等について、安全かつ着実に進むよう「県民の目線」で確認するために設置した「福島県原子力発電所の廃炉に関する安全確保県民会議」（9月 3 日）に、大倉福島復興本社代表と小野福島第一廃炉推進カンパニーブレジデート他 4 名が参加。廃炉の進捗状況を説明した。
地域や協力会社のみなさまとのコミュニケーションを目的に、次を発行した。

- はいろみち（8月10日第9号）
 福島第一原子力発電所の廃炉作業の進捗状況と、作業に関わる人やその思いなどをお伝えする情報誌として、地元（8市町村）の各戸へ配付した。

- 東京電力ホールディングス株式会社からのお知らせ（7月、8月、9月）
 廃炉作業を分かり易く解説して、地元（10市町村）の各戸へ配付した。

- 月刊いちえふ。（7月、8月、9月）
 福島第一で働く作業員の方への廃炉作業進捗等の情報伝達強化と、一体感の醸成を目的として、協力企業への配付した。月刊いちえふ。のwebサイト「1 FOR ALL JAPAN」は、前年同期間に比べ、ユーザ数は約1.75倍と、サイトへの来訪者は大幅に増加した。
◆ 新潟地域の活動状況

柏崎市、刈羽村にお住まいのみなさまのお宅を訪問させて頂き、原子力発電所や当社についてのご意見、ご要望を直接お伺いする「全戸訪問(8月1日-12月2日)」を実施。今回で4回目となる訪問では、一人でも多くの方とお会いできるよう訪問方法を以下のとおり改善。地域のみなさまの率直なご意見、ご要望を傾聴し、今後の事業運営に活かしていく。
- 訪問対象を店舗兼住宅にも拡大（昨年、約41,000軒から、約48,000軒に増加）
- きめ細かく地区を区切った訪問時期を事前にお知らせ
- 再訪問の希望を伺うハガキの配布

地域のみなさまへのご説明

広聴活動で頂いた、地域のみなさまから頂くご意見等の件数は、全戸訪問活動で従来以上に丁寧な説明を行ったことから、第2四半期は20,480件（柏崎・刈羽地域）であり、前年度実績より大きく増加した。また、2018年度より、視察会やコミュニケーションブースなどの原子力理解活動に参加頂いた地域のみなさまにアンケートをお願いし、当社への信頼感や親近感を評価頂いている。各種対話活動のアンケート評価の目標は、「肯定的な評価を60%頂くこと」と設定しており、第2四半期は76%、達成率は126ポイントであり、第1四半期より3ポイント上昇した。

(2) 経営層のコミュニケーションの取り組み【対策4】

福島エリアでは、新規に就任した小野福島第一廃炉推進カンパニーレジデント、大倉福島復興本社代表による毎月の定例記者会見を実施。福島復興本社の活動状況や福島第一の廃炉・汚染水対策の進捗状況を説明している。

福島県浜通りで開催された原子力損害賠償・廃炉等支援機構主催の第3回福島第一廃炉国際フォーラムでは、小野福島第一廃炉推進カンパニーレジデントが登壇した（8月5日、6日）。一日目は廃炉についての情報発信をどのように改善できるか、廃炉をどのように地域の復興に役
立てていけるかなどについて地元の方々や学生と意見交換を実施した。二日目の海外・国内の技術専門家を対象としたセッションでは福島第一の最新状況を動画とスライドを用いて紹介した。

経営層からのご説明機会の拡充として、チーフ・スポークスパーソンを設置（9月1日）。非常災害発生時の記者会見等、会社の重要な事象をご説明する機会において、会見者等の役割を担うことを想定している。

(3) 海外とのコミュニケーション【対策4】

海外ステークホルダーに対する直接的な情報発信を目的に、廣瀬副会長（福島統括）が台湾・中華核能学会での講演を行った（8月16日）。

柏崎刈羽原子力発電所では、豪州のテレビ局 Channel 9 の「60 minutes」が、安全対策にフォーカスした取材を行った（9月21日）。

プロアクティブな情報発信を目的に、各国メディアや有識者に対するメールマガジン、フェイスブック/ツイッターによる継続。第2四半期実績は、メールマガジンが1件、フェイスブックが16件、ツイッターが16件。
分かりやすい情報発信・ソーシャル・ネットワーク・サービスの活用【対策 4】

原子力に関する技術や廃炉の進捗について理解を深めて頂くため、次の解説動画と Web コンテンツを公開。

- 「福島第一原子力発電所は、今」 〜あの日から、明日へ〜（ver.2018.7）（日本語・英語）（7月2日）
- 最上階の調査開始〜2号機原子炉建屋（8月14日）
- 廃炉への軌跡（更新）（日本語・英語）（9月25日）

各発電所におけるこれまでの実績は、次のとおり。

2.4 技術力向上のための取り組み

2.4.1 技術力（緊急時）の強化

(1) 発電所および本社の緊急時対応力（組織）の強化【対策 5】

2017年度の原子力規制委員会による各原子力発電所の訓練評価結果では、原子力規制委員会との情報共有において、当社からの説明が十分でなかったことや、プラント情報システムの伝送ができなかった場合の対応が十分でなかったことなどが指摘されている。この厳しい評価を受け、熟練チームの編成、情報共有要員の専任化、要員の知識・能力の改善等を含む「緊急時対応改善計画」を取りまとめた（8月27日公表）。第2四半期には、この改善計画に基づき、本社および柏崎刈羽において、個別および総合訓練を重ね、10月2日の柏崎刈羽の総合訓練では、原子力規制委員会立会のもと、緊急時演習を実施し、情報共有等の機能が改善できたことを確認した。

各発電所におけるこれまでの実績は、次のとおり。
福島第一；第２四半期総合訓練実績：7月20日、9月18日

7月20日の訓練では、平日夜間想定を想定し、電源系のトラブルを起因として重要設備が停止する訓練を実施した。訓練では、要員が待機している単身寮とのTV会議による情報共有や、単身寮からの応援者の参集に問題がないことを確認した。課題として、電源停止範囲や重要設備の停止状況の情報が十分共有されなかったことから、情報報告頻度や情報に対する対応状況を予め決めておく等、各機能班のふるまいを改善する。

9月18日の訓練では、地震を起因とし、使用済燃料プール水の漏えいや原子炉建屋滞留水水位が上昇するシナリオにて総合訓練を実施した。目標設定会議（発電所の対応方針を決定する会議）の進行役や進行ルールの運用を見直したことにより、会議が円滑化され、以前より速やかに発電所の対応方針を決定することができた。一方で、目標設定会議で目標達成を阻害するリスクを十分議論できなかったことから、リスクの抽出方法の改善を図る。
福島第二；第２四半期総合訓練実績：7月26日、8月28日、9月27日

8月28日の訓練では、竜巻を起因事象とし、全交流電源喪失等により、使用済み燃料プールの冷却機能喪失が発生し、構内の放射線量が上昇するシナリオにて、構内にて復旧作業中の要員の一時退避等、放射性物質放出状況下における対応を目的とした訓練を実施した。訓練では、緊急待避者の汚染サーベイ、出入り管理所の設営・運営および放射線防護装備を装備した要員による電源復旧作業を実施した。課題として、放射線量上昇確認時における情報共有の方法、迅速な待避方法の確立、復旧に関わらない要員のサーベイ方法および発電所からの避難手順等について、より明確になるように改善していく。

柏崎刈羽；第２四半期総合訓練実績：7月19日、8月17日、8月20日、9月14日、9月20日

第2四半期の総合訓練は、緊急時の役割に応じて、必要な知識・能力を持った要員を選抜した熟練チームにより編成し、繰り返し実施した。8月17日および20日の訓練では、プラント復旧目標設定の実施、発電所と本社の情報共有等に重点を置き、9月14日および20日の訓練では、8月の訓練の気付き・反省事項について改善状況を確認した。特に、発電所－本社間における情報共有では、「緊急時対応改善計画」に基づく、発電所－本社間のホットライン要員の専任化や、情報の流れに対して発電所および本社の個人の役割を明確化により、情報の流れを抜けなく行うことができることを確認した。
◆ 本社；第 2 四半期総合訓練実績：8月 17日、8月 20日、8月 31日、9月 14日、9月 20日、10月 2日

第 2 四半期で実施した訓練では、「緊急時対応改善計画」に基づく対応状況を確認した。さまざまな訓練シナリオを設定し、訓練を重ねることで、官庁連絡班および関係班の役割分担が明確になったことや熟練チームのメンバーの力量を確認した。なお、10月 3 日に行われた原子力規制委員会では、発電所と本社との情報共有など、防災対応の組織的な対応が格段に良くなっているとの発言を頂いている。一方で、事故時に必ず力量の高いメンバーが対応できるわけではないため、誰が対応してもきちんとできることが重要との発言があった。今後実施する福島第一および福島第二の訓練に向けて引き続き改善を重ねていく。

(2) 各発電所における直営技術力向上【対策 6】

◆ 各発電所における直営技術力向上の取り組み状況（運転分野）

○ 福島第一

5、6号機の運転員は、2014年度から消防車と電源車の訓練を開始。9月末で、目標要員 31名（現場要員 39名（第1四半期から増減なし）の8割）に対し、消防車は38名、電源車は38名の力量認定者を確保している（詳細は下表参照）。1〜4号設備および水処理設備の運転員については、原子炉注水設備や汚染水処理設備などの運転管理の力量習得を優先している。

○ 福島第二

2014年度から消防車と電源車の訓練を開始。9月末で、目標要員 27名（現場要員 34名（第1四半期から2名減）の8割）に対し、消防車は27名、電源車は30名の力量認定者を確保している（詳細は下表参照）。第1四半期に電源車の力量認定者の目標要員数が未達となったが、第2四半期の電源車訓練により目標を達した。また、福島第二の状況を踏まえ、これまで1・2号、3・4号で分担していた作業管理業務について、第2四半期から、どの号機も対応できるよう体制を一本化した。多能化により通常業務だけでなく、緊急時にも対応が期待できる。

○ 柏崎刈羽

2013年度から消防車と電源車の訓練を開始。9月末で、目標要員 94名（現場要員 117名（第1四半期より9名減）の8割）に対し、消防車は102名、電源車は103名の力量認定者を確保
している（詳細は下表参照）。当直組織内の指導者数は、9月末で146名（第1四半期から11名減）。また、補機操作員を対象に、福島第二にて先行して実施していた現場操作競技会を開始した。具体的には、ポンプ点検後の起動前確認など現場対応に関する共通課題に対し、各号機の運転員が競合い、改善点を学ぶにより、現場技術力の維持・向上および標準化を図っている。

発電所名	消防車	電源車
福島第一 | 力量認定者数（前四半期比） | 充足率 | 力量認定者数（前四半期比） | 充足率
福島第一 | 38名（-1） | 123% | 38名（-1） | 123%
福島第二 | 27名（-2） | 100% | 30名（+3） | 110%
柏崎刈羽 | 102名（-9） | 109% | 103名（-4） | 110%

運転員の直営技術力向上の取り組み（力量認定者数）

◆ 各発電所における直営技術力向上の取り組み状況（保全分野）

福島第一
緊急時対応能力向上を目的として、発電所内の電源機能等の喪失を想定した訓練（電源車の操作訓練、非常用発電機連転訓練、コンクリートポンプ車操作訓練、仮設ホース敷設・接続訓練等）に継続して取り組んでいる。

福島第二
緊急時対応能力の向上のため、4つのチーム（①瓦礫撤去・道路復旧、②電動機取替、③仮設ケーブル接続、④冷却水ポンプ復旧）を編成し、反復訓練に取り組んでおり、瓦礫撤去・道路復旧チームでは、ドローンを使用した訓練を2016年7月から実施している。2018年9月に実施した核物質防護検査実証訓練では、発電所構外から不審物を搭載したドローンの飛来を模擬した飛行操作を行っており、通常の飛行操作訓練とは異なる環境（操作場所、飛行ルート）を想定す
るなど、訓練内容の充実化を図っている。引き続き、さまざまな状況下でも柔軟に対応できるように、創意工夫を図りながら訓練を実施していく。

ドローン操作（核物質防護検査実証訓練時）
飛行するドローン

柏崎刈羽

過酷事故に至らせないための直営技術力向上を目的に、足場組立・解体訓練、移動式クレーン操作訓練、高所作業車操作訓練、重機操作訓練、フォークリフト操作訓練、弁・駆動部点検訓練、ケーブル端末処理・接続訓練等さまざまな訓練を実施している。第2四半期には、車両操作訓練の新たな取り組みとして、代替熱交換器車の資機材運搬に必要な大型車両「リーチスタッカー」の操作訓練を、対象者を拡大して実施した。これまで操作訓練を実施してきた操作者が社内講師となり、特殊な大型車についても、より多くの社員が操作できるようにする予定。引き続き、反復訓練を継続し直営技術力の維持向上を図っていく。

弁・駆動部点検訓練
ケーブル端末処理・接続訓練
2.4.2 技術力（平常時）の強化

(1) SATに基づいた教育訓練プログラムの改善【対策 6】

原子力人財育成センターでは、国際的良好事例として認識されている体系的な教育訓練アプローチ（SAT）を導入して、原子力部門全体の人財育成に必要な教育訓練プログラムの提供に努めている。

教育訓練を継続的に改善していくために、原子力部門教育訓練会議、発電所教育訓練会議、カリキュラムレビュー会議の3階層の会議体を設けており、SATに基づく教育訓練のPDCAを効果的に回している。

原子力発電所で働く職員からのニーズをさらに的確に反映するために、各分野のカリキュラムレビュー会議において、発電所のパフォーマンス向上のために解決すべき教育訓練に関する重点課題を抽出した。今後はこれらの重点課題への取り組みの進捗状況をカリキュラムレビュー
会議にて確認し、発電所内の各主管部と原子力人財育成センターが連携して各分野のパフォーマンス向上に取り組んでいく。

保全部門では、ヒューマンエラーが設備不具合防止に向けた教育訓練に力を入れている。福島第二および柏崎刈羽では、工事監理を担当する保全部門のヒューマンファクター・ヒューマンパフォーマンスツール研修に引き続き、9月から異物混入防止に関する実技研修を開始した。はじめに管理職を対象に研修を行い、今後は、各管理職が講師となりメンバーへ研修を展開することで、個々の力量の向上と現場での異物混入防止に必要な観察視点の強化に繋げていく。

原子力安全分野では、過酷事故時の原子炉水位、格納容器圧力や温度等の挙動について学び、事故時における状況判断や適切な対応能力の肌感覚を養うことを目的とした、事故対応研修を開始した。柏崎刈羽では、8月に、緊急時要員の計画班（全員）、技能認定（原子力安全分野）対象者、およびその他所属（号機班、発電部門等）等延べ113名が参加した。2018年度下期には、さらに過酷事故の理解を深めるため、格納容器挙動の解析コードであるMAAPを用いた実技研修を予定している。

原子力安全分野事故対応研修（柏崎刈羽）

新入社員研修の実施

原子力部門新入社員については、機上主体の研修からより現場に近い実践的な研修の段階に進め、各サイトにてプラント設備に最も広く触れる当直研修を実施している。当直研修では、実物に基づく各系統設備の機能や配置の把握、および作業安全、設備安全に関する現場での振る舞いの体得など、運転管理業務について実践的な経験を積み、より深いプラント知識の習得を図って
いる。当直研修は 10 月初旬に終了し、引き続き実施する最終の集合研修では、カイゼン研修や各自の課題発表等を 10 月中に実施し、11 月より発電所各部署に本配属される予定。

新入社員研修（福島第二）

(2) 原子カリーダー育成のための取り組み

◆ ミドルマネジメント研修

マネジメント層には、原子力安全に対する自己の責任の十分な自覚と原子カリーダーとともにその責任を徹底的に果たそうとする意識と実行力が必要であるとの観点から、2015 年度からミドルマネジメント向けの研修を実施している。9 月に開催したグループマネージャー研修では、今夏の定期異動に伴う新任のグループマネージャーおよび当直長を対象に、講義や議論を通じて当社のリーダーシップや経営層の期待事項等について理解を深めた。11 月にも同様の研修を計画している。

グループマネージャー研修

発電所部長研修は、最大 250 人程度の組織を率いる「部長」としての役割、ミッションを再構築させ、原子力安全改革を加速することを目的として実施している。今年度は 10 月に在籍 2 年目以降の部長研修、12 月に新任部長研修を実施する予定。
(3) その他

◆ 2002年原子力不祥事「8.29」振り返り活動について

原子力不祥事の発生から15年が経過し、不祥事以降に入社した若手が多くなる一方で、当時の在職者においても事例の風化が懸念されている。このため、柏崎刈羽においては全所員を対象に、体験型総合訓練棟にあるトラブル体験施設の展示物を活用しながら、グループ討議を通じて当時の事象を振り返る活動を展開中である。グループ討議においては、その不祥事を起こした結果、何が起こってしまったのかを理解し、再発防止のために各自が何をすべきについて共有することにより、風化防止を図っている。

「8.29」振り返り活動（左：グループ討議、右：展示物による学習）

(4) エンジニアリングセンターの設置【対策6】

◆ 原子力エンジニアリングセンターの設置検討

本社と発電所のエンジニアリング機能を統合し、原子力・立地本部長直轄の原子力エンジニアリングセンターを設置することで、設計やプラント管理などに必要なエンジニアリング業務を自らの責任で実施し、高度化を図ることを計画。

第2四半期は、社内マニュアルの改訂案の協議を継続実施。さらに、組織改編に向けて、保安規定変更申請準備等の社内手続きを開始した。

原子力エンジニアリングセンターの主な役割

<table>
<thead>
<tr>
<th>設計</th>
<th>自社設計能力の強化、受注者設計活動の管理能力強化により、自らの責任で設計を管理するプロセスを確立する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラント管理</td>
<td>プラント系統、機器の管理プロセスを強化し、設備の信頼性を向上する。</td>
</tr>
<tr>
<td>調達</td>
<td>調達品について、サプライヤの技能を把握し、受け入れプロセスを確立し、保証することで高い信頼性を確保する。</td>
</tr>
</tbody>
</table>
原子力安全

最新の視点に基づき、内発的・外発的ハザード、リスクを見直し、プラントの安全性を継続的に向上するプロセスを確立する。

燃料管理

燃料の内包するエネルギーを安全に最大限に取り出すとともに、燃料損傷のない運転および取扱いを行う。また、核燃料物質に対する保障措置を確実に行う。

(5) システムエンジニアの育成・認定【対策6】

◆ システムエンジニアの育成

緊急時に原子炉を迅速かつ安全に安定化させるためには、事故の状態を速やかに理解し的確に判断していく必要がある。このため、安全上の重要な設備ごとに設計、法令・規格基準、運転、保守等に精通するシステムエンジニアを育成している。

システムエンジニアは、系統の性能劣化をみるための監視項目や基準を整理したシステム監視プログラムを策定し、プラントの主要な系统的性能が設計上の要求を満たしているかを監視している。また、監視を通じて、設備の信頼性を向上できる余地を抽出し、改善することが期待されている。

柏崎刈羽のシステムエンジニアについては、第2四半期に新たに2名を選任し育成・訓練を進めている。現在5名で、柏崎刈羽6.7号機の各22系統を継続的に監視し、性能に異常がないことを確認している。引き続き、系統監視の取り組みを展開し、改善していく。今後も教育・訓練を継続し、担当系統数を拡大するとともに、原子炉ごとに5名のシステムエンジニア配置を目安に、引き続き要員の確保と育成を行っていく。

福島第二のシステムエンジニアについては、現在3名で、福島第二1〜4号機の各6系統を継続的に監視し、性能に異常がないことを確認している。2018年度は、新たに2名のシステムエンジニア増員を目指し育成・訓練を進めている。

(6) 構成管理の強化【対策6】

◆ 構成管理の強化

構成管理（コンフィグレーションマネジメント）プロセスは、発電所の設備が設計通りに製造、設置、運転されていることを保証し、プラントの安全性を維持するプロセスである。設計要件、実機器、設備図書が整合した状態を維持管理するための体系的プロセスを構築する検討を進めている。
構成管理プロセスを構築する上で重要となる設計基準文書については、第2四半期は、優先整備対象に位置付けた残留熱除去系および高圧代替注水系の文書作成を完了した。

構成管理の業務手順を示す「業務マニュアル」については、内容を精査し、詳細な業務手順や責任所掌を定める作業を進めている。第2四半期は、改造工事で受注者から提出される設計図書の審査を標準化するためのチェックツールの導入検討を開始した。

構成管理プロセスの運用を支援するシステムについては、システム利用者への操作研修を見据え、操作手順書等の必要書類を整備中。

人財育成（教育）については、エンジニア訓練の本格運用に向けた教材の準備として、パイロット教育で挙がった修正点を反映しつつ、修正した教材によるパイロット教育を継続している。また、エンジニア以外のプラントに関わる社員を対象に、構成管理の一般的な知識を理解しもらうことを目的とした、基礎教育訓練のトレーニング教材の作成に着手しており、第2四半期も継続している。

(7) プロジェクトマネジメント力の向上

◆ プロジェクトマネジメント力の向上

福島第一の廃炉事業や柏崎刈羽の安全対策においては、組織横断的な課題を解決する「プロジェクト」を設定している。第2四半期には、第1四半期に設定したプロジェクトマネジメント教育基本方針に基づき、プロジェクト管理グループの要員を対象に、プロジェクトマネジメント教育を実施している。この教育では、プロジェクトマネジメントの基本である、スケジュールの作成方法を質疑応答形式で実践的に実施し、グループ要員のマネジメント能力向上を目指している。
3 進捗状況の評価

3.1 原子力部門による評価

(1) 原子力安全文化の評価【対策 1】

原子力安全推進協会による安全文化の現場診断5を福島第二で実施(5月21日~5月25日)。評価結果の最終報告に向けて、原子力安全推進協会と評価内容について議論を実施中。最終報告を踏まえ、改善アクションを検討していく予定。

(2) セルフアセスメント強化の取り組み【対策 2】

パフォーマンス向上分野における第2四半期の取り組みとして、重点セルフアセスメントプロセスに基づき各CFAM/SFAMは重点セルフアセスメント計画（2ヵ年）を策定した。

今後は2ヵ年計画に基づき重点セルフアセスメントを実施し、エクセレンスギャップを特定し、解決するためのアクションを実行していく。

• 2018年9月 テーマ「WMプロセス」（柏崎刈羽）
• 2018年12月 テーマ「コンダクト オブ オペレーション」（柏崎刈羽）

3.2 重点課題に対する自己評価

原子力改革監視委員会からは、原子力安全改革プランの進捗に対する自己評価（2016年度実施）や委員会からの指摘事項などを踏まえて設定した5つの重点課題について、その改善状況ならびに施策の定着状況について評価し、報告することが求められている。

これまでに、重点課題である「組織・ガバナンスの強化」、「人財育成の強化」、「コミュニケーションの改善」、「原子力安全文化の醸成」、「内部監視機能の強化」の5項目について、改善に向けた取り組みを主管する各組織の長と原子力改革特別タスクフォース事務局の間で、期待事項と現状のギャップを確認し合った。

5 現場診断：原子力安全推進協会の安全文化醸成支援部門の職員が、評価対象発電所の一般職員層から所長までのインタビューを行い、発電所員の意識の実態を把握し、事業者に外部から見た「気づき事項」を示すことで、全文化醸成のための支援を行う取り組み。
評価の結果、一部を除き、重点課題の改善に向けサイクルがまわっていることを確認、施策を継続することで効果が期待できる状況であった。一方、まだ現状は充分に満足できる状況ではないため、今後の更なる改善に向けたアクションプランを策定、すでに実行に着手している。

以下、各項目についての評価とその根拠、今後取り組む更なる改善に向けたアクションプランについて、それぞれ概要を記す。

1. 組織・ガバナンスの強化（評価Ⅳ 定着し、効果ありの可能性）

定着：組織活動の基本方針を文書化し、リーダーによる説明が定例化。

効果：業務改善が進み、MOの質向上などの改善事例を複数分野で確認。

今後取り組む事項：対外的な約束事項の遵守が徹底できなかった事象を踏まえ、履行状況確認と有効性評価を実施するとともに、履行管理の仕組みを見直す。

2. 人財育成の強化（教育訓練 評価Ⅳ 定着し、効果ありの可能性）

定着：SAT（Systematic Approach for Training 教育訓練の有効性向上プログラム）に基づく進捗と効果確認を実施。

効果：原子炉主任技術者一次試験合格者数増加など改善事例確認。

今後取り組む事項：育成対象者の教育訓練に対する理解・納得度合いを向上させるために、主管部門と教育訓練部門が協同した取り組みを強化。

（エンジニアリング力強化 評価Ⅱ 定着していない）

定着：育成プログラムの一部試運用中、包括的な育成プログラムの策定は遅延。

効果：エンジニア育成に充分なリソースが割り当てられておらず、効果は限定的。

今後取り組む事項：エンジニアの職務要件と育成方針を確立、育成プログラムを構築。SATに基づく教育訓練プログラム管理を軌道に乗せる。

3. コミュニケーションの強化（評価Ⅳ 定着し、効果ありの可能性）

定着：廃炉コミュニケーションセンターなど広報機能のガバナンス強化を目的にした組織改編を実施。第三者評価を継続的に受審し改善に活用。
効果：第三者評価の要改善点を年度業務計画へ反映、直近の対応への反省点を次の機会で改善など、中・短期サイクルでの結果を活用する。

今後取り組む事項：第三者評価受審組織の拡大、組織改編の効果やSIC室やRCの機能継承について確認、必要に応じて改善する。

4. 原子力安全文化的醸成（評価Ⅳ 準着し、効果ありの可能性）
定着：契約や日常の定例情報交換の機会などを活用して、安全文化についての協力企業との対話を計画的に実施。
効果：協力企業との対話活動についてのアンケート調査では、92%の企業が「参考になった」「やや参考になった」との回答。
今後取り組む事項：自己評価に基づく安全文化的醸成をさらに効果的に進めるために、米国の標準的な安全文化評価プロセスに準拠した仕組みに見直し。

5. 内部監視機能の向上（評価Ⅳ 準着し、効果ありの可能性）
定着：推奨事項通知書の発行、フォローアップシートによる進捗監視を実施。
効果：推奨事項の完了件数が、3年前の37%から88%に改善。
今後取り組む事項：原子力事業の内部監視機能に関する第三者評価を受審、エクセレンスとのギャップを埋める。
これらの結果については、10月5日の原子力改革監視委員会へ報告し、改革監視委員会からのレビューを受ける予定。

3.3 原子力安全監視室の監視結果
(1) 原子力安全監視室の監視活動報告【対策2】
原子力安全監視室による第4四半期を中心とするここ数か月の監視活動に基づく見解は、以下のとおりであり、10月17日に執行役会、10月30日に取締役会に報告する。
はじめに

本報告書は、原子力安全監視室（以下、「NSOO」）の2018年度第2四半期（7〜9月）の評価結果をまとめたものである。本報告書に記載した推奨事項、助言、観察結果について、NSOOはこれらが認められた時点で所管部門と議論しており、NSOOの提案がライン部門管理者層に受け入れられ、対応策が取られている（あるいは検討されている）。その内容については割愛する。

1. 安全のパフォーマンス

NSOOの各チーム、サイトの原発主任技術者（以下、「主任」（SRE））のレポートは、多くの分野における安全面の着実な改善を示唆し続けてい

観察内容と今後の課題に対する提言を以下にまとめ

1.1 福島第一

評価チームは、3号機の使用済燃料プールからの燃料取り出し、不適合管理、緊急時対応をテーマとして、以下の観察評価を行った。

- 3号機燃料取り出し作業における工事監理方法の強化
 燃料取扱設備の試運転段階でのトラブルに伴い、3号機燃料取り出し作業の工程が遅延。発電所は復旧対応を継続中。NSOOでも今後の改善に繋げる観点から引き続き監視を行っていく。
 上記対応の状況確認に加えて、今四半期、NSOOは現在計画段階にある燃料取り出し作業時における当社と操作を実施する協力企業との情報共有体制を確認。3号機燃料取り出し作業は、当社が初めて経験する遠隔操作によるものとなる。設備の異常兆候、運転操作のリスク、操作員力量の問題等を早期に把握し、改善するよう、当社工事監理方法の強化をNSOOは要望する。

- 作業管理不適切の未然防止に関する有効性評価の強化
 作業管理に関するヒューマンエラー低減を目的とした所大のワーキング活動の結果策定された対策が、7月から運用開始された。ワーキングを1年度継続し、有効性評価を実施する方向性は良好である。
一方で、対策の運用を通じて実務者が気付いた問題点や改善案を共有する方法が明確でなく、改善が個々の部門に留まる事例が確認された。過去の不適切事例に対する対策の効果の検証に加えて、潜在的な懸念に対する対策の有効性を高めるため、改善につながる実務者の意見を収集・活用するプロセスの明確化を NSOO は要望する。

- 緊急時対応要員への力量付与の弱さ
 経験の浅い緊急時対策要員（班長以上）が発電所大防災訓練参加時に見せるパフォーマンスが低い状況が、人事異動に伴い繰り返し発生。要員が十分な個人的力量を持たない状況での訓練参加は、「緊急時対策本部の組織的な力量を鍛える」という防災訓練の目標達成を阻害する。個人的力量の強化のための議論はなされているが、進捗が遅い。
 防災訓練参加に先立って十分な個人的力量を身に付けさせるために、各要員に期待される役割の明確化と、必要な力量を付与する教育訓練の構築を NSOO は要望する。

- 炉主任は、観察結果表を作成し、発電所幹部に提供している。この中で特に注目すべき点は以下の項目である。

- 不適合管理における期限管理の弱さ
 不適合管理の実施において、昨年度、期限管理が不十分で対応の期限切れが散見された。グループ単位での管理強化を図り、一時的には検討・完了における期限遵守の状況が改善したものので、今年度上期に期限切れが再発し、第 2 回保安検査で指摘を受けている。
 特に、所管する設備物量の多い主管箇所で期限切れが発生する傾向がある。主管箇所が責任をもって不適合管理に取り組むことと併せて、不適合管理を指導助言する立場のパフォーマンス向上会議が問題のある主管箇所に対して改善計画の進捗を期限に先行して確認し、早期に警告を発するプロセスを改善していく必要がある。

- 設備変更に対するリスク管理の弱さ
 7 月 25 日に発生したサブドレン水位監視不能事象（運転上の制限逸脱）は、水位監視を担うネットワークの信頼性向上を目的として新設サーバーを接続した際に発生。ディジタルレコーダーの設備仕様を超えて出力要求が既設・新設の両サーバーからなされたために生じたもの。本件は、既存設備の仕様と作業手順を詳細に評価していれば回避できた可能性がある。設備変更に対するリスク評価において、設備仕様と作業手順を詳細に追い込み、リスク評価を行う必要があるとの教訓を得た。
5・6号機における安全上の要求事項の適正化
5・6号機非常用ディーゼル発電機に関して、安全上の評価に基づき、従前の計3台待機の運用から、5・6号機各1台計2台待機の運用へと運転上の制限（LCO）を変更した。本検討は、安全所管グループ、設備所管グループ等の関係箇所が連携して、災害時の必要電源容量の評価や実機での確認運転を着実に実施した結果、実現したものである。
5・6号機では、燃料中の放射性ヨウ素が減衰した状況に移行しており、非常用ガス処理系の位置付けについても検討の余地がある。炉主任は、変化するプラント状態に応じて注力すべき原子力安全上の要求事項を適正に保つよう、本社および発電所が継続的に検討していくことを要望する。

1.2 福島第二
評価チームは、放射線防護分野の改善の取り組みについて監視評価を行った。
放射線防護分野の振る舞い改善に向けた達成目標の明確化
現場での放射線防護上の振る舞いの弱さの原因を分析し、全所員に対するALARA（実際に可能な限りの被ばく低減）浸透活動や、当社放射線管理員の現場指導力強化を開始したことは良好。
ただし、改善による達成目標が明確になっていない。また、具体的な期待事項が実務者に提示され実感されないと、当事者意識、危機意識が醸成されない。当社放射線管理員が、目下の改善に加えて将来の廃炉や一層の直営作業に対応する力量を確保するために、具体的な期待事項、経験の場（福島第一での経験など）、持続可能な指導体制を整えることを要望する。

炉主任は、機能分野に照らして詳細なパフォーマンス評価表を作成し、発電所幹部に提供している。この中で特に注目すべき点は以下の項目である。

マネジメント・リーダーシップ
前四半期に炉主任が改善遅滞を指摘した放射線防護、パフォーマンス向上、緊急時対応の各分野では、ライン組織を巻き込んだ活動が始動。発電所上層部がアクションプラン具体化を継続的に指示している点は良好。
一方、今期中に人身災害や設備破損に至った事例があった。ルール不遵守やSTAR（Stop, Think, Act, Review）不足などが原因であり、当社の期待事項が協力企業まで十分浸透していない状況。期待事項の定着に向けたマネジメント・オブザベーション（当社上位職による現場観察）やファンダメンタルズ浸透活動などが進行しているが、その継続と有効性評価が必要である。
放射線防護
「汚染がないこと」を前提とした不十分なエリア管理・振る舞いが継続。ALARA（実際上可能な限りの被ばく低減）教育やOE（運転経験）活用など、改善に向けた取り組みが強化されたが、効果が現場に現れていない。放射線管理部門が自ら現場でALARA徹底を主導するリーダーシップを強化するとともに、作業主管部門がやるべきことを明確化し、発電所幹部が両者を連携させてALARAを現場に徹底させていくことが必要である。

緊急時対応
緊急時対応力を高めるワーキング活動が始動。中長期的アプローチとして到達目標と現状のギャップに着目した議論がなされる一方、今年度内の短期的アクションプランの具体化は進めていない。シナリオ公開訓練による準備・振り返りを通じた手順の確認・強化は良好であるが、シナリオ非公開訓練との組み合わせによる状況に応じた対応力の確認・強化などが課題。
緊急時対応力強化が先行している柏崎刈羽・本社などへのベンチマークを発電所長以下で実施しており、その成果に基づき具体的アクションの立案、実施、有効性評価を進め、改善を確実にすることが望まれる。

1.3 柏崎刈羽
評価チームは6/7号安全対策の進捗管理、中長期的なエンジニアリング力の強化、人財育成機能の強化について観察し、以下の監視評価を行った。

7号機工事計画認可申請書作成における品質確保の強化
NSOOは、作成途中の工事計画認可申請書（以下、CP）について、設置変更許可申請（以下、EP）上の安全要件との整合性を部分的に確認した。この結果、重大な不整合は無かったが、修正を要する軽微な事例はあった。CP作成者によるEP審査での説明内容の把握不足が原因。

CPの品質確保の取り組みを一層強化し、安全要件や設計の考え方の一貫性を万全にするため、CP作成者によるEP審査資料関係記載の確認と、EP審査対応箇所による早期のCP確認を要望する。

プラント長期停止を考慮した設備図書改訂ルールの欠如
7号機安全対策工事に関して、安全上の機能要求がある既設設備に影響のある改造内容が設備図書に反映されていない事例があった。長期プラント停止中に改造の一部を部分供用する際の設備図書改訂ルールが定まっていないことが原因。設備図書が最新化されないと、トラブル対応等、運転管理に支障を来す恐れがある。
設備保守箇所がプラント長期停止中に既設設備を改造・併用する際の設備図書改訂ルールを定めることを要望する。なお、今回問題のあった設備図書はNSOO指摘後迅速に改訂済み。

- 必要な力量に基づく教育訓練プログラム構築の弱さ
 NSOOは、保全部を対象とした新規制基準に関する教育訓練プログラムの構築状況を確認した。人財育成をリードする部門（原子力人財育成センター）は、教育訓練資料の作成に着手しているものの必要な力量に基づく検討の方向性を示しておらず、教育プログラム構築のための保全部の力量分析を引き出していない。この状況が継続すると、保全部実務者が安全要件の維持や規制関連業務遂行に必要な力量を確実に獲得できない懸念がある。
 教育訓練プログラム構築に向けて、原子力人財育成センターが必要な力量に基づく検討の方針を提示し、発電所のCRC（教育訓練カリキュラムレビュー委員会）で方針を確定して保全部自らの力量分析を促進することをNSOOは要望する。

- 炉主任は、機能分野に照らして詳細なパフォーマンス評価表を作成し、発電所幹部に提供している。この中で特に注目すべき点は以下の項目である。

- マネジメント・リーダーシップ
 ROP（原子炉監視プロセス）について「検査対応」として捉えがちだが、米国での基本的考え方は実質的な「自主保安体制」の成否を問うもの。ROPのみならずマネジメントモデル、カイゼン活動も含め、部長級が仕事の目的（業務の本質的な価値、意味合い）に立ち戻り、品質と安全を高めるための指導を部下に対して適切に行うことが重要。散見される以下のような弱さの克服のため、炉主任は部長級による指導強化を要望。
 - 本質的な課題、狙いへの踏み込みが甘い
 - 自組織の責任を狭く捉える
 - リスクの先取りが出来ない
 - 自らがどのようなパフォーマンスを発揮しているかの振り返りがなされない

- リスク管理
 昨年11月に開始した現場作業に潜む原子炉安全等のリスク管理は、円滑に定着。自発電所のトラブル事例をベースに実際的なプロセスを構築し、効果を実感出来る運用に改善したことが成功要因。
 RIDM（リスク情報を活用した意志決定）に関しても、リスク情報の付与により工程作成、運転管理、設計管理等の意思決定の高度化を図ることが重要。実事例をベースに検討することで、原子炉安全部門と運転、保全部門の協力によりリスク管理ツールや要員力量の観点から改善が導き出せる。
パフォーマンス改善

CR（コンディション・レポート：不適合未満の気づき）については、多数を傾向分析する活用も有効であるが、単独のCRであってもリーダーが現場第一線の状況を知るための価値ある情報源となり得る。発電所の期待事項と現場実態のギャップを把握する目的で、部長が日々CRを確認し、即効性のあるパフォーマンス向上を目的とした活用をリードすることが重要である。

1.4 本社

評価チームは、発電所に対する人財育成面での本社の関与、協働状況を、福島第二の放射線管理部門を例に観察した。また、緊急時対応における本社の情報提供能力の強化活動について観察を行った。

人財育成面での本社の関与

福島第二に対する教育の方向性に対する助言や他発電所取り組みの提供等、放射線管理CFAM（本社機能分野マネージャー）が人財育成面の関与を強め、発電所への支援を強化している点は良好な事例。

一方、福島第二当該部門内では現状および将来的に必要な力量維持について懸念を有しているものの、力量維持に向けた計画（必要となる時期の予測と、それに即した人財育成計画）が立案されていなかった。

時間軸を明確にした育成計画が立案されないと、将来の力量維持に支障をきたす懸念がある。他分野でも同様の状況がありうることから、NSOOでは引き続き本社および発電所双方の監視評価を行い、原因を追及して提言に繋げていく。

緊急時対応における本社の情報発信能力

改善取り組み開始時（8月初旬）に比べ、本社による原子力規制庁ERC（緊急時対応センター）への情報発信機能が大幅に改善されていることをNSOOは確認した。サイト情報の収集能力やERCへの情報提供の仕組み（体制・ツール）が強化され、運用フローが定着しつつある。

NSOOでは、引き続き緊急時対応能力の向上に注視していく。

2. 評価に基づく原子力安全監視室長の見解

2.1 緊急時対応能力強化におけるガバナンスの維持
今期、原子力規制庁との情報共有を中心に緊急時対応能力を強化する取り組みが、本社、柏崎刈羽そして原子力規制庁にもご参加頂き実施された。この過程では、社長および原子力・立地本部長が防災訓練での高評価獲得という明確な目標を指示し、本件を最優先事項とした訓練要員と訓練時間を確保がなされた。この結果、正確な緊急時対応レベル（EAL）判断等、緊急時の情報提供能力が向上した。ガバナンス強化が具体的成果につながり、原子力安全が向上した良好事例である。

一方で、今回経験を積んだ熟練者から他の要員への力量展開、情報共有ツールなどの福島第一・第二への展開、本社対策本部の中長期戦略策定力強化等、今後の重要な課題が残されている。原子力安全監視室長は、ラインが強化された良好なガバナンスを維持し、緊急時対応の重要課題を明確化して解決に取り組むことを要望する。

2.2 力量を起点とした教育訓練構築手法の実践

原子力部門では、教育訓練プログラムの構築と継続的改善を目的として、業務に必要な力量の分析に基づく体系的教育訓練手法（SAT）を導入している。この手法の必要性は2年前の原子力人財育成センター設立時に部門内で共有され、その後、センターにより世界標準のプロセスを詳述したガイドの整備が進んだ。

一方、新たな教育訓練プログラムの構築に関して、力量の観点からの検討が進まない事例がNSOO本社チームと柏崎刈羽の炉主任により観察されている（福島第二の放射線防護、柏崎刈羽の新規制基準対応に関する教育訓練など）。この原因として、発電所ラインのSAT手法への理解不足、センターおよび発電所ライン双方の力量（知識・技能・経験・資格）分析作業への負担感が挙げられる。

力量分析の程度は、教育訓練プログラムに求める品質に応じて可変である。原子力安全監視室長は、手法に詳しいセンターがリードして業務内容に詳しい発電所ラインの分析力を引き出し、教育訓練プログラムの迅速な構築が実践されることを要望する。

3. 評価に基づくクロフツアドバイザーの見解

3.1 福島第一における緊急時体勢

原子力規制庁の指摘以降、柏崎刈羽と福島第二の緊急時体勢、特に本社と規制庁の連携について高い関心が払われてきた。また、演習参加のみならず集中的な訓練が必要という認識があった。
しかし、福島第一では訓練が比較的注目されておらず頻度も少ない反面、現時点で所員への危害や放射線拡散につながる事象が起こる可能性はより高いと言うえる。福島第一が規制庁の立合訓練に備えて模擬訓練を複数回導入するということで、私の懸念は深まっている。この追加的な訓練は良い取り組みのように見えるが、文化の弱さを示している。規制審査の合格のみを念頭に準備するのではなく、いかなる緊急時にも対応できる力量をつけるために、幅広いシナリオに対して準備すべきである。

これを念頭に、発電所長とCDO（廃炉最高責任者）が緊急時演習プログラムを再確認することを推奨する。

3.2 長期停止期間中の安全基準（福島第二）

福島第二の放射線防護（基本的な放射線管理慣行とALARA）に弱さがある。管理者層はこの状況を改善すべく対策に取り組んでいるところである。

しかし、監視室の報告からは火災防護、閉所作業、高所作業など安全基準全般に関わる問題があることがわかる。監視室はこの5年間、同様の状況を観察してきている。では、放射線防護に焦点を当てることが正しい解決策なのか、それとも、より全般的な安全遵守の問題があるのか、そうであれば、その原因は何なのか？

監視室はかつて、この問題の一因として福島第二の明確な将来目標が定まっていないことを挙げた。リーダー層の質の高さは維持されているが、発電所の使命が明確でなく、資源の削減が続き、重大な危険が（福島第一や柏崎刈羽に比べて）存在しないとの認識があり、結果として、所員が意識高く原子力安全の基準を維持するのが難しくなったと指摘した。

福島第二の廃炉が方針として掲げられたことは良い一歩になる。だが、廃炉までは何年もかかるため、将来の廃炉にかかる危険に対し短期で士気を高めるのはいまだ難しい。代わりに、現実的に廃炉の見通しがつくまで、停止状態の「安全」を維持するために必要な最低限の業務、必要な作業基準、要員数、力量（原子力ベースライン）を定義し、それを厳密に実施することを提案する。

4. NSOOの提示した推奨事項の完了状況

ライン部門は、NSOO推奨事項の完了に向けて、概ね継続的に良好なパフォーマンスを見せている。
これまでに提示した158件の推奨事項のうち137件が完了しており、今四半期は2件が完了した。
今期は5件の推奨事項を提示した。

5. ベンチマークとトレーニング

NSOOは、昨年に引き続き、世界原子力発電事業者協会（WANO）の技術支援のもと独立原子力安全監視訓練を9月10日～14日に開催した。炉主任を含む新規メンバーのみならず、従前のメンバーも加わり、機上講義、柏崎刈羽原子力発電所での実技指導等を通して力量獲得・向上を図った。本訓練の修了は、NSOO監視評価員となるための正式要件である。

また、今期実施された本社/ERC間の情報共有向上に向けた防災訓練観察に際し、高評価を受けている他社訓練VTRをNSOO全要員で視聴し、当社とのギャップを把握。監視ポイントを明確にした上で、観察活動に臨んだ。
4 KPI・PI の実績

2017 度の KPI・PI の測定・監視実績を振り返り、より改善・改革の取り組みの定着度合いを監視できるものへと見直すこととし、2018 度の原子力安全改革 KPI・PI を見直した（2017 年度第 4 四半期進捗報告）。KPI については、「関連する PI の目標値に対する達成度の平均値」との考え方のもとに、安全改革の進捗が KPI に反映されるように、新たに関連する PI（5 項目）の追加等を実施した。また、2018 年度は目標値を 2017 年度よりも 10 ポイント上げて監視し、年度末の目標達成を目指す。

4.1 KPI の実績

<table>
<thead>
<tr>
<th>安全意識 KPI</th>
<th>目標値</th>
</tr>
</thead>
<tbody>
<tr>
<td>安全意識（原子カリーダー）</td>
<td>80 ポイント</td>
</tr>
<tr>
<td>安全意識（原子力部門全体）</td>
<td>80 ポイント</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>対話力 KPI</th>
<th>目標値</th>
</tr>
</thead>
<tbody>
<tr>
<td>対話力（内部）</td>
<td>80 ポイント</td>
</tr>
<tr>
<td>対話力（外部）</td>
<td>80 ポイント</td>
</tr>
</tbody>
</table>

注：KPI の計算方法を見直し、1Q を 85 から 70 に訂正
4.2 PIの実績

安全意識 PI 目標値
原子カリーダー
＜安-1＞ 原子カリーダーの Traits 振り返り実施率 100%
＜安-2＞ 原子カリーダーからの情報共有メール発信回数 1回／週・人
＜安-3＞ 原子カリーダーの計画に従った訓練への参加回数 2回／年・人
＜安-4＞ 原子カリーダーの現場出向回数 2回／月・人
<安-5> 原子カリーダーの責任でベンチマーク成果を実行に移した件数 4件/年

<安-6> Traitsグループ討議実施率 100%

<安-7> 原子カリーダーからのインフラメッセージ既読率 80%

<安-8> 管理職による発電所MOの回数 回/月・人（各組織で設定）

<安-9> グッドMO報告率 50%

備考：福島第一、福島第二、柏崎刈羽の加重平均
＜安-10＞ G-II以上の是正措置の期限内完了率 ……100%
＜安-11＞ 不適合の再発件数（G-II以上）………0件/月

備考：本社、福島第二、柏崎刈羽の加重平均

＜安-12＞ 不適合の起票期間達成率 ………………80%
＜安-13＞ 新着OE情報閲覧率 ……………………75%

備考：本社、福島第二、柏崎刈羽の加重平均

＜安-14＞ 重要OE研修受講率 ……………………60%
対話力 PM ………………………………………… 目標値

内部
＜対-1＞ 原子カリーダーからのインタラメッセージ
既読者が「参考になった」率 ……………50%
＜対-2＞ メールによる原子カリーダーからの発信情報
報告に対するアンケート返信率 ……………70%

＜対-3＞ 原子カリーダーの発信情報の理解度
……………………………………………………2.5 ポイント

外部
＜対-4＞ 情報発信の質・量 アンケート結果 …………
………………………………………………前年度比プラス
＜対-5＞ 広報・広聴の姿勢・意識 アンケート結果
………………………………………………前年度比プラス

備考：第 3 四半期に測定
＜対-6＞ 各種対話活動のアンケート評価 ……………
…………………………………………100 ポイント
＜対-7＞ 地域のみなさまから頂くご意見等の件数…
…………………………………………前年度比プラス

備考：第 3 四半期に測定
<table>
<thead>
<tr>
<th>技術力 PI</th>
<th>目標値</th>
</tr>
</thead>
<tbody>
<tr>
<td>平常時</td>
<td></td>
</tr>
<tr>
<td><技-1> 運転／保全／エンジニア／放射線・化学／燃料／安全各分野の力量育成数、社外資格の取得者数</td>
<td>110ポイント</td>
</tr>
<tr>
<td><技-2> ライン部門からの教育訓練プログラム改善要望反映率</td>
<td>80%</td>
</tr>
<tr>
<td>緊急時</td>
<td></td>
</tr>
<tr>
<td><技-3> 緊急時要員の社内力量認定者数（消防車、電源車、ケーブル接続、放射線サーベイ、ホイールローダ、ユニック等）</td>
<td>120%</td>
</tr>
<tr>
<td><技-4> 原子力規制庁による防災訓練評価項目のうち評価A取得率</td>
<td>80%</td>
</tr>
<tr>
<td><技-5> 訓練参加率</td>
<td>90%</td>
</tr>
</tbody>
</table>

備考：評価は年1回。前年度の訓練の評価結果を報告。
おわりに

当社は、発電所周辺地域をはじめとした福島県のみなさま、そして国内外の多くのみなさまが、福島原子力事故の事実と廃炉事業の現状等をご確認いただける場として、「東京電力廃炉資料館」を2018年11月末（予定）に開館することといたしました（7月27日プレス発表）。福島県のみなさま、広く社会のみなさまに甚大な被害をもたらし、多大なご迷惑をおかけしている福島原子力事故の記憶と記録を残し、二度とこのような事故を起こさないための反省と教訓を社内外に伝承することは当社が果たすべき責任の一つです。また、長期にわたる膨大な廃炉事業の全容を見える化し、その進捗をわかりやすく発信することは、国内外の専門の結集と努力を継続させていく上でも重要です。当社は、関係施設や周辺地域等との連携を図りながら、福島原子力事故を後世にお伝えしていくとともに、復興に向けたみなさまの安心につなげるよう努めています。

一方、社内では、全ての社員を対象として、事故発生からの経緯を体系的に学び、「自らの言葉で事実・教訓を語れるようになる」「福島への責任を果たし抜くことを約束する」ことを目指し、相互に語り合い、自らの行動を宣言する研修を実施しています。原子力部門を対象にした福島原子力事故の伝承は、これまで柏崎刈羽に設置した訓練施設等で取り組んでいましたが、これらの研修やその他の活動を通じて、事故の事実と教訓をきちんと共有することにより、揺るぎない安全文化を構築し、世代を越えて責任を果たしていく覚悟を確実に引き継いだります。

私たちは、「福島原子力事故を決して忘れることなく、昨日よりも今日、今日よりも明日の安全レベルを高め、比類無き安全を創造し続ける原子力事業者になる」いう決意の下、原子力改革監視委員会6による客観的な評価を受けながら、引き続き原子力安全改革を進めます。本改革に関するみなさまのご意見・ご感想がございましたら、ホームページ等にお寄せください。

6 http://www.nrmc.jp/index-j.html
7 https://www4.tepco.co.jp/ep/support/voice/form.html
略号

ALARA：合理的に可能な限り低い被ばく低減（As Low As Reasonably Achievable）
CAP：不適合事象や安全に影響を及ぼす可能性のある問題点、世界レベルの安全品質を達成して
いない事項を特定し、原因を分析、速やかに是正するとともに再発防止策を展開すること
CDO:廃炉・汚染水対策最高責任者（Chief Decommissioning Officer）
CFAM：機能分野毎に世界最高水準を目指す活動の本社側リーダー（Corporate Functional
Area Manager）
CP：工事計画認可（Construction Permission）
CR：状態レポート。気付きや不具合などを DB 入力し共有することを目的とする（Condition
Report）
CRC：教育訓練カリキュラムレビュー委員会（Curriculum Review Committee）
EAL：緊急時活動レベル。原子力施設において異常事象が発生した際、緊急事態を判断する基準
（Emergency Action Level）
EP：原子炉設置変更許可（Establishment Permission）
ERC：原子力規制庁緊急時対応センター（Emergency Response Center）
IAEA：国際原子力機関（International Atomic Energy Agency）
JANSI：一般社団法人原子力安全推進協会（Japan Nuclear Safety Institute）
KPI：主要業績評価指標（Key Performance Indicator）
LCO：運転上の制限（Limiting Conditions for Operation）
MAAP：格納容器挙動の解析コード（Modular Accident Analysis Program）
MO：マネジメントオブザーバーション（Management Observations）
NSAB：原子力安全アドバイザリーボード（Nuclear Safety Advisory Board）
NSOO：原子力安全監視室（Nuclear Safety Oversight Office）
OE 情報：運転経験情報。他発電所や他産業などのトラブル情報などから教訓を学ぶことを目的
として共有（Operating Experience）
PCV：原子炉一次格納容器（Primary Containment Vessel）
PI：業績評価指標（Performance Indicators）
PICO：パフォーマンス向上コーディネーター（Performance Improvement Coordinator）
PRA：確率論的リスク評価（Probabilistic Risk Assessment）
RC：リスクコミュニケーション（Risk Communicator）
RIDM：リスク情報を活用した意志決定（Risk-Informed Decision Making）
ROP：米国の原子炉監視プロセス（Reactor Oversight Process）
SAT：IAEA が提唱している標準的な教育訓練手法（Systematic Approach to Training）
SC 室：ソーシャル・コミュニケーション室（Social Communication Office）
SFAM：CFAM に対する発電所側のリーダー（Site Functional Area Manager）
SOER：WANO（世界原子力発電事業者協会）が定める重要運転経験報告書（Significant Operating Experience Report）
TBM-KY：活動作業開始前に、小グループで作業の危険を予知し、安全に作業できる方法を決めることが（Tool Box Meeting-危険予知）
Traits：健全な原子力安全文化的 10 の特性と 40 のふるまい
WANO：世界原子力発電事業者協会（World Association of Nuclear Operators）
WM：ワークマネジメント（Work Management）