資料1-6

本資料のうち、枠囲みの内容は機密事項に属しますので公開できません。

柏崎刈羽原子力発電所 6号及び7号炉

確率論的リスク評価について (補足説明資料) (指摘事項に対する回答)

平成29年1月

東京電力ホールディングス株式会社

第 250 回原子力発電所の新規制基準適合性に係る審査会合(平成 27 年 7 月 16 日)

- 1. 指摘事項
- ・地震特有の事故シーケンスの検討について定量的な説明の可否について検討 を行うこと。
- 2. 回答

①地震 PRA 特有の事故シーケンスの現状の扱い

地震 PRA では、以下の(1)~(5)に示す地震特有の事故シーケンスが抽出されて いる。これらについては、プラントへの影響に不確かさが大きく、具体的なシー ケンスを特定することが困難なことから、炉心損傷直結事象として整理してい る。

- (1) Excessive LOCA
- (2) 計測・制御系喪失
- (3) 格納容器バイパス
- (4) 格納容器·圧力容器損傷
- (5) 原子炉建屋損傷

一方,これらの事故シーケンスグループについては,事象発生後のプラントへの影響をより詳細に分析することで,炉心損傷を回避できる場合も抽出される と考えられることから,評価を詳細化することで,(1)~(5)の各事故シーケンス グループの炉心損傷頻度は現在の値よりも低下すると推定される。

本評価では、(1)~(5)の各事故シーケンスグループの評価を詳細化した場合の 炉心損傷頻度の変化及び全炉心損傷頻度への寄与割合の変化について、定量的 に確認することを目的とする。

②詳細化の概要

各事故シーケンスグループに対して実施した評価の詳細化の内容は添付資料 1に示す通りであるが、今回の詳細化では、これまで整備してきたアクシデント マネジメント策や福島第一原子力発電所事故以降に実施した各種対策等による 炉心損傷防止には期待していないことから、添付資料1のうち、考慮したモデ ル及び考慮しないモデルを以下に示す。

- (1) Excessive LOCA
 - ・添付資料1の2.4のモデルを考慮する。但し、表5に示す、格納容器ベントを用いた除熱については考慮しない。
- (2) 計測・制御系喪失
 - ・添付資料1の2.5及び2.6のモデルを考慮する。
- (3) 格納容器バイパス
 - ・添付資料1の2.9のモデルを考慮する。添付資料1の2.9.1及び2.9.2で

1

は、格納容器バイパス発生後、短時間の HPCF による原子炉注水には期 待できるものの、その後の格納容器バイパスに伴う原子炉建屋内への冷却 材の流出・伝播により、原子炉建屋最地下階の低圧注水系や残留熱除去系 格納容器スプレイモードには期待できないものとし、MUWC による原子 炉注水及び格納容器ベントを用いた除熱をモデル化しているが、これにつ いては考慮しない。

- (4) 格納容器·圧力容器損傷
 - ・添付資料1の2.3のモデルを考慮する。
- (5) 原子炉建屋損傷
 - ・添付資料1の2.1のモデルを考慮する。但し、評価上の仮定に示す、消防 車を用いたシナリオ①については考慮しない。
 - ・添付資料1の2.2のモデルを考慮する。
- (6) その他
 - ・添付資料1の2.7,2.8,2.10~2.17のモデルは考慮しない。

③炉心損傷頻度の変化及び全炉心損傷頻度への寄与割合の変化

②のモデルを考慮した結果,地震特有の事故シーケンスの炉心損傷頻度は表1の通りに変化した。また,これらの事故シーケンスグループの炉心損傷頻度の合計は,7.3×10⁻⁷/炉年であり,全炉心損傷頻度の2.4×10⁻⁴/炉年の0.3%となった。

以上の通り,地震特有の事故シーケンスについては,事象発生後のプラントへの影響をより詳細に分析することで,実際には炉心損傷に至らない場合が確認 され,その炉心損傷頻度は低下する傾向にあることを確認した。

炉心損傷シーケンス	ベースケース	詳細評価
RBR	3.8E-6	6.5E-8
PCVR	8.9E-7	3.0E-8
BYPASS	1.2E-7	2.6E-7*
CI	6.9E-8	1.6E-7*
LOCA	8.2E-7	2.1E-7
合計	5.7E-6	7.3E-7

表1 炉心損傷直結シナリオの頻度比較

* 詳細評価によりヘディングの条件付失敗確率は減少する ものの,前段のヘディングの成功確率が増加したことに より炉心損傷頻度が増加 第 142 回原子力発電所の新規制基準適合性に係る審査会合(平成 26 年 9 月 30 日)

1. 指摘事項

津波の発生源に関して、海底地滑りとの重畳について説明すること。

2. 回答

基準津波の策定にあたって、地震による津波と海底地すべりによる津波の組 み合わせの影響を数値シミュレーションにより検討している。検討結果を添付 資料2(2015年12月11日審査会合資料 p.56,86,94 抜粋)に示す。その結果を 踏まえ、海底地すべりによる津波は、確率論的津波ハザード評価へ与える影響 が小さいと考えられることから、評価に含めていない。

第 142 回原子力発電所の新規制基準適合性に係る審査会合(平成 26 年 9 月 30 日)

1. 指摘事項

津波に伴う砂の堆積が海水の取水性へ与える影響について,定量的に説明す ること。

2. 回答

基準津波の策定にあたって,海底砂移動の影響を数値シミュレーションにより検討している。検討結果を添付資料3(2015年12月11日審査会合資料 p.128~p.136抜粋)に示す。6,7号炉取水口前面の最高堆積厚さは約0.6mで あり,取水路の高さ(5m程度)に対して十分小さく,取水への影響はない。

第 142 回原子力発電所の新規制基準適合性に係る審査会合(平成 26 年 9 月 30 日)

1. 指摘事項

起因事象の抽出について網羅性及びスクリーニングの考え方を説明すること。

2. 回答

起因事象抽出の網羅性について添付資料4に示す。地震PRA 学会標準で挙 げられている事象のほか,国内外の事例・文献調査により網羅性を確保した。

またスクリーニングの考え方については「重大事故等対策の有効性評価について」の付録1 別添に示す。

以 上

地震 PRA 炉心損傷直結シナリオ等の現実的な評価について

1. はじめに

評価ポイント(E)の地震 PRA(第249回,第250回審査会合資料)では、炉心損傷直 結シナリオ(RBR等)の全 CDF に対する寄与が大きい。これらは保守的な仮定をおいてい るために CDF が大きく評価されている面があり、評価ポイント(E)ではそれらが支配的 となっている。評価ポイント(E)のリスクの分布をより現実的な評価に近づけるため、ベ ースケース評価において炉心損傷頻度に対して寄与が大きいシナリオについて、より現実 的な損傷シナリオを考慮した評価を実施した。評価結果について表1及び図2に示す。な お、同種設備の相関性については完全相関とした評価(ベースケース通り)と、完全独立と した評価の2通りを実施した。

今回の現実的な地震時の挙動を想定した地震 PRA 評価においては,以下の議論を参考として,柏崎刈羽原子力発電所7号機の非管理放出の頻度について確認することとした。また,以下の議論における頻度の関係の概念図を図1に示す。

- ・発電用原子炉の安全目標について原子力規制委員会で「事故時の Cs137 の放出量が 100TBq を超えるような事故の発生頻度は、100 万炉年に 1 回程度を超えないように抑 制されるべきである(テロ等によるものを除く)」(平成 25 年度 第 2 回原子力規制委 員会資料(平成 25 年 4 月 10 日))が議論されている。
- ・また,当該安全目標の議論の基礎として,旧原子力安全委員会安全目標専門部会における 検討があり,その中では発電炉の性能目標の定量的な指標値として,炉心損傷頻度10⁻⁴/ 年程度,格納容器機能喪失頻度10⁻⁵/年程度が定義されている。

なお,地震 PRA については,内的事象 PRA と比較して,評価の実績からくる技術の成 熟度等に差があり,今回の評価についても一部簡易的なモデルとしていることから,今後も 最新の知見を適宜 PRA のモデルに反映し,リスクをより適切に把握出来るように継続して 努めていく。

炉心損傷 シーケンス	ベースケース ((第249回,第250回 (第本会会際期)))	詳細評信 (今回	町ケース 実施)
	香宜云石貫村))	完全相関	完全独立
RBR	3.8E-06	6.5E-08	6.5E-08
TW	1.2E-06	7.8E-08	5.3E-08
TB	1.1E-06	2.6E-06	2.3E-06
PCVR	8.9E-07	3.0E-08	3.0E-08
LOCA	8.2E-07	2.3E-07	3.3E-07
TBU	3.7E-07	1.4E-06	1.4E-06
TC	3.6E-07	3.6E-13	3.6E-13
BYPASS	1.2E-07	8.3E-08	3.9E-08
CI	6.9E-08	1.9E-07	1.8E-07
TBD	6.0E-08	2.7E-07	2.6E-07
TQUX	2.3E-08	2.6E-08	2.5E-08
TBP	2.0E-08	4.7E-08	4.7E-08
TQUV	9.5E-09	8.7E-09	1.0E-08
LOCA2	0.0E+00	2.4E-08	6.9E-08
BYPASS2	0.0E+00	1.0E-09	9.4E-10
合計	8.9E-06	5.0E-06	4.8E-06
非管理放出 合計*	6. 5E-06	4.4E-07	3.6E-07

表 1 評価ポイント E 評価結果(K7)

*炉心損傷に留まらず格納容器破損まで至る炉心損傷シーケンスを非管理 放出として分類(格納容器ベント成功シーケンスは含まない)。具体的に は, RBR, TW, PCVR, TC, BYPASS, CIを分類。

図1 目標値イメージ図(参考)

図 2 評価ポイント E 評価結果 (K7)

2. 評価内容

2.1. 原子炉建屋基礎地盤(RBR)

ベースケース評価では地震 PSA 学会標準に従って,原子炉建屋基礎地盤の安定性につい てすべり安全率を指標としたフラジリティ評価を行っている。しかし,原子炉建屋が設置さ れている平坦な敷地に対して,すべり破壊が起きるということは現実的には考えにくい。そ のため,平坦な基礎地盤の安定性評価で一般的に採用されている地盤変形量を指標とした 評価を基にフラジリティを設定し,事故シーケンス評価を実施した。

評価上の仮定

基礎地盤変形が起きた場合に起こり得るシナリオは、①建屋間に生じる相対変位によ る建屋間貫通配管の損傷,及び②建屋傾斜による建屋内機器の機能喪失である。

①については,建屋間配管がすべて破断した場合においても RCIC により注水が可能 であることから,以下のシナリオをモデル化する。

建屋間配管破断¹ ⇒ RCIC による原子炉注水(S/P 水源) ⇒ 8 時間以内の原子炉 減圧 ⇒ 消防車による原子炉注水継続 ⇒ 格納容器ベントによる格納容器除熱

建屋間配管のフラジリティについては、設計基準地震動時の建屋間(R/B·T/B)の相対 変位が約 1.2cm であるのに対し、RCW 配管の建屋貫通部には約 10cm の十分なクリアラ ンスがあることから、設計基準地震動を HCLPF とし、不確実さについては βc として保 守的に 0.1 を適用する(後述)。

②については、地震動 2138gal に対して建屋内機器が健全である(傾斜により機能喪 失しない)ことが確認されている。更に 2138gal で発生しうる建屋傾斜(K7R/B 残留傾 斜 1/2800)の 10 倍程度の傾斜が発生した場合も、機器支持構造物、制御棒挿入性への影 響、動的機能維持への影響といった観点で安全系設備に対する影響は考えにくい。ただし、 傾斜による、水位計の誤差等に起因する ECCS の動作タイミングへの影響や、地絡方向 継電器への悪影響等の発生の可能性が否定できないことから、地盤傾斜による悪影響の フラジリティとして、2138gal を HCLPF とし、不確実さについてはβcとして保守的に 0.1 を適用(後述)し、また地盤傾斜による悪影響の発生の際にはバックアップ操作に期 待し、その失敗確率 2.5E-1 (THERP の極限的なストレス状況での操作に適用される値) をモデル化する。

上記の,新たにモデル化するフラジリティに関する不確実さについては,設定の手法が 確立していないことから,ベースケース評価に用いている機器等の既存のフラジリティ 結果(βc最小:0.16)を参考に,βcとして保守的に0.1を与える。

¹ 外部電源の有無は,評価結果に有意な影響を及ぼさないことから,保守的に外部電源喪 失が発生しているものとしてモデル化。

2.2. 原子炉建屋 (RBR)

原子炉建屋については、外壁部及び RCCV 部の中央で分割した 9 つの領域においてフラ ジリティ評価を実施し、格納容器 (シェル壁) 周りは、スクリーニング可能な値であったこ とから、一部の区画が機能喪失しても位置的分散が図られた何らかの注水手段により緩和 できるものとして炉心損傷直結事象としては除外する。ただし一部の区画が機能喪失した 場合の代表シナリオについてはモデル化し、建屋の最弱部位(Am:3037gal、βr: 0.25、β u: 0.15)が損傷後に保守的に RCIC のみにしか期待できないシナリオを評価する。具体的 なシナリオは 2.1 の建屋間配管が破断した際のシナリオと同様となる。

2.3. 格納容器内構造物 (PCVR)

格納容器内構造物のうち, RPV ペデスタル, ダイヤフラムフロア, 原子炉遮へい壁およ び原子炉圧力容器スタビライザ等原子炉圧力容器支持構造物については各設備の損傷をも って炉心損傷直結としているが, 実際には支持構造物全体としてその機能を喪失して初め て原子炉圧力容器の支持性能の喪失に至ると考えられる(図3)。

図 3 原子炉圧力容器支持構造物概要図

支持構造物全体としての機能喪失を確認するには RPV, RPV ペデスタル, 原子炉遮へい 壁および原子炉圧力容器スタビライザ等を連成させた詳細なモデル化を実施し, 壊れてい くことを模擬しながら地震応答解析を実施する必要があるが, 実施は極めて困難である。 また,フラジリティは地震により損傷する実力を評価すべきだが,決定論的評価には保守 性が存在し,設備毎にフラジリティ評価に反映している保守性の吐き出し度合いが異なっ ている(表2)。弾性範囲を超えた変形は設計引張強さの採用や塑性エネルギ吸収効果の 考慮等限界値による評価であり,地震の交番性は決定論的評価で地震荷重を交番荷重では なく単調荷重として扱っている保守性であり,実力値はミルシート値やコンクリート実強 度等の採用であり,全体連成は上述の支持構造物全体を連成させた地震応答解析である。 表2 CDFに対して寄与が大きい設備のフラジリティ評価状況

〇:フラジリティ評価に反映

○:今回試検討を実施

	I DF た言書テレ	ショキー語当な	ヨク学校学校田	一五日は一日	たち討 まよて 「	の五、トトレー	
1.75G	l	I	Η	-	0	0	原子炉遮へい壁
1.63G	-	I	-	-	I	0	ダイヤフラムフロア
1.22G [2.06G]	I	I	Ø	- (※ 4)	0	0	RPV ペデスタル (円筒部・リブ)
1.22G [2.07G]	I	l	_ (% 3)	0 (% 2)	0	0	RPV ペデスタル (アンカ部)
1.71G	I	l	l	I	0	0	RPV スタビライザ
HCLPF (※1)	全体連成	実力値	地震の 交番性	評価の 高度化	弾性範囲を 超えた変形	設計評価	対象設備

※1:K6/K7の評価結果の内,小さい方を記載する。[]内の結果は今回の試検討結果を反映した HCLLFF を記載する。

※2:既往の試験または詳細解析の知見を反映している。

※3:※2は既往の知見を参照しているため新たな検討を加えることができない。円筒部・リブに対する今回の試検討結果と同等な保守性 があると考える。

※4:鋼製部(円筒部・リブ)だけでなく充填コンクリート強度を考慮した評価等が考えられる。

保守性の影響を確認するべく,表2の中で HCLPF が最も小さい RPV ペデスタル (円筒 部・リブ)について交番荷重の試検討を行った。保守性の吐き出し度合いからすると HCLPF が同じである RPV ペデスタル (アンカ部)について試検討すべきだが,評価の高度化に際 して参照したものは既往の知見であり新たな検討を加えることができないことから, RPV ペデスタル (円筒部・リブ)について試検討を行った。

○RPVペデスタル(円筒部・リブ)についての試検討

RPV および RPV ペデスタルを簡易的にモデル化し、単調荷重により設計引張強さに 到達した時の加速度と交番荷重により設計引張強さに到達した時の加速度を比較したと ころ、交番荷重の加速度は単調荷重の加速度の約 1.7 倍となった。

解析モデル

モデル化範囲は、RPVペデスタル、RPV、原子炉遮へい壁及びRPVスタビライザと した(図4)。RPVペデスタルはシェル要素で、RPV及び原子炉遮へい壁は梁要素で、 RPVと遮へい壁を拘束するRPVスタビライザはばね要素でモデル化した。ただし、 RPVペデスタルの充填コンクリートは質量を考慮し、剛性は考慮していない。また、ダ イヤフラムフロアや燃料交換ベローズによる建屋との結合も考慮していない。

図4 解析モデル

<u>応力-ひずみ特性</u>

RPV ペデスタル鋼材部 (SPV490) の応力-ひずみ関係は設計降伏点以降の接線係数を 設計引張強さで JIS 最小伸びとなる傾きとした (表 3,図 5)。

ヤング率 温度 設計降伏点 設計引張強さ JIS 最小 許容応力 部材 材質 伸び[%] [°C] E [N/mm²] Sy [MPa] Su [MPa] [MPa] ペデスタル **SPV490** 100 191000 460 562393 19鋼材部

表3 ペデスタル鋼材部の物性値

図5 SPV490の応力-ひずみ関係

単調荷重による解析結果

弾塑性静的解析により水平力を漸増載荷してひずみが JIS 最小伸び (19%ひずみ) に達 した時の加速度は 4.69G となった。 (図 6)

図 6 19% ひずみ 到達時 ひずみ分布

交番荷重による解析結果

基準地震動 Ss の加速度振幅を係数倍した入力に対する弾塑性動的解析を実施した。振幅倍率を大きくしていくと最大ひずみが 11.0 倍で 18.2%, 11.5 倍で 19.1%となった(表4,図7,8)。Ss の 11.0 倍の加速度は 8.29G であり,単調荷重による解析結果の約 1.7 倍となった。

振幅倍率	最大ひずみ[%]
5.0 倍	5.1
8.0 倍	14.0
10.0 倍	16.8
11.0 倍	18.2
11.5 倍	19.1

表4 各振幅倍率に対する最大ひずみ

今回の試検討結果を反映すると RPV ペデスタルの HCLPF は 2G を超える結果とな り、実力値の考慮や支持構造物全体を連成させた詳細解析が可能となればさらなる向上が 見込めると考えられる。また、元々RPV ペデスタルよりも大きな HCLPF である RPV ス タビライザ、ダイヤフラムフロアおよび原子炉遮へい壁についても保守性の検討を行うこ とにより同等以上の向上が見込めると考えられる。

以上より,格納容器内構造物については最弱部位が損傷したとしても炉心損傷直結シナ リオとはならず,損傷した場合にも炉心損傷防止の対策が有効と考えられる。格納容器内 構造物損傷後のシナリオ展開の解析には課題が多いものの,上記の通り,HCLPFが2G を超えることから,炉心損傷頻度への影響は小さいものと考えられる。(表1より,他に 炉心損傷直結シナリオとしてモデル化しているHCLPFが同程度の機器(例:直流125V 主母線盤(HCLPF: 2.12G)のCDF 寄与が1%未満) また,以下の格納容器内構造物については、ベースモデルにおいては保守的に圧力容器・ 格納容器の損傷要因としてモデル化していたものの,現実的には損傷した場合も炉心損傷 直結には至らないものと考えられることから、炉心損傷直結シナリオから除外した。

- ・CRD ハウジングレストレントビーム
- ・CRD ハウジング貫通孔
- ・RIP 貫通孔
- ・RIP モータケーシング

※ CRD ハウジングー原子炉本体基礎間を支持する構造物図 9 格納容器内構造物 概要図

CRD ハウジングレストレントビーム, CRD ハウジング貫通部については損傷した場合 には制御棒の挿入性に波及的影響を及ぼす可能性があるものの,地震により損傷に至る前 に制御棒挿入は完了している可能性が高いことからスクリーニングアウトとした(2.7節参 照)。

RIP 貫通孔, RIP モータケーシングについては, 損傷した場合, 冷却材喪失となる可能性 があるものの, 破断面積及び損傷確率共に RHR 破断 LOCA シナリオ(2.4節参照)に代表 性があることから, 個別のシナリオ展開については省略する(表1より, 詳細にモデル化し た場合の CDF への影響は小さいと考えられる)。

2.4. Excessive-LOCA

ベースモデルでは格納容器内配管すべてが完全相関であると仮定しており,最弱の RHR 配管が損傷した場合には全注水手段を同時に喪失するものとして炉心損傷直結を想定して いる。ただし,現実的にはすべての配管が同時に機能喪失することは考えにくく,一部の配 管が健全なシナリオを考慮する必要がある。

評価上の仮定

ベースケースでは格納容器内の全配管を完全相関と仮定していたが,緩和系と同様の 相関の取り方(系統間の相関性を完全独立)とする。また,HPCFが健全であれば,他 の配管が全て破断したとしても炉心損傷には至らないことから,表5のとおりの事故シ ーケンスをモデル化する。

	相長	 雪性	車 セントー ケンフ
	系統間	系統内	争取シークシス
ベース	完全相関	完全相関	最弱配管の損傷で, Excessive-LOCA
ケース	格納容器内の	全配管が完全	
	相関		
詳細	完全独立	完全相関	【RHR 配管損傷シーケンス】
評価	(例)RHR-A,B,	C は完全相関	注水 : HPCF-B,C
	だが, RHR と	HPCF は完全	除熱:格納容器ベント
	独立		⇒ <u>モデル化対象とする</u> 。(成功基準・時間余裕
	(緩和系と同権	兼の設定)	は大 LOCA と同様とする)
			【HPCF 配管損傷シーケンス】
			注水:LPFL-A,B,C
			除熱:RHR-A,B,C,格納容器ベント
			⇒HPCF 配管については RHR 配管よりも
			HCLPF が大きく,また損傷した場合も期待で
			きる緩和系が比較的多いことから, RHR 配管
			損傷シーケンスにより代表する。*1
			【RHR, HPCF 配管損傷シーケンス】
			炉心損傷直結(E-LOCA)
			⇒ <u>モデル化対象とする</u> 。
			【その他の配管損傷シーケンス】
			過渡事象で期待できる緩和設備のうち RCIC の
			み機能喪失
			⇒期待できる緩和系が多いため、CDF への影響
			小としてスクリーニングアウト。*1

表5 相関性の考え方と事故シーケンス

*1 表1より,詳細にモデル化した場合の CDF への影響は小さいと考えられる。

2.5. コントロール建屋詳細評価 (CI)

計測・制御系の損傷要因としてモデル化しているコントロール建屋について、ベースケ ース評価では炉心損傷頻度に対して寄与が低い(寄与割合 0.8%)状況であったが、2.1 等 においてイベントツリー前段のヘディング(RBR 等)の詳細評価を実施した結果、炉心損 傷に対する CI の寄与がベースケース評価と比較して相対的に高くなることから、コント ロール建屋のフラジリティの向上を目的として、解析で使用するせん断に対する復元力特 性をより実情に近いものに見直した上でフラジリティ評価を実施した。

コントロール建屋のフラジリティ評価では、地震 PSA 学会標準に準拠し、「現実的耐力と 現実的応答による方法(応答解析に基づく方法)」を採用している。ベースケースの評価 においては、応答解析で用いるせん断に対する復元力特性について、PSA 学会標準に基づく ボックス壁の終局ひずみの中央値で終局応力となるような形状を設定していたが、今回の評 価においては JEAG4601-1991 に基づき 4.00×10⁻³ で最大せん断応力に達する形状を設定し た上でフラジリティを評価した(図 10 参照)。JEAG4601-1991 では、4.00×10⁻³ 以降のス ケルトンの形状は定義されていないため、図 10 には 4.00×10⁻³ を超える範囲の復元力特 性については記載していないが、フラジリティ評価に用いる建屋の最大応答せん断ひずみ は下図のせん断復元力特性の範囲内に収まっている。なお、せん断に対する復元力特性以外 については、ベースケースと同一の条件を用いている。

図 10 せん断復元力特性変更イメージ図

2.6. 盤関連故障に対する手動バックアップ(CI)

計測・制御系のフラジリティ評価はチャタリングを想定している。短期的なチャタリン グについては、運転員の操作対応は不要であり原子炉の安全性に影響を与えないと考えら れるが、保守的に継続的に誤信号が出る場合についてモデル化する。継続的な誤信号につ いては、関連パラメータの確認(警報発生時操作手順書)等により認知可能であり、対応 操作を実施することが想定されることから、地震収束後の復旧操作に期待したモデルとし た。なお、手動バックアップの失敗確率については、THERPの極限的なストレス状況での操作に適用される 2.5E-1 (中央値)を適用する。

2.7. 制御棒挿入 (TC)

ベースケース評価ではヘディング「スクラム系」において,以下の設備の地震要因損傷 により,制御棒の挿入に失敗するものとして評価している。

・炉内支持構造物

 \cdot CRD

・燃料集合体(過度の相対変位による制御棒挿入失敗を想定)

ただし、上記で挙げた設備(炉内支持構造物,CRD,燃料集合体)については地震要因 による損傷は否定できないものの、地震発生から損傷に至るまでには時間差があると考え られる。そのため、その間に地震加速度大(水平120gal,鉛直100gal)によるスクラム 信号発信及び制御棒挿入(100%挿入で1.33秒,60%挿入で0.85秒(ともに平成21年定 検時スクラム検査))は余裕をもって完了している可能性が高い。例えば設計基準地震動 ではP波によりスクラム信号が発信し、3~4秒程度で最大加速度に達する。また、新潟 県中越沖地震では、震源が発電所から近い場所にあり厳しい地震であったが、その場合も 最大相対変位が生じる随分前に、制御棒の挿入は完了していた(7号機)。

また、制御棒が部分的に挿入失敗するようなケースでは、必ずしも臨界とはならない が、地震による CRD の損傷は同種系統間で完全相関を想定しているため、1本の制御棒 でも挿入失敗した場合は保守的にスクラム失敗により炉心損傷するものとして評価してい る。

以上より,現実的には本事故シーケンスにより炉心損傷に至る確率が十分小さいと判断 し,スクリーニングアウトとした。

2.8. 格納容器ベント損傷要因

格納容器ベントの失敗要因としてモデル化していた以下の機器については、仮に損傷し た場合にも炉心損傷を回避している状況であれば、格納容器除熱機能は満足されるものと 考えられる。破断箇所からの流出蒸気についてはブローアウトパネルから建屋外に排出さ れることも考えられるものの、建屋内設備へ悪影響が及ぶことは否定できない。ただし、 流出蒸気が安全施設へ悪影響をもたらすまでには6時間以上の余裕があるため、流出蒸気 の影響が及ばない注水手段への切り替えといった対応が可能であることから、これらの機 器の損傷についてはスクリーニングアウトとした。

- ・不活性ガス系配管
- ・SGTS 配管
- SGTS ライン隔離弁

また,不活性ガス系弁については,機能損傷した場合も現場操作可能であることからス クリーニングアウトとした。

- 2.9. 格納容器バイパス
- 2.9.1. 原子炉冷却材浄化系(CUW)

ベースケース評価では,隔離弁の下流側の耐震 B クラス設備が地震により破断(保守的 に必ず破断と想定)した後,通常時開状態である隔離弁 2 個(内側,外側)が同時損傷し た場合にバイパス破断が発生し,炉心損傷直結事象としてモデル化していた。当該隔離弁 の損傷要因としては,弁自体の損傷,及びサポート系である電源喪失による隔離機能喪失 に分けられる。

隔離弁自体が損傷した場合は、以下のシナリオにより炉心損傷を回避し、流出蒸気が収まった後、破断箇所の隔離等の対応により事象収束が可能であることから、バックアップ操作に期待し、人的過誤確率(p=2.7E-1(ベースケース評価において大規模な現場操作に適用))で代表してモデル化する。

TAF で水位維持(HPCF 注水)

- ・急速減圧
- ・MUWC による原子炉注水
 - →注水時にラインナップが必要な弁が地上階にあるため、破断箇所からの流出蒸気に より ECCS が機能喪失した後にも中央制御室から操作可能である可能性が高い。ま た、MUWC による原子炉注水のバックアップとして消防車による原子炉注水にも 期待できる可能性がある。
- ・格納容器ベント

→破断箇所から蒸気が出ていることから時間余裕がかなり長く,二次格納容器外から の操作が可能。

また、電源系が損傷した場合については、弁の駆動電源のケーブルを健全な MCC に接続する等の対応が可能であることから、バックアップ操作に期待し、人的過誤(失敗確率は THERP の極限的なストレス状況での操作に適用される 2.5E-1 を採用)をモデル化する(2.6 参照)。

2.9.2. 給水系配管及び主蒸気系配管

気相ラインである給水系配管及び主蒸気系配管からの格納容器バイパスが発生した場合 も,HPCF等により炉心に注水が成功していれば炉心損傷には至らないことから,炉心損 傷直結シナリオとしては整理せず,バイパス発生後の事象緩和シナリオに期待する。

2.9.3. 残留熱除去系

ベースケース評価では、格納容器外において RHR 停止時冷却モード吸込み配管が破断後、通常時閉状態である隔離弁2個(内側、外側)が同時損傷した場合にインターフェイ スシステム LOCA(ISLOCA)が発生するものとしてモデル化していた。

現実的には、以下の観点から隔離弁の損傷が考えにくいこと及び ISLOCA 発生後の事象 緩和が可能であることからスクリーニングアウトとする。

- ・隔離弁については機能損傷の観点からフラジリティ評価を実施しているものの,通常 時閉状態の弁であることから,機能損傷では ISLOCA に至らないものと考えられる。
- ・万が一 ISLOCA が発生した場合も吸込口は TAF 以上であることから炉水位を低く維持するなどの対応により、炉心損傷を回避可能であることから炉心損傷直結事象とはならない。

2.10. 格納容器ベント時のバックアップ

格納容器ベントでは,隔離弁を現場操作さえできれば安全機能は損なわれないことか ら,ベースケース評価において格納容器ベントの失敗要因としてモデル化している設備の 損傷等が発生した場合も,最終的に隔離弁の2次格納容器外からの操作に期待できるモデ ルとする。人的過誤確率としては,他の人的過誤との従属性を考慮して,保守的に1.0E-1 を適用する。

2.11. 現場操作の認知失敗

事象発生後数時間以降における現場操作(電源車による P/C 給電操作,消防車による CSP 補給操作等)については、ベースケース評価では当該操作の認知失敗確率を 1.1E-1 としていた。

当該操作については、時間余裕が長いこと、また起因事象として地震が発生している状況で可搬型 SA 設備等の使用を思いつかない可能性は低いことから、現実的にはその操作の必要性の認知に失敗する可能性は十分低いものと考えられるためスクリーニングアウトとする(ベースケース評価においても、SBO シーケンスでは当該認知失敗についてはスクリーニングアウトとしている)。

2.12. 燃料補給操作

ベースケース評価では,消防車及び電源車の燃料補給操作に失敗した時点で燃料枯渇に より消防車,電源車が機能喪失し,(他に注水手段等がなければ)炉心損傷に至るものと してモデル化していた。

現実的には、燃料補給操作に失敗した場合は認知可能であること、また補給操作失敗から炉心損傷に至るまでは猶予が数時間程度あり、当該作業員以外のバックアップにも期待できることから、バックアップ操作を失敗する可能性は極めて低くリスクへの寄与は無視できるものとしてスクリーニングアウトとする(仮にベースケース評価で用いている時間余裕数時間のバックアップ操作(中央制御室)の失敗確率が6.1E-3であることを踏まえて、0.01等の値を失敗確率として適用した場合もスクリーニングアウトと同等の影響となる)。

2.13. 消防車起動操作失敗による CSP 補給失敗

長期水源として CSP に期待する場合には,消防車により CSP への補給を実施する必要 がある。ベースケース評価では初期(事象発生後数時間程度を想定)の CSP 補給に失敗 した場合,格納容器ベントの際の外部水源注水時にも補給できないものとして保守的にモ デル化していた。ただし,初期の補給に失敗した場合も,長期的にはバックアップにより CSP 水源への補給は成功する可能性が高いと思われることから,バックアップに期待した モデルとする。

2.14. CSP 周り配管

ベースケース評価では、RHR 配管破断 LOCA (大 LOCA を想定)が発生した場合、ス クラム成功後の注水手段として HPCF (S/P 水源),格納容器除熱手段として格納容器ベ ントに期待している。格納容器ベント時には外部水源からの注水が必要となることから、 HPCF の水源を CSP へ切り戻す必要があるものとし、他の注水手段に期待しないモデル としていたため、CSP 周り配管が損傷した場合炉心損傷に至るものとして保守的に扱って いた。

現実的には、CSP 周り配管が破断している場合も、初期に S/P 水源からの注水に成功していれば、代替注水でも必要な注水量を満足できることから、消防車による HPCF 注水ラインを使った注水により炉心損傷回避できるものとしてモデル化する。

2.15. 防火水槽, 貯水池 (CSP 補給用)

防火水槽が損傷した場合,貯水池から直接 CSP 補給可能(消防車1台で水頭が足りない場合は,複数台連結等の手段がとれる)であり,直接消防車により取水する場合については,ホースを直接池に垂らして取水することも可能である。また,万が一取水不能となる規模で貯水池が地盤ごと崩壊した場合には,海水による CSP 補給にも期待できることから,防火水槽と貯水池については CSP 補給の失敗要因からスクリーニングアウトとする。

2.16. 消防車のランダム故障

消防車については台数が多いこと,保管場所やメンテナンスのタイミング等が異なるこ とから,消防車全体として機能喪失する可能性は極めて小さいことから,(共通原因故障 を含めて)スクリーニングアウトとする。

2.17. 確定論的なフラジリティを設定している機器

ベースケース評価では、一部の SA 機器に確定論的なフラジリティ(Ss や 1.5Ss を超え た場合、損傷確率 1)を設定していた。これらの機器については、不確実さを考慮し、Ss や 1.5Ss を HCLPF とし、不確実さについては、設定の手法が確立していないことから、 ベースケース評価に用いている機器等の既存のフラジリティ結果(βc 最小:0.16)を参 考に、 βc として保守的に 0.1 を与える。

3. イベントツリー

上記 2.の評価上の仮定を反映したイベントツリーを図 11 に示す。

最終狀態	- TRAN~ LOP~	LOCA3~ = LOCA2~ = SB0~	LUHSSB02~- TBD CI LOCA	BYPASS PCVR RBR	長終状態 - TW Tr
外部電源					
W又はMS パス破断					Line (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
FD					
RHR破断LOCA					田 田 田 田 日 田 日 日 日 日 日 日 日 日 日 日 日 日 日
交流電源 (D/G)					- スクラム - スカラム - スカラム
原子炉 補機冷却系					RHR設 FDWAT
建屋間配管損傷 ・建屋一部損壊					、
直流電源					
計測・制御系					
Excessive-LOCA					
格勢容器 バイパス					-IC 代替電源 (GTG)
建屋・構築物 (格納容器・ 圧力容器)					SRV再開 B B B B B B B B B B B B B
建屋・構築物 (地盤変形大)					Name of the state of the sta
康 加速度大]	

4.1 海底地すべりによる津波(2)海底地すべり地形の抽出

- 判読の結果,敷地の西方沖に4つの 海底地すべり地形を抽出した。
 (LS-1,LS-2,LS-3,LS-4)
- 敷地から遠方の西北西沖に2つの海 底地すべり地形を抽出した。(LS-5, LS-6)
- 敷地から佐渡島を挟んで反対側の海 底に、複数の海底地すべり地形を抽 出した。(LS-7群,LS-8群)
- 抽出した地形の拡大図を次ページに示す。

添付資料2-

56

86

??

🙌 東京電力

5. 地震による津波と海底地すべりによる津波の組合せ

海底地すべり(LS-1, LS-2, LS-3)による津波 地震(海域の活断層、日本海東縁部)による津波 取水口前面において最高水位及び最低水位となる津波 取水口前面波形 取水口前面波形 地震動により海底地すべりが発生することを想定 地震による津波 ● 地震単独の津波の波形と、地す べり単独の津波の波形を,1秒 ▽地震発生 単位でずらし、線形で足し合わ せ※。 ● ずらす時間は、地震動が海底地 すべり位置に到達するのに要す る時間、及び海底地すべり位置 地すべりによる津波 での地震動の継続時間を考慮。 ● 足し合わせの最大ケースを抽出 ▽ ▽ 地すべりの発生 し、地すべり開始時間を設定。 ※潮位の重複加算を避けるため、地震による津 波は朔望潮位からの、海底地すべりによる津 地震動の到達『地震の 地震の継続時間分の範囲内で時間をず 波はT.M.S.L.±Omからの水位上昇量とした。 に要する時間 継続時間 らし、最大となる組み合わせを抽出 地震と海底地すべりの組合せ検討(同一の波動場における数値計算)

6. 基準津波の評価

- 「地震による津波」「地すべりによる津波」「地震による津波と海底地すべりによる津波の組合せ」の中から、取水口前面において最高 水位及び最低水位となるケースを選定した。
- 上昇側最大は、「地震と地すべりの組合せによる津波」のうち、日本海東縁部(2領域モデル)とLS−2の組合せケース。
- 下降側最大は、「地震による津波」のうち、日本海東縁部(2領域モデル)のケース。
- ・ 荒浜側防潮堤の最高水位となるケースおよび荒浜側,大湊側遡上域最大 ケースは共に「地震と地すべりの組合せによる津波」のうち,海域の活 断層(5断層連動モデル)とLS-2の組合せケース。

地震による津波

					水	位. T.M	. S. L.	(m)			
水位	地震	-		取	水口前	面			荒浜側	遡	亡城
1.92.		1号炉	2号炉	3号炉	4号炉	5号炉	6 号炉	7号炉	防潮堤	荒浜側	大湊側
Ŀ	海域の活断層 (5)断層連動モデル)	+5.2	+5.5	+5.7	+5.6	+4.5	+4.5	+4. 7	+6.9	+7.1	+7.3
升側	日本海東縁部 (2領域モデル)	+6.5	+6.3	+6.2	+6.1	+6.0	+6.0	+6.0	+6.6	+6.6	+7.4
下	海域の活断層 (長岡十日町連動モデル)	-4.8	-4.6	-4.5	-4.5	-3.0	-3.5	-3.5	-	(+0.2)	(+1.0)
犀側	日本海東縁部	-5.3	-5.3	-5.3	-5.4	-3.0	-3.5	-3, 5	(+5.0)	(+5.1)	(+5.7)

海底地すべりによる津波

					水	位 T.M	I. S. L.	(m)			
水位	地すべり		取水口前面 养							遡	上城
1.1.		1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側
上昇側	LS-2	+4.5	+4.3	+4.1	+4.1	+3.6	+3.6	+3.6	+6.2	+6.3	+5.1
下降側	LS-3	-3.9	-3. 6	-3.5	-3.4	-2.8	-2.7	-2.6	(+3, 1)	(+5.9)	(+4.8)

地震と地すべりの組み合わせによる津波

						水	立 T.M	. S. L.	(m)			
水位	地震	地すべり			取	水口前	面			荒浜側	遡	上城
1.0.4			1号炉	2 号炉	3号炉	4号炉	5号炉	6 号炉	7号炉	防潮堤	荒浜側	大湊側
上の	海域の活断層 (5)断層連動モデル)	LS-2	+5.1	+5.3	+5.5	+5.4	+4.5	+4.5	+4.6	+7.6	+7.6	+7.5
角	日本海東縁部 (2領域モデル)	LS-2	+6.8	+6.7	+6.5	+6.4	+6.2	+6.2	+6.1	+7.1	+7.4	+6.9
下路	海域の活断層 (長岡十日町連動モデル)	LS-3	-4.9	-4.7	-4.6	-4 .6	-3.0	-3.5	-3.5	-	(+3.1)	(+3.0)
側	日本海東縁部 (2領域モデル)	LS-3	-5.2	-5.2	-5.2	-5.2	-3.0	-3.5	-3.5	(+6.7)	(+7.4)	(+6.4)

129

9. 基準津波による安全性評価

- 9.1 取水路の水理特性による水位変動
- 9.2 津波による海底地形変化の検討方針
- 9.3 検討結果

🙌 東京電力

9.2 津波による海底地形変化の検討方針(1)検討概要

津波の水位変動以外の事象に対する評価として、津波に伴う砂移動について、数値シミュレーションを実施する。

- 数値シミュレーションは、藤井ほか(1998)および高橋
 ほか(1999)の手法に基づき、津波の挙動とそれに伴う
 砂移動を同時に計算した。
- 検討フローは右図のとおり。
- 計算時間は4時間とした。

🔒 東京電力

津波による海底地形変化の検討方針(2)基礎方程式・計算条件 2 9.

- 藤井ほか(1998)および高橋ほか(1999)の方法を下表に示す。
- 海底砂の物性値・粒度分布は以下のとおりであり、高橋ほか(1999)の手法では、浮遊砂濃度の上限値を1%に 設定した。

		T	
	藤井ほか(1998)の方法	高橋ほか(1999)の方法	Z:水深変化量(m) t:時間(s)
地盤高の連続式	$\frac{\partial Z}{\partial t} + \alpha \left(\frac{\partial Q}{\partial x}\right) + \frac{E - S}{\sigma(1 - \lambda)} = 0$	$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q}{\partial x} + \frac{E - S}{\sigma} \right) = 0$	x:半面座標(m) Q:単位幅,単位時間当; 砂量(m ³ /s/m) て*:シールズ教
浮遊砂濃度連続式	$\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} - \frac{E - S}{D} = 0$	$\frac{\partial(C_sD)}{\partial t} + \frac{\partial(MC_s)}{\partial x} - \frac{E-S}{\sigma} = 0$	σ:砂の密度 λ:空隙率 s:σ/ρ-1
流砂量式	$Q = 80\tau_*^{1.5}\sqrt{sgd^3}$	$Q = 21\tau_*^{1.5}\sqrt{sgd^3}$	d:砂の粒径(中央粒径) g:重力加速度(m/s²) ρ:海水の密度(g/cm³)
巻き上げ量の算定 式	$E = \frac{(1-\alpha)Qw^2\sigma(1-\lambda)}{Uk_z \left[1 - \exp\left\{\frac{-wD}{k_z}\right\}\right]}$	$E = 0.012 \tau_*^2 \sqrt{sgd} \cdot \sigma$	U:流速(m/s) D:全水深(m)
沈降量の算定式	$S = wC_b$	$S = wC_s \cdot \sigma$	100
摩擦速度の計算式	log-wake 則を鉛直方向に 積分した式より算出	マニング則より算出 $u_* = \sqrt{gn^2 U U / D^{1/3}}$	80 (%) 樹 60 次

当たりの掃流 •) i)

 $M : U \times D(m^2/s)$

- n:Manningの粗度係数(=0.03m⁻ ^{1/3}s)
- w:土粒子の沈降速度(Rubey 式より算出)(m/s)
- Cs:浮遊砂体積濃度(浮遊砂 濃度連続式より算出)
- α:局所的な外力のみに移動
- を支配される成分が全流砂 量に占める比率(=0.1)
- C:浮遊砂濃度(kg/m³)
- Cb:底面浮遊砂濃度(kg/m3)

東京電力

項目

密度ρ

中央粒径 d

空隙率λ

設定値

 $2.69 \, g/cm^3$

0.27mm

0.4

津波による海底地形変化の検討方針(3)海底砂の採取位置について 9. 2

設定根拠

敷地前面海域の浚渫砂における物理特性試験結果

敷地前面海域の浚渫砂における物理特性試験結果

高橋ほか(1992)

- 敷地前面海域における浚渫砂を基に、砂の粒径、密度を設定。
- 粒径については、代表として中央粒径(D50)を採用。

項目	設定値	設定根拠
密度ρ	2. 69g∕cm³	浚渫砂の物理特性試験結果 (平成19年度)
中央粒径d	0. 27mm	浚渫砂の物理特性試験結果 (平成19年度)

粒径加積曲線

131

9.2 津波による海底地形変化の検討方針(4)浮遊砂濃度の上限について

■ 論文整理に基づく高橋ほか(1999)における浮遊砂濃度上限値に関する評価

- 高橋ほか(1999)の浮遊砂濃度上限値について、砂移動評価に関する論文を整理した。
- 上限値5%の検証結果から、浮遊砂濃度上限値5%は過大評価になると考えられる。
- 上限値1%の検証結果から、浮遊砂濃度上限値1%は妥当な設定値であると考えられる。
- 以上より、高橋ほか(1999)の浮遊砂濃度上限値は1%を基本とし、評価を実施した。

高橋ほか(1999)の検証事例

実規模検証	文献	計算使用 砂粒径	計算格子 間隔	浮遊砂 濃度上限	浮遊砂濃度上限に関する評価
気仙沼湾 (1960年 チリ地震津波)	玉田ほか (2009)	0.001~ 1mm	25m, 5m	1%,5%	・計算格子間隔が5mの場合、浮遊砂濃度上限 5%では実績値より侵食深を過大に評価
八戸港 (1960年 チリ地震津波)	藤田ほか (2010)	0.26mm	10.3m	1%,2%,5%	 ・浮遊砂濃度上限5%は過大に評価 ・浮遊砂濃度上限1~2%の場合の再現性が良好
宮古港 (2011年東北地方 太平洋沖地震津波)	近藤ほか (2012)	0.08mm	10m	1%	 土砂移動の全体的な傾向は良く一致 防波堤堤頭部の最大洗掘深や断面地形も定量的 に概ね良い一致
気仙沼湾 (2011年東北地方 太平洋沖地震津波)	森下ほか (2014)	0.3mm	10m	1% $C_{sat} = \alpha \times \sqrt{U^2 \times V^2}$	 ・砂移動評価に影響を及ぼす因子として、無次 元掃流力,流砂量式係数,飽和浮遊砂濃度の3 つを抽出 ・上記の3つの因子を同時に変えたモデルにより、再現性が向上する可能性を示唆 ・飽和浮遊砂濃度については、摩擦速度の関数 とすることで再現性向上につながることを示唆
東京電力			C _{sat} :飽和浮遊砂	濃度 U,V:断面平均流速成统	分 α:係数(0.01)

133

9. 基準津波による安全性評価

- 9.1 取水路の水理特性による水位変動
- 9.2 津波による海底地形変化の検討方針
- 9.3 検討結果

9.3 検討結果

- ●基準津波を評価対象として、砂移動の数値シミュレーションを実施した結果のうち、取水口前面の最終堆積厚さを下表に示す。
- 取水口前面における砂の堆積厚さの最大は、3号炉取水口前面の約1.2m(取水路横断方向の平均値)。
- 6/7号炉取水口前面の最大値は、7号炉取水口前面の約0.6m(取水路横断方向の平均値)。

4	地震		取水口前面堆積厚さ(m)								
小位		手法	1 号炉	2 号炉	3 号炉	4号炉	5 号炉	6 号炉	7 号炉		
上昇側	海域の活断層 (5)断層連動モデル)	藤井ほか	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
		高橋ほか	0.1	0.3	0.6	0.6	0.1	0.1	0.2		
	日本海東縁部 (2領域モデル)	藤井ほか	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
		高橋ほか	0.5	0.9	1.2	1.1	0.4	0.3	0.6		
	海域の活断層 (長岡十日町連動モデル)	藤井ほか	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
下降側		高橋ほか	0.2	0.4	0.5	0.4	0.1	0.1	0.2		
	日本海東縁部	藤井ほか	0.2	0.2	0.2	0.2	0.1	0.1	0.1		
	(2領域モデル)	高橋ほか	0.2	0.7	1.0	0.8	0.2	0.2	0.4		

数値シミュレーション結果

※取水口前面の堆積厚さは、取水路横断方向の堆積厚さの平均値 ※高橋ほか(1999)における浮遊砂濃度の上限値は1% ※藤井ほか(1998)における浮遊砂濃度の上限値は5%

6,7号炉取水口前面の最高堆積厚さは約0.6mであり、取水路の高さ(5m程度)に対して十分小さく、 取水への影響はないことを確認した。

🔒 東京電力

9.3 検討結果

■ 高橋ほか(1999)の手法による堆積侵食分布(最終地形)

136

地震 PRA 起因事象の網羅性について

1. 概要

起因事象の抽出に関しては地震PRA学会標準で挙げられている事象を考慮したほか、国 内で発生した地震による発電所への影響事例の調査,及び海外文献調査を実施し,抽出結 果の網羅性を確認した。

2. 事例調查

2.1 国内で発生した地震による発電所への影響事例

国内で発生した地震による発電所への影響として,次に挙げる地震に対し,施設に影響した地震規模,安全上重要な設備への影響(AM設備への影響及び波及的影響を含む),外部電源への影響及び復旧操作へのアクセス性の観点で事例を抽出した。

- 宮城県沖地震(2005年8月)による女川原子力発電所に対する影響
- 能登半島地震(2007年3月)による志賀原子力発電所に対する影響
- 新潟県中越沖地震(2007年7月)による柏崎刈羽原子力発電所に対する影響
- 駿河湾の地震(2009年8月)による浜岡原子力発電所に対する影響
- 東北地方太平洋沖地震(2011年3月)による福島第一原子力発電所,福島第二原子力
 発電所,東通原子力発電所,女川原子力発電所,及び東海第二発電所に対する影響

上記の震害事例を調査した結果,一部の地震において,地震観測記録が発電所設計時に設定された基準地震動S₂若しくは耐震安全性評価で設定された基準地震動Ssを上回ることが確認されたが,安全上重要な設備に対する地震による直接的な異常は確認されなかった。また,波及的影響の可能性としては,点検及び仮置き中の重量物の移動又は遮へいブロック崩れによる安全上重要な設備への接触,低耐震クラス配管の損傷又は津波による溢水事象,並びに,電気盤火災による波及的影響が確認されている。

このように, 震害事例から得られる結果を今後とも分析し, 耐震安全性向上の対応策に適切に繋げていく取り組みが必要となる。

2. 震害事例調查結果

2.1 宮城県沖地震(2005年8月)による女川原子力発電所に対する影響

地震発生時に運転中であった1号機,2号機及び3号機は、地震に伴い自動停止。発電所 敷地内で観測した地震データを解析した結果、一部の周期で発電所設計時に設定された基 準地震動 S₂を上回ることが確認されたが、耐震安全性の評価によって健全性が確保されて いることが確認されており、安全上重要な設備に対する影響はなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表1に示す。

2.2 能登半島地震(2007年3月)による志賀原子力発電所に対する影響

敷地地盤や1/2号機原子炉建屋において観測された地震記録を分析した結果, 観測した地震動の応答スペクトルが基準地震動 S₂を長周期側の一部の周期帯において超えている部分があったが,耐震安全性の評価によって健全性が確保されていることが確認されており,安全上重要な設備に対する影響はなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表 2 に示す。

2.3 新潟県中越沖地震(2007年7月)による柏崎刈羽原子力発電所に対する影響

地震発生時に運転中又は起動中であった2号機,3号機,4号機及び7号機は,地震に伴い自動停止。(1号機,5号機及び6号機は定期検査のため停止中)発電所敷地内で観測した地震データを解析した結果,耐震設計上考慮すべき地震による地震動の周期帯のほぼ全域にわたって発電所設計時に設定された基準地震動S2を上回ることが確認され,機器によっては構造強度や機能維持に影響を与えると考えられる異常が確認されているものの,重大な損傷をもたらしたものではなく,原子炉の安全性を阻害する可能性のない軽微な事象であった。

安全上重要な設備への影響については、点検及び仮置き中であった重量物の移動又は遮 へいブロック崩れによる安全上重要な設備への接触事例や、地震に伴う消火系配管の損傷 による一部 AM 設備の浸水事例が確認されたものの、地震による直接的な異常は確認されな かった。なお、3 号機の所内変圧器のダクトの基礎が不等沈下したことによって火災が発生 した。

施設に影響した地震規模及び原子力発電所に対する影響について表3に示す。

2. 4 駿河湾の地震(2009年8月)による浜岡原子力発電所に対する影響

地震発生時に運転中であった4号機及び5号機は、地震に伴い自動停止。(3号機は定期 検査のため停止中。1号機及び2号機は廃止措置準備中。)発電所敷地内で観測した地震デ ータを解析した結果、3号機及び4号機については、発電所設計時に設定された基準地震動 S₂による床応答スペクトルを超えるものではなく、設備の健全性が確保されていることが 確認されている。5号機については、観測された地震データによる床応答スペクトルが一部 の周期帯において基準地震動 S₁による床応答スペクトルを上回っていたが、主要な耐震設 計上重要な機器及び配管の固有周期では下回っていたこと、また床応答スペクトルの一部 が超えたことについては観測記録による地震応答解析結果によって全ての設備が弾性状態 にあったことから、設備の健全性が確保されていることが確認されている。以上のことから、 安全上重要な設備に対する影響はなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表 4 に示す。

2.5 東北地方太平洋沖地震(2011年3月)による原子力発電所に対する影響

1) 福島第一原子力発電所に対する影響

地震時,運転中であった1号機,2号機,3号機は,地震に伴い自動停止(4号機,5号 機,6号機は定期検査中)。原子炉建屋及び原子炉建屋に設置されている安全上重要な設備 (原子炉格納容器,残留熱除去系配管など)について,地震観測記録及び基準地震動Ssそ れぞれによる応答解析を比較した結果,基準地震動による地震荷重より耐力の方が大きく, 地震直後,各安全機能は保持されていたものと評価されている。

しかし、1~5号機については、地震後の津波によって、非常用ディーゼル発電設備、電 源設備などが被水、機能喪失したことで全交流電源喪失に至り、1~3号機については最終 的に炉心損傷に至った。5号機及び6号機については、原子炉に燃料が装荷されている状態 で、1~3号機同様、津波による影響によって海水系が機能喪失に至ったものの、6号機の 空冷式ディーゼル発電設備による電源確保(5号機については、6号機から電源融通実施) を行うとともに、仮設海水系ポンプによる冷却機能確保などの復旧措置によって冷温停止 状態への移行及び維持が図られた。

また,全燃料が使用済燃料プールへ取り出されていた4号機をはじめとする,各号機の使 用済プール内燃料については,注水又は冷却によって使用済燃料プール水位を確保し,燃料 損傷防止が図られた。

施設に影響した地震規模及び原子力発電所に対する影響について表 5 に示す。

2) 福島第二原子力発電所に対する影響

地震時,1~4号機は運転中であったが,地震に伴い全号機自動停止。原子炉建屋及び原 子炉建屋に設置されている安全上重要な設備(原子炉格納容器,残留熱除去系配管など)に ついて,地震観測記録及び基準地震動Ss それぞれによる応答解析を比較した結果,基準地 震動Ss による地震荷重より耐力の方が大きく,地震後,各安全機能は保持されていたもの と評価されている。

3号機を除く、1号機、2号機及び4号機については、地震後の津波によって、海水系設備が被水することでヒートシンク喪失に至ったものの、外部電源及び3号機非常用ディー ゼル発電設備、電源車による電源確保、海水系ポンプの取り替えなどの復旧措置によって、 冷却機能を確保することで、各号機とも冷温停止状態への移行、維持が図られた。

施設に影響した地震規模及び原子力発電所に対する影響について表 6 に示す。

3) 東通原子力発電所に対する影響

地震時において1号機は定期検査のため停止中。発電所敷地内で観測された地震加速度 は17galであり、地震による設備への影響はなかった。また、地震後に外部電源が全て喪失 したが、非常用ディーゼル発電機が自動起動し全交流電源喪失には至らなかった。 施設に影響した地震規模及び原子力発電所に対する影響について表7に示す。

4) 女川原子力発電所に対する影響

地震時に運転中又は起動中であった1号機,2号機及び3号機は,地震に伴い自動停止。 発電所敷地内で観測した地震データを解析した結果,観測された地震データによる床応答 スペクトルが一部の周期帯において発電所設計用の基準地震動Ssによる床応答スペクトル を上回っていたが,地震観測結果に基づく原子炉建屋及び耐震安全上重要な主要設備の地 震時における機能を概略評価(建屋については最大応答せん断ひずみ及び層せん断力,設備 については影響構造強度評価及び動的機能維持評価)した結果,機能維持の評価基準を下回 っていることが確認されている。今後は詳細なシミュレーション解析によって健全性を確 認するとともに主要設備以外の耐震安全上重要な設備を含め設備の健全性を確認すること としている。

安全上重要な設備への影響については次のとおりである。1号機において常用系の高圧 電源盤火災によって地絡した同期検定器の出力回路ケーブルから非常用母線と予備変圧器 の連絡しゃ断器投入コイルに電圧が印加され,非常用母線電圧が瞬時低下したため,同母線 から受電していた残留熱除去系ポンプ2台の自動停止が確認された。2号機において海水 ポンプ室に流入した海水が地下トレンチを通じて原子炉建屋の一部に流入し,原子炉補機 冷却水系の一系統及び高圧炉心スプレイ補機冷却水系の機能喪失が確認された。同冷却水 系の喪失によって非常用ディーゼル発電機一系統及び高圧炉心スプレイ系ディーゼル発電 機の自動停止が確認された。さらに,常用系の高圧電源盤火災の影響により,非常用ディー ゼル発電機が起動していない状態でしゃ断器投入が発生し,非常用ディーゼル発電機界磁 回路損傷が確認されたものの,地震による直接的な異常は確認されなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表 8 に示す。

5) 東海第二発電所に対する影響

地震時に運転中であった東海第二発電所は,地震に伴い自動停止。発電所敷地内で観測し た地震データを解析した結果,観測された地震データによる原子炉建屋の最大応答加速度 は,設計時に用いた最大応答加速度及び新耐震指針に基づく耐震安全性評価で設定した基 準地震動 Ss の最大応答加速度以下であった。また,観測された地震データによる原子炉建 屋の床応答スペクトルが一部の周期帯において発電所設計時に用いた床応答スペクトルを 上回っていたが,主要な周期帯で観測地震記録が下回っていることが確認されている。安全 上重要な設備への影響については,津波対策工事が完了していなかった一部の海水ポンプ 室に海水が浸水し3台ある非常用ディーゼル発電機用海水ポンプのうち1台が停止したこ と,並びに,125V 蓄電池 2B 室のドレンファンネルからの逆流によって床面に 3cm の深さで 溢水が確認されたものの,地震による直接的な異常は確認されなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表 9 に示す。

表 1 2005 年 8 月に発生した宮城県沖地震による女川原子力発電所に対する影響

確認項目	確認結果
 ①施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	女川原子力発電所1,2,3号機は,定格熱出力運転中 のところ平成17年8月16日に発生した宮城沖を震源とする マグニチュード7.2 (震源深さ72km,震央距離73km,震源 距離84km)の地震の影響によって,11時46分に1号機,2 号機,3号機は地震加速度大信号によって原子炉自動停止 した。なお,観測された保安確認用地震動は,最大で 251.2ガルであった。 1号機,2号機,3号機の原子炉建屋で観測された地震 動から求めた加速度応答スペクトル(周期ごとの加速度の 最大値)は,機器の設置されていない屋上を除き,全ての 周期において基準地震動S ₂ による応答スペクトルを下回っ ていることを確認した。また,岩盤上で観測された地震デ ータから上部地盤の影響を取り除いたデータを解析したと ころ,一部周期において基準地震動S ₂ を超えている部分が あることを確認した。今回の地震で,一部の周期において 基準地震動の応答スペクトルを超えることとなった要因分 析及び評価を行った結果,これは、宮城県沖近海のプレー ト境界に発生する地震の地域的な特性によるものと考えら れるとの結論が得られた。
 ②-1安全上重要な設備への 影響(波及影響も含む) ③ QUE 50 (ALC) 	無し 今回観測された地震データを用いて,安全上重要な設備(建 屋及び機器)の耐震安全性の評価を実施し,耐震安全性が確 保されていることを確認した。
②-2既存のAM設備への影響(波及影響も含む)	
<u>③-1</u> 外部電源への影響	無し
(3)-2D/Gへの影響	
 (3) - 3 (相) (3) - 3 (相) (4) (5) (7) (4) (7) (5) (7) (7) (7) (7) (7) (7)	
⁽¹⁾ 4 电原隅 地 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	判胎 香土な影郷毎 ただ 棲雨送吸マフフラル 毎刻 油
③ - 5 復 旧 探TF への アクセス 性	単八な影響無し。たたし、博的道路ノスノアルト単裂、波 うち及び段差が発生した。
④その他(安全機能には影響 しないもの,留意しておく必 要のある事項)	無し

表 2 2007 年 3 月に発生した能登半島地震による志賀原子力発電所に対する影響

確認項目	確認結果
 1)施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	【志賀1,2号機】 敷地地盤や1/2号機原子炉建屋において観測された地 震記録を分析した結果,観測した地震動の応答スペクトル が基準地震動S ₂ を長周期側の一部の周期帯において超えて いる部分があったが,この周期帯には,安全上重要な施設 がないことを確認した。 また,1/2号機の原子炉建屋で観測された地震記録に 基づいて原子炉建屋及び同建屋内の安全上重要な機器につ いて検討した結果,各施設とも弾性範囲内に十分収まって おり,施設の健全性が十分確保されていることを確認し た。 タービン建屋内及び海水熱交換器建屋内の安全上重要な 機器及び配管,並びに排気筒について,敷地地盤で観測さ れた地震記録に基づいて検討した結果,各施設とも弾性範 囲内に十分収まっており,施設の健全性が確保されている ことを確認した。 さらに,今回の地震において長周期側の一部の周期帯で 基準地震動S ₂ を上回ったことから,長周期側の一部の周期帯で 基準地震動S ₂ を上回ったことから,長周期側の一部の周期帯で 基準地震動S ₂ を上回ったことから,長周期側の主要施設であるタービン建屋基礎版上の原子炉補機 冷却水系配管及び排気筒の耐震安全性について確認した結 果,耐震安全余裕を有していることを確認した。 以上,安全上重要な施設や長周期側の主要施設に関する 一連の耐震安全性確認結果から,能登半島地震を踏まえて も耐震安全性は十分確保されていることが確認できたと考
 ②-1安全上重要な設備への 影響(波及影響も含む) 	【志賀1,2号機】無し
 ※ ② − 2 既存のAM設備への影響(波及影響も含む) 	【志賀1, 2号機】無し
③-1外部電源への影響	【志賀1,2号機】 供用中の3回線すべてが喪失し外部電源喪失となったが,事 象発生の6分後に復旧した。
<u>③-2D/Gへの影響</u>	【志賀1,2号機】無し
○ 3 補機冷却系への影響	【志賀1,2号機】無し
○ 4 電源 融通の 可能性	【芯貨 1 , 2 号機】
 ③-5 復旧操作へのアクセス 性 	【芯頁Ⅰ, 2 亏機】 影響 悪し
④その他(安全機能には影響 しないもの,留意しておく必 要のある事項)	■水銀灯の落下 1号機タービン建屋運転階の水銀灯が7個,また2号機原 子炉建屋運転階の水銀灯が2個落下した。 また,2号機で落下した水銀灯の破片は,約97%を運転 階床上から回収したが,残りの破片については使用済燃料 貯蔵プールなどへ落下した可能性があったため,これらの 箇所での点検及び清掃を行った。

確認項目	確認結果
	■2号機低圧タービン組み立て中のタービンロータの位置 ずれ
	組み立て中の低圧タービンロータを仮止めしていた治具が 変形し、わずかな位置ずれが生じた。低圧タービンを開放 し点検を実施したところ、動翼に微小な接触痕が複数確認 された。
	■1号機使用済燃料貯蔵プールからの水飛散 使用済燃料貯蔵プールの水約45リットル(放射能量約7 50万ベクレル)が使用済燃料貯蔵プール周辺に飛散し た。そのうち,養生シート外には約8リットル(放射能量 約130万ベクレル)の水が飛散した
	飛散した水については速やかに拭き取った。外部への放射 能の影響はなし。

表 3 2007 年 7 月に発生した中越沖地震による柏崎刈羽原子力発電所に対する影響

確認項目				確認約	結果			
 1施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	【柏崎刈羽1~7号機】 新潟県中越沖においてマグニチュード6.8の地震が発生, 震央距離16km,震源距離23kmに位置している柏崎刈羽にお いては,全号機(1~7号機)にて基準地震動を超える加 速度を確認,原子炉建屋基礎版上での最大加速度のもの は,1号機での680gal(設計時の最大加速度応答値 273gal)であった。各号機で原子炉建屋基礎版上での最大 加速度(観測値,設計時応答値)は下表の通り。							
	観測	則値	南	北	東	西		下
			観測	設計	観測	設計	観測	設計*
	1 号機	最下階	311	274	680	273	408	(235)
	2 号機	最下階	304	167	606	167	282	(235)
	3 号機	最下階	308	192	384	193	311	(235)
	4号機	最下階	310	193	492	194	337	(235)
	5号機	最下階	277	249	442	254	205	(235)
	6 号機	最下階	271	263	322	263	488	(235)
	7号機 最下階 267 263 356 263 355 (235)							(235)
○ 1 宏会上手面ね訊供。○	 1~7号機で観測された地震観測記録に基づき,設計時の解放基盤表面と原子炉建屋基礎版上の関係を参照し,解放基盤表面における地震動を推定したところ,基準地震動S₂(450gal)に対して1~4号機で約2.3~3.8倍,5~7号機で1.2~1.7倍の結果であった。 設備点検の結果,地震の影響による構造強度や機能維持に影響を与えると考えられる異常が確認されてはいるが,機器の重大な損傷をもたらしたものではなく,原子炉の安全性を阻害する可能性のない軽微な事象であった。 安全上重要な設備については,1号機において異常が数例確認されているが,点検,仮置き中だったために転倒,損傷に至ったこと,地震に伴う消火系配管の建屋接続部の損傷に伴う浸水によって機能喪失に至ったことが原因であり,地震による直接的な異常は確認されていない。 							照準 幾い子。異に接原。設し地5 能る炉 常転続因計,震~ 維がの が倒部で時解動7 持,安 数,のあ
②-1安全上重要な設備への 影響(波及影響も含む)	1 相崎刈 無し	$133 1 \sim 7$	万懱】					
 ②-2既存のAM設備への影響(波及影響も含む) 	【柏崎刈 無し	羽1~7	「号機】					
③-1外部電源への影響	【柏崎刈 4 回線	」羽1~7 ≹中、2回	、 5機】]線が模	とまた	ź			
③-2D/Gへの影響	【柏崎刈	羽1~7	′ 号機】		·····			
③-3補機冷却系への影響	【柏崎刈	J羽 1 ~ 7	′ 号機】					
③-4 電源融通の可能性								
 ③-5復旧操作へのアクセス 性 	… ・ 土捨て セス性	「場北側糸 への影響	↓面の− ◎無し。)	ー部が <u>前</u>)	肩落。(復旧操	唯作のた	めのアク

確認項目	確認結果
 ④その他(安全機能には影響 しないもの,留意しておく必 要のある事項) 	■3号機 原子炉建屋地下2階にあるSLC系注入ライン配管(格納容 器外側貫通部)の近傍に置いてあったISI用RPV模擬ノズル が地震によって移動し,配管の板金保温材に衝突したと思 われるへこみを確認。配管及びサポートには損傷は無かっ たものの,安全上重要な設備に影響が及ぶ可能性があった ことを踏まえ,室内にて床に固定されていない重量物を固 定及び固縛する対策を講じた。 なお,所内変圧器のダクトの基礎が不等沈下したことに よって火災が発生した。
	■1号機 不等沈下によって消火配管が破断し,漏水及び消火系の 機能喪失に至ったものと推定。 地震による建屋周辺の地盤沈下などのため,消火系配管 が破断(消火系の機能喪失)。 さらに,原子炉複合建屋とモニタ建屋(屋外)間のトレ ンチの沈下によって生じた接続部の隙間及びトレンチ本体 のひび割れ損傷部を通じ,消火系から漏れた水が原子炉複 合建屋内に流入。 その結果,機能要求は無かったものの主蒸気放射線モニ タ検出器が浸水によって損傷するとともに,復水補給水ポ ンプ(AM設備)についても浸水による被害を受けた。

表 4 2009 年 8 月に発生した駿河湾の地震による浜岡原子力発電所に対する影響

確認項目	確認結果
 ①施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	【浜岡3,4号機】 地震観測記録と基準地震動S ₁ による応答を比較した結 果,地震観測記録は基準地震動S ₁ による応答を十分下回っ ており,地震時に耐震設計上重要な設備が弾性状態にあっ たことから,設備の健全性が確保されていることを確認し た。
	【浜岡5号機】 耐震設計上重要な設備について,地震観測記録と基準地 震動S ₁ による応答を比較し,原子炉建屋の一部の階におい て地震観測記録における最大加速度が基準地震動S ₁ による 最大応答加速度をわずかに上回っている以外は,地震観測 記録における最大加速度が基準地震動S ₁ による最大応答加 速度を下回っていることを確認した。 原子恒建屋の地震観測記録の床応答スペクトルは一部
	の周期帯において基準地震動S ₁ の床応答スペクトルな, 前 の周期帯において基準地震動S ₁ の床応答スペクトルを上回 っているが,主な耐震設計上重要な機器及び配管系の固有 周期では下回っており,地震時に弾性状態にあったことか ら,これらの機器及び配管系の健全性が確保されているこ とを確認した。
	5号機については,主要な設備は弾性状態にあり,健全 性は確保されていることを確認していたが,一部の観測記 録で基準地震動S ₁ による応答加速度を超えたことから,地 震観測記録を入力とした地震応答解析を行い,設備の健全 性評価の結果は,全ての設備が弾性状態にあったことか ら、設備の健全性が確保されていることを確認した
 ②-1安全上重要な設備への 影響(波及影響も含む) 	【浜岡3~5号機】無し
 ②-2既存のAM設備への影響(波及影響も含む) 	【浜岡3~5号機】無し
③-1外部電源への影響	 【浜岡3~5号機】 3,4号機:3ルート6回線すべてが健全 5号機:2ルート4回戦すべてが健全
<u>③−2D/Gへの影響</u> <u>③−3補機冷却系への影響</u>	【浜岡3~5号機】無し 【浜岡3~5号機】無し
<u>③-4</u> 電源融通の可能性 ③-5復旧操作へのアクセス 性	【浜岡3~5号機】可能 【浜岡5号機】 タービン建屋の東側屋外エリアの地盤沈下(15m×15m, 10cm程度)を確認した。
④その他(安全機能には影響 しないもの,留意しておく必 要のある事項)	■5号機"補助変圧器過電流トリップ"(常用系):地震の 振動でトリップ接点の接触による保護継電器の誤動作(リ レーチャター発生)⇒より強い耐震性を有する保護継電器 への取替を検討した結果,水平36,上下16程度の実力のあ る保護継電器に取替。
	■5号機制御棒駆動機構モータ制御ユニットの故障警報点 灯:5号機"補助変圧器過電流トリップ"(常用系)との従 属性
	■原子炉建屋管理区域区分の変更,原子炉建屋5階(放射 線管理区域内)燃料交換エリア換気放射線モニタ指示の一 時的な上昇:地震の揺れによって,燃料集合体表面の放射 性物質を含んだ鉄錆びなどが,プール水に遊離し,プール

確認項目	確認結果
	表面からの放射線線量率が上昇したものと推定。
	■主タービンスラスト軸受摩耗トリップ警報点灯及びター ビン開放点検:各種接触痕,変形,ネジ損傷などが見られた。

表 5 2011年3月に発生した東北地方太平洋沖地震による

福島第一原子力発電所に対する影響

調査項目		調査結果								
①施設に影響した地震規模	【福島第一	$-1 \sim 6$	号機】							
(地震観測記録と基準地震動	平成23年	3月11日	,東北	地方太平	区洋沖地	震が発	生,福島	計第		
の関係)	一原子力発	電所1	~6号機	後の原子	炉建屋	基礎版上	におい	T		
	観測された	最大加;	速度と星	医準地震	動Ssかり	ら求めた	- 基礎版	Ŀ		
	の最大応省	加速度	を比較し	~た結果	, 2, /~ ~ ~ /	3, 5方	酸の東	四		
	万回の観測	方回の観測記録が,基準地震動Ssによる最大応答加速度を								
	上凹つしい 唐 (細測値	上回つしいた。谷 一 機 で 尿 ナ 炉 運 屋 基 礎 放 上 で の 最 大 加 速								
	及(既例個		计	1 1 1	<u> 祝い</u>)) 一	₽°° ⊢	下	7		
	観測値	観測値 観測 設計 観測 設計 観測 設計								
	1 日 秋秋	400	407	4.4.7	400	050	410	_		
	一方機	460 %	487	447	489	258	412			
	2 号機	348🔆	441	550	438	302	420			
	3号機	322🔆	449	507	441	231	429			
	4号機	281 💥	447	319	445	200	422			
	5 号機	311 🔆	452	548	452	258	427			
	6 号機	6 号機 288※ 445 444 448 244 415								
	※記録開	※記録開始から130~150秒程度で記録は中断								
	広フに冲电ルバ広フに冲电に氾思として かん「チェン ⁴⁶									
	□ 「「「」」 「「」「」 「」 「」 「」 「」 「」 「」 「」	産及い 	京于炉 角 蒙気 玄両	1 座に 取	但されが 子 に 枚	○ 女 王 ⊥ 妯 穴 男	二里安な 産の執	煖 全		
	主系配管	「炉心支」	崇太尔自持撞击地	コロ,加	御棒 (打	看入性)	次 曲 が ど)	17		
	加え、1号	ム水配官, が心又対悟理初及い間卿律(押八住) なこ) に 加え、1号機については非常用復水器系配管 原子恒再循								
	環系配管な	環系配管などについて、地震観測記録を用いた応答解析と								
	基準地震動	書準地震動を用いた応答解析で得られた地震荷重を比較し								
	た結果,ほ	た結果、ほとんどの機器及び配管系において基準地震動Ss								
	による地震	による地震荷重の方が大きく、それらについては地震直後								
	に安全機能	は保持	可能な別	能であ	ったと	評価され	ている	0		
	一部,地	震観測調	記録を用	いた応	答解析	こよる地	震荷重	\mathcal{O}		
	「万が大きか	った機	器及び酢	出管糸に	ついて	も,適切	」な応答	値		
	を評価する	っため実	初の構造	と考慮	するな。	どの解せ	「モアル	() 7		
	見しと任	「つに症」	朱,	≞地晨期 ⊑キゎを	を用い	こ応谷幣 て 羽根	宇灯によ	ੇ ਜ		
	北長何里の	カかへ	さく評価 てけ E	日相にト	。加ん って「	し, 呪吻 可能た留	師能がか	可但		
	の右無たと	1 現場	たね,□	認を実	って, :	主要かす	四て頃 こ ポン	プ		
	などの機器	マンジン ほうしん	の周辺の)配管な	だい おうしょう どい おうしょう どい おうしょう しょうしん しょうしょう しょうしょう しょうしょう どうしょう しょうしょう とくり いくりん しょうしょう しょう	主 (C) を 方 音 な 指 傷	, い に な ど は	認		
	められなか	ったこ	とから、	地震時	及び地震	震直後に	おいて	\$		
	安全機能を	保持可问	能な状態	言にあっ	たもの。	と評価さ	れてい	0		
	る。									
②-1安全上重要な設備への	【福島第一	$-1 \sim 6$	号機】							
影響(波及影響も含む)	無し(推	定)								
2)-2既存のAM設備への影		$-1 \sim 6$	号機】	-19-04-37	J-1	. 7 . 18	Starte ()			
警(波及影響も言む)	个明(消	「アンド」	官に損傷 郷 ⊾ ≠ ⇒	か唯認	3717(1	いるか,		宗流		
① 1 从 如 雲 酒 ~ の 影 郷	<u> 初 己 ぴ 丿 に</u> 【 垣 自 笠 _	-よる影 ²	<u> </u>	_ られる	۰ <i>۱</i>					
◎ - 1 2 ℃ 印 电 你 、 ~ 2 万 彩 管	▲ 1 田 岡 舟 [−] 全 6 同 編	1 ~0 1 目 51	ヮ1成】 可線継ぎ	€車生						
	⊥ ±0回杨 ※1回絲	、「, J {は、エ	事のため	」、八)受雷停	止中					

調査項目	調査結果
③−2D/Gへの影響	【福島第一1~6号機】 影響無し(津波によって喪失。ただし,一部空冷式 D/G に ついては,津波襲来後も機能維持)
③-3補機冷却系への影響	【福島第一1~6号機】 影響無し(津波によって喪失)
③-4電源融通の可能性	 【福島第一1~6号機】 ・影響無し(津波によって喪失) ・5-6号機間については,仮設ケーブル敷設によって電源 融通実施
 ③-5復旧操作へのアクセス 性 	 ・道路に割れ、段差など有り。 ・防災道路ではないが斜面崩落による道路閉鎖箇所有り。
④その他(安全機能には影響 しないもの,留意しておく必 要のある事項)	【福島第一1~6号機】 詳細確認不可

表 6 2011年3月に発生した東北地方太平洋沖地震による

|--|

調査項目		調査結果								
 1施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	【福島第二1~4号機】 平成23年3月11日,東北地方太平洋沖地震が発生,福島第 二原子力発電所1~4号機の原子炉建屋基礎版上において 観測された最大加速度と基準地震動Ssから求めた原子炉建 基礎版上の最大応答加速度は下表の通り。全号機,原子炉 基礎版上(最地下階)で得られた最大加速度は,基準地震 動Ssに対する最大応答加速度を下回っていることが確認さ れている。									
	観測値	<i>細測値</i> 南北 東西 上下								
		観測	設計	観測	設計	観測	設計	_		
	1 号機	254	434	230💥	434	305💥	512			
	2 号機	243	428	196💥	429	232 🔆	504			
	3 号機	277🔆	428	216 🔆	430	208 🔆	504			
	4号機	210 🔆	415	205 🔆	415	288 🔆	504			
	※記録開	始から1	$30 \sim 15$	0秒程度	で記録	は中断				
 ②-1安全上重要な設備への 	原子炉建屋及び原子炉建屋に設置される安全上重要な機 能及び配管系(主蒸気系配管,原子炉格納容器,残留熱除 去系配管,炉心支持構造物及び制御棒(挿入性)など)に ついて地震観測記録を用いた応答解析と基準地震動Ssを用 いた応答解析で得られた地震荷重を比較した結果,一部の 機器及び配管系を除き基準地震動Ssによる地震荷重の方が 大きく,それらについては地震後に安全機能は保持可能な 状態であったと評価されている。一部,地震観測記録を用 いた応答解析による地震荷重の方が大きかった機器及び配 管系についても,適切な応答値を評価するため実物の構造 を考慮するなどの解析モデルの見直しを行った結果,基準 地震動を用いた応答解析による地震荷重の方が大きいこと が確認されており,地震後に安全機能は保持可能な状態で あったと評価されている。									
影響(波及影響も含む)	無し	· · · ·								
 ②-2既存のAM設備への影響(波及影響も含む) 	【福島第二 影響なし 流物含む)	.1~4. (消火系 による	号機】 系配管に 影響と ^ま	損傷が破 考えられ	霍認さł る。)	いている:	が, 津波	:(漂		
③-1外部電源への影響	【福島第二1~4号機】 4回線中,1回線機能停止 ※1回線は停止点検中。さらに1回線は,避雷器の損傷が 確認されたため,被害拡大防止を目的として受電停止の 上、復旧作業を実施。									
③-2D/Gへの影響	【福島第二 影響無し	1~4- (3号	号機】 機を除き	5, 津波	によっ	て機能喪	ē失)			
③-3補機冷却系への影響	【福島第二 影響無し	$1 \sim 4 - $ (3号	号機】 機を除き	5, 津波	によっ゛	て機能喪	[失]			
③-4 電源融通の可能性	【福島第二 影響無し	<u> 影響無し(3万機を除さ,律仮によつて機能受大)</u> 【福島第二1~4号機】 影響無し(津波によって喪失)								

調査項目	調査結果
③-5復旧操作へのアクセス性	・道路に割れ,段差など生じるも影響無し。
 ④その他(安全機能には影響 しないもの,留意しておく必 要のある事項) 	【福島第二1~4号機】 特に影響無し

表 7 2011年3月に発生した東北地方太平洋沖地震による

 	近に対する影響
東囲原ナノ光竜ト	灯に刈り () 影響

確認項目	確認結果
①施設に影響した地震規模	発電所において観測した地震加速度は17ガルであり、設備
(地震観測記録と基準地震動	への影響はなかった。
の関係)	
②-1安全上重要な設備への	無し
影響(波及影響も含む)	
②-2既存のAM設備への影	無し
響(波及影響も含む)	
③-1外部電源への影響	むつ幹線(2回線),東北白糠線の停止に伴い,外部電源が
	喪失した。
	同日 23 時 59 分に東北白糠線が復旧した。
③-2D/Gへの影響	外部電源喪失に伴い,非常用ディーゼル発電機が自動起動し
	た。
③-3補機冷却系への影響	
③-4電源融通の可能性	可能
③-5復旧操作へのアクセス	無し
性	
④その他(安全機能には影響	■8台あるモニタリングポストのうち4台がバッテリ切れ
しないもの、留意しておく必	によって停止した。
要のある事項)	

表 8 2011年3月に発生した東北地方太平洋沖地震による

女川原子力発電所に対する影響

	確認	項目				確認結	果		
 (1)施設に (地震観の関係) 	こ影響 記 測 記 鋦	へ」 した地震規模 ≹と基準地震動	女 (14 に お 5 7 14 に お 5 7 2 動 し 大 版 の の し 、 の の の の の の の の の の の の の の の の	原 中 分 て	電しが(よ度 所2た自保全っに は号東動安号てつ	1号ペントングンジェント	、	幾が定格ろ, 定格ろ, しました した 機系が 記録 の 記録 の に 地 二 の 一 、 で た の 一 、 で に 地 二 の 一 、 に い 一 に 地 二 、 の 一 、 し に い 一 に い 一 に い 一 に い 一 に い 一 に い 一 で し に の 一 、 一 で し に の 一 、 一 で し に し で 一 、 の 一 、 の 一 、 の 一 、 う で 、 、 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 一 、 の 、 、 の 、 、 の 、 、 の 一 、 の 、 、 の 、 、 の 、 、 の 、 、 の 一 、 の 一 、 の 、 、 の 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 の 、 の 、 の 、 、 、 の 、 、 、 の 、 の 、 、 、 の 、 、 の 、 の 、 、 の 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 の 、 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 、 の 、 、 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 つ 、 つ 、 つ 、 つ 、 つ 、 つ 、 つ 、 つ 、 つ 、 つ 、 つ つ つ つ つ つ つ つ つ つ つ つ つ	熱出力一 3月11日 て全号機 加速建屋地 計どおり の関係は
原	子炉弹	建屋の最大加速	度值						
				観測記録		基準	地震動Ssに対	対する	
		観測位置	最大	ト加速度値(カ	ゴル)	最大區	芯答加速度値	(ガル)	
			NS方向	EW方向	UD方向	NS方向	EW方向	UD方向	
		屋上	2000*1	1636	1389	2202	2200	1388	
	1.巳 地	燃料取替床 (5階)	1303	998	1183	1281	1443	1061	
	「丂惤	1階	573	574	510	660	717	<mark>5</mark> 27	
		基礎版上	540	587	439	532	529	451	
		屋上	1755	1617	1093	3023	2634	1091	
	2旦機	燃料取替床 (3階)	1270	830	743	1220	1110	968	
	ム 13 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1階	605	569	330	724	658	768	
		基礎版上	607	461	389	594	572	490	
		屋上	1868	1578	1004	2258	2342	1064	
	3.早機	燃料取替床 (3階)	956	917	888	1201	1200	938	
	3 73 132	1階	657	692	547	792	872	777	
		基礎版上	573	458	321	512	497	476	
 ②-1安 影響(波 ②-2四 	全上重 天全上重 天会の	 (要な設備への) (も含む) (M設備への影) 	【女川 ●タービン が発生 て, Sノ (A) 】 毎1」	 ※2 調告 1号】 ビン建屋地 ン建屋地 ンまま ノP水冷 及び(C) 	地震動 地震動 地下1階 下1階 に た の た め の た め が	高圧電源 おいて 高 に 対す る 最大 で 着 に 対す る 最大 に 対す る 最大	京盤火災 高圧電源盤 -1Aの火災 型動した B とした。	286-1Aか 後の影響 マHRポ、	らの発煙 こよっ ンプ
響(波及	影響も	含む)							
③-1外	部電源	えへの影響	5 女 1 浜 内 線 送 号 1 に れ て 批 震 の 2 線 送 47 れ て れ た れ で れ た れ た れ た れ た れ た れ た れ た れ た れ て れ た れ た れ で た れ た れ た ろ た れ た ろ た れ た れ た れ た た れ た れ た わ た わ た わ た わ た わ た た た た た た た た た た た た た	 泉中4回湾 泉子力発 (275) (66kV事線回 (66kV事線の (66kV事線) (1, 10) <l< th=""><th>線電V))にみ20 が所系)がうな15 機に)) 学な15 る 避 思 わ の 線 る と 思 わ</th><th> 喪,松売統た分月のれ のれ 一次 一次</th><th>記 記</th><th> 5回線 5回線 275回線 21000 2</th><th>(牡鹿幹線 kV系),塚 は、当社管 て,松島幹 2分に牡鹿 に7日10時 兵支線がそ 器内部に部</th></l<>	線電V))にみ20 が所系)がうな15 機に)) 学な15 る 避 思 わ の 線 る と 思 わ	 喪,松売統た分月のれ のれ 一次 一次	記 記	 5回線 5回線 275回線 21000 2	(牡鹿幹線 kV系),塚 は、当社管 て,松島幹 2分に牡鹿 に7日10時 兵支線がそ 器内部に部

確認項目	確認結果
	分放電が発生した。(地震に伴う牡鹿幹線1,2号線停止の 原因は,避雷器の損傷によるものと考えられる。)
③−2D/Gへの影響	【女川1号】 ●非常用DG(A)界磁回路の損傷 DG(A)の同期検定器が動作せず、しゃ断器を手動で投 入することができなかった。また、DG(A)が起動して いない状態でDG(A)のしゃ断器が自動投入される事象 が発生した。 ⇒メタクラ6-1Aで発生した火災の影響によって制御ケ ーブルに溶損などが生じ、地絡が発生した。
	【女川2号】 ●浸水による DG(B) 及び DG(H) の停止 海水ポンプ室の取水路側から流入した海水が地下トレンチ を通じて原子炉建屋内の一部に浸水し, RCW(B) 系及び HPCW の二系統が機能喪失したことによって, DG(B) ならびに DG(H) が自動停止となった。(DG(A) は健全)
③-3補機冷却系への影響	【女川2号】 ●浸水によるDG(B)及びDG(H)の停止 海水ポンプ室の取水路側から流入した海水が地下トレンチ を通じて原子炉建屋内の一部に浸水し,RCW(B)系及びHPCW の2系統が機能喪失した。
③-4電源融通の可能性	女川1号にて,地震又は火災の影響によって一部しゃ断器に 不具合が生じた。
③-5復旧操作へのアクセス 性	無し
④その他(安全機能には影響 しないもの,留意しておく必 要のある事項)	【女川1号】 ●高圧電源盤しゃ断器の投入不可 主に定検時に使用する高圧電源盤(1号機所内電源を2号 機から受電する際に使用)において,電源盤内に設置して いるしゃ断器が地震の振動によって傾き,投入スイッチを 入切するためのインターロックローラーが正常位置から外 れた。 ●母連しゃ断器制御電源喪失 火災が発生した高圧電源盤の制御電源回路の溶損による地 絡や短絡の影響によって,制御電源回路が接続されている しゃ断器用制御電源回路の電圧が変動し,"制御電源喪失" 警報が発生した。 ●125V直流主母線盤の地絡(計2件) 高圧電源盤の火災によって,配線に地絡が発生し,地絡警 報が発生した。 【女川2号】 特に無し 【女川3号】 ●使用済燃料プールゲート押さえ脱落 使用済燃料プールど原子炉ウェル間の通路部に設置してい る使用済燃料プールゲート(No.1及びNo.2)を固定してい るゲート押さえ金具計4個のうち3個のスイングボルトが 外れていた。 ●HPCS圧力抑制室吸込弁自動での全開動作不能 4月7日の余震の揺れによる影響と推定される圧力抑制室 の水位変動時に,本来全開するはずのHPCS圧力抑制室吸込

確認項目	確認結果
	作(推定)によって,全開にならなかった。(手動での全開 は可能)
	【各号機共通】 ●制御棒駆動系ハウジング支持金具サポートバーのずれ 制御棒駆動機構ハウジングのハウジング支持金具(グリッ ド)が、1号機で1カ所、2号機で2カ所、3号機で1カ所 ずれていることを確認した。これによる制御棒駆動機構ハウ ジングの落下防止機能への影響はなかった。

表 9 2011年3月に発生した東北地方太平洋沖地震による

東海第二発電所に対する影響

調査項目	調査結果
 ①施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	 ・観測記録に基づく各階の最大応答加速度は、建設時の当初設計時に用いた最大応答加速度及び新耐震設計審査指針に基づく耐震安全性評価で設定した基準地震動Ssの最大応答加速度以下であることを確認した。 ・原子炉建屋の地震観測記録による床応答スペクトルは、一部の周期帯(約0.65秒から約0.9秒)で建設時の設計に用いた床応答スペクトルを上回っているが、耐震設計上重要な機器及び配管系のうち主要な設備の固有周期では、地震観測記録が工認設計波による床応答スペクトル以下であることを確認した。
②-1安全上重要な設備への 影響(波及影響も含む)	地震による影響は無し
 ②-2既存のAM設備への影響(波及影響も含む) 	地震による影響は無し
③-1外部電源への影響	3回線中3回線が機能喪失 (13日12:32 154kV系東海原子力線復旧)
③-2D/Gへの影響	地震による影響は無し(津波によってDGSW-2Cが水没 したため、DG-2Cは手動停止)
③-3補機冷却系への影響	地震による影響は無し
③-4電源融通の可能性	可能 (HPCS-DG から 6.9kV の交流電源融通,予備充電器を 介して直流電源融通)
③-5復旧操作へのアクセス 性	地震による影響は無し
 ④その他(安全機能には影響 しないもの,留意しておく必 要のある事項) 	 タービン設備などの一部で、耐震クラスB、Cクラスの設備が損傷を受けた。 【蒸気タービン】 ・低圧タービン及び高圧タービンの動翼と隔板の一部に接触による摺動痕 ・高圧タービンと低圧タービンの中間軸受け基礎グラウト部の割れ、基礎ボルトの緩み(10本中3本) 【主発電機関係】 ・主発電機軸受及び励磁機及び副励磁機廻りに接触痕、間隙拡大などの損傷

2.2 海外のPRA関連文献調査

海外文献についての調査結果をまとめたものを表 10に示す。海外の地震PRA関連文献 を調査した結果,他にモデル化すべき起因事象は存在しなかった。

海外文献では原子炉冷却材喪失(LOCA)についてサイズや場所を分類した評価を例示し ている文献があったが、今回の評価ではLOCAを1つの起因事象として選定した。これは 次の2つの理由による。1つは、同一の地震動による複数の配管損傷の相関性を考慮すると、 事故シナリオを詳細に分析すること(緩和系にどの程度期待できるか判断すること)が困難 で、破断の規模による分類が厳密には難しいこと、もう1つは、相関を持つ配管を同定し、 損傷の相関係数を全ての配管に対して適切に算定することは現状の評価技術では困難が伴 うことである。このため、地震 PSA 学会標準に許容されている取り扱いとして、これらの 事象はより厳しい条件となる起因事象に包含させ、この起因事象は格納容器内にある一次 系配管の大規模な破断により ECCS 性能を上回る大規模な原子炉冷却材喪失(excessive LOCA)が発生するものと想定し、緩和系によって事象の進展を抑制することができずに炉 心損傷に至る可能性があるため、保守的に直接炉心損傷に至る起因事象で代表させた。

		表 10 海外文献調查結果	
	文献名	記載內容	確認結果
Η	ASME標準 ⁽ⁱ	地震 PRA で考慮される起因事象は例えば以下を含める。	左記の例は、すべて評価
	(ご39ページ)	(a) RPV やその他の大型機器 (steam generator, recirculation pump, pressurizer) の損傷	上考慮していることを
		(b) 様々なサイズと場所での LOCA	確認した1。
		(c) トランジェント (LOPA は特に重要)	
		PCS やヒートシンクが地震要因で使用できない場合(例えば, TOPA)と使用できる場合	
		の両方のトランジェントを考慮すべきである。	
		また,他のトランジェントの例として, service water のような重要なサポート系の喪失や	
		直流電源の喪失がある。	
2	IAEA Safety Guide	特に,以下のタイプのシナリオに至る起因事象はモデル化すべきである。	左記の例は, すべて評価
	$(SSG-3)^{(ii)}$	(a) 大型機器の損傷 (例 : reactor pressure vessel, steam generators, pressurizer)	上考慮していることを
	$(108 \sim - \checkmark)$	(b) 様々なサイズと場所の LOCA。極小 LOCA も考慮すべき。	確認した 1。
		(c) LOPA	
		(d) 様々なサポートシステムの喪失を含むトランジェント (PCS が失敗するシナリオと	
		失敗しないシナリオ)	
3	EPRI 地震 PRA 実	"initiator"は例えば以下を含める。	左記の例は, すべて評価
	施ガイ ド ⁽ⁱⁱⁱ	(a) RPV やその他の大型機器 (steam generator, recirculation pump, pressurizer 等)の損傷	上考慮していることを
	$(5 \sim 7 \stackrel{\sim}{\sim} - \stackrel{\sim}{>})$	(b) 様々なサイズと場所の LOCA	確認した1。
		(c) サポートシステム故障 (service waterや直流電源)	
		(d) トランジェント (LOPAは特に重要)	
l			

1 様々なサイズと場所の TOCA(極小 TOCA を含む)については、本評価においては完全相関を仮定しているため、保守的に極大 TOCA としてまとめて評価している。

ľ			
	文献名	記載內容	確認結果
		PCSやヒートシンクが地震要因で使用できない場合(例えば, TOPA)と使用できる場	
		合の両方のトランジェントを考慮すべきである。外電が使用可能だが他の地震要因損傷	
		があるシーケンスも考慮しなければならない。(なぜなら、LERFを考えた場合、外電	
		やIAが必ず喪失すると仮定することが、必ず保守的とは限らないからである。例えば格	
		納容器隔離弁が外電喪失やIA喪失で安全側に閉動作となる。)	
		Excessive LOCAやリレーチャタリングも考慮しなければならない。	
4	スイス連邦原子力安	以下のように起因事象を定義しなければいけない。	左記の起因事象数を、評
	全検査局 (ENSI)	・最小の HCLPF 値とスクリーニング値の間の地震加速度範囲に、少なくとも 7 つの起	価において満足してい
	$\mathrm{PSA} \check{\mathcal{M}} \not\prec \check{\mathcal{F}}^{(\mathrm{iv})}$	因事象が含まれないといけない。	ることを確認した。ま
	(25 ページ)	・スクリーニング値を超える地震加速度で、1 つの起因事象を定義しないといけない。	た, スクリーニング値を
			超える地震加速度では,
			起因事象「建屋・構築物
			損傷」が支配的である。
5			左記の例は, すべて本評
			価において考慮してい
			ることを確認した 1。
			いつい
-			てはスコープ対象外)

本資料のうち、枠囲みの内容は機密事項に属しますので公開できません。

<調査対象文献一覧>

- (i ASME/ANS RA-Sa-2009, "Addenda to ASME/ANS RA-S-2008: Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications, an American National Standard." American Society of Mechanical Engineers, New York, NY. 2009.
- (ii IAEA Safety Guide SSG-3, "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants." International Atomic Energy Agency, Vienna, Austria, 2010.
- (iii Seismic Probabilistic Risk Assessment Implementation Guide. EPRI, Palo Alto, CA: 2003. 1002989.
- (iv Probabilistic Safety Assessment (PSA): Quality and Scope, Guideline for Swiss Nuclear Installations. Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland: 2009. ENSI-A05/e.