資料1-2

重大事故等対策の有効性評価に係る シビアアクシデント解析コードについて

(第1部 SAFER)

平成 27 年 5 月 東北電力株式会社 東京電力株式会社 中部電力株式会社 中国電力株式会社

- SAFER -

1.	はじ	めに	1 - 1
2.	重要	現象の特定	1-2
2	2.1	事故シーケンスと評価指標	1-2
2	2.2	ランクの定義	1-6
2	2.3	物理現象に対するランク付け	1-8
3.)	解析	モデルについて	1-15
3	3.1	コード概要	1-15
3	3.2	重要現象に対する解析モデル	1-16
3	8.3	解析モデル	1 - 17
3	8.4	入出力	1-53
4.	妥当	性確認	1-55
4	. 1	重要現象に対する妥当性確認方法	1-55
4	. 2	T B L 実験解析	1-59
4	. 3	R O S A - Ⅲ実験解析	1-69
4	. 4	F I S T - A B W R 実験解析	1-78
4	. 5	実機解析への適用性	1-87
5. 🤇	有効	性評価への適用性	1-91
5	5.1	不確かさの取り扱いについて(評価指標の観点)	1-91
5	5.2	不確かさの取り扱いについて(運転操作の観点)	1-93
6.	参考	文献	1-96
添作	寸 1	解析コードにおける解析条件	1-99

添付 2 相関式, モデルの適用性 1-103

1. はじめに

本資料は、炉心損傷防止に関する重大事故等対策の有効性評価(以下、「有 効性評価」と称す。)に適用するコードのうち、SAFER Ver.3(以下、「S AFERコード」と称す。)について、

・有効性評価において重要となる現象の特定

- ・解析モデル及び入出力に関する説明
- ·妥当性確認
- ・有効性評価への適用性

に関してまとめたものである。

2. 重要現象の特定

2.1 事故シーケンスと評価指標

SAFERコードが適用される炉心損傷防止対策における事故シーケン スグループについて、具体的な事故シーケンス及びその事象の推移と評価 指標について記述する。SAFERコードが適用される炉心損傷防止対策 における事故シーケンスグループは、出力運転中の原子炉を対象とした以 下の6グループである。

- •高圧•低圧注水機能喪失
- 高圧注水・減圧機能喪失
- · 全交流動力電源喪失
- ·崩壞熱除去機能喪失
- LOCA時注水機能喪失
- ・格納容器バイパス(インターフェイスシステムLOCA)
- (1) 高圧·低圧注水機能喪失

この事故シーケンスグループは,原子炉の出力運転中に,運転時の異常 な過渡変化または事故(LOCAを除く)の発生後,高圧注水機能が喪失 し,原子炉減圧には成功するが,低圧注水機能が喪失することを想定する。

具体的な事故シナリオとして「給水流量の全喪失+RCIC及びECC S(高圧注水系及び低圧注水系)起動失敗」を想定する。給水流量の全喪 失後,原子炉水位は急速に低下し,原子炉水位低信号が発生して原子炉は スクラムするため未臨界が確保される。しかし,原子炉水位低信号でRC IC及びECCS(高圧注水系及び低圧注水系)の起動に失敗する。原子 炉水位低信号でMSIVが閉止すると原子炉圧力は上昇し,原子炉圧力が SRVの設定値に到達すると断続的に弁から蒸気が放出され,これにより 原子炉の圧力はSRV設定値近傍に維持される。一方,原子炉注水機能喪 失の状況下では原子炉内保有水が減少し続け,いずれは炉心露出により燃 料被覆管温度が上昇し,炉心損傷に至る。

この事象に対する炉心損傷防止対策としては,代替注水設備等による炉 心冷却機能の確保が挙げられる。

炉心損傷防止対策のうち,高圧代替注水設備を使用する場合には,高圧 状態の原子炉へ注水を開始する。SRVからの冷却材の流出により原子炉 水位は低下するが,高圧代替注水設備による原子炉注水開始により原子炉 水位は回復し事象は回復する。低圧代替注水設備を使用する場合には,手 動操作によりSRVを開き,原子炉を急速減圧し,原子炉の減圧後に低圧 代替注水系による原子炉注水を開始する。原子炉の急速減圧を開始すると, 冷却材の流出により原子炉水位は低下し,有効燃料棒頂部を下回るが,低 圧代替注水系による注水を開始すると原子炉内保有水及び原子炉水位が回 復し、炉心は再冠水することにより事象収束に向かうことになる。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

(2) 高圧注水·減圧機能喪失

この事故シーケンスグループは,原子炉の出力運転中に,運転時の異常 な過渡変化又は事故(LOCAを除く)の発生後,高圧注水機能が喪失し, かつ,原子炉減圧機能が機能喪失することを想定する。

具体的な事故シナリオとして「給水流量の全喪失+RCIC及びECC S(高圧注水系)起動失敗+原子炉の減圧失敗」を想定する。給水流量の 全喪失後,原子炉水位は急速に低下し,原子炉水位低信号が発生して原子 炉はスクラムするため未臨界が確保される。しかし,原子炉水位低信号で RCIC及びECCS(高圧注水系)の起動に失敗する。原子炉水位低信 号でMSIVが閉止すると原子炉圧力は上昇し,原子炉圧力がSRVの設 定値に到達すると断続的に弁から蒸気が放出され,これにより原子炉の圧 力はSRV設定値近傍に維持される。一方,原子炉が高圧に維持され低圧 注水系による原子炉注水が困難な状況下では,原子炉内保有水が減少し続 け,いずれは炉心露出により燃料被覆管温度が上昇し,炉心損傷に至る。

炉心損傷を防止するために,代替自動減圧ロジックにより,SRVが開 き原子炉を減圧し,原子炉の減圧後にECCS(低圧注水系)により原子 炉注水を開始する。原子炉の急速減圧を開始すると,冷却材の流出により 原子炉水位は低下し,有効燃料棒頂部を下回るが,低圧注水系による注水 が開始すると原子炉内保有水及び原子炉水位が回復し,炉心は再冠水する ことにより事象収束に向かうことになる。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

(3) 全交流動力電源喪失

この事故シーケンスグループは,原子炉の出力運転中に,送電系統又は 所内主発電設備の故障等により,外部電源が喪失するとともに,非常用所 内電源系統も機能喪失し,安全機能を有する系統及び機器の全交流動力電 源が喪失することを想定する。

具体的な事故シナリオとして「外部電源喪失+非常用ディーゼル発電機の機能喪失」を想定する。外部電源喪失後,タービン蒸気加減弁急速閉または原子炉水位低信号で原子炉はスクラムするため未臨界が確保される。 また,原子炉水位低でRCICが自動起動して水位は維持される。しかし, 非常用ディーゼル発電機の起動失敗により全交流動力電源喪失となり,また,直流電源が枯渇し,RCICが機能喪失した場合には原子炉内保有水が減少し続け,いずれは炉心露出により燃料被覆管温度が上昇し,炉心損傷に至る。

炉心損傷を防止するために,交流電源設備による給電ができない一定期 間直流電源を確保し,RCICによって原子炉水位を適切に維持しつつ, 代替電源設備,低圧代替注水系の準備が完了したところで,原子炉の減圧 及び低圧注水系または低圧代替注水系による原子炉注水を開始する。原子 炉の減圧は,SRVにより手動操作にて実施する。減圧を開始すると,冷 却材の流出により原子炉水位は低下するが,低圧代替注水系等による注水 開始により原子炉水位が回復するため,事象収束に向かうことになる。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

- (4) 崩壊熱除去機能喪失
 - ① 取水機能喪失

この事故シーケンスグループは,原子炉の出力運転中に,運転時の異常 な過渡変化又は事故(LOCAを除く)の発生後,原子炉注水には成功す るが,取水機能喪失により崩壊熱除去機能が喪失することを想定する。

具体的な事故シナリオとして「給水流量の全喪失+取水機能喪失」を想 定する。外部電源喪失後,タービン蒸気加減弁急速閉または原子炉水位低 により原子炉はスクラムするため未臨界が確保される。また,原子炉水位 低でRCICが自動起動して水位は維持される。一方,原子炉内で崩壊熱 により発生する蒸気がSRVを介して徐々に流出するため,格納容器の圧 力及び温度が上昇し,いずれは格納容器が先行破損し,その後炉心露出に より燃料被覆管温度が上昇し,炉心損傷に至る。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

② RHR機能喪失

この事故シーケンスグループは,原子炉の出力運転中に,運転時の異常 な過渡変化又は事故(LOCAを除く)の発生後,原子炉注水には成功す るが,残留熱除去系の故障により崩壊熱除去機能が喪失することを想定す る。

具体的な事故シナリオとして「給水流量の全喪失+RHR機能喪失」を 想定する。給水流量の全喪失後,原子炉水位は急速に低下し,原子炉水位 低信号により原子炉はスクラムするため未臨界が確保される。また,原子 炉水位低でRCICが自動起動して水位は維持される。一方,原子炉内で 崩壊熱により発生する蒸気がSRVを介して徐々に流出するため,格納容 器の圧力及び温度が上昇し,いずれは格納容器が先行破損し,その後炉心 露出により燃料被覆管温度が上昇し,炉心損傷に至る。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

(5) LOCA時注水機能喪失

この事故シーケンスグループは,原子炉の出力運転中に,原子炉冷却材 圧力バウンダリを構成する配管の大規模な破断(大破断LOCA)あるい は中小規模の破断(中小破断LOCA)の発生後,高圧注水機能,低圧注 水機能及び原子炉減圧機能が喪失することを想定する。

具体的な事故シナリオとして「中小破断LOCA+ECCS(高圧注水 系,低圧注水系)起動失敗」を想定する。中小破断LOCA発生後,原子 炉はスクラムするため未臨界が確保される。しかし,高圧注水系,低圧注 水系及び自動減圧系の起動失敗により,原子炉水位が低下し,やがて炉心 露出により燃料被覆管温度が上昇し,炉心損傷に至る。

この事象に対する炉心損傷防止対策としては,代替注水設備等による炉 心冷却機能の確保が挙げられる。

炉心損傷防止対策のうち,高圧代替注水設備を使用する場合には,高圧 状態の原子炉へ注水を開始する。SRVからの冷却材の流出により原子炉 水位は低下するが,高圧代替注水設備による原子炉注水開始により原子炉 水位は回復し事象は回復する。低圧代替注水設備を使用する場合には,手 動操作によりSRVを開き,原子炉を急速減圧し,原子炉の減圧後に低圧 代替注水系による原子炉注水を開始する。原子炉の急速減圧を開始すると, 冷却材の流出により原子炉水位は低下するが,低圧代替注水系による注水 を開始すると原子炉水位が回復し,炉心は再冠水することにより事象収束 に向かうことになる。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

なお、大破断LOCA時は炉心の著しい損傷までの事象進展が早く、国 内外の先進的な対策と同等のものを考慮しても、炉心損傷防止対策を有効 に実施することはできないため、格納容器破損防止対策を講じて、その有 効性を確認している。

(6) 格納容器バイパス (インターフェイスシステムLOCA)

この事故シーケンスグループは,原子炉冷却材圧力バウンダリと接続された系統で,高圧設計部分と低圧設計部分のインターフェイスとなる配管のうち,隔離弁の故障等により低圧設計部分が過圧され破損する事象を想定する。

具体的な事故シナリオとして、「高圧炉心注水系の吸込配管(ABWR)」、 「低圧注水系の注水配管(BWR)」等の破損を想定する。機器破損等の 発生後、原子炉水位は急速に低下し、原子炉水位低信号が発生して原子炉 はスクラムするため未臨界が確保される。しかし、破損口から冷却材が流 出するため原子炉内保有水が減少し、炉心損傷に至る。

炉心損傷を防止するために, RCIC及びECCS(高圧系)により炉 心を冷却することによって炉心の著しい損傷の防止を図り, また, インタ ーフェイスシステムLOCAの発生箇所を隔離することによって, 格納容 器外への原子炉冷却材の流出の防止を図る。これにより事象収束に向かう ことになる。

したがって、本事象では炉心露出・ヒートアップの可能性があるため、 燃料被覆管温度が評価指標である。

炉心損傷防止対策における事故シーケンスに対し,有効性評価上要求される判断基準は,以下の5点である。

- a. 燃料被覆管の温度(1200℃以下)
- b. 燃料被覆管の酸化量(15%以下)
- c. 原子炉冷却材圧力バウンダリにかかる圧力

(最高使用圧力の 1.2 倍以下)

- d. 格納容器圧力バウンダリにかかる圧力(限界圧力以下)
- e. 格納容器圧力バウンダリにかかる温度(限界温度以下)

原子炉設置変更許可申請解析に記載した解析結果から、判断基準に対し 十分な余裕があり評価指標として燃料被覆管の温度で代表できると考えら れる b.を除く, a. c. d. e.を評価指標として取り上げる。このうち, c. はSRVの作動により原子炉圧力の上昇が抑えられ, SRVの設定圧力以 下に抑えられるため評価指標から除外する。また, d. と e. はSAFER コードの評価範囲以外であるため除外する。

2.2 ランクの定義

本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された物 理現象のうちSAFERコードで評価する事象において考慮すべき物理現 象を対象に,表 2-1 の定義に従って「H」,「M」,「L」,及び「I」 のランクに分類し、「H」及び「M」に分類された物理現象を重要現象として抽出する。

ランク	ランクの定義	本資料での取り扱い
Н	評価指標及び運転操作に	物理現象に対する不確かさを実験と
	対する影響が大きいと考	の比較等により求め、実機評価にお
	えられる現象	ける評価指標及び運転操作への影響
		を評価する
М	評価指標及び運転操作に	事象推移を模擬する上で一定の役割
	対する影響が中程度と考	を担うが,影響が「H」に比べて顕
	えられる現象	著でない物理現象であるため、必ず
		しも不確かさによる実機評価におけ
		る評価指標及び運転操作への影響を
		評価する必要はないが、本資料では、
		実機評価への影響を感度解析等によ
		り評価するか、「H」と同様に評価
		することとする
L	評価指標及び運転操作に	事象推移を模擬するためにモデル化
	対する影響が小さいと考	は必要であるが、評価指標及び運転
	えられる現象	操作への影響が明らかに小さい物理
		現象であるため、検証/妥当性確認
		は記載しない
Ι	評価指標及び運転操作に	評価指標及び運転操作へ影響を与え
	対し影響を与えないか, ま	ないか、又は重要でない物理現象で
	たは重要でない現象	あるため、検証/妥当性確認は記載
		しない

表 2-1 ランクの定義

2.3 物理現象に対するランク付け

本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された物 理現象のうち 2.1 節で述べた事象進展を踏まえ,2.2 節のランクの定義に 従い,評価指標及び運転操作への影響に応じて「H」及び「M」に分類す る事で物理現象の中から重要現象を特定する。この結果を表 2-2 に示す。

ランク付けにあたっては,燃料被覆管温度は炉心冷却,炉心水位,燃料 被覆管のヒートアップから影響を受けるため,これらに関する物理現象も 相対的に高いランクとしている。また,運転操作等により原子炉を強制的 に減圧し,温度・圧力を低下させるシーケンスでは,原子炉の減圧により 代替注水設備を含む注水系からの冷却水の注水による炉心冷却を期待する ため,原子炉の減圧に寄与する物理現象も相対的に高いランクとしている。 以下に,物理現象ごとに考え方を示す。

(1) 核分裂出力 [炉心(核)]

評価する具体的な事故シーケンスは、いずれも事象発生後早期に原子炉 がスクラムし未臨界となるため、事故後長期における炉心露出後の燃料被 覆管温度上昇時の原子炉出力は崩壊熱となる。また、減速材直接発熱は核 分裂で発生するエネルギのうち、減速材の発熱に寄与する割合はきわめて 小さい。したがって、核分裂出力は燃料被覆管温度に対し重要度が低いと 考えられる。

(2) 出力分布変化 [炉心(核)]

評価する具体的な事故シーケンスは、いずれも事象発生後早期に原子炉 がスクラムし未臨界となるため、事象発生後スクラムするまでの時間が短 く、通常運転時からの出力分布変化には影響が小さい。したがって、出力 分布変化は燃料被覆管温度に対し重要度が低いと考えられる。

(3) 反応度フィードバック効果 [炉心(核)]

評価する具体的な事故シーケンスは、いずれも事象発生後早期に原子炉 がスクラムし未臨界となるため、事故後長期における炉心露出後の燃料被 覆管温度上昇時の原子炉出力は崩壊熱となる。したがって、反応度フィー ドバック効果は燃料被覆管温度に対し重要度が低いと考えられる。

(4) 制御棒反応度効果 [炉心(核)]

評価する具体的な事故シーケンスは、いずれも事象発生後早期に原子炉 がスクラムし未臨界となるため、事故後長期における炉心露出後の燃料被 覆管温度上昇時の原子炉出力は崩壊熱となる。したがって、制御棒反応度 及び制御棒速度は燃料被覆管温度に対し重要度が低いと考えられる。

(5) 崩壊熱 [炉心(核)]

評価する具体的な事故シーケンスは、いずれも事象発生後早期に原子炉 がスクラムし未臨界となるため、事故後長期における炉心露出後の燃料被 覆管温度上昇時の原子炉出力は崩壊熱となる。したがって、崩壊熱は燃料 被覆管温度に対し重要度が高いと考えられる。

(6) 三次元効果 [炉心(核)]

評価する具体的な事故シーケンスは、いずれも事象発生後早期に原子炉 がスクラムし未臨界となるため、核熱水力不安定事象は発生しない。した がって、核的な三次元効果は燃料被覆管温度に影響を与えない。

(7) 燃料棒内温度変化[炉心(燃料)]

評価する具体的な事故シーケンスは,事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象であるため,事故直後における燃 料棒内の熱を冷却材に放出する燃料ペレット径方向発熱密度分布,燃料ペ レット・燃料被覆管内熱伝導及び燃料ペレットー燃料被覆管のギャップ熱 伝達の影響は小さい。したがって,燃料棒内温度変化は燃料被覆管温度に 対し重要度が低いと考えられる。

(8) 燃料棒表面熱伝達 [炉心(燃料)]

評価する具体的な事故シーケンスは、事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象であるため、崩壊熱による燃料の 発熱及び燃料棒表面から冷却材への熱伝達が燃料被覆管温度変化の支配的 要因になる。原子炉減圧後の減圧沸騰により二相流動状態となった場合に は、二相壁面熱伝達により冷却される。また、炉心が露出した場合には、 蒸気単相流、燃料棒間の輻射熱伝達により冷却される。露出した燃料棒周 囲の蒸気が過熱され気液熱非平衡状態となる可能性があり、燃料棒表面熱 伝達に影響する。したがって、燃料棒表面熱伝達は燃料被覆管温度に対し 重要度が高いと考えられる。

(9) 沸騰遷移 [炉心(燃料)]

評価する具体的な事故シーケンスは、給水流量の全喪失あるいは小破断 LOCAを起因事象としており、炉心流量の減少は緩やかに変化し、事故 直後に原子炉がスクラムし原子炉出力が低下するため、燃料集合体で核沸 騰からの離脱(DNB)が発生する可能性は低い。一方、事故後長期にお いて炉心が露出する場合には,燃料被覆管温度が上昇するが,原子炉注水 により炉心が再冠水することによって,最終的には核沸騰状態に遷移して 冷却される。したがって,沸騰遷移は燃料被覆管温度に対し重要度が高い と考えられる。

(10) 燃料被覆管酸化[炉心(燃料)]

評価する具体的な事故シーケンスは、事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象であるため、燃料被覆管が高温に なるとジルコニウムー水反応による発熱量が増加すると考えられる。しか し、代替注水設備等の原子炉注水により炉心が冷却され、燃料被覆管温度 はジルコニウムー水反応が顕著になるほど上昇しない。したがって、燃料 被覆管酸化は燃料被覆管温度に対し重要度が中程度と考えられる。

(11) 燃料被覆管変形 [炉心(燃料)]

評価する具体的な事故シーケンスでは、事象発生後早期に原子炉がスク ラムし未臨界となるため、燃料ペレットが膨張することはなくPCMIは 発生しない。燃料被覆管が高温になり、燃料棒内圧の上昇に伴う膨れ・破 裂が発生する場合には、燃料棒間の輻射熱伝達への影響,燃料集合体内の 流路閉塞による原子炉注水時に冷却への影響がある。破裂が発生する場合 には、燃料被覆管内面酸化による反応熱への影響が考えられるが、崩壊熱 に比べて燃料被覆管温度への寄与は小さい。燃料被覆管の破裂により核分 裂生成物が格納容器内に放出されると、格納容器雰囲気放射線モニタによ り炉心損傷の判断を実施した場合、格納容器スプレイや格納容器ベントの 操作タイミングに影響することとなる。ただし、この操作は事象発生後早 期に行うものではない。したがって、燃料被覆管変形は燃料被覆管温度に 対し重要度は中程度と考えられる。

(12) 沸騰・ボイド率変化[炉心(熱流動)]

評価する具体的な事故シーケンスは、事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象であり、サブクールボイドの発生 は燃料被覆管温度に影響しない。原子炉減圧操作を実施した場合には、下 部プレナム等で減圧沸騰(フラッシング)が発生する。これに伴い発生し たボイドにより形成された二相水位はボイド率変化に応じて変化する。し たがって、沸騰・ボイド率変化は燃料被覆管温度に対し重要度が高いと考 えられる。

再循環ポンプトリップ及び代替注水設備等による原子炉注水により,原 子炉圧力容器下部で温度成層化が発生する可能性があるが,事故後長期に おいては十分に混合され影響は無視できる。

(13) 気液分離(水位変化)·対向流[炉心(熱流動)]

評価する具体的な事故シーケンスは,原子炉減圧操作に伴う下部プレナ ムフラッシングが発生する事象であり,フラッシングにより発生したボイ ドを含む二相水位の変化は,炉心露出時の燃料被覆管温度に影響がある。 したがって,気液分離(水位変化)は燃料被覆管温度に対し重要度が高い と考えられる。

一方, 炉心上部でのCCFL, CCFLブレークダウンは, 事象進展が 緩やかなこと及び代替注水設備等による原子炉注水はダウンカマまたは炉 心バイパス領域に注水されるため発生しない。炉心スプレイ系による原子 炉注水が行われる場合には発生する可能性があるが, 短期間であるため影 響は小さい。したがって, 対向流は燃料被覆管温度に対し重要度が低いと 考えられる。

(14) 気液熱非平衡 [炉心(熱流動)]

- 評価する具体的な事故シーケンスは、事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象であるため、露出した燃料棒周囲 の蒸気が過熱され気液熱非平衡状態となる可能性がある。炉心の一部で発 生した過熱蒸気は、上部プレナムからシュラウド外に至る経路において飽 和蒸気になると考えられ、熱流動挙動への影響は小さいと考えられる。し かしながら、気液熱非平衡の影響は、(8)でも述べたように燃料棒表面熱伝 達に影響するため燃料被覆管温度に対し重要度が高いと考えられる。
- (15) 圧力損失 [炉心(熱流動)]

評価する具体的な事故シーケンスは、いずれも事故直後に再循環ポンプ がトリップし炉心流量が早期に低下するため、炉心部の圧力損失の影響は 小さい。また、炉心バイパス部は、局所的な圧力損失は小さい。したがっ て、圧力損失は燃料被覆管温度に対し重要度が低いと考えられる。

(16) 三次元効果 [炉心 (熱流動)]

評価する具体的な事故シーケンスは、事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象であるため、ダウンカマに注水さ れた冷却材が下部プレナムを経由して炉心部へ、または、炉心バイパス部 から燃料集合体の漏えい経路を経由して冷却材が炉心部へ流入する際、炉 心部の各燃料棒集合体は圧力損失が均一となるよう燃料集合体の出力に応 じて燃料集合体間で流量配分される三次元効果が発生する。したがって、 三次元効果は燃料被覆管温度に対し重要度が高いと考えられる。

- (17) 冷却材流量変化「原子炉圧力容器]
 - 評価する具体的な事故シーケンスは、いずれも事故直後に再循環ポンプ がトリップし炉心流量が早期に低下するため、強制循環時の冷却材流量変 化の影響は小さい。また、事故後長期において炉心が露出する場合には、 原子炉水位が低下して炉心シュラウド内外の自然循環が維持できないた め、自然循環時の冷却材流量変化の影響は小さい。したがって、冷却材流 量変化は燃料被覆管温度に対し重要度が低いと考えられる。
- (18) 冷却材放出(臨界流·差圧流)[原子炉圧力容器]
- 評価する具体的な事故シーケンスは、SRVを使用した原子炉の急速減 EあるいはLOCA後の冷却材放出により炉心露出が発生し、燃料被覆管 温度が上昇する可能性がある。また、原子炉減圧に伴い低圧注水量が変化 するため、炉心冷却への影響が大きい。したがって、冷却材放出は燃料被 覆管温度に対し重要度が高いと考えられる。
- (19) 沸騰・凝縮・ボイド率変化 [原子炉圧力容器]
- 評価する具体的な事故シーケンスは、SRVを使用した原子炉の急速減 圧あるいはLOCA後の冷却材流出による原子炉減圧があり、減圧沸騰に よる各部の蒸気発生とボイド率変化が二相水位に影響する。また、原子炉 への冷却水の注水により蒸気が凝縮される。炉心以外の領域の沸騰・凝縮・ ボイド率変化は燃料被覆管温度に対し、重要度は中程度と考えられる。
- (20) 気液分離(水位変化)·対向流[原子炉圧力容器]
- 評価する具体的な事故シーケンスは,事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象である。炉心以外の領域の気液分 離(水位変化)・対向流は燃料被覆管温度に対し,重要度が中程度と考え られる。
- (21) 気液熱非平衡 [原子炉圧力容器]

評価する具体的な事故シーケンスは,事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象である。しかし,炉心以外の領域 の気液熱非平衡は燃料被覆管温度に対し影響はない。

(22) 圧力損失 [原子炉圧力容器]

評価する具体的な事故シーケンスは,事故後長期において炉心が露出す る場合に燃料被覆管温度が上昇する事象である。しかし,炉心以外の領域 の圧力損失は燃料被覆管温度に対し直接的な影響はないため,重要度が低いと考えられる。

(23) 構造材との熱伝達 [原子炉圧力容器]

評価する具体的な事故シーケンスは、SRVを使用した原子炉の急速減 EあるいはLOCA後の冷却材流出により原子炉が減圧され、構造材から 冷却材への熱伝達が発生する。しかし、崩壊熱に比べて寄与は小さい。し たがって、構造材との熱伝達は燃料被覆管温度に対し重要度が低いと考え られる。

- (24) ECCS注水(給水系・代替注水設備含む)[原子炉圧力容器] 評価する具体的な事故シーケンスは、ECCSまたは代替注水設備による原子炉注水により炉心が冷却される事象である。したがって、ECCS (給水系・代替注水設備含む)による原子炉注水は燃料被覆管温度に対し 重要度が高いと考えられる。
- (25) ほう酸水による拡散 [原子炉圧力容器]

評価する具体的な事故シーケンスは、いずれもほう酸水による注入を考 慮していないため、ほう酸水による拡散は燃料被覆管温度に影響を与えな い。

(26) 三次元効果 [原子炉圧力容器]

評価する具体的な事故シーケンスは、いずれも事故後長期において炉心 が露出する場合に燃料被覆管温度が上昇する事象であり、炉心流量急減過 程において下部プレナム内の流量配分が不均等になる場合があるが、事故 直後に再循環ポンプがトリップするため影響は小さい。したがって、三次 元効果は燃料被覆管温度に対し重要度が低いと考えられる。

表 2-2 炉心損傷防止対策の有効性評価の物理現象のランク

\sim			青正.	青 正 沪	会办法	品 歯 劫	IOCA 時	故幼宏聖
$ \rangle $		事故シーケンス	而圧・	同 工 任	主父仇	历	上UCA 時	俗称谷谷
サロシークンス ガループ			水機能	下楼能	勤 別 胞 喪 失	於 五 饭 能喪失	住 小 饭 能喪失	$(\chi \gamma \gamma)$
			<u></u> 東失	<u></u> 喪失		n R R		ーフェイ
								スシステ
								ム LOCA)
八本二、			燃料被覆	燃料被覆	燃料被覆	燃料被覆	燃料被覆	燃料被覆
分規	分類物理現象		管温度	管温度	管温度	管温度	管温度	管温度
	(1)	核分裂出力	L	L	L	L	L	L
	(2)	出力分布変化	L	L	L	L	L	L
炉心	(3)	反応度フィードバック効果	L	L	L	L	L	L
(核)	(4)	制御棒反応度効果	L	L	L	L	L	L
	(5)	崩壊熱	<u>H</u>	<u>H</u>	<u>H</u>	<u>H</u>	<u>H</u>	<u>H</u>
	(6)	三次元効果	Ι	Ι	Ι	Ι	I	Ι
	(7)	燃料棒内温度変化	L	L	L	L	L	L
	(8)	燃料棒表面熱伝達	<u>H</u>	<u>H</u>	H	H	H	H
炉心	(9)	沸騰遷移	<u>H</u>	<u>H</u>	<u>H</u>	<u>H</u>	<u>H</u>	H
()****)	(10)	燃料被覆管酸化	M	M	M	M	M	M
	(11)	燃料被覆管変形	M	M	M	M	M	M
	(12)	沸騰・ボイド率変化	<u>H</u>	<u>H</u>	H	H	H	<u>H</u>
	(13)	気液分離(水位変	H	H	H	H	H	H
炉心		化)・対向流						
(熱流動)	(14)	気液熱非平衡	H	<u>H</u>	H	H	H	<u>H</u>
	(15)	圧力損失	L	L	L	L	L	L
	(16)	三次元効果	<u>H</u>	<u>H</u>	H	H	H	H
	(17)	冷却材流量変化	L	L	L	L	L	L
	(18)	冷却材放出(臨界流·	H	H	H	H	H	Н
		差圧流)						
	(19)	沸騰・凝縮・ボイド率	M	M	M	M	M	M
原子炉		変化						
圧力	(20)	気液分離(水位変	M	M	M	M	M	M
容器		化)・対向流						
	(21)	気液熱非平衡	Ι	Ι	Ι	Ι	Ι	Ι
^{し女主} 弁を含	(22)	圧力損失	L	L	L	L	L	L
む)	(23)	構造材との熱伝達	L	L	L	L	L	L
	(24)	ECCS注水(給水	<u>H</u>	<u>H</u>	<u>H</u>	H	<u>H</u>	H
		系・代替注水設備含む)						
	(25)	ほう酸水による拡散	Ι	Ι	Ι	Ι	I	Ι
	(26)	三次元効果	L	L	L	L	L	L

3. 解析モデルについて

3.1 コード概要

SAFERコードは、長期間の原子炉内熱水力過渡変化及び炉心ヒート アップを解析するコードであり、原子炉圧力容器に接続する各種一次系配 管の破断事故、原子炉冷却材流量の喪失事故及び原子炉冷却材保有量の異 常な変化等を取り扱うことができる。

本コードは仮想的な高出力燃料集合体1体を含めて原子炉圧力容器内を9 ノードに分割し,原子炉圧力及び各ノードの水位変化等を計算する。また, 各種のECCS及びRCIC等の性能特性を入力することにより,それら の性能を評価することができる。炉内冷却材量の評価に当たっては,上部 タイプレート及び炉心入口オリフィス等でのCCFL及び炉心上部プレナ ムにおけるサブクール域の局在化により冷却材が炉心下部プレナムに落水 する現象(CCFLブレークダウン現象)を考慮することができる。

また,本コードでは,平均出力燃料集合体及び高出力燃料集合体に対し て燃料ペレット,燃料被覆管及びチャンネルボックス等の温度計算を行う。 燃料被覆管の温度計算においては,その冷却状態に応じた熱伝達係数を考 慮でき,また,燃料棒間の輻射及び燃料棒とチャンネルボックスの輻射を, 考慮することができる。

また、燃料被覆管と冷却水または水蒸気との化学反応(ジルコニウム-水反応)を Baker-Just の式によって計算し、表面の酸化量を求める。さら に、燃料棒内の圧力を計算することによって、燃料被覆管の膨れと破裂の 有無を評価し、破裂が起きた場合には、燃料被覆管の内面に対してもジル コニウム-水反応を考慮する。

本コードの入力は,原子炉出力,原子炉圧力等の初期条件,原子炉の幾 何学的形状及び水力学的諸量,燃料集合体及び炉心に関するデータ,プラ ント過渡特性パラメータ,ECCS等の特性,想定破断の位置及び破断面 積等であり,出力として,原子炉圧力,原子炉水位,燃料被覆管最高温度 (PCT),燃料被覆管酸化量等が求められる。

なお、SAFERコードは「軽水型動力炉の非常用炉心冷却系の性能評価指針」(以下、「ECCS性能評価指針」と称す。)で妥当性が認められているモデルを使用しており、BWRプラントの設計基準事故のLOC A解析(ECCS性能評価解析)に適用されている。

3.2 重要現象に対する解析モデル

2章において重要現象に分類された物理現象について、その物理現象を評価するために必要となる解析モデルを表 3-1 に示す。

分類	重要現象	必要な解析モデル
炉心	崩壊熱	崩壊熱モデル
(核)		
	燃料棒表面熱伝達	燃料棒表面熱伝達モデル
炉心	沸騰遷移	
(燃料)	燃料被覆管酸化	ジルコニウム-水反応モデル
	燃料被覆管変形	膨れ・破裂評価モデル
	沸騰・ボイド率変化	二相流体の流動モデル
	気液分離(水位変化)·対	
(劫法)	向流	
(熱流動)	三次元効果	
	気液熱非平衡	燃料棒表面熱伝達モデル
	冷却材放出(臨界流・差圧	臨界流モデル
西フに	流)	
原于炉	沸騰・凝縮・ボイド率変化	二相流体の流動モデル
上月谷岙	気液分離(水位変化)·対	
(地かし女王	向流	
#を百む)	ECCS注水(給水系・代	原子炉注水系モデル
	替注水設備含む)	

表 3-1 重要現象に対する解析モデル

3.3 解析モデル(1)(2)

SAFERコードの計算モデルは熱流動解析を実施する熱水力モデルと 燃料棒熱解析を実施する炉心ヒートアップモデルに大別される。主要な計 算モデルを表 3-2 に示す。

3.3.1 熱水力モデル

SAFERコードは熱力学的に均質,平衡を仮定した熱水力モデルを持ち, 圧力容器内の冷却材体積を炉心シュラウド等の炉内構造物による物理的な境界にしたがって 8 ノードに区分する。また,仮想的な高出力燃料集合体1体を独立のノードとしてモデル化している。

原子炉圧力は,圧力容器内を1点で近似し,圧力容器全体の冷却材に対 する質量及びエネルギの保存式に基づき計算する。

各ノードの水位挙動や冷却材保有量の計算には、質量、運動量及びエネ ルギの保存則を適用し、二相流体の流動モデルとしてドリフトフラックス モデル及び気液界面からの蒸気離脱流に対する気泡上昇流モデル、燃料上 部等でのCCFLモデルを用いている。なお、運動量保存式は下部プレナ ムが満水のときに再循環流量及び炉心入口流量を求めるために用いられ、 炉心シュラウド内外の圧力損失のバランスを考慮している。

また,大破断LOCA時の再冠水過程に下部プレナムと炉心に水位が 別々に形成されるときの炉心各チャンネルの平行流路の流動挙動を,実験 に基づいて近似的にモデル化している。

なお,破断口及びSRVからの流出流量は臨界流モデルを用いて計算し, 原子炉圧力が低下すると差圧流モデルに切り替わる。

(1) ノード分割

実機解析に用いるノーディングを図 3-1 に示す。ノード間の矢印は流路 を表わし、その方向は通常運転状態の流れの向きを表わしている。

原子炉圧力容器内は、冷却材保有量計算のために 8 ノードに分割している。これらのノードは、BWRの典型的な領域を与えるように選んでおり、 物理的な境界や流路抵抗などによって分けている。また、高出力燃料集合体1体を独立のノードとして設ける。

ノード間の冷却材の移動は流路を介して行い,LOCA模擬実験でCC FLが確認された燃料集合体上部と下部及び炉心バイパス下部の流路につ いてはCCFL計算を可能としている。

① ノード1:下部プレナム

下部プレナムは、制御棒案内管外側の下部プレナム領域であり、ベッセ ル壁と炉心支持板によって仕切られている。ジェットポンプ内も下部プレ ナムの領域としているが、ジェットポンプ内の水位は、シュラウド内の圧 損とジェットポンプを通る圧損を考慮することにより、下部プレナム内の 水位とは別に計算する。

定格出力時においては,再循環ポンプによりダウンカマ領域の冷却水が 下部プレナムに供給され,炉心入口オリフィスを介して燃料集合体下部に 配分される。

ノード2:制御棒案内管

制御棒案内管は,制御棒案内管上部での燃料支持金具での流路抵抗により,炉心バイパスノードとは切り離している。

このノードは、上部の燃料支持金具との間隙及び下部の制御棒駆動機構 との間隙を介して炉心バイパス及び下部プレナムと通じている。

③ ノード3:炉心

炉心は、炉内の全燃料集合体とし、炉心内のボイド率分布をより詳細に 計算するために、軸方向に12のサブノードに再分割する。これらのサブノ ードは、集合体下部及び集合体上部の非加熱ノード(各1ノード)、そし て10の加熱ノードからなる。炉心内の集合体下部の炉心入口オリフィスに よって下部プレナムに通じており、また、燃料上部タイプレートによって 上部プレナムに通じている。

④ ノード4:炉心バイパス

炉心バイパスは,燃料集合体間の領域(中心バイパス)及びシュラウド 壁と炉心最外周の燃料集合体の間の領域(周辺バイパス)とする。このノ ードは,制御棒案内管の上部にあり,種々の漏えい流路を通って炉心下部 と通じている。バイパス領域と下部プレナム間の小さな漏えい流路もまた 考慮する。

⑤ ノード5:上部プレナム

上部プレナムは、炉心上部の二相混合プレナム領域と、プレナム上部の 気水分離器を含む。炉心ノードとバイパスノードからの出口流量はこのノ ードで混合する。炉心スプレイスパージャ及び炉心注水スパージャからの 注入水とも、このノードで混合する。

上部プレナムから溢れた水と蒸気はそれぞれダウンカマと蒸気ドームに 移行する。 ⑥ ノード6:下部ダウンカマ

下部ダウンカマは,給水スパージャの下方に位置し,炉心シュラウド外 側のダウンカマ部の領域である。定格出力時において,このノードは未飽 和領域である。この未飽和水の水位は,給水が継続する間,給水スパージ ャの高さに維持される。この未飽和水ノードの質量及びエネルギ変化が上 部ダウンカマノードとは別に計算される。

⑦ ノード7:上部ダウンカマ

上部ダウンカマは,給水スパージャとダウンカマ水位との間の領域であ り,定格出力時においては,飽和領域である。このノードの上部の境界は 二相混合水位として変動し,下部はノード6によって区別されている。

⑧ ノード8:蒸気ドーム

蒸気ドームは,ダウンカマと上部プレナムそれぞれの二相混合水位上の 全蒸気空間とする。このノードの空間部体積は,ダウンカマや上部プレナ ムの二相混合水位が変化するにつれて変わることになる。

⑨ ノード9:高出力燃料集合体

炉心の燃料集合体とは出力の異なる燃料集合体の冷却材保有量,ボイド 率,水位及び燃料棒温度等を計算する目的のために高出力燃料集合体1体 が独立した仮想領域としてモデル化されている。このノードの熱水力挙動 は,すでに計算されている炉心の圧力損失から計算され,燃料棒温度計算 に反映される。高出力燃料集合体の計算結果は,他のノードの状態に影響 を与えない。

(2) 質量及びエネルギ保存式

質量及びエネルギの流れについて、下の略図に示す。流出量は、負の流 入量として考える。なお、対象としているノードを明記する必要がある場 合には、図 3-1 で用いられているノード番号を使用する。

未飽和ノード

飽和ノード

a. 未飽和ノードの質量及びエネルギ保存式 未飽和ノード*i*の質量保存式は、次式で与えられる。 $\dot{M}_{\ell_i} = (\Sigma W_g)_i + (\Sigma W_f)_i + (\Sigma W_\ell)_i = (\Sigma W)_i$ (3.3.1-1)

エネルギ保存式は、次式で与えられる。
•
$$\dot{Q}_i + (\Sigma h W)_i = M_{\ell_i} h_{\ell_i} + M_{\ell_i} \dot{h}_{\ell_i} - \alpha' V_{\ell_i} P$$
 (3.3.1-2)

(3.3.1-1), (3.3.1-2) 式より, エンタルピ変化率は, 次式のようになる。

$$\dot{h}_{\ell_i} = \left[\dot{Q}_i + (\Sigma h W)_i - h_{\ell_i} (\Sigma W)_i + \alpha' V_{\ell_i} \dot{P} \right] / M_{\ell_i}$$
 (3.3.1-3)
ここで,

- M : 冷却材質量
 Q : 伝熱または発熱による流入エネルギ
- W : 冷却材流量
- *h* : エンタルピ
 α' : 変換係数
- V : ノード体積
- P : 圧力

添字fは飽和液相,gは蒸気相,ℓは未飽和液相を示す。

b. 飽和ノードの質量及びエネルギ保存式 飽和ノードiの蒸気及び水の質量保存式は、それぞれ次式で与えられる。 $\dot{M}_{g_i} = (\Sigma W_g)_i + \dot{m'}_{f_{g_i}}$ $\dot{M}_{f_i} = (\Sigma W_\ell)_i + (\Sigma W_f)_i - \dot{m'}_{f_{g_i}}$ ここで、 $\dot{m'}_{f_{g_i}}$: フラッシング率

エネルギ保存式は、次式で表わされる。

$$\dot{Q}_i + (\Sigma hW)_i = \frac{d}{dt} (M_i h_i) - \alpha' V_i \dot{P}$$

 $= \dot{M}_{g_i} h_g + M_{g_i} \dot{h}_g + \dot{M}_{f_i} h_f + M_{f_i} \dot{h}_f - \alpha' (V_f - V_g) \dot{P}$
(3.3.1-5)

(3.3.1-5) 式左辺の正味エネルギ流入量は、次式で表わされる。
(
$$\sum hW$$
)_i = $h_g(\sum W_g)_i + h_f(\sum W_f)_i + \sum_j h_{\ell_j} W_{\ell_{ji}}$ (3.3.1-6)

さらに, 飽和水及び飽和蒸気のエンタルピが圧力変化に伴い飽和限界線 上にそって変化することから,

$$\dot{h}_f = \frac{dh_f}{dP}\dot{P} \quad , \qquad \dot{h}_g = \frac{dh_g}{dP}\dot{P} \quad (3.3.1-7)$$

の関係を用い, (3.3.1-4), (3.3.1-5), (3.3.1-6)及び (3.3.1-7) 式により, フラッシング率は, 次式のように求まる。

$$\dot{m}'_{fg_i} = \left\{ \dot{Q}_i + \sum_j (h_{\ell_j} - h_f) W_{\ell_{ji}} + \dot{P} \left[(\alpha' v_f - \frac{dh_f}{dP}) M_{f_i} + (\alpha' v_g - \frac{dh_g}{dP}) M_{g_i} \right] \right\} / h_{fg}$$
(3. 3. 1-8)

ここで, v_g : 蒸気の比体積 v_f : 液相の比体積

このフラッシング率は、以下に述べるような補正を加えて使用される。

c. 蒸気ドーム内の質量及びエネルギ保存式

蒸気ドームには,ダウンカマ及び上部プレナムからの蒸気が全て流入する。その質量保存式は,次式で与えられる。

$$m_{g_8} = (\Sigma W_g)_8 \tag{3.3.1-9}$$

蒸気ドームのエネルギ保存式より過熱エネルギは次式で表わされる。

$$\dot{E}_{sh} = \dot{Q}_8 + \dot{P}(\alpha' v_g - \frac{dh_g}{dP}) M_{g_8}$$
(3.3.1-10)

この過熱エネルギ(*E*_{sh})は、蒸気ドームに直接接しているノード、すなわち、上部プレナムとダウンカマのフラッシング率に補正項を加える形で配分される。これは、SAFERコードでは蒸気ドームに蒸気過熱を考慮しないようにしているため、水面で蒸発があるものとして補正しているものである。

$$\dot{m}_{fg,i} = \frac{\dot{E}_{sh}/h_{fg}}{\sum_{i=5}^{7} |\dot{m}_{fg,i}|} |\dot{m}'_{fg,i}| + \dot{m}'_{fg,i}$$
(3.3.1-11)
ここで,
 $i = 5$: 上部プレナム
 $i = 6,7$: ダウンカマ
 $\dot{m}_{fg,i} = \dot{m}'_{fg,i}$ (3.3.1-12)
ここで,
 $i = 1 \sim 4$ 及び $i = 9$: 上部プレナム及びダウンカマ以外のノード

d. 圧力変化率

SAFERコードでは圧力容器内の圧力がほぼ一様であることを仮定 しており、その圧力変化は、全圧力容器体積が一定であることから、次の ように導かれる。

$$\dot{V} = 0$$

= $\dot{M}_{g} v_{g} + M_{g} \dot{v}_{g} + \dot{M}_{f} v_{f} + M_{f} \dot{v}_{f} + \dot{M}_{\ell} v_{\ell} + M_{\ell} \dot{v}_{\ell}$ (3. 3. 1-13)

ここで, 圧力容器全体の質量変化率は, 高出力燃料集合体を除く原子炉 圧力容器内ノードの質量変化率を合計することにより計算される。これら は蒸気ドームを含めて, 以下のようになる。

$$\dot{M}_{g} = \sum_{i} \dot{M}_{g_{i}}, \qquad \dot{M}_{f} = \sum_{i} \dot{M}_{f_{i}}, \qquad \dot{M}_{\ell} = \sum_{i} \dot{M}_{\ell_{i}}$$
(3.3.1-14)

また、比容積の導関数は、次式で表わされる。

$$\overset{\bullet}{v}_{g} = \frac{dv_{g}}{dP} \overset{\bullet}{P}, \qquad \overset{\bullet}{v}_{f} = \frac{dv_{f}}{dP} \overset{\bullet}{P}, \qquad \overset{\bullet}{v}_{\ell} = \frac{dv_{\ell}}{dP} \overset{\bullet}{P}$$
(3.3.1-15)

正味の未飽和水エンタルピ変化率は、次式で表わされる。 $\dot{h}_{\ell} = \sum_{i} \dot{h}_{\ell_{i}} M_{\ell_{i}} / \sum_{i} M_{\ell_{i}}$ (3.3.1-16)

(3.3.1-14), (3.3.1-15)及び(3.3.1-16)式により, (3.3.1-13) 式は,以下のようになる。

$$\dot{P} = -\left[\dot{M}_{g} v_{g} + \dot{M}_{f} v_{f} + \dot{M}_{\ell} v_{\ell} + \dot{h}_{\ell} \frac{\partial v_{\ell}}{\partial h_{\ell}} M_{\ell}\right] / \left[M_{g} \frac{dv_{g}}{dP} + M_{f} \frac{dv_{f}}{dP} + M_{\ell} \frac{\partial v_{\ell}}{\partial P}\right]$$
(3. 3. 1–17)

(3.3.1-16)を(3.3.1-17)式に代入すると、圧力変化率の最終的な式

は、次のようになる。
$$\dot{P} = X/Y$$
 (3.3.1-18)

ここで、 X,Yは次式で表わされる。

$$X = \sum_{sat} \left\{ v_g \sum W_{g_i} + v_f \left[\sum W_{f_i} + \sum W_{\ell_i} \right] + \frac{v_{fg}}{h_{fg}} \left[\dot{\mathcal{Q}}_i + \sum \left(h_{\ell_j} - h_f \right) W_{\ell_{ji}} \right] \right\}$$

$$+ \sum_{sub} \left\{ \sum W_i \left[v_{\ell_i} - h_{\ell_i} \left(\frac{\partial v_{\ell}}{\partial h_{\ell}} \right)_i \right] + \left(\frac{\partial v_{\ell}}{\partial h_{\ell}} \right) \left[\dot{\mathcal{Q}}_i + \sum (hW)_i \right] \right\}$$
(3.3.1-19)

$$Y = \left[\frac{\partial v_g}{\partial P} + \frac{v_{fg}}{h_{fg}} \left(\alpha' v_g - \frac{dh_g}{dP}\right)\right] M_g + \left[\frac{\partial v_f}{\partial P} + \frac{v_{fg}}{h_{fg}} \left(\alpha' v_f - \frac{dh_f}{dP}\right)\right] M_f + \sum_{sub} \left[\left(\frac{\partial v_\ell}{\partial P}\right)_i + \alpha v_{\ell_i} \left(\frac{\partial v_\ell}{\partial h_\ell}\right)_i\right] M_{\ell_i}$$
(3. 3. 1-20)

e. 全体的な運動方程式

SAFERコードは下部プレナムと蒸気ドームの間で 3 つの経路を考 えており,各ループの運動方程式を解いている。その3つの経路とは,炉 心と健全側と破断側の2つに分けた冷却材再循環系である。

図 3-2 は、ジェットポンプ型BWRを例にして、圧力容器内について運動方程式を解いているループを示した図である。それぞれのループは蒸気ドームからダウンカマを通り、ジェットポンプを経て下部プレナムに至る。 そして、炉心、上部プレナムを通って蒸気ドームに戻る。図 3-2 を参照してループ"a"回りの運動方程式は次のようになる。

 $\Delta P_{1-2,s} + \Delta P_{2-3,s} + \Delta P_{JP,p} - \Delta P_{JP,f} - \Delta P_{3-4,s} - \Delta P_{3-4,f} = 0$ (3.3.1-21)

ここで、
 i-*j*: *i*から*j*への流路
 JP: ジェットポンプ
 s: 静圧差
 f: 摩擦または局所損失による圧損
 p: 駆動流によるジェットポンプ部の圧力上昇

同様な式がループ"b"にも書ける。SAFERコードは長時間の冷却 材保有量の分布の計算を意図したコードであり,短時間の再循環ポンプの 挙動の計算を意図しているものではない。後者の機能はLAMBコードに よってなされる。したがって,SAFERコードでは再循環ポンプはジェ ットポンプ内の圧力上昇分として簡単にモデル化されている。

各ループの再循環流量は、コーストダウン時定数を用いて指数関数的に

減衰するものとして、次式で与えられる。 $W_p = W_{p_0} e^{-t/\tau}$ (3.3.1-22) ここで、 W_p : 再循環流量 W_{p_0} : 初期再循環流量 τ : コーストダウン時定数

この流量を用いて,ジェットポンプの圧力上昇分 ΔP_{JP,P}は次式で求められる。

$$\Delta P_{JP,p} = \Delta P_{JP,p_0} \left(\frac{W_p}{W_{p_0}} \right)^2$$
(3.3.1-23)

ここで、Δ**P**_{JP,p}は、初期のジェットポンプの圧力上昇分を表わす。 また、ジェットポンプの摩擦圧損は、それぞれのループに対して次のように計算される。

$$\Delta P_{JP,f} = \left(\frac{K}{A^{2}}\right)_{JP} \frac{(W_{RC} - W_{P}) |W_{RC} - W_{P}|}{\rho_{f}} \phi_{JP}^{2} \qquad (3.3.1-24)$$

ここで、
(K/A²) : 圧損係数
W_{RC} : ジェットポンプ出口流量

$$W_{RC}$$
 : ジェットボンプ出口流
 ρ_f : 液相密度
 ϕ_{JP}^2 : 均質二相増倍係数

トランジェントの最初の数秒後,(3.3.1-24)式の $W_p = 0, W_{RC} - W_p \cong W_{RC}$ となり,両方のループは同一となる。炉心の摩擦圧損は3つの項の和で評価される。すなわち,炉心入口オリフィス部での局所圧損,燃料集合体の燃料棒部分の摩擦圧損,そしてスペーサと上部タイプレートによる一つにまとめた局所圧損(出口部で一つにまとめられている)である。

$$\Delta P_{3-4,f} = \left(\frac{K}{A^2}\right)_{SEO} \frac{W_{SEO}|W_{SEO}|}{\rho_f} \phi_{SEO}^2 + \left|\frac{fL}{D}\right|_{ch} \frac{W_{ch}|W_{ch}|}{2\rho_f} \phi_{\ell_0}^2 + \left(\frac{K}{A^2}\right)_{local} \left[\frac{W_{f_e}|W_{f_e}|}{\rho_f} + \frac{W_{g_e}|W_{g_e}|}{\rho_g}\right]$$
(3. 3. 1-25)

ここで,

fL/D : 燃料集合体の燃料棒部分の摩擦圧損係数 $\phi_{\ell_0}^2, \phi_{sEO}^2$: それぞれ炉心平均及び炉心入口オリフィスの二相増倍係数 A : 流路面積 ρ_s : 蒸気密度 添字eは炉心出口, chは燃料集合体の燃料棒部分を示す。 対向流状態では, 摩擦の項が非常に小さいため, ΔP_{3-4,f} は次のように評価される。

$$\Delta P_{3-4,f} = \frac{1}{2} \left(\frac{fL}{D} \right)_{ch} \left[\frac{W_{\ell,ch} |W_{\ell,ch}|}{\rho_f} + \frac{W_{g,ch} |W_{g,ch}|}{\rho_g} \right]$$
(3. 3. 1-26)

(3.3.1-24) 式と(3.3.1-25) 式を(3.3.1-21) 式に代入すると, それぞ れのループの運動量保存式は, 次のように表わされる。

$$\Delta P_{1-2,s} + \Delta P_{2-3,s} + \Delta P_{JP,p} - \left(\frac{K}{A^2}\right)_{JP} \frac{(W_{RC} - W_p) |(W_{RC} - W_p)|}{\rho_f} \phi_{JP}^2 - \Delta P_{3-4,s} - \left(\frac{K}{A^2}\right)_{SEO} \frac{W_{SEO} |W_{SEO}|}{\rho_f} \phi_{SEO}^2 - \left[\frac{fL}{D}\right]_{ch} \frac{W_{ch} |W_{ch}|}{2\rho_f} \phi_{\ell_0}^2 - \left(\frac{K}{A^2}\right)_{local} \left[\frac{W_{f_e} |W_{f_e}|}{\rho_f} + \frac{W_{g_e} |W_{g_e}|}{\rho_g}\right] = 0$$
(3. 3. 1-27)

さらに、下部プレナムの質量保存式より、次式が得られる。 $\frac{W_{g,RC_a}}{\rho_g} + \frac{W_{\ell,RC_a}}{\rho_\ell} + \frac{W_{g,RC_b}}{\rho_g} + \frac{W_{\ell,RC_b}}{\rho_\ell} + \frac{\mathbf{i}}{\mathbf{i}} \mathbf{v}_{fg}$ $- \frac{W_{\ell,SEO}}{\rho_\ell} - \frac{W_{g,SEO}}{\rho_g} - \frac{W_{L1} + W_{LEAK}}{\rho_\ell} - \frac{W_{brk}}{\rho} + \frac{\mathbf{i}}{P} \left\{ M_f \frac{dv_f}{dP} + M_g \frac{dv_g}{dP} \right\} = 0$ (3.3.1-28)

*W*_{brk} : 破断流量

(3.3.1-27)式と(3.3.1-28)式より下部プレナムが満水のときの再循環 流量及び炉心入口流量が決定される。インターナルポンプ型BWRに対し ても同様に計算される。

(3) 蒸気スリップ流

気液界面が存在する場合の気液界面に対する蒸気の相対速度は、 Zuber-Findlayのドリフトフラックスモデル⁽³⁾あるいはWilsonの気泡上昇 モデル⁽⁴⁾により求める。

SAFERコードでは蒸気泡上昇モデルとドリフトフラックスモデルに よる蒸気スリップ流を両方計算し、それらのスリップ流のうち大きい方が、 その領域から出る蒸気流量を決定する際に使用される。この場合、低ボイ ド率低流量の時は気泡上昇相関式、高ボイド率高流量の時はドリフトフラ ックス相関式が自動的に使用されることになる。 a. ドリフトフラックスモデル

ドリフトフラックスモデルは、分布係数*C*。及びボイドで重み付けた蒸気ドリフト速度*v*。を用いて蒸気の相対速度を求める。

水位面を通過する全体積流量 j_{out}は、ノードの体積が一定であるという 条件の下に質量保存式を解くと次式で与えられる。

$$\begin{split} j_{out} &= j_{in} + m_{fg} v_{fg} / A + \frac{\dot{P}}{A} \left\{ M_f \frac{dv_f}{dP} + M_g \frac{dv_g}{dP} \right\} \quad (3.3.1-29) \\ \hline \\ \texttt{CCCC}, \\ j_{out} &: \text{水位面の体積流束} \\ j_{in} &: \mathcal{I} - \mathbb{F} \mathcal{N} \square \text{O} \text{体積流束} \\ \hline \\ \texttt{COB}, \text{ 水位面での気相及び液相の速度はそれぞれ次のようになる}, \\ U_g &= C_o j_{out} + \overline{V}_{gj} \quad (3.3.1-30) \\ U_f &= \frac{j_{out} - \alpha_e U_g}{1 - \alpha_e} \quad (3.3.1-31) \\ \hline \\ \texttt{CCCC}, \\ U_g &: \text{気相速度} \\ U_f &: \text{液相速度} \end{split}$$

α_e : 水位面でのボイド率

水位面を離れる蒸気流量
$$W_{g,sw}$$
は、次式で表わされる。
 $W_{g,sw} = \rho_g A \alpha_e (U_g - U_f)$ (3.3.1-32)

b. 気泡上昇モデル

水の速度に対する蒸気泡の相対上昇速度は、Wilsonの関係式を用いて も計算される。この関係式により、圧力、ボイド率、及び水力直径の関数 としての蒸気泡の相対上昇速度 \overline{V}_{R} が得られる。

$$\overline{V_{R}} = \left[\frac{\alpha_{e}}{0.136h(P)f(P)}\right]^{1/1.78} \left[D_{H_{i}}f(P)^{1/0.19}g\right]^{0.5} ; \frac{\alpha_{e}}{h(P)f(P)} \le 2.840852$$

$$(3.3, 1-33)$$

$$\overline{V_{R}} = \left[\frac{\alpha_{e}}{0.75h(P)f(P)}\right]^{1/0.78} \left[D_{H_{i}}f(P)^{1/0.19}g\right]^{0.5} ; \frac{\alpha_{e}}{h(P)f(P)} > 2.840852$$

$$(3.3, 1-34)$$

$$\Xi \subseteq \mathfrak{C},$$

$$h(P) = \left(\frac{\rho_{g}}{\rho_{f} - \rho_{g}}\right)^{0.32}$$

$$f(P) = \left[\frac{1}{D_{H_i}} \sqrt{\frac{\sigma_{g_c}}{(\rho_f - \rho_g)g}}\right]^{0.19}$$

g : 重力加速度
D_H : 各ノードにおける水力直径
a_e : 各ノードにおける出ロボイド率
σ : 表面張力
ρ_g : 蒸気の密度
ρ_f : 飽和水の密度

各ノードからの蒸気流量 $W_{g,sw}$ は,蒸気泡上昇モデルから次式のように計算される。

$$W_{g,sw} = \rho_g A_e \alpha_e V_R \tag{3.3.1-35}$$

(4) 炉心内流動

CCFLは,幾何学的に狭くなった流路において,重力による液体の下 降流が,蒸気の上昇流により制限を受ける現象である。

SAFERコードでは、炉心入口オリフィス(炉心入口部)、上部タイ プレート(炉心出口部)、炉心バイパス頂部及び炉心バイパス底部の4箇 所でCCFLを考慮している。最も重要な場所は、燃料集合体の上部タイ プレート(炉心上部)と炉心入口オリフィス(炉心下部)である。炉心上 部におけるCCFLは、注入された炉心スプレイ水の炉心への下降流を遅 らせるが、一方、炉心下部におけるCCFLは、燃料集合体からの下部プ レナムへの落下水を減少させ、炉心の冷却材保有量を維持する効果がある。 SAFERコードでは、これら炉心上部、下部において水の下降流を予測 するのに、Wallis型の相関式⁽⁵⁾を用いている。この関係式を、以下に示す。

$$(j_g^*)^{1/2} D^{1/4} + K_1 (j_f^*)^{1/2} D^{1/4} = K_2 D^{1/4}$$
(3.3.1-36)

$$\begin{array}{l} z \in \mathcal{C}, \\ j_{g}^{*} = j_{g} \left[\frac{\rho_{g}}{g_{c} D(\rho_{f} - \rho_{g})} \right]^{1/2} \\ j_{f}^{*} = j_{f} \left[\frac{\rho_{f}}{g_{c} D(\rho_{f} - \rho_{g})} \right]^{1/2} \end{array}$$

$$(3.3.1-37)$$

$$(3.3.1-38)$$

ここで、 K_1 、 K_2 は定数であり、Dは形状固有の値である。この関係式における K_1 及び $K_2 D^{1/4}$ は、実験データから得られる。

また,再冠水過程において下部プレナムに二相水位が形成されている場合, 炉心中心部の高出力燃料集合体では気液並行上昇流, 炉心周辺部の低 出力燃料集合体では水の下降流(CCFLブレークダウン)が生じること が実験により示されている。

a. 気液並行上昇流モデル⁽⁶⁾⁽⁷⁾

炉心中心部の一部の高出力燃料集合体内では気液並行上昇流が生じる。 下部プレナムの水面下で発生した蒸気は、ジェットポンプ、または、イン ターナルポンプを通ってダウンカマ部へ流れるものと炉心へ流れるもの とに分けられる。SAFERコードでは、多チャンネル効果を模擬するた めに、高出力燃料集合体内での気液並行上昇流を考慮する。

これら燃料集合体内の全圧損特性をもとに気液並行上昇流の生じる高 出力燃料集合体の体数を求めるとともに、熱水力計算については、炉心領 域と高出力燃料集合体とに対して、次式に示す差圧バランス並びに炉心入 ロオリフィスの蒸気量バランスを考慮し、下部プレナムからの蒸気流入量 を求める。

$$\Delta P_{CORE}^{AVE} = \Delta P_{CORE}^{HOT}$$

$$W_{g,LP} = W_{g,SEO}^{AVE} \cdot (N_T - N_{HOT}) + W_{g,SEO}^{HOT} \cdot N_{HOT}$$

$$(3. 3. 1-39)$$

$$(3. 3. 1-40)$$

ここで,

ΔP_{CORE}^{AVE}	:	炉心領域の全圧損
ΔP_{CORE}^{HOT}	:	高出力燃料集合体の全圧損
$W_{g,LP}$:	下部プレナムから炉心へ流入する総蒸気量
$W^{AVE}_{g,SEO}$:	炉心領域の炉心入口オリフィスを通過する蒸気量
$W_{g,SEO}^{HOT}$:	高出力燃料集合体の炉心入口オリフィスを通過する蒸気量
N_T	:	全燃料集合体数
N_{HOT}	:	高出力燃料集合体の数

b. CCFLブレークダウンモデル

CCFLブレークダウン現象は、炉心スプレイスパージャが二相プール 水で水没している場合、上部プレナムに注入されたスプレイ水により周辺 燃料集合体上部にサブクール域の局在化が生じ、上部プレナムの冷却水が 周辺燃料集合体を通って下部プレナムへ落下する現象である。SAFER コードでは、この現象をCCFLブレークダウンモデルとして模擬してい る。すなわち,上部プレナム内ノードの水位がスプレイスパージャ位置よ り高くなり,かつ,上部プレナム内に流入したサブクール水による蒸気凝 縮割合がCCFLブレークダウン条件を満足した時にブレークダウンが 生じるとしている。

$$C_{D} = \frac{\sum W_{g} \cdot h_{fg}}{\sum W_{\ell} (h_{f} - h_{\ell})} < C_{D_{\max}}$$
(3. 3. 1-41)

ここで、 C_D : 凝縮係数 W_g : 上部プレナムに流入する蒸気流量 W_ℓ : 上部プレナムに流入する未飽和水流量 h_ℓ : 上部プレナムに流入する未飽和水のエンタルピ h_f : 飽和水のエンタルピ h_{fg} : 蒸発潜熱 $C_{D_{max}}$: CCFLブレークダウン条件を定める定数

上式における C_pは、上部プレナム内に流入した冷却水が、蒸気の凝縮 に寄与する割合を示している。 C_{Dmax}はBWR プラントの炉心及び上部プ レナムを実寸大で分割模擬した実験の結果に基づいて決められている。

c. 高出力燃料集合体モデル

高出力燃料集合体の熱水力挙動及び燃料棒ヒートアップ挙動を評価す るため、高出力燃料集合体モデルを適用している。この集合体は、炉心と 独立した領域として扱う。炉心の熱水力挙動を知るための質量、エネルギ 及び運動量保存式は、平均出力燃料集合体だけを用いて求める。これらの 計算により、平均出力燃料集合体の水位及び被覆管温度の他に、炉内各部 に分配される冷却水の質量、炉心上部・下部プレナム間の差圧、及び下部 プレナムの減圧沸騰による蒸気発生量等を求めている。

高出力燃料集合体モデルは、炉心の上部・下部プレナムの差圧に基づき 高出力燃料集合体への流入蒸気量を求める。これをもとに、高出力燃料集 合体の熱水力過渡変化及び燃料棒ヒートアップが計算される。なお、高出 力燃料集合体の熱水力過渡変化は、平均出力燃料集合体計算で用いられる ものと同じ熱水力モデルを用いて求めている。

(5) 破断流

破断箇所はSAFERモデルにおける任意のノードに,独立に,最大 5 箇所まで設定することができ,その破断面積は時間の関数として変化させ ることができる。破断流量は Moody のスリップ流モデル⁽⁸⁾または平衡均質流 モデル⁽⁹⁾に基づく臨界流を適用して計算する。

破断流の計算に用いる圧力はベッセル圧力と破断口中心より上の二相流 の静水圧を加えたものを用いる。

また,破断流の計算に用いるエンタルピは,破断口が接続するノードの エンタルピとなるが、2つのノードが重なる場合は,混合長さの加重平均エ ンタルピが用いられる。

有効性評価では、設計基準事故のLOCAと同様に、破断口及びSRV からの流出流量の計算に平衡均質流モデルを使用する。

(6) 注水系

BWRプラントには、冷却水を原子炉に直接注入できる注水系が多数あ る。例えば、BWR-5のECCSは、炉心上部に注水する高圧炉心スプ レイ系(HPCS)及び低圧炉心スプレイ系(LPCS)、炉心バイパス に注水する低圧注水系(LPCI)で構成されるが、他のプラントでは再 循環配管やダウンカマに注水されるようになっているものもある。これら のECCSに加えて、原子炉隔離時に崩壊熱を除去するためのRCICが ある。SAFERコードは、これらの注水系を模擬することができる。

注水流量は,原子炉圧力の関数となる。SAFERコードでは,停止・ 再起動等の多重機能を設けている。図 3-3 にこのロジックを示す。

時刻 t₁で原子炉圧力や原子炉水位,ドライウェル圧力による起動信号を 受ける。ディーゼル発電機の起動時間や弁開時間等の遅れを考慮して時刻 t₂で注水が始まる。注水流量はポンプのQ/H特性で決まる。

原子炉圧力や原子炉水位等で注水停止信号を模擬でき,時刻 t₃で停止信 号が入ると,時間遅れを考慮した t₄で注水が停止する。

これらを用いていくつかの再起動や停止ロジックを模擬することができる。

有効性評価で考慮する原子炉代替注水設備は,運転操作を含めてこれら の注水系モデルを用いて取り扱うことができる。

3.3.2 炉心ヒートアップモデル

(1) ノード分割

SAFERコードでは、燃料や燃料被覆管の温度変化については径方向 熱伝導モデルを用い、圧力容器や他の内部構造物については、ヒートスラ ブモデルを用いて模擬している。 a. 燃料と燃料被覆管

燃料棒は,径方向に燃料ペレットを3ノード及び燃料被覆管を2ノード に分割している。また,燃料棒発熱部の軸方向は,実験解析で妥当性を確 認した 10ノード分割とする。燃料棒の温度変化は,軸方向及び周方向の 熱伝導を無視した円筒形モデルを用いた熱伝導方程式を解くことにより 得られる。

b. 燃料集合体と燃料棒

燃料集合体は平均出力燃料集合体と高出力燃料集合体に分け,それぞれ に対して平均出力燃料棒と高出力燃料棒の2種類の燃料棒を考慮してい る。平均出力燃料棒は,燃料棒から冷却材への伝熱計算に使用し,集合体 内の熱水力挙動が求められる。高出力燃料棒は集合体上部のCCFLを厳 しく評価するため燃料集合体内蒸発量計算に使われる。

PCTは,高出力燃料集合体と平均出力燃料集合体のそれぞれの燃料棒の被覆管温度の中の最大値とする。

c. 圧力容器と炉内構造物

圧力容器は最大7つに区分されたヒートスラブで模擬しており,それぞ れのヒートスラブの表面熱伝達はそのヒートスラブの面している各領域 内のボイド率の関数で与えられる。

炉内構造物は7つのヒートスラブ(ABWRは6つのヒートスラブ); 蒸気乾燥器,上部プレナムドーム,シュラウド壁,制御棒案内管,チャン ネルボックス,制御棒,再循環ループ(外部再循環ループ型BWRのみ) に分けて模擬する。

これらのヒートスラブのうち、4つ(上部プレナムドーム、シュラウド 壁、制御棒案内管、チャンネルボックス)は内壁と外壁が別の領域に面し ていることを模擬しているため、ヒートスラブの数は11(ABWRは10) となる。

(2) 熱伝導方程式

燃料ペレット及び燃料被覆管の温度変化は,円筒座標の熱伝導方程式を 解くことにより得られる。軸方向及び周方向の熱伝導は無視している。こ の方程式は次式で与えられる。

$$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial r} \left(k \frac{\partial T}{\partial r} \right) + \frac{k}{r} \frac{\partial T}{\partial r} + Q^{\prime\prime\prime}$$
(3. 3. 2-1)

$$\Xi \subset \mathcal{C},$$

ρ : 燃料ペレットまたは燃料被覆管の密度

 C_n : 燃料ペレットまたは燃料被覆管の比熱

- k : 燃料ペレットまたは燃料被覆管の熱伝導率
- T: 燃料ペレットまたは燃料被覆管の温度
- *t* : 時間
- r : 半径方向距離
- Q''' : 発熱量

なお、CHASTEコードにおいても同じ式が用いられている。

圧力容器及び内部構造物のヒートスラブの温度変化は次式で表わせる。

$$\frac{dT_k}{dt} = -\frac{q_k}{C_k} = -\frac{1}{C_k} \sum_i \frac{(T_k - T_i)F_i}{R_k + \frac{1}{H_i A_k}}$$
(3. 3. 2-2)

ここで,

 q_k : ヒートスラブkの熱量 C_k : ヒートスラブkの熱容量

- R_k : ヒートスラブkの熱抵抗
- A_k : ヒートスラブkの伝熱面積
- *H_i* : 熱水力ノード*i*への熱伝達係数
- *F_i*: 熱水力ノード*i*に接するヒートスラブ*k*の伝熱面積のうち,水面以下の部分に接する割合

添字kはk番目のヒートスラブ,添字iはi番目の熱水力ノードを示す。

(3) 熱源

SAFERコードでは熱源として,核分裂による出力,核分裂生成物の 崩壊熱,アクチニドの崩壊熱及びジルコニウム-水反応による発熱を考慮 している。核分裂による出力,核分裂生成物の崩壊熱及びアクチニドの崩 壊熱は,初期炉心出力に対する割合として時間の関数として入力する。各 燃料棒での熱発生率は,炉心平均の熱発生率に各々対応するピーキング係 数を乗じて決定される。

有効性評価では、核分裂による出力変化はREDY等により計算される 運転時の異常な過渡変化あるいは設計基準事故の出力変化、崩壊熱は ANSI/ANS-5.1-1979⁽¹⁰⁾に基づく計算結果を使用する。

(4) 熱伝達

燃料棒から冷却材への熱伝達は,核沸騰,膜沸騰,そして遷移沸騰の適 切な熱伝達事象から決定される熱伝達係数を用いて計算される。遷移沸騰 は核沸騰と膜沸騰の間の円滑な遷移をモデル化したものである。また,露 出部の冷却には,蒸気冷却,噴霧流冷却,落下水(スプレイ)冷却,及び 輻射熱伝達を考慮している。

なお,輻射熱伝達は,高出力燃料棒から平均出力燃料棒への輻射及び平 均出力燃料棒からチャンネルボックスへの輻射のみが考慮されている。

熱伝達の沸騰事象を決める計算ロジックを図 3-4 に示す。また,熱伝達 係数計算モデルの一覧を表 3-3 に示す。

a. 核沸騰熱伝達

核沸騰熱伝達係数は、冷却材のボイド率の関数として模擬している。

このモデルは,図 3-5 に示すように 3 つの領域に分け,それぞれの境界 の値を入力する。図 3-5 の H3は,核沸騰熱伝達係数の代表値,H2 はサ ブクール沸騰,そして H1 は蒸気冷却の代表値である。

核沸騰事象の単純なモデル化は,核沸騰熱伝達係数が他の事象の熱伝達 係数に比べて非常に大きく,この熱伝達係数の変化に対し,感度が小さい ため可能である。

b. 膜沸騰熱伝達

膜沸騰熱伝達係数は、対流膜沸騰に関しては e.節で述べる噴霧流冷却 熱伝達式、プール及び低流量膜沸騰に関しては、修正 Bromley の式⁽¹¹⁾で 計算する。

修正 Bromley の式は次式で表わされる。
$$H_{MB} = H_{FB} + H_R$$
 (3.3.2-3)

プール膜沸騰熱伝達係数 H_{FB} 及び輻射熱伝達係数 H_R は次のように計算される。

$$H_{FB} = 0.62 \left\{ \frac{K_g^{3} \rho_g (\rho_f - \rho_g) h_{fg} g}{\mu_g (T_W - T_S) L_H} \right\}^{1/4}$$
(3. 3. 2-4)
$$H_R = \sigma_R \varepsilon \left(\frac{T_W^{4} - T_S^{4}}{T_W - T_S} \right)$$
(3. 3. 2-5)

ここで,

K_g: 飽和蒸気の熱伝導率

ρ_f : 飽和水の密度

 ρ_g : 飽和蒸気の密度

 $h_{f_{e}}$: 蒸発潜熱

- *μ_g* : 飽和蒸気の粘性
- *L_H* : 膜の長さ
- Tw:表面温度
- *T_s*: 冷却材の飽和温度
- σ_{R} : Stefan-Boltzmann 定数
- *ε* : 被覆管の輻射率

膜沸騰熱伝達係数としては、噴霧流冷却熱伝達式を用いた値 H_Mと修正 Bromley 相関式を用いた値 H_{MB}を両方計算し、ボイド率で以下のように重 み付けをしている。

局所的なボイド率が1に近づいた時は, 膜沸騰熱伝達係数は単相蒸気冷 却モードへ連続的に移行するため, 高流量時の膜沸騰に適用される H_Mを 使用する。一方, 低ボイド率の領域では, プール膜沸騰または低流量時の 膜沸騰に適用される H_{MB}がより適切である。その中間の領域の膜沸騰熱伝 達係数は, ボイド率により H_{MB}と H_Mの間を内挿して求める。以上の膜沸 騰熱伝達係数をまとめて図 3-6 に示す。

c. 遷移沸騰熱伝達

遷移沸騰は,核沸騰と膜沸騰の間を連続的に変化させるためにモデル化 されており,冷却材のクオリティが限界値以下で,かつ,燃料被覆管の過 熱度が最小安定膜沸騰温度以下の時に適用される。冷却材クオリティが限 界値以上になると,核沸騰から膜沸騰へ急激な変化がおこる。

遷移沸騰の熱伝達は,核沸騰と膜沸騰の熱伝達係数の対数値が直線的に 変化するものとし、模擬している(図 3-7)。

$$\log H_{TB} = \log H_{NB} - \frac{\Delta T - \Delta T_{CHF}}{\Delta T_{\min} - \Delta T_{CHF}} \cdot \left(\log H_{NB} - \log H_{FB}\right)$$
(3. 3. 2-6)

ここで,

 H_{TB} : 遷移沸騰熱伝達係数 H_{NB} : 限界熱流束時の温度での 核沸騰熱伝達係数 H_{FB} : 最小安定膜沸騰温度での膜沸騰熱伝達係数 ΔT : 過熱度 ΔT_{min} : 最小安定膜沸騰温度 ΔT_{CHF} : 限界熱流束温度

d. 蒸気冷却熱伝達

SAFERコードでは、燃料棒が露出している部分で、下部プレナム及び燃料集合体からの蒸気による冷却効果を考慮している。蒸気冷却熱伝達係数は、蒸気単相流に対する Dittus-Boelter の式⁽¹²⁾を使用している。
$$H_{v} = 0.023 \frac{K_{v}}{D_{h}} \operatorname{Re}_{s}^{0.8} \operatorname{Pr}_{s}^{0.4}$$
 (3.3.2-7)
ここで,
 H_{v} : 蒸気冷却熱伝達係数
 K_{v} : 蒸気の熱伝導率
 D_{h} : 水力直径
 Re_{s} : 蒸気のレイノルズ数
 Pr_{s} : 蒸気のプラントル数

蒸気の物性値は燃料集合体軸方向ノードごとに上流ノード出口の蒸気 温度(過熱を考慮)を境界条件として評価する。

e. 噴霧流冷却熱伝達

蒸気に液滴が混入した噴霧流状態の熱伝達係数は, Sun のモデルと Saha のモデルを組み合わせたモデル⁽¹³⁾を適用する。

液滴による熱伝達の促進は Sun のモデル⁽¹⁴⁾に基づき以下のように表わ すことができる。

$$H_{M} = \frac{K_{v}}{D_{h}} \left[2X - 1 + \frac{(Nu_{s} + 1)^{2}}{Nu_{s} + 1 + 2X} \right] = \frac{K_{v}}{D_{h}} \left[Nu_{s} + \frac{4X^{2}}{Nu_{s} + 1 + 2X} \right]$$
(3.3.2-8)

ここで、 Nu_s はDittus-Boelterの式による蒸気単相熱伝達のヌセルト数、 X は液滴による熱伝達向上の程度を決めるパラメータであり、次式で与 えられる。

$$Nu_{s} = 0.023 \text{ Re}_{s}^{0.8} \text{ Pr}_{s}^{0.4}$$
(3.3.2-9)

$$X = \frac{D_h}{2} \sqrt{\frac{\beta h_v}{K_v h_{fg}}}$$
(3.3.2-10)

$$\beta = \frac{6 H_{v,d} (1-\alpha)}{d_d} \tag{3.3.2-11}$$

$$H_{\nu,d} = \frac{K_{\nu}}{d_d} \left[2 + 0.459 \left\{ \frac{\rho_{\nu} U_r d_d}{\mu_{\nu}} \right\}^{0.55} \Pr_g^{-1/3} \right]$$
(3.3.2-12)

 $H_{v,d}$ は、蒸気と液滴間の界面熱伝達率であり、 d_d は液滴の平均直径、 U_r は相対速度である。

蒸気の物性値は燃料集合体軸方向ノードごとに上流ノード出口の蒸気 温度(過熱を考慮)を境界条件として評価する。

噴霧流冷却熱伝達時においては蒸気の温度は一般に飽和温度よりも高くなる。そこで、この効果を考慮するため、蒸気温度は Saha の式⁽¹⁵⁾を

用いて計算する。Saha によれば、単位体積あたりの液滴蒸発量 Γ_{μ} は次式で与えられる。

$$\Gamma_{\nu} = K_{1} \frac{K_{\nu} (T_{\nu} - T_{s})(1 - \alpha)}{D_{h}^{2} h_{fg}}$$

$$K_{1} = 6300 \left(1 - \frac{P}{P_{cr}}\right)^{2} \left\{ \left(\frac{\rho_{\nu} j_{\nu}}{\alpha}\right)^{2} \frac{D}{\rho_{\nu} \sigma} \right\}^{1/2}$$

$$(3. 3. 2 - 13)$$

$$(3. 3. 2 - 14)$$

$$(3. 3. 2 - 14)$$

*K*_v : 蒸気の熱伝導率

T_v: 蒸気の温度

T_s : 飽和温度

α : ボイド率

D_h : 水力等価直径

 h_{fg} : 蒸発潜熱

P : 圧力

P_{cr} : 臨界圧力

ρ_v : 蒸気の密度

*j*_v : 蒸気の流速

D : 管の直径

σ : 表面張力

Saha のモデルでは、上式をもとにして、加熱面から蒸気への伝熱量、 過熱蒸気から液滴への伝熱量、さらに、軸方向のクオリティ変化などを連 立させることにより蒸気の軸方向温度分布を求める。

液滴上昇流(エントレインメント)における液滴の平均直径は,臨界ウ エーバー数 We,から次式で計算する。

$$d_d = \frac{\sigma W e_c}{\rho_v U_r} \tag{3.3.2-15}$$

液滴が落下する場合は、2種類の液滴を考慮する。1つは、上部タイプ レートにおける上昇蒸気流と液体の相互作用による液体の崩壊によって 形成される液滴である。もうひとつは、燃料棒及びチャンネルボックスの 壁面を落下する液膜のクエンチフロントで形成される液滴であり、壁面か らの急速な伝熱によりスパッタリングが起こる。液滴の平均直径は液滴の 質量と液滴密度の保存式を使用して評価することができる。

(3.3.2-16)

$$d_{d} = \left[\frac{W_{UTP} + W_{SPUTTER}}{\frac{W_{UTP}}{d_{d,UTP}}^{3} + \frac{W_{SPUTTER}}{d_{d,SPUTTER}}}\right]^{1/3}$$

-1/3

ここで、Wは液滴の質量流量であり、添字のUTPは上部タイプレート で発生する液滴, SPUTTER はスパッタリングフロントで発生する液滴を 表わす。

SAFERコードでは,液滴界面の熱伝達係数は液滴の流れ方向に応じ て、(3.3.2-12)式に(3.3.2-15)式あるいは(3.3.2-16)式を代入する ことにより計算する。

f. スペーサの効果

d. 節で述べた蒸気(単相) 冷却熱伝達及び e. 節で述べた噴霧流冷却 熱伝達においては,スペーサの直後で流れが乱されることにより熱伝達が よくなる現象が実験により明らかになった⁽¹⁶⁾。このスペーサの乱流促進 効果を実寸大の電気加熱集合体による蒸気(単相)冷却実験装置RRTF

(Refill Reflood Test Facility) による実験データから求めた結果、次 式が得られた。

$$Nu = 0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{0.4} \left(1 + \frac{1.72}{\ell/d} \right)$$
(3. 3. 2-17)

ここで,

ℓ : 各スペーサ後端からの距離

d : 水力等価直径

スペーサの乱流促進効果による熱伝達の向上は,右辺の括弧内の係数で 与えられる。

噴霧流冷却熱伝達に関しても乱流促進効果は,蒸気単相冷却熱伝達の場 合と同様に上記括弧内の補正により与えられる。

g. 落下水 (スプレイ) 熱伝達

落下水(スプレイ)による熱伝達係数は、スプレイ熱伝達実験装置SH TF (Spray Heat Transfer Test Facility) による実験データより得ら れ,高出力燃料棒と平均出力燃料棒のそれぞれに対して,燃料集合体内に 落下する水量とロッド表面過熱度及び圧力の関数としてモデル化してい る⁽¹⁵⁾。また、炉心スプレイ開始以前でもCCFLにより上部プレナムか ら液滴落下がある場合には落下水熱伝達を考慮する。

(3.3.2-18)

ここで,		
$h_{\scriptscriptstyle SP}$:	熱伝達係数
W	:	落下水量
Р	:	圧力
ΔT_s	:	ロッド表面過熱度
α,β,γ,δ	:	係数

h. 輻射熱伝達

SAFERコードの燃料棒及び被覆管の熱伝達モデルは,ほとんどCH ASTEコードと同じであるが,CHASTEコードではそれぞれの燃料 棒と周囲のチャンネルボックス,燃料棒間の複雑な輻射熱伝達の経路をモ デル化しているのに対し,SAFERコードでは高出力燃料棒と平均出力 燃料棒の2本だけを扱っており,それぞれの周辺温度を考えて輻射熱伝達 をモデル化している。

周辺温度は,高出力燃料棒に対しては平均出力燃料棒の温度,平均出力 燃料棒に対してはチャンネルボックスの温度としている(図 3-8)。

各周辺温度を用いて、輻射熱伝達係数は次式のように求められる。

$$H_{R} = \sigma_{R} \varepsilon \left(\frac{T_{W}^{4} - T_{B}^{4}}{T_{W} - T_{B}} \right)$$
(3. 3. 2-19)

ここで,

H_R: 輻射熱伝達係数

T_w : 燃料被覆管表面温度

 T_R : 周辺温度

ε : 輻射率

 $\sigma_{\scriptscriptstyle R}$: Stefan-Boltzmann 定数

SAFERコードでは,周辺温度として用いる燃料棒とチャンネルの濡 れも考慮している。

i. 燃料棒とチャンネルの濡れモデル

SAFERコードにおいては, 落下水による壁面濡れ効果は燃料棒及び チャンネルで考慮される。燃料棒とチャンネルでは伝熱面の数が1面か2 面かの違いはあるが, 濡れモデルそのものは同様の考え方を採用している。 モデルの概要は図 3-9 に示すとおりであり, 先端でスパッタリングをおこ す液膜が順次下方に進行していく。この濡れ前縁の進行速度をU_fとして 二次元(軸方向, 半径方向)の熱伝導解析から得た Andersen による次式 を用いる⁽¹⁷⁾。

$$U_{fr} = \frac{K_{W}}{\rho_{W}C_{W}d_{W}} \left\{ (B_{i} \cdot \theta^{-\sqrt{\pi}})^{1.5} + 2^{-\frac{3}{4}\sqrt{\pi}} (B_{i} \cdot \theta^{-\sqrt{\pi}})^{3} \right\}^{1/3} / \exp\left(1 - \frac{\sqrt{\pi}}{2}\right)$$
(3.3.2-20)
ここで,
 K_{W} : 熱伝導率
 ρ_{W} : 密度

C_w : 比熱

また、無次元数は次式で定義されている。

$$B_{i} = \frac{h_{fr} d_{W}}{K_{W}}$$
$$\theta = \left[\frac{(T - T_{s})(T - T_{0})}{(T_{0} - T_{s})^{2}}\right]^{1/2}$$

SAFERコードにおいては、濡れに関する熱伝達係数 h_{fr} として、濡 れ前縁については、 $1.13 \times 10^{6} W/m^{2} \cdot \mathbb{C}$ 、既に濡れた壁と流下液膜間につい ては核沸騰の値 $3.0 \times 10^{3} W/m^{2} \cdot \mathbb{C}$ をそれぞれ用いている。また、ライデン フロスト温度 T_{0} は T_{sat} (飽和温度)+65℃を採用している。

(5) ジルコニウム-水反応

燃料被覆管と水との反応による反応熱及び酸化量の計算は Baker-Just の 式⁽¹⁸⁾により計算し、蒸気の供給に制限がないものとする。また、蒸気を反 応温度まで上げるためのエネルギは必要としないものと仮定する。この 2 つの仮定により反応熱を大きく見積もる。

化学反応式は次式で与えられる。 $Zr + 2H, O \rightarrow ZrO, + 2H, + \Delta H$ (3.3.2-21)

ここで、 AH は反応熱であり、 燃料被覆管温度の 関数として 次式 で表わされる。

$$\Delta H = R_3 - R_4 (T + 273) \tag{3.3.2-22}$$

ここで、
$$R_3, R_4$$
 : Baker-Just に基づく定数
 T : 燃料被覆管温度

また、燃料被覆管の酸化割合は次式で表わされる。

$$\frac{d\delta}{dt} = \frac{R_1}{\delta} \exp\left(-\frac{R_2}{T+273}\right)$$
(3.3.2-23)
 $\Xi \subset \mathfrak{C},$

- δ : 燃料被覆管酸化厚さ
- R₁,R₂ : Baker-Just に基づく定数

酸化厚さは、(3.3.2-23)式を積分し、次式で与えられる。

$$\delta_2 = \left\{ \delta_1^2 + 2R_1(t_2 - t_1) \exp\left(-\frac{R_2}{T_{av} + 273}\right) \right\}^{1/2}$$
(3.3.2-24)

ここで、 δ_1 : 時刻 t_1 における酸化厚さ δ_2 : 時刻 t_2 における酸化厚さ T_{av} : 時刻 t_1 から t_2 までの間の燃料被覆管平均温度

発熱割合は,反応熱と被覆管酸化割合の積であり,被覆管酸化割合は被 覆管の密度,表面積,そして酸化膜成長割合の積である。 したがって,発熱割合は次式で与えられる。

$$\dot{Q}_{R} = \Delta H \cdot \dot{M}_{zr} = \Delta H \cdot \rho_{zr} \cdot A \cdot \left(\frac{d\delta}{dt}\right)$$
(3. 3. 2-25)

ここで,

\dot{Q}_{R}	:	発熱割合
• M zr	:	燃料被覆管酸化割合
$ ho_{zr}$:	燃料被覆管密度
Α	:	燃料被覆管表面積
$d\delta/dt$:	燃料被覆管酸化膜成長割合

燃料被覆管が破裂すると計算される場合には,その時点以降破裂個所近 傍の内面も反応するとし,これも同様の方法で計算する。

(6) ギャップ熱伝達

過渡時の燃料ペレットー燃料被覆管ギャップ熱伝達係数は、定常時のギャップ熱伝達係数評価モデルと同じ、Ross and Stoute に基づくモデル⁽¹⁹⁾を用いて計算する。

なお、ギャップ熱伝達係数の初期値及び過渡計算に用いるギャップ内の ガス組成等は、燃料棒熱機械設計コード PRIME Ver.1(以下、「PRIME」 と称す。)⁽²⁰⁾⁽²¹⁾から引き継ぐ。

ギャップ熱伝達係数は次の3成分からなるとする。

$$h_{g} = h_{s} + h_{f} + h_{r}$$
(3.3.2-26)

ここで,

*h*_e : ギャップ熱伝達係数

h。: 燃料ペレットと燃料被覆管の接触による熱伝達成分

h_f : ギャップ中のガスの熱伝導による熱伝達成分

h, : 燃料ペレットと燃料被覆管の間の輻射による熱伝達成分

なお,ギャップ熱伝達係数の初期値及び過渡計算に用いるギャップ内の ガス組成等は, PRIMEから引き継ぐ。

a. 固体接触による熱伝達成分

燃料と被覆管の接触による熱伝達係数h。は次式により計算する。

$$h_{s} = \frac{K_{m} \cdot P_{c}}{A_{0} \cdot H_{m} \left(\frac{R_{c}^{2} + R_{p}^{2}}{2}\right)^{1/4}}$$
(3.3.2-27)

ここで,

 K_{m} : 燃料ペレットと燃料被覆管の平均熱伝導率

 $K_{m} = \frac{2K_{c} \cdot K_{p}}{K_{c} + K_{p}}$

 K_{c} : 燃料被覆管熱伝導率

 K_{p} : 燃料ペレット熱伝導率

 P_{c} : 燃料ペレットと燃料被覆管の接触圧力

 A_{0} : 定数

 H_{m} : 燃料被覆管大イヤー硬さ

 R_{c} : 燃料被覆管内表面粗さ

 R_{p} : 燃料ペレット外表面粗さ

b. ガスによる熱伝達成分 ギャップ中のガスの熱伝導による熱伝達係数*h*_fは次式により計算する。

$$h_{f} = \frac{K_{f}}{C(R_{c} + R_{p}) + (g_{1} + g_{2}) + R_{eff}}$$
(3.3.2-28)
ここで、
 K_{f} : 混合ガスの熱伝導率
 C : 燃料ペレットー燃料被覆管接触圧の関数
 R_{c}, R_{p} : 燃料被覆管内表面粗さ及びペレット外表面粗さ
 $(g_{1} + g_{2})$: 混合ガスの温度ジャンプ距離
 R_{eff} : 燃料ペレットと燃料被覆管の実効半径ギャップ

c. 輻射による熱伝達成分

燃料ペレットと燃料被覆管の間の輻射による熱伝達係数 h, は次式により計算する。

$$h_{r} = \frac{\sigma(T_{p}^{4} - T_{c}^{4})}{\left[\frac{S_{p}}{S_{c}}(\frac{1}{\varepsilon_{c}} - 1) + (\frac{1}{\varepsilon_{p}} - 1) + G_{g}\right]}(T_{p} - T_{c})}$$
(3.3.2-29)

ここで,

 σ : Stefan-Boltzmann 定数

 T_{p} : 燃料ペレット表面温度

 T_{c} : 燃料被覆管内面温度

 S_{p} : 燃料被覆管内面積

 ε_{c} : 燃料被覆管内面積

 ε_{c} : 燃料被覆管内面積

 ε_{p} : 燃料~レット表面の輻射率

 ε_{p} : 燃料~レット表面の輻射率

 G_{g} : 形態係数

(7) 膨れ・破裂

燃料被覆管の膨れは,燃料棒プレナム部とギャップ部の温度及び体積か ら燃料棒内圧を評価し,燃料被覆管内外圧力差から燃料被覆管の周方向応 力を求め,燃料被覆管の歪み量をこの周方向応力に基づき求めている。

また,燃料被覆管の破裂は実験に基づく周方向応力のベストフィット曲線に基づいて判定する。図 3-10 に燃料棒に破裂が発生する時点の燃料被覆 管温度と燃料被覆管応力の関係を示す。

a. 燃料棒内圧

燃料棒内圧 P_gは、燃料棒プレナム部とギャップ部の圧力が等しいとして、温度及び体積の変化を考慮して次式で計算する。

$$P_{g} = \frac{N \cdot R}{\frac{V_{F}}{T_{F}} + \frac{V_{P}}{T_{P}}}$$
(3. 3. 2-30)

ここで,

 P_{g} : 燃料棒内圧

 V_{F} : 燃料棒ギャップ体積

 V_{P} : 燃料棒デレナム体積

 T_{F} : 燃料棒デレナム温度

 N : 燃料棒プレナム温度

 R : 気体定数

b. 燃料被覆管の周方向応力 燃料被覆管の周方向応力σは,燃料棒内外圧差より次式で計算する。

$$\sigma = \frac{D}{2t} (P_{g} - P)$$
ここで、
$$\sigma : 周方向応力$$

$$D : 被覆管内径$$

$$t : 被覆管肉厚$$

$$P : 冷却材圧力$$

c. 燃料被覆管の歪

燃料被覆管の歪 ε は, 弾性領域では被覆管の周方向応力から次式により 計算する。

(3.3.2 - 31)

$$\varepsilon = \frac{\sigma}{E} \left(1 - \frac{\nu}{2} \right)$$
(3.3.2-32)
ここで、

ε : 燃料被覆管の歪
 E : ヤング率
 ν : ポアソン比

また、塑性変形は、実験データに基づき燃料被覆管破裂を起こす温度より 200°F 低い温度に達した時点から始まるとする。

	項目	計算モデル
ノード	原子炉圧力容器内	9ノードに分割 (図 3-1)
分割	原子炉圧力容器及び炉	原子炉圧力容器は7つ,炉内構造物は6
	内構造物	つに区分したヒートスラブで模擬
	燃料と被覆管	径方向に燃料ペレットを3ノード及び燃
		料被覆管を2ノードに分割
		燃料ペレット及び燃料被覆管の径方向に
		対し,円筒一次元熱伝導方程式を用いる
		軸方向は発熱部を10ノードに分割
熱水力	保存則	熱力学的に均質,平衡を仮定
モデル		各ノード:質量保存式,エネルギ保存式
		流れの経路全体:運動量保存式
	蒸気スリップ流	気泡上昇モデルとドリフトフラックスモ
		デルによる蒸気スリップ速度を計算し,大
		きい方を使用
	炉心内流動	気液対向流モデル (Wallis 型の相関式)
		CCFL ブレークダウンモデル
		気液平衡上昇流モデル
	破断流	臨界流モデル及び差圧流モデル
	注水系	ECCS, RCIC 及び代替注水系を模擬(図 3-3)
炉心	熱伝達	以下の熱伝達モードを考慮
ヒート		・核沸騰
アップ		・膜沸騰
モデル		・遷移沸騰
		・蒸気単相
		・噴霧流
		・スプレイ(落下水)
		・濡れ
		 ・輻射
	熱源	核分裂による発生熱,崩壊熱及びジルコニ
		ウム-水反応による発熱を考慮
		炉心出力は核分裂による発生熱と核分裂
		生成物及びアクチニドの崩壊熱を考慮し
		た炉心出力時間変化データを入力
	ジルコニウム-水反応	Baker-Just の式
	ギャップ熱伝達	過渡変化は Ross and Stoute に基づくモデ
		ルを用いる
		なお, ギャップ熱伝達係数の初期値及び過
		渡計算に用いるギャップ内のガス組成等
		は燃料棒熱機械設計コード PRIME から引
		き継ぐ
	膨れ・破裂	膨れは燃料被覆管周方向応力に基づき計
		算し,破裂は燃料被覆管周方向応力のベス
		トフィット曲線により判定する(図 3-10)

表 3-2 SAFERコードの計算モデル一覧

熱伝達モード	熱伝達係数計算モデル		
核沸騰	ボイド率の関数とする相関式		
膜沸騰	噴霧流冷却の相関式と修正 Bromley の式をボイド 率の関数として使用する相関式		
遷移沸騰	核沸騰と膜沸騰の熱伝達係数を燃料被覆管過熱度 で内挿した相関式		
蒸気単相	Dittus-Boelter の式		
噴霧流	Sun-Saha の式		
スプレイ (落下水)	スプレイ冷却実験データに基づく相関式		
濡れ	濡れた後の熱伝達係数は Andersen のモデルに基づく		
輻射	高出力燃料棒と平均出力燃料棒間,平均出力燃料 棒とチャンネルボックス間で考慮		

表 3-3 SAFERコードの熱伝達係数計算モデル

図 3-1 SAFERコードのノード分割図

図 3-2 再循環及び炉心流ループ (ジェットポンプ型BWRの例)

時 間

図 3-3 SAFERコードの注水系作動ロジック

$$\left(egin{array}{cccc} T & : 事故後の時間 \ T_{BT} & : 沸騰遷移時間(入力) \ X & : クオリティ \ X_{C} & : 膜沸騰限界クオリティ(入力) \ \Delta T & : 被覆管過熱度 \ \Delta T_{MIN} & : 安定膜沸騰最小過熱度 \ \Delta T_{CHF} & : 限界熱流束過熱度(入力) \end{array}
ight)$$

図 3-4 SAFERコードの沸騰事象を決めるロジック

図 3-7 遷移沸騰熱伝達係数モデル

図 3-8 輻射熱伝達モデル

図 3-9 チャンネル濡れモデル

図 3-10 燃料棒に破裂が発生する時点の燃料被覆管温度と 燃料被覆管応力の関係

3.4 入出力

SAFERコードの主要な入出力を図 3-11 に示す。SAFERコードの インプットデータは以下のとおり構成される。SAFERコードのインプ ットデータの元となる「プラントデータ」,「事故条件」,「事故収束に 重要な機器・操作」等を整理した解析条件を添付1に示す。

- 原子炉圧力容器,原子炉内部構造物の幾何形状
- ② 初期条件(原子炉出力,原子炉圧力,炉心入口流量,原子炉水位)
- ③ 炉心仕様(幾何形状,炉心圧損,原子炉出力の時間変化)
- ④ 燃料仕様(幾何形状,燃料棒出力,初期状態,物性)
- ⑤ 機器,設備仕様(ECCS等の注水特性,SRV特性,MSIV閉止
 特性)
- ⑥ 外乱条件(破断条件等)

上記をインプットデータとして,原子炉内熱水力過渡解析及び炉心ヒー トアップ解析を実施し,以下のアウトプットデータを得る。

- ① 原子炉圧力及び原子炉内水位の過渡変化
- ② 燃料被覆管温度
- ③ ジルコニウム-水反応量(燃料被覆管酸化割合)

図 3-11 SAFERコードの入出力

4. 妥当性確認

4.1 重要現象に対する妥当性確認方法

SAFERコードの評価マトリックスを表 4-1 に示す。表 4-1 は 2 章で 重要現象に分類された物理現象を列挙している。各実験解析の内容につい て詳細を 4.2 節以降に示すが,それらの要約を 4.1.1 から 4.1.3 に示す。

SAFERコードは、BWRのLOCAを模擬したシステム挙動実験結 果と実験解析結果との比較により解析モデルの妥当性確認が行われており、 BWRのLOCA時の燃料被覆管温度の評価に適用できることを確認して いる。したがって、2章で重要現象に分類された物理現象はLOCAを模擬 したシステム挙動実験により、総合的に妥当性が確認されている。

ジェットポンプ型BWRに対しては,TBL (Two Bundle Loop)及びR OSA-Ⅲ (Rig of Safety Assessment)の実験解析が行われ,ABWR に対しては,FIST (Full Integral Simulation Test)-ABWRの実 験解析を行っている。SAFERコードによる実験解析結果は実験結果(蒸 気ドーム圧力,水位)と良く一致し,模擬燃料被覆管最高温度は実験結果 に比べ10℃~150℃程度高く予測することを確認した。⁽²²⁾

なお、SAFERコードの妥当性は、当時の通産省原子力発電技術顧問 会(基本設計)LOCA検討会及び原子炉安全基準専門部会(ECCS性 能評価小委員会)においても審議され、LOCA時の燃料被覆管温度評価 への適用の妥当性が確認されている。⁽²³⁾⁽²⁴⁾

重要現象に分類された物理現象のうち崩壊熱は,信頼性の高い評価モデルと現実的な評価条件を使用して評価した値を事象発生後の原子炉出力変化として入力している。このため,SAFERコードにおける崩壊熱の妥当性確認は不要とした。

燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡については,LOCAを 模擬した実験結果における被覆管温度とSAFERコードによる実験解析 結果を比較することにより,SAFERコードの熱伝達モデルの妥当性を 確認できる。

燃料被覆管酸化については、3.3.2(5)に記載したとおり、蒸気供給制限 がなく、蒸気を反応温度まで上げるためのエネルギは必要としないものと 仮定し、反応量及び反応熱を過大に評価するように選定した酸化反応速度 式を採用している。そのため、SAFERコードにおける燃料被覆管酸化 の妥当性確認は不要とした。

燃料被覆管変形については、3.3.2(7)に記載したとおり、燃料被覆管の 歪み量を計算し、燃料被覆管の破裂を判定する破裂限界曲線には実験値と 良く一致するベストフィット曲線に基づき現実的な条件を適用しているこ とから、SAFERコードにおける燃料被覆管変形の妥当性確認は不要とした。

沸騰・凝縮・ボイド率変化,気液分離(水位変化)・対向流及び三次元 効果については,有効性評価解析においては炉心が露出する可能性のある シーケンスでの炉心・原子炉水位を評価するうえで重要な物理現象として 選定しており,炉心・原子炉水位を確認することでその妥当性を確認でき る。

冷却材放出(臨界流・差圧流)は、LOCAを模擬した実験結果におけるシステム圧力変化とSAFERコードによる実験解析結果を比較することによりその妥当性を確認できる。

ECCS注水(給水系・代替注水設備含む)は、動作を期待する系統の 作動圧力や流量を入力するが、有効性評価解析では、設計での不確かさを 考慮し、設備設計における設計条件を仮定する。このように、設計に基づ く作動圧力や流量を境界条件として与えることから、SAFERコードに おいてはこれらに対する妥当性確認は不要とした。

以上より,重要現象に対する妥当性確認については,BWRのLOCA を模擬したシステム挙動実験結果と実験解析結果との比較において,シス テム圧力,炉心水位,燃料被覆管温度に着目してSAFERコードの妥当 性を確認する。

4.1.1 TBL実験解析

TBL実験は、1100MW級BWRプラントを2/764に縮尺模擬し、電気加熱の実寸大模擬燃料集合体2体、再循環系2系統及びECCSを装備した 実験装置を用い、配管破断による冷却材流出開始からECCSの作動によ り炉心が冷却するまでの圧力容器内熱水力挙動を実時間で模擬した実験で ある。SAFERコードによる実験解析により、実験結果との比較から熱 水力計算モデル及び燃料被覆管温度計算モデルの妥当性を確認する。

4.1.2 ROSA-Ⅲ実験解析

ROSA-Ⅲ実験は、BWR体系を 1/424 に縮尺模擬したシステムであ り、電気加熱の 1/2 長さの模擬燃料集合体 4 体と 2 つの再循環系、ECC Sからなる実験装置を用い、配管破断による冷却材流出開始からECCS の作動により炉心が冷却するまでの圧力容器内熱水力挙動を実時間で模擬 した実験である。SAFERコードによる実験解析により、実験結果との 比較から熱水力計算モデル及び燃料被覆管温度計算モデルの妥当性を確認する。

4.1.3 F I S T - A B W R 実験解析

FIST-ABWR実験は、ABWRプラントを 1/872 で縮尺模擬し、 電気加熱の実寸大模擬燃料集合体 1 体とダウンカマの下端にインターナル ポンプを模擬するループとポンプを装備した実験装置を用い、配管破断に よる冷却材流出開始からECCSの作動により炉心が冷却するまでの圧力 容器内熱水力挙動を実時間で模擬した実験である。SAFERコードによ る実験解析により、実験結果との比較から熱水力計算モデルの妥当性を確 認する。

分類	重要現象	解析モデル	T B L 実験解析	R O S A - Ⅲ 実験解析	FIST-ABWR 実験解析
炉心 (核)	崩壊熱 *	崩壊熱モデル			
炉心	燃料棒表面熱伝達 沸騰遷移	燃料棒表面熱伝達 モデル	 ⋈ 4-6 ⋈ 4-9 ⋈ 4-12 ⋈ 4-15 ⋈ 4-33 	図 4-22 図 4-33	図 4-31 図 4-32
(/然料) 	燃料被覆管酸化*	ジルコニウム-水 反応モデル	_		_
	燃料被覆管変形*	膨れ・破裂評価 モデル	—	—	_
炉心	沸騰・ボイド率変化 気液分離(水位変化)・対 向流 三次元効果	二相流体の流動 モデル	 ⋈ 4-4 ⋈ 4-5 ⋈ 4-8 ⋈ 4-11 ⋈ 4-14 	図 4-20図 4-21	⊠ 4-30
(熱流動)	気液熱非平衡	燃料棒表面熱伝達 モデル	 図 4-6 図 4-9 図 4-12 図 4-15 図 4-33 	_	_
原子炉 圧力 容器	冷却材放出(臨界流・差圧 流)	臨界流モデル	図 4-3 図 4-7 図 4-10 図 4-13	図 4-19	図 4-25 図 4-26 図 4-27
(逃がし安全弁を含	沸騰・凝縮・ボイド率変化 気液分離(水位変化)・対 向流	二相流体の流動 モデル	_	_	⊠ 4-28 ⊠ 4-29
(۲ <u>)</u>	ECCS注水(給水系・代 替注水設備含む)*	原子炉注水系 モデル			

表 4-1 重要現象に対する妥当性確認方法

* 4.1 節に記載の理由により,妥当性確認が不要である重要現象

4.2 TBL 実験解析⁽²⁵⁾⁽²⁶⁾⁽²⁷⁾

TBLは、1100MW級BWRプラントを 2/764 に縮尺模擬し、電気加熱 の実寸大模擬燃料集合体 2 体からなるLOCA模擬実験装置であり、実験 はLOCA時の熱水力現象並びに炉心の冷却挙動を総合的に把握するため、 配管破断による冷却材流出開始からECCSの作動により炉心が冷却する までの圧力容器内熱水力挙動及び炉心冷却挙動を実時間で模擬するLOC A総合模擬実験である。図 4-1 にTBL実験装置の系統図を示す。

4.2.1 解析条件

表 4-2 にSAFERコードによる実験解析の対象としたTBL実験条件 を示す。解析は再循環配管の大破断(Run No.1),中小破断(Run No.2), 主蒸気配管の完全破断(Run No.3)及び高圧炉心スプレイ配管の完全破断 (Run No.4)の4ケースについて実施した。

図 4-2 に実験解析で用いたSAFERコードのノード分割を示す。SA FERコードでは圧力容器を8つの熱水力ノードに分割しているとともに、 高出力バンドルが設けられている。

破断流は均質臨界流モデルを用いて計算した。 E C C S 流量は実験デー タを時間の関数として入力した。また,崩壊熱模擬曲線も実験データを用 いた。

4.2.2 解析結果

SAFERコードによるTBL実験解析の各解析結果について説明する。(1)再循環配管大破断 (Run No.1)

Run No.1 は,再循環配管の完全両端破断(2×100%)模擬実験であり, ECCSとしてLPCS及び3LPCI(3台のLPCIポンプの作動)を 想定している。

図 4-3 に圧力変化を示す。また、図 4-4 にシュラウド内各部の混合水位 変化を示す。SAFERコードの解析結果は、実験結果と良く一致するこ とがわかる。また、SAFERコードは、下部プレナムの水位形成後の炉 心入口オリフィス(SEO)でのCCFL現象並びにCCFL現象に伴う 冷却水の分配挙動を良く再現している。図 4-5 に約 50 秒時点における平均 並びに高出力バンドル内のボイド率分布の比較を示す。SAFERコード は出力差に伴って生じる流動挙動の違いを良く表現している。図 4-6 に高 出力バンドルの被覆管温度変化を示す。SAFERコードのPCTは、実 験結果に対し、約 150℃高く評価した。

後述する他ケースに比べてPCTを高めに予測するのは、高出力バンド ルを吹上げる蒸気による冷却を過小評価しているためと考えられ、適用し ている蒸気及び噴霧流の熱伝達相関式に依存している。蒸気単相熱伝達相 関式は、蒸気流量が増加するほど熱伝達係数を過小評価する傾向にあり、 また、噴霧流熱伝達相関式も熱伝達係数を過小評価する(添付2のⅡ.熱 伝達相関式、モデルの適用性に記載の添付図2-7及び添付図2-9)。再循環 配管の両端破断を模擬した本ケースは、他ケースに比べて冷却材流出量が 多く減圧が急激であるため下部プレナムの蒸気発生量が多い。すなわち、 高出力バンドルを吹上げる蒸気流量が多く、蒸気及び噴霧流の熱伝達係数 の過小評価の影響が他ケースに比べて大きいため、実験結果に対し温度が 高くなっていると考えられる。

(2) 再循環配管の中小破断 (Run No.2)

Run No.2 は,再循環ポンプ入口配管の 3.4%破断実験であり, ECCS としてLPCS, 3LPCI及びADSの作動を想定している。

図 4-7 に圧力変化を示す。圧力は、MSIV閉により直ちに上昇し、S RV開閉によって変化した後, ADS作動によって急激な減圧過程に移行 する。SAFERコードの解析結果は、破断開始から炉心再冠水に至る全 期間を通して実験結果を良く模擬している。図 4-8 にシュラウド内各部の 混合水位比較を示す。実験で見られる炉心露出及びLPCI注水後の炉心 再冠水の変化についても,解析で良く模擬している。図 4-9 に高出力バン ドルの被覆管温度変化を示す。図 4-8 に示したように解析結果の炉心上部 の露出が早いため、ヒートアップ開始時間が早い。炉心露出後の温度上昇 率はほぼ同じであるが、LPCS作動後は、実測値の温度上昇率がわずか に小さい。これは、SAFERコードのスプレイ熱伝達モデルがやや保守 的な傾向にあることを示している。また,図 4-8 から約 550 秒で炉心再冠 水されたことが実験,解析の両方から判断できる。しかし,図 4-9 に示し たように、最終的な温度低下は、実験の約 550 秒に対して解析は約 580 秒 となっている。これは、炉心再冠水後に適用されるSAFERコードの膜 沸騰熱伝達モデルが保守的なモデルになっていることを示している。SA FERコードのPCTは、実験結果に対し、約60℃高く評価した。

(3) 主蒸気配管の完全破断 (Run No.3)

Run No.3 は、主蒸気配管の完全破断を模擬している。作動ECCSとしてはLPCS、3LPCI及びADSであるが本実験は主蒸気管の完全破断であり、ADSは作動しない。

図 4-10 に圧力変化を示す。本実験は主蒸気配管破断であるので,破断口 を通して蒸気が流出し,急激な減圧過程となる。SAFERコードの解析 結果は,全般的な圧力変化を良く模擬した。図 4-11 にシュラウド内各部の 混合水位比較を示す。解析における炉心露出並びにLPCI注入後の急激 な水位回復挙動は実験結果と良い一致を示した。図4-12に高出力バンドル の被覆管温度変化を示す。図4-11に示したように解析結果の炉心上部の露 出が早いため、ヒートアップ開始時間が早い。LPCS注水後、実測値の 温度上昇率が小さくなるが、解析では実測値ほど温度変化が見られなかっ た。これは、SAFERコードの熱伝達モデルがやや保守的な傾向にある ことを示している。また、解析結果は、LPCIによる炉心再冠水がわず かに遅いため、被覆管温度の低下開始時間も実測値に比べて約20~30秒遅 くなった。SAFERコードのPCTは、実験結果に対し、約70℃高く評 価した。

(4) 高圧炉心スプレイ系配管の破断 (Run No.4)

Run No.4 は高圧炉心スプレイ系(HPCS) 配管の完全破断模擬実験で あり, ECCSとして2LPCI及びADS作動を想定している。

図 4-13 に圧力変化を示す。また、図 4-14 にシュラウド内各部の水位比較を示す。圧力は、ADSが約 290 秒で作動することにより急減圧するが、 大破断で見られたSEOでの顕著なCCFLはなく、実験と同様の結果を 得た。圧力、水位ともにSAFERコードの解析結果は実験結果を良く模 擬した。図 4-15 に高出力バンドルの被覆管温度変化を示す。SAFERコ ードのPCTは、実験結果に対し、約 50℃高く評価した。

4.2.3 まとめ

表 4-6 にSAFERコードによる実験解析結果と実験結果のPCTの比較を示す。

SAFERコードによるTBL実験解析結果と実験データとの比較に基づきSAFERコードを評価した結果,SAFERコードは,BWRのLOCA時の冷却材流出開始からECCSの作動により炉心が冷却するまでの圧力容器内熱水力挙動を適切に評価し,炉心ヒートアップ挙動についてはPCTを安全側に評価することを確認した。

Run No.	1	2	3	4
条件				
破断位置	再循環配管	同左	主蒸気配管	HPCS 配管
	吸込口			
破断面積(%)	2×100	3.4	100	100
作動 ECCS	LPCS+3LPCI	LPCS+3LPCI	LPCS+3LPCI	2LPCI+ADS
		+ADS	+ADS	
初期バンドル出	4.1/5.9	4.05/5.45	4.04/5.7	4.0/5.7
力 (MW)				
初期ドーム圧力	7.1	7.0	7.0	7.1
(MPa[gage])				

表 4-2 SAFERコードによる実験解析の対象とした TBL 実験条件

図 4-1 TBL 系統図

図 4-2 TBL 実験解析のノード分割図

図 4-3 圧力変化 (TBL Run No.1, 再循環配管大破断)

図 4-4 シュラウド内水位変化 (TBL Run No.1, 再循環配管大破断)

図 4-5 ボイド率の分布 (TBL Run No.1, 再循環配管大破断)

図 4-6 被覆管温度変化 (TBL Run No.1, 再循環配管大破断)

図 4-7 圧力変化 (TBL Run No.2, 再循環配管中小破断)

図 4-8 シュラウド内水位変化 (TBL Run No.2, 再循環配管中小破断)

図 4-9 被覆管温度変化 (TBL Run No.2, 再循環配管中小破断)

図 4-10 圧力変化 (TBL Run No.3, 主蒸気配管の完全破断)

図 4-11 シュラウド内水位変化 (TBL Run No.3, 主蒸気配管の完全破断)

図 4-12 被覆管温度変化 (TBL Run No.3, 主蒸気配管の完全破断)

図 4-13 圧力変化 (TBL Run No. 4, 高圧炉心スプレイ配管の破断)

図 4-14 シュラウド内水位変化 (TBL Run No.4, 高圧炉心スプレイ配管の破断)

図 4-15 被覆管温度変化 (TBL Run No.4, 高圧炉心スプレイ配管の破断)

4.3 ROSA-Ⅲ実験解析⁽²⁸⁾⁽²⁹⁾

ROSA-Ⅲは, BWR体系を 1/424 に縮約模擬したシステムであり, 電気加熱の実長の 1/2 長さの模擬燃料集合体 4 体と, 2 つの再循環ループ, ECCS及び蒸気・給水系を備えている。ROSA-Ⅲ実験は, BWRの LOCA時の熱水力挙動及びECCSの有効性に関する総合模擬実験であ り,図4-16に実験装置,図4-17に系統図を示す。

4.3.1 解析条件

表 4-3 にSAFERコードによる実験解析の対象としたROSA-Ⅲ実 験ケース及び条件を示す。解析は,再循環ポンプ入口配管での 2×100%両端 破断実験(Run No.1)から破断なし(Run No.7)まで破断面積をパラメー タとした 7 ケースについて実施した。

図 4-18 に実験解析で用いたSAFERコードのノード分割を示す。RO SA-Ⅲの燃料集合体は4体であり、これらを領域3で模擬した。また、 炉心内ボイド分布を解析するために領域3をさらに軸方向に7ノードに分 割した。領域9は高出力燃料集合体であり、PCTの計算を行うための領 域である。

破断流は均質臨界流モデルを用いて計算した。 E C C S 流量は実験デー タを時間の関数として入力した。また,崩壊熱模擬曲線も実験データを用 いた。

4.3.2 解析結果

SAFERコードによるROSA-Ⅲ実験解析の例としてRun No.1, Run No.2, Run No.5の解析結果について説明する。図 4-19 から図 4-22 に,実験結果とSAFERコードによる解析結果の比較を,蒸気ドーム圧力,平均出力チャンネル内の水位変化,高出力チャンネル内の水位変化,被覆管最高温度変化について示す。

(1) 蒸気ドーム圧力

図 4-19 に蒸気ドーム圧力変化の比較を示す。

Run No.1, Run No.2 はともに大破断実験であるために、ダウンカマ内の 水位低下は早く, Run No.1 は 13 秒, Run No.2 は 15 秒に再循環ポンプ吸込 ノズルが露出し、急激な減圧が生じる。Run No.3 は小破断実験であるので、 MSIV閉後の圧力は上昇し続け、SRVの作動によって圧力がほぼ一定 に保たれた後、ADSの作動により急激な減圧となる。図 4-19 から分かる ように、SAFERコードはこれらの圧力変化を良く模擬している。 (2) シュラウド内水位

図 4-20 及び図 4-21 に平均出力及び高出力チャンネル内の混合水位変化の比較を示す。

各実験ケースのうち特に大破断実験解析では、上部タイプレート、炉心 入口部でのCCFL現象が顕著に生じており、これに伴う炉心内の水位変 化はSAFERコードの解析結果と実験データで良く一致している。

図 4-20 及び図 4-21 から、大破断、小破断時のシュラウド内水位変化を SAFERコードは概ね良く模擬している。

(3) 被覆管温度

図 4-22 に被覆管最高温度変化の比較を示す。実験データ,解析結果とも に、PCTが生じた燃料棒の軸方向温度中で最も高い温度をプロットした ものである。各実験ケースともに、炉心上方での露出がわずかに早いので ヒートアップ開始が早い。

しかしながら、大破断実験でのPCTは実験結果に比べ、約 20℃から 100℃高く評価されている。これは、SAFERコードの炉心露出時に適用 される蒸気冷却及び噴霧流冷却の熱伝達モデルが保守的なモデルであり、 また、炉心再冠水後に適用されるの膜沸騰熱伝達モデルも保守的なモデル になっているためである。

4.3.3 まとめ

ROSA-Ⅲ実験装置で行われた再循環配管破断の実験データを用いて, SAFERコードの妥当性確認を行った。2×100%両端破断,100%,50%, 15%,5%,2%のスプリット破断及び0%(破断なし)の模擬実験についての 実験データとSAFERコードによる解析結果の比較により,以下のこと を確認した。

・破断口径によらず圧力変化を良く予測した。

・大破断実験で見られる炉心上部,下部でのCCFL現象を予測できた。 これにより,シュラウド内水位変化を良く予測した。また,小破断実験解 析も同様にシュラウド内水位変化を良く予測した。

・燃料被覆管最高温度は実験値に比べ10~100℃程度高めに評価した。(表 4-6 参照)
Run No.	1	2	3	4	5	6	7
条件							
动艇位果			玉 () 四 町	谷四江口			破断
视例征直			丹個泉龍	官奴匹口			なし
破断面積	2×100	100	50	15	5	2	0
(%)							
作動 ECCS	LPCS+3L	同左	同左	同左	同左	同左	同左
	PCI+ADS						
初期全出力	3.967	3.972	3.963	3.964	3.969	3.962	3.962
(MW)							
初期ドーム	7.37	7.29	7.3	7.3	7.35	7.35	7.3
圧力							
(MPa[gage							
])							

表 4-3 SAFERコードによる実験解析の対象とした ROSA-Ⅲ実験条件

図 4-16 ROSA-Ⅲ実験装置

図 4-17 ROSA-Ⅲ系統図

図 4-18 ROSA-Ⅲ実験解析のノード分割図

図 4-19 圧力変化 (ROSA-Ⅲ,再循環配管大破断,中破断,小破断)

図 4-20 平均出力チャンネル内水位 (ROSA-Ⅲ, 再循環配管大破断, 中破断, 小破断)

図 4-21 高出力チャンネル内水位 (ROSA-Ⅲ,再循環配管大破断,中破断,小破断)

図 4-22 被覆管温度変化 (ROSA-Ⅲ, 再循環配管大破断, 中破断, 小破断)

4.4 F I S T - A B W R 実験解析⁽³⁰⁾

FIST-ABWRは、ABWRプラントを1/872で縮尺模擬しており、 電気加熱の実寸大模擬燃料集合体 1 体と、ダウンカマの下端にインターナ ルポンプを模擬するループとポンプを装備している。また、主蒸気系、給 水系、ECCS及び配管等の破断を模擬している。実験は、ABWRのL OCA時の冷却材ブローダウン現象の把握、ECCSの炉心冷却能力の確 認及びSAFERコードの妥当性確認を目的に行われた。図 4-23 に系統図 を示す。

4.4.1 解析条件

表 4-4 にSAFERコードによる実験解析の対象としたFIST-AB
 WR実験ケース及び条件を示す。解析は、炉心スプレイ(CS)配管の完
 全破断(Run No.1),主蒸気(MS)配管の完全破断(Run No.2),給水
 (FW)配管の完全破断(Run No.3)及び圧力容器底部(BB)の 80 cm²
 相当配管破断(Run No.4)を模擬した4ケースについて実施した。

図 4-24 に F I S T - A B W R 実験装置の圧力容器内領域と実験解析で用 いた S A F E R コードのノード分割を示す。SAFERコードでは圧力容 器を 8 つの熱水力ノードに分割している。

破断流量及びADS流量は均質臨界流モデルを用いて計算した。また, ECCSの起動とMSIV閉止はダウンカマ領域の水位信号を用いた(主 蒸気配管の完全破断(Run No.2)を除く)。

4.4.2 解析結果

SAFERコードによるFIST-ABWR実験解析の結果について説 明する。表 4-5 には,主要な事象の発生時刻を実験データとSAFER解 析結果を比較して示している。また,図 4-25 から図 4-32 には,実験結果 とSAFER解析結果の比較を,蒸気ドーム圧力,冷却材流出流量,ダウ ンカマ領域水位,シュラウド内水位及び被覆管温度について示す。

(1) 蒸気ドーム圧力

図 4-25 及び図 4-26 に蒸気ドーム圧力変化を示す。

CS配管破断実験は、ダウンカマ領域の水位低信号によりMSIVが閉 止する約80秒までは圧力制御されるため圧力は維持されている。MSIV 閉止後に圧力が上昇するが、約150秒でのADS作動により急速減圧する。 SAFERコードは、MSIV閉止後わずかに圧力を高めに評価している が、ADS作動による減圧過程全体を通して実験と良く一致している。 MS配管破断実験は,破断後直ちに減圧するが,MSIVが約3秒で閉 止すると,冷却材流出流量は破断配管1本のみに減少するため,圧力は上 昇している。しかし,約5秒以降はバンドル出力の低下により単調に減少 する。減圧過程では減圧沸騰,HPFLサブクール水の注入による蒸気凝 縮が発生しているが,SAFERコードは実験の圧力挙動を良く予測して いる。また,図4-27に破断流量変化を示す。SAFER解析結果は実験結 果と良く一致している。

FW配管破断実験についても、SAFERコードは実験の圧力挙動を良 く予測している。実験では、破断後の減圧に伴い約40秒で下部プレナムの 沸騰により減圧が緩やかになり、HPFLの注入による蒸気凝縮により減 圧が加速している。SAFERコードはこれらの挙動を再現している。

BB(80cm²相当)配管破断実験は,MSIV閉止する約52秒までは圧力制 御されるため圧力は維持されている。MSIV閉止後に圧力が上昇するが, HPFL及びHPCSの注水により圧力上昇は抑制され,約98秒でADS が作動すると急速に減圧する。SAFERコードは実験の圧力挙動を良く 予測しており,特に,ADS作動後の減圧過程は実験と良く一致している。

(2) ダウンカマ領域水位

図 4-28 及び図 4-29 にダウンカマ領域の水位変化を示す。

CS配管破断実験とBB(80cm²相当)配管破断実験については、ADSが 作動する前の水位変化を比較して図4-28に示す。実験結果とSAFER解 析結果は非常に良く一致していることから、水位低信号によって作動する としているMSIV, ECCSの起動のタイミングも良く合っている。

MS配管破断については、SAFERコードはHPFLが注入を開始す るまでは実験結果を良く再現している。実験ではダウンカマ上部でCCF L現象が発生しており、これにより注入されたHPFL水がダウンカマ上 方に維持され水位を形成している。このような現象はSAFERコードで はモデル化されていないため、実験結果と解析結果に差が生じている。し かし、ダウンカマ上部でのCCFL現象はFIST-ABWR固有の現象で あり、実機においては発生しないので特に問題とはならない。

FW配管破断実験については,実験結果に対してSAFERコードが水 位を高めに予測している。これは,実験結果はコラップス水位であるのに 対して,SAFER解析結果は二相水位を示しているためである。 (3) シュラウド内水位

図 4-30 にCS配管破断実験及びBB(80cm²相当)配管破断実験のシュラ ウド内のバンドル及び上部プレナム(図 4-24 における領域 3 及び領域 5) の水位変化を示す。

CS破断実験の上部プレナム水位は、ADS作動前にCS破断位置まで 低下し、破断位置が露出する。ADS作動により急速減圧すると、沸騰に より二相水が上部プレナムに流入するため一時的に二相水位は増加するが、 水位は再び低下して約 300 秒でCS破断位置が露出する。ADS作動及び 破断位置の露出のタイミングはSAFERコードで良く予測している。A DS作動後の水位変化において、SAFERコードの解析結果が高めとな っている部分があるが、水位変化の全体挙動は一致していると言える。な お、バンドル内は常に二相水で満たされており、SAFERコードも同じ 結果となっている。

BB(80cm²相当) 配管破断実験の上部プレナム水位は, MSIV閉止後 のシステム圧力上昇によりボイド率が減少するため低下するが, HPCS 注水により上昇し, さらにADS作動による減圧沸騰により二相水が増加 して満水となる。この間, バンドル内は常に二相水で満たされている。S AFERコードはこれらの挙動を良く予測している。

MS配管破断実験とFW配管破断実験については,バンドル内は全期間 にわたり二相水で冠水されており,また,上部プレナム領域も二相水で満 水である。このため,シュラウド内に水位は形成されない。

(4) 被覆管温度

実験では、4ケースのいずれもバンドル内が二相水位で冠水維持されているため被覆管温度上昇はなく、システム圧力に対する飽和温度近傍を維持している。SAFER解析結果も実験結果を良く再現している。図 4-31 にCS配管破断,また、図 4-32 にBB(80cm²相当)配管破断の被覆管温度変化の比較を示す。

4.4.3 まとめ

以上より、ABWRプラントのLOCA模擬実験であるFIST-AB WRの炉心スプレイ配管、主蒸気配管、給水配管の破断実験及び圧力容器 底部配管破断実験について、SAFERコードによる実験解析を行い、S AFERコードがABWRプラントに対しても適用可能であることを確認 した。

・4つの異なるLOCA実験における模擬バンドルは二相水位により冠水 が維持され、模擬燃料棒はヒートアップすることなく、冷却材の自然循 環により冷却された。SAFERコードはこれらの4つの実験の挙動を 予測できた。

- ・SAFERコードはABWRのLOCA事象の圧力変化の全体的な傾向 を予測できることを確認した。
- SAFERコードはダウンカマ領域の水位変化を良く予測したことにより、MSIV閉止、ECCS注水及びADS作動のタイミングを正しく取り込むことができた。

表 4-4 SAFERコードによる実験解析の対象とした FIST-ABWR 実験条件

Run No.	1	2	3	4
条件	(CSLB)	(MSLB)	(FWLB)	$(BB(80 \text{cm}^2))$
破断位置	炉心スプレ	主蒸気(MS)	給水(FW)	圧力容器
	イ(CS)配管	配管	配管	底部(BB)
破断面積(%)	100	100	100	80cm ² 相当
作動 ECCS	1HPCS+ADS	2HPFL+ADS	2HPFL+ADS	1HPCS+2HPFL
				+ADS
初期出力(MW)	約 4.6	約 4.6	約 4.6	約 4.6
初期ドーム圧力	7.32	7. 29	7.30	7.31
(MPa[gage])				

表 4-5 FIST-ABWR 実験における主要事象の発生時刻

		· · · · · · · · · · · · · · · · · · ·	······································	
Run No.	1	2	3	4
事象	(CSLB)	(MSLB)	(FWLB)	$(BB(80cm^2))$
破断発生,給水流量	0/0	0/0	0/0	0/0
及び再循環ポンプ停				
止, バンドル出力変				
化開始				
破断位置露出(FWLB)			6/7	
MSIV閉止	80/80	3/3	10/10	52/52
HPFL-1 注入開始	不作動仮定	37/37	127/126	62/63
HPFL-2 注入開始	不作動仮定	37/37	217/217	87/89
HPCS-2 注入開始	119/113	不作動仮定	不作動仮定	87/89
破断位置露出(CSLB)	119/113			
ADS 作動	150/157			98/102
破断位置露出(CSLB)	300/300			

(実験データ/SAFER 解析結果),単位:s)

図 4-24 FIST-ABWR 実験解析ノード分割図

図 4-25 システム圧力変化 (FIST-ABWR, CS 配管破断, MS 配管破断)

図 4-26 システム圧力変化 (FIST-ABWR, FW 配管破断, BB(80 cm²) 破断)

図 4-27 破断流量変化(FIST-ABWR, MS 配管破断)

図 4-28 ダウンカマ領域水位変化 (FIST-ABWR, CS 配管破断, BB (80 cm²) 破断)

図 4-29 ダウンカマ領域水位変化(FIST-ABWR, FW 配管破断, MS 配管破断)

図 4-30 シュラウド内水位変化 (FIST-ABWR, CS 配管破断, BB (80 cm²) 破断)

図 4-31 被覆管温度変化 (FIST-ABWR, CS 配管破断)

図 4-32 被覆管温度変化 (FIST-ABWR, BB(80cm²)破断)

4.5 実機解析への適用性

4.5.1 重要現象への適用性

SAFERコードによる実験解析結果と主要な実験結果の比較を表 4-6 に示す。また、図 4-33 に被覆管最高温度の比較を示す。

以下に, SAFERコードの重要現象への適用性の妥当性確認について 述べる。

(1) 炉心水位(沸騰・ボイド率変化,気液分離(水位変化)・対向流,三次元効果) TBL,ROSA-Ⅲ及びFIST-ABWRの実験解析により,SAFER コードが炉心の二相水位を良く予測することを確認した。炉心が露出する事象に ついての炉心再冠水時刻を遅く評価する傾向にあるが,その差は,表4-6に示す ように±0~+54秒と小さい。

したがって、炉心露出及び再冠水のタイミングを良く予測し、沸騰・ボイド率 変化、及び気液分離・対向流に適用できる。

(2) 燃料被覆管温度(燃料棒表面熱伝達,気液熱非平衡)

TBL及びROSA-Ⅲの実験解析により,SAFERコードが噴霧流熱伝達 モデルにSun-Sahaの式を用いているため、炉心露出時の熱伝達係数を低く予測 し、被覆管温度を高く予測していることを確認した。PCTは表 4-6 に示すよう に10℃~150℃程度高めに評価する。

したがって、SAFERコードは燃料棒表面熱伝達に適用できる。

(3) 原子炉圧力(冷却材放出,沸騰・凝縮・ボイド率変化)

TBL, ROSA-Ⅲ及びFIST-ABWRの実験解析により, SAFER コードが系の圧力変化及び圧力容器の水位変化を良く予測することを確認した。 したがって,冷却材放出,及び沸騰・凝縮・ボイド率変化に適用できる。

(4) 原子炉水位(沸騰・凝縮・ボイド率変化,気液分離(水位変化)・対向流) FIST-ABWRの実験解析により,SAFERコードが原子炉水位(ダウ ンカマ領域水位)の低下を良く予測し,水位低下によるMSIVの閉止,ECC

は表 4-5 に示すように, -6 秒~+7 秒の範囲で実験結果と一致している。 したがって, 沸騰・凝縮・ボイド率変化及び気液分離・対向流に適用で

Sの起動のタイミングを予測できることを確認した。ECCS起動のタイミング

4.5.2 実験装置のスケーリング及びECCS構成の異なるプラントへの適 用性

SAFERコードの妥当性確認に使用したTBL, ROSA-Ⅲ及びF IST-ABWR実験装置は,表4-7に示すように,それぞれ実機を縮尺模 擬し,実機と同等のECCS構成としている。

TBL及びROSA-Ⅲは外部再循環系及びジェットポンプを有するプ ラントを模擬し、また、ECCSは炉心上部に注水する炉心スプレイ系(H PCS及びLPCS)、炉心バイパス部に注水するLPCIで構成するE CCSを模擬しており、実プラントの構成と相違はない。

また、ABWR実プラントは炉心上部に注水する高圧炉心注水系(HP CF)、原子炉隔離時冷却系(RCIC)及び低圧注水系(LPFL)で 構成されるが、FIST-ABWRは炉心上部に注水する高圧炉心スプレイ 系(HPCS)とダウンカマ部に注水する高圧注水系(HPFL)で構成 されており、実プラントと相違する。しかし、原子炉内注水位置は同等で あることから、HPCFとHPCSの相違、LPFLとHPFLの相違は 原子炉内保有水の分布の観点からは問題にならない。したがって、実機解 析へ適用できる。

4.5.3 まとめ

以上より、本章に記載している妥当性確認結果は、ECCS構成等の異なるBWRプラント共通の妥当性確認として適用性を有するとともに、実機BWRの有効性評価解析に適用できると言える。

実験		最高温	度(℃)	最高温度	最高温度時刻(s)		再冠水時刻(s)	
		実験	解析	実験	解析	実験	解析	
TBL	(1)	446	599	135	152	162	165	
	(2)	533	591	524	536	550	604	
	(3)	351	421	134	143	156	167	
	(4)	598	654	612	620	668	722	
ROSA-III	(1)	511	612	119	136	171	182	
	(2)	559	581	133	135	177	182	
	(3)	644	674	190	184	210	210	
	(4)	573	627	336	328	366	368	
	(5)	566	594	410	383	440	447	
	(6)	531	542	531	512	548	553	
	(7)	364	382	696	691	734	738	
FIST-ABWR	(1)	温度上 昇なし	温度上 昇なし	_	_	露出 なし	露出 なし	
	(2)	同上	同上	_	_	同上	同上	
	(3)	同上	同上			同上	同上	
	(4)	同上	同上			同上	同上	

表 4-6 SAFERコードによる実験解析結果と実験結果の比較(22)

表 4-7 実験装置のスケーリング及びECCS構成

項目	TBL	ROSA-III	FIST-ABWR
模擬した	BWR	BWR	ABWR
プラント	熱出力 3293MW	熱出力 3800MW	熱出力 3926MW
	集合体数 764 体	集合体数 848 体	集合体数 872 体
	HPCS/LPCS/LPCI	HPCS/LPCS/LPCI	HPCF/LPFL/RCIC
実験装置	体積比:2/764	体積比:1/424	体積比:1/872
	熱出力:約10M₩	熱出力:約4MW	熱出力:約4.6MW
	集合体数:2体(実	集合体数:4体(1/2	集合体数:1体(実
	寸大)	長)	寸大)
	HPCS/LPCS/LPCI	HPCS/LPCS/LPCI	HPCS/HPFL

図 4-33 被覆管最高温度の比較(15)

5. 有効性評価への適用性

4章に記載した実験解析を踏まえ,重要現象についての不確かさ,及びその不確かさが評価指標の観点と運転員操作の観点から有効性評価解析へ与える影響について表 5-1 にまとめた。以下にその不確かさについて記述する。

5.1 不確かさの取り扱いについて(評価指標の観点)

SAFERコードで取り扱う評価指標は、燃料被覆管温度であるため、 燃料被覆管温度への重要現象の不確かさの影響について以下に記載する。

(1) 崩壊熱

崩壊熱は信頼性の高い評価モデルと現実的な評価条件を使用して評価した値をSAFERコードの入力として使用しているため、有効性評価では 崩壊熱の不確かさの燃料被覆管温度への影響は小さい。

(2) 燃料棒表面熱伝達,沸騰遷移,気液熱非平衡

燃料表面熱伝達,沸騰遷移及び気液熱非平衡については,燃料被覆管温 度を保守的に評価する熱伝達モデルを適用していることが実験解析により 確認されていることから,有効性評価解析においても燃料被覆管温度は高 めに評価される。

(3) 燃料被覆管酸化

燃料被覆管の酸化量の計算は、燃料被覆管温度が高温となる場合に酸化量、酸化反応熱を高めに評価する Baker-Just の式を適用しているため、燃料被覆管温度は高めに評価される。

(4) 燃料被覆管変形

燃料被覆管温度計算と燃料棒内圧の計算から,内圧による応力が破裂限 界応力を超えた場合には,燃料被覆管が破裂を起こすとみなし,燃料被覆 管の内側にもジルコニウム-水反応を計算する。破裂を判定する限界応力 は,図 3-10 に示したように,実験データのベストフィット曲線を仮定し, 現実的な条件としている。 (5) 沸騰・ボイド率変化,気液分離(水位変化)・対向流,三次元効果

炉心の二相水位については,燃料被覆管温度に影響する炉心露出,再冠 水を適切に予測できることを実験解析により確認していることから,有効 性評価解析における燃料被覆管温度への影響は小さい。

(6) 冷却材放出(臨界流·差圧流)

SRVからの冷却材流出については,設定圧力で設計流量が放出される ように入力で設定するため,不確かさの影響はない。破断口からの冷却材 流出は,実験データと良く一致する現実的な臨界流モデルを適用しており, 有効性評価解析における燃料被覆管温度への影響は小さい。

冷却材圧力変化については,原子炉注水系の注水開始時間や流量に影響 するが,圧力変化を適切に予測するモデルであることが実験解析により確 認されていることから,注水流量変化を適切に評価し燃料被覆管温度への 影響は小さい。

(7) ECCS注水(給水系・代替注水設備含む)

ECCS注水(給水系・代替注水設備含む)の原子炉注水については, 各系統の設計条件に基づく原子炉圧力と注水流量の関係を使用しており, 実機設備仕様に対して注水流量を少なめに与え,燃料被覆管温度を高めに 評価する。

以上より,重要現象の不確かさは,燃料被覆管温度を過大評価または過 大評価する方向に寄与し,有効性評価解析は評価指標の観点で厳しい評価 となっている。 5.2 不確かさの取り扱いについて(運転操作の観点)

SAFERコードで取り扱う運転操作は、SRVを使用した原子炉減圧 操作及びECCSまたは代替注水系を使用した原子炉注水操作,注水停止 操作である。これらの運転操作へのコードの不確かさの影響を以下に記載 する。

(1) 運転操作の起点への影響

SRVを使用した原子炉減圧操作及びECCS,代替注水設備を使用し た原子炉注水操作は,代替電源あるいは代替注水設備の準備が完了したタ イミングまたは原子炉水位低信号の発信を起点に実施する。代替電源ある いは代替注水の準備の完了のタイミングは訓練実績等に基づく時間に余裕 をみて設定されるため,不確かさの影響は安全側に評価される。また,原 子炉水位低信号の発信はECCS起動用設定水位を採用しており,事象発 生後の原子炉水位の低下過程で発信される。事象発生後の原子炉水位変化 は崩壊熱及び臨界流モデルの不確かさの影響があるが,これらの評価モデ ル及び評価条件の選定には信頼性の高い評価モデル及び現実的な評価条件 を採用しているため,不確かさの影響は小さい。

なお、燃料被覆管の破裂判定に対しては、ベント操作への影響が考えら れるが、ベント開始タイミングまでの時間的余裕が十分あることから、コ ードの不確かさが運転操作の可否に影響することはない。

また,解析上の取り扱いとして,破裂判定は燃料被覆管温度が最も高く なるバンドルの値を代表として用いるが,現実的な炉心における燃焼度の 分布を踏まえると,その影響はさらに小さくなる。

(2) 運転操作後の影響

原子炉減圧操作後は,原子炉圧力変化に対応して原子炉への注水が行われ,原子炉水位の回復及び維持がなされる。その後,注水系の停止,再起 動等の運転操作が考えられるが,原子炉圧力が低下し,かつ,原子炉水位 が維持された状態であるため,コードの不確かさはその後の運転操作の可 否に影響しない。

分類	重要現象	解析モデル	不確かさ	有効性評価解析への影響
	崩壊熱	崩壊熱モデル	入力値に含ま	崩壊熱は現実的な評価結
后心			れる	果を入力として使用する
				ため、有効性評価解析で
(桜)				は燃料被覆管温度への影
				響は小さい。
	燃料棒表	燃料棒表面熱	燃料被覆管温	実験解析では熱伝達モデ
	面熱伝達,	伝達モデル	度を 10℃~	ルの保守性により被覆管
	沸騰遷移		150℃程度高め	温度を高く評価すること
			に評価する	から、有効性評価解析で
				も燃料被覆管温度を高く
				評価する。
后心	燃料被覆	ジルコニウム	酸化量及び発	燃料被覆管温度を高く評
	管酸化	-水反応モデ	熱量の評価に	価する。
		IL	ついて過大な	
			結果を与える	
	燃料被覆	膨れ・破裂評価	破裂の判定は	現実的に評価しているこ
	管変形	モデル	実験データの	とから, 燃料被覆管温度
			ベストフィッ	への影響は小さい。
			ト曲線を用い	
			る	
	沸騰・ボイ	二相流体の流	実験結果の二	炉心水位変化を適切に評
	ド率変化,	動モデル	相水位変化を	価することから、有効性
	気液分離		良く予測する	評価解析では燃料被覆管
	(水位変		ことから,不確	温度への影響は小さい。
	化)・対向		かさは小さい	
「「「」」	流,三次元			
(埶流動)	効果			
	気液熱非	燃料棒表面熱	燃料被覆管温	実験解析では熱伝達モデ
	平衡	伝達モデル	度を 10℃~	ルの保守性により被覆管
			150℃程度高め	温度を高く評価すること
			に評価する	から、有効性評価解析で
				も燃料被覆管温度を高く
				評価する。

表 5-1 重要現象の不確かさ(1/2)

分類	重要現象	解析モデル	不確かさ	有効性評価解析への影響
	冷却材放出	臨界流モデル	実験結果の圧	SRV 流量は,設定圧力で
	(臨界流・差		力変化を良く	設計流量が放出されるよ
	圧流)		予測すること	うに入力で設定するた
			から,不確かさ	め、不確かさの影響はな
			は小さい	ℓv _o
				破断口からの流出は実験
				結果と良い一致を示す臨
				界流モデルを適用してい
				3.
				有効性評価解析でも圧力
				変化を適切に評価し、原
百子后				子炉への注水のタイミン
				グ及び注水流量を適切に
<u> 広</u> 万				評価するため、燃料被覆
(氷が				管温度への影響は小さ
				₩,
全安全	沸騰・ボイド	二相流体の流	実験結果の二	炉心水位変化を適切に評
	率変化	動モデル	相水位変化を	価することから、有効性
	気液分離(水		良く予測する	評価解析では燃料被覆管
	位変化)・対		ことから,不確	温度への影響は小さい。
	向流		かさは小さい	
	ECCS注	原子炉注水系	入力値に含ま	注水特性は, それぞれの
	水(給水系・	モデル	れる	系統の設計条件に基づく
	代替注水含			原子炉圧力と注水流量の
	む)			関係を入力する。実機設
				備に対して注入流量を少
				なめに与えるため、有効
				性評価解析では燃料被覆
				管温度を高めに評価す
				る。

表 5-1 重要現象の不確かさ(2/2)

- 6. 参考文献
- (1)「沸騰水型原子力発電所 非常用炉心冷却系(ECCS)の新性能評価手法について」,株式会社日立製作所,HLR-032訂3,平成10年5月
- (2)「沸騰水型原子力発電所 非常用炉心冷却系解析モデル(SAFER)」、株式会社東芝、TLR-044 改訂4、平成10年5月
- (3) N. Zuber and J. A. Findlay, "Average Volumetric Concentration in Two-Phase Flow Systems", Trans. ASME J. of Heat Transfer, November 1965.
- (4) J.F.Wilson et al., "The Velocity of Rising Steam in a Bubbling Two-Phase Mixture", Trans. of ANS, 5(1), May 1962.
- (5) G. B. Wallis, "One-dimensional Two-Phase Flow", McGraw-Hill, New York, 1969.
- (6) M. Murase and H. Suzuki, "Evaluation of Countercurrent Gas / Liquid Flow in Parallel Channels with Restricted Ends", Nucl. Technol., 68, 408, 1985.
- (7) M. Murase and S. Suzuki, "Countercurrent Gas-Liquid Flow in Parallel Channnels Simulating a Boiling Water Reactor Core", Proc. Japan-U.S. Seminar on Two-Phase Flow Dynamics, No.C3, Lake Placi., New York, 1984.
- (8) F. J. Moody, "Maximum Flow Rate of a Single Component, Two-Phase Mixture", J. of Heat Transfer, Trans. ASME, Series C, Vol. 87, No. 1, February 1965, PP. 134-142.
- (9) F. J. Moody, "Maximum Discharge Rate of Liquid-Vapor Mixtures from Vessel", NEDO-21052, September 1975.
- (10) American Nuclear Society Standard, ANSI/ANS-5.1-1979, American National Standard for Decay Heat Power in Light Water Reactors, ANSI/ANS-5.1-1979, August 1979.
- (11) J.E.Leonard et al., "Calculation of Low Flow Film Boiling Heat Transfer for BWR LOCA Analysis", NEDO-20566-1-A, October 1982.
- (12) F.W.Dittus and L.M.K.Boelter, "Heat Transfer in Automobile Radiators of the Tubular Type", University of California Publications in Engineering, Vol. 2, 1930.
- (13) H. Nagasaka, "New Japanese Correlations on Core Cooling and CCFL Characteristics during BWR LOCA", NUREG/CP-0072, Vol. 5, 1985.
- (14) K.H. Sun, J.M. Gonzalez and C.L. Tien, "Calculation of Combined Radiation and Convection Heat Transfer in Rod Bundles Under Emergency Cooling Conditions", Journal of Heat Transfer, 414, August 1976.

- (15) P. Saha, "A Post-Dryout Heat Transfer Model Based on Actual Vapor Generation Rate in Dispensed Droplet Regime", General Electric Company, NEDE-13443, May 1976.
- (16) H. Nagasaka, K. Yamada, A. Kuwako, "BWR Core Cooling in Refill / Reflood Phase", NUREG/CP-0058, Vol. 3, 1984.
- (17) J.G.M.Andersen, "CORECOOL : A Model for the Temperature Distribution and Two-Phase Flow in a Fuel Element under LOCA Conditions", NEDO-21325, July 1976.
- (18) L. Baker and L. C. Just, "Studies of Metal Water Reactions at High Temperatures III. Experimental and Theoretical Studies of the Zirconium-Water Reaction", ANL-6548, 1962.
- (19) A. M. Ross and R. L. Stoute, "Heat Transfer Coefficients Between UO2 and Zircaloy-2", CRFD-1075, AECL-1552, 1962.
- (20)「沸騰水型原子力発電所 燃料の設計手法について」,株式会社日立製作所,HLR-033 訂 1, 平成 10 年 2 月
- (21)「沸騰水型原子力発電所 燃料の設計手法について」,株式会社東芝, TLR-045 改訂 1,平成 10 年 1 月
- (22) S. Itoya, H. Nagasaka, K. Moriya and S. Miura, "Overview of SAFER03 Assessment Studies", Journal of Nuclear Science and Technology, 25(3), Mar. 1988
- (23) 「沸騰水型原子炉のLOCA/ECCS解析コード(SAFER) について」,原子力発電技術顧問会(基本設計) LOCA検討会,昭和 61 年7月
- (24)「軽水型動力炉におけるLOCA時ECCS性能評価コードについて」, 原子炉安全基準専門部会 ECCS性能評価小委員会,昭和63年4月
- (25) S. Miura, K. Moriya, and T. Sugisaki, "SAFER Qualification by TBL Test Analysis", NUREG/CP-0072, Vol. 5, U. S. Nuclear Regulatory Commission, Feb. 1986
- (26) S. Itoya and N. Abe, "Analyses of TBL main steam line break test by SAFER03 and TRAC-BD1", Proceedings of Second International Topical Meeting on Nuclear Power Plant Hydraulics and Operations, Apr. 1986
- (27) S. Itoya and N. Abe, "SAFER03 and TRAC-BD1 analyses of TBL experiments on a boiling water reactor loss-of-coolant accident,"Nuclear Engineering and Design, 97(3), Nov. 1986
- (28) S. Itoya, J. Otonari and K. Tasaka, "SAFER03 Qualification Against ROSA-III Recirculation Line Break Spectram Tests", NUREG/CP-0072, Vol. 5, U.S. Nuclear Regulatory Commission, Feb. 1986

- (29) S. Itoya, H. Nagasaka and K. Tasaka, "Assessment of SAFER03 Code Using ROSA-III Break Area Spectram Tests on Boiling Water Reactor Loss-of-Coolant Accidents", Journal of Nuclear Science and Technology, 24(8), Aug. 1987
- (30) S. Itoya, F. D. Shum, J. Otonari and H. Nagasaka, "Assessment of the SAFER03 computer code using advanced boiling water reactor test data on a loss-of-coolant accident", Nuclear Technology Vol. 80, Mar. 1988

分類		解析条件
定格出力運転条	原子炉熱出力	
件パラメータ及	炉心流量	
び幾何形状デー	主蒸気流量	
タ	給水流量	
	再循環ポンプ流量	
	原子炉ドーム圧力	
	原子炉水位	
	冷却材体積	炉心
		上部プレナム
		下部プレナム
		炉心バイパス
		制御棒案内管
		ダウンカマ
		蒸気ドーム
		主蒸気配管
		再循環配管
	原子炉各部の寸法	燃料有効部上端, 下端
	(圧力容器下端か	シュラウドヘッド上端,下端
	らの高さ)	給水スパージャノズル
		シュラウドサポートプレート
		ジェットポンプ上端,下端
		気水分離器出口
		制御棒案内管下端
		炉心支持板上端
		チャンネルボックス上端
		ECCS注水位置
		水位計ノズル
		主蒸気出口ノズル
		圧力容器頂部

表(1/4)解析コードにおける解析条件

分類		解析条件
定格出力運転条	流路形状データ(各	炉心
件パラメータ及	領域の水力的等価	上部プレナム
び幾何形状デー	直径, 流路断面積)	下部プレナム
タ		ダウンカマ
		上部タイプレート
		炉心入口オリフィス
		ジェットポンプ入口
	原子炉圧力容器及	圧力容器
	び内部構造材デー	炉心シュラウド
	タ(質量,熱容量,	炉心支持板
	表面積)	上部格子板
		チャンネルボックス
		制御棒案内管
		制御棒
		気水分離器
		蒸気乾燥器
	圧力損失データ	主蒸気配管
		炉心
		気水分離器

表(2/4)解析コードにおける解析条件

分類	解析条件
炉心データ	炉心核分裂出力時間変化
	炉心崩壊熱時間変化
	燃料集合体数
燃料データ	燃料集合体あたりの燃料棒数
	燃料棒配列
	燃料棒ピッチ
	燃料棒有効長
	燃料被覆管外径,燃料被覆管肉厚
	燃料被覆管物性(熱伝導率,比熱,密度)
	燃料ペレット直径
	燃料ペレットー燃料被覆管ギャップ条件(ガス圧力、ガス
	組成, ギャップ熱伝達係数)
	燃料ペレット物性 (熱伝導率,比熱,密度)
	燃料ペレット径方向出力分布
	燃料棒最大線出力密度
	燃料棒軸方向出力分布
	局所出力ピーキング
	燃料集合体断面平均燃焼度

表(3/4)解析コードにおける解析条件

分類	解析条件
SRV	段数及び個数
	吹き出し圧力
	吹き出し容量
再循環ポンプ	ポンプ台数
	トリップ設定点
	慣性時定数
主蒸気隔離弁	閉トリップ設定点
	全閉時間
事故収束に重要	ECCS及びRCIC
な機器,操作関連	(自動起動・停止設定点、作動遅れ時間、台数、容量、原
	子炉注水特性,冷却水温度,注水・停止手動操作条件)
	代替注水設備
	(注水・停止手動操作条件,台数,容量,原子炉注水特性,
	冷却水温度)
	自動減圧系 (ADS)
	(弁個数,吹き出し圧力,吹き出し容量,自動起動設定点,
	作動遅れ時間)
	SRV (手動開操作条件, 個数)
事故条件	破断条件(位置,口径)
	格納容器圧力

表(4/4)解析コードにおける解析条件

添付2 相関式,モデルの適用性

I. 平衡均質臨界流モデルの適用性

1. はじめに

炉心損傷防止対策の有効性評価に使用している平衡均質臨界流モデル⁽¹⁾ は、二相流を飽和平衡の均質流とみなし、摩擦を考慮しない単相の臨界流 理論を適用したモデルである。本モデルは「ECCS性能評価指針」で使 用を認められているものである。

2. 平衡均質臨界流モデルの適用性

平衡均質臨界流モデルによる計算値は実験データとの比較によりその妥 当性が確認されている。

(1) 飽和水のブローダウン実験データとの比較⁽¹⁾

添付図 2-1 に、内田、Fauske, Henry、そして Sozii らの異なる研究者による飽和水のブローダウン実験結果を示す。これらの実験における管内径は 0.4~1.31 cm (0.158~0.513 in.) である。また、Allemann は、内径 17.3 cm (6.8 in.) までの管を介して容器からのブローダウン実験を行っている。 図には、流量が均質に近くなるパイプ長さ 10 cm (4 in.) 以上のデータのみを示す。

図は管入口部が飽和水の場合の臨界流量と入口圧力の関係を示しており, 臨界流量は管入口圧力とともに増加する。図には管径,管長の異なる実験 データが含まれているが,管長はすべて10cm以上であり,管入口付近の非 平衡の影響は少ないと考えられ,この場合の臨界流量は実線で示す平衡均 質臨界流モデルによる計算値と一致している。

(2) 飽和水及び未飽和水のブローダウン実験データとの比較⁽¹⁾

添付図 2-2 は, Henry のブローダウン実験による流出流量であり,長さ 90cm (3 ft),内径 0.8 cm (0.313 in.)の管からの流出である。図は,管 入口部が飽和水及び未飽和水の状態における臨界流量を管入口部エンタル ピに対して示している。管入口部が飽和水及び未飽和水のいずれの状態に おいても,実線で示す平衡均質臨界流モデルによる計算値は実験データと 良い一致を示している。

(3) ノズル形状の影響⁽²⁾

Sozziらの実験では、管長、管径、管入口・出口形状及び入口サブクール 度など臨界流量に対する主要な影響因子の効果が系統的に調べられている。 添付図 2-3 は滑らかな管入口部をもつ直管から流出する臨界流量を管長 L に対して示したもので,臨界流量は管長の増加につれて最初急激に,その 後緩やかに減少している。また,図中には各入ロクオリティについて,f L=0 すなわち管の摩擦がないものとし,熱平衡状態を仮定した平衡均質臨界 流モデルによる計算値が示されている。管長が約 5 in. (127mm)の点で計算 値と実験値は良く一致し,この点よりも短い場合には管入口部での急激な 状態変化により生じる気液間の非平衡のため臨界流量は平衡均質臨界流モ デルによる計算値より大きく,一方,この管入口部での非平衡が緩和する 約 5 in. (127mm)よりも長い場合にはLすなわち管摩擦の影響により臨界流 量は小さくなる。

3. まとめ

熱平衡状態を仮定した平衡均質臨界流モデルにより,管入口条件を適用 し,容器に接続する管からの冷却材流出流量を予測した。平衡に達するの に十分な長さ(約5 in. (127mm))をもつ場合の流出流量は,管入口状態が 飽和水及び未飽和水ともに,計算結果と実験データは良く一致しており, 流出流量は管入口近傍の均質流により制限されること示している。

BWRプラントで仮定する破断口及びSRVからの流出流量は,圧力容 器ノズルまたはノズルに接続する配管を通過し,その長さは5 in. (127mm) より長い。したがって,管入口付近の非平衡の影響は無視できると考えら れ,平衡均質臨界流モデルを炉心損傷防止対策の有効性評価に適用するこ とは妥当である。

参考文献

- F. J. Moody, "Maximum Discharge Rate of Liquid-Vapor Mixtures from Vessel", NEDO-21052, September 1975.
- (2) 日本機械学会 編, 改定 気液二相流技術ハンドブック, コロナ社 2006 年

添付図 2-1 飽和水の臨界流実験データ⁽¹⁾

添付図 2-2 未飽和水及び飽和水の臨界流実験データ(1)

添付図 2-3 臨界流量の管長による変化(2)

Ⅱ.熱伝達相関式,モデルの適用性

1. 炉心損傷防止対策の有効性評価における熱伝達相関式の選定

炉心損傷防止対策の有効性評価における事故シーケンスグループのうち, 高圧・低圧注水機能喪失(TQUV)を例にすると,給水流量の全喪失後,原 子炉水位が急速に低下し,原子炉水位低(レベル3)信号が発生して原子 炉はスクラムするが,原子炉水位低(レベル2及びレベル1)で高圧注水 系及び低圧注水系の起動に失敗する。原子炉の減圧をSRVにより手動操 作により実施すると,冷却材の流出により原子炉水位が低下し,有効燃料 棒頂部を下回るが,原子炉の減圧後に低圧代替注水系による注水が開始す ると原子炉水位が回復し,炉心は再冠水する。原子炉水位が回復するまで の間に炉心が一時的に露出するために燃料被覆管の温度が上昇するが,再 冠水により燃料棒は冷却されて燃料被覆管温度は低下する。

事故期間中の燃料棒ヒートアップ挙動は,事象発生から炉心露出するま での冠水状態,露出状態及び水位回復後の再冠水状態を経験することから, 燃料棒表面熱伝達を適切に評価するためSAFERコードでは添付表 2-1 に示す熱伝達相関式,モデルを適用している。これらのモデルは,「EC CS性能評価指針」において妥当性が認められたものである。添付表 2-1 にはこれらの相関式,モデル選定の基本的な考え方も合わせて示す。また, 添付図 2-4 に,TQUV 評価における熱伝達係数の適用例を示す。

2. SAFERコードの熱伝達相関式の適用方法

SAFERコードは、燃料棒の軸方向ノードが二相混合水で冠水している時は、 核沸騰、遷移沸騰、膜沸騰から熱伝達係数が計算され、熱伝達様式を決める選択 ロジックは添付図 2-5 に従っている。沸騰遷移開始時間 T_{BT} は別途SCATコード で評価された結果を入力する。また、蒸気クオリティが膜沸騰限界クオリティ X_{c} 以上になった場合、または、被覆管過熱度が安定膜沸騰状態における最小過熱度 ΔT_{MIN} 以上になった場合には膜沸騰を適用する。燃料被覆管過熱度が ΔT_{MIN} を下回 り、さらに限界熱流束過熱度 ΔT_{CHF} 以下の時はリウェットと判定し、核沸騰に復帰 する。また、 ΔT_{CHF} より大きい場合には遷移沸騰とし、膜沸騰と核沸騰の熱伝達係 数を内挿計算する。

燃料棒の軸方向ノードが二相混合水で冠水していない時は,輻射熱伝達と蒸気 冷却または噴霧流冷却から熱伝達係数が決まる。上部プレナムからの落下水が存 在する場合は,落下水(スプレイ)熱伝達と輻射熱伝達が組み合わされる。また, 燃料棒及びチャンネルの濡れによる冷却も考慮されている。 添付表 2-1 有効性評価で用いるSAFERコードの熱伝達相関式,モデル

添付図 2-4 番号	熱伝達様式	熱伝達相関式、モデル	選定の基本的な考え方
I)	核沸騰	ボイド率の関数とする相 関式	核沸騰熱伝達係数は他の熱伝達 係数に比べて非常に大きく,こ の熱伝達係数の変化に対し,燃 料被覆管温度の感度が非常に小 さいため簡便化したモデルとし ている
2	蒸気単相	Dittus-Boelter の式	単相流の相関式として広く認め られている評価式を採用してい る
3	膜沸騰	噴霧流冷却の相関式と修 正 Bromley の式をボイド 率の関数として使用する 相関式	過渡事象発生直後の高流量,高 圧条件から ECCS 等の注水による 炉心再冠水後の低流量,低圧条 件まで適用可能なモデルとして 採用している
		(低ボイド率;低流量) 修正 Bromley の式	低ボイド率では,管壁を薄い気 相膜が覆い,チャンネルの中心 を二相混合相が流れる逆環状流 の形態の流れとなる。気相への 熱伝達及び気相から液相への熱 伝達は対流によって行われ,修 正 Bromley の式により実験デー タを良く予測できることから採 用している
		(高ボイド率;高流量) Sun-Saha の式	蒸気に液滴が混入した場合の噴 霧流冷却は,上記の蒸気単相熱 伝達相関式をもとに液滴を考慮 した補正項及び過熱蒸気中の液 滴の蒸発量を決める相関式を組 み合わせたモデルであり,模擬 燃料集合体冷却実験におけるロ ッド表面温度を実験値よりも高 く評価することから採用してい る
4	遷移沸騰	核沸騰と膜沸騰の熱伝達 係数を燃料被覆管過熱度 で内挿した相関式	核沸騰と膜沸騰の間を連続的に 変化させるためにモデル化して おり,燃料棒上での遷移沸騰が 比較的短い過渡期間で生じるた め,このような補間モデルが容 認可能と考えられる

添付図 2-4 熱伝達係数の推移 (TQUV の例)

添付図 2-5 SAFERコードの熱伝達様式選択ロジック

3. 有効性評価において適用する熱伝達相関式,モデルの妥当性

SAFERコードに採用した個々の熱伝達相関式は実験結果との比較に より妥当性を確認し、これらの熱伝達相関式を適用した燃料被覆管温度の 計算結果の妥当性は、炉心露出、原子炉注水及び炉心再冠水の一連の過程 を模擬した LOCA 模擬システム実験結果との比較により確認している。

以下に,有効性評価において適用する熱伝達相関式,モデルの妥当性を 示す。

(1) 核沸騰

燃料が露出するまでの核沸騰領域については, Jens-Lottesの式⁽¹⁾及び 単相流については Dittus-Boelterの式⁽²⁾に基づいた熱伝達係数を,ボイ ド率の関数とするモデルを適用している。

このモデルは添付図 2-6 に示すように 3 つの領域に分け,それぞれの境 界の値を入力として与える。図の H3 は核沸騰熱伝達係数,H2 はサブクール 沸騰,そして H1 は蒸気冷却に対応する値である。

核沸騰熱伝達係数は他の熱伝達係数に比べて大きく,核沸騰熱伝達係数 の変化が燃料被覆管温度に与える影響は小さいため,本モデルの有効性評 価への適用において問題はない。

(2) 蒸気単相

燃料が露出した後の蒸気単相状態には Dittus-Boelter の式⁽²⁾を適用している。

Dittus-Boelter の式は,添付図 2-7 に示すように実寸大の模擬燃料集合体による蒸気単相冷却実験の実験データと比較すると保守的であることが確認されている⁽³⁾⁽⁴⁾。これは、スペーサによる乱流促進効果及び入口部の助走区間の効果である。乱流では、入口流れの効果は一般に小さいが、短い長さの流れでは、入口領域の効果がより顕著となり、熱伝達が改善する。SAFERコードで適用している相関式では、これらの熱伝達の改善効果は考慮されていない。

したがって,相関式は実際の熱伝達を過小評価することから,有効性評価への適用において問題はない。

添付図 2-7 蒸気単相熱伝達係数の無次元整理 (3)(4)

(3) 膜沸騰及び噴霧流

代替注水系による注水が開始された以降の再冠水過程では,燃料棒が二 相水位以下の高流量状態においては Sun-Saha の式に基づく噴霧流の相関式 ⁽³⁾⁽⁴⁾,低流量状態においては修正 Bromley の式⁽⁵⁾をボイド率の関数と して使用する相関式を適用している。

膜沸騰熱伝達係数モデルを図示すると添付図 2-8 のようになる。遷移ボ イド率 α_r は、レイノルズ数の関数として実験相関式で与えられる。ボイド 率が α_r より小さい範囲では、熱伝達係数は修正 Bromley の式が成り立つ。 一方、高ボイド率では流れは噴霧流になるので熱伝達係数は Sun-Saha の式 に基づく噴霧流熱伝達式を用いる。熱伝達相関式は、蒸気単相熱伝達に液 滴による熱伝達向上を考慮した Sun のモデルを適用する。また、噴霧流冷 却熱伝達時においては蒸気の温度は一般に飽和温度よりも高くなる。そこ で、この効果を考慮するため、蒸気温度 を Saha のモデルを用いて計算す る。

Sun のモデルと Saha のモデルを組み合わせたモデルによる計算値を,実 寸大の電気加熱集合体を使用した再冠水実験結果と比較した結果を添付図 2-9 に示す。図に示すように,計算によるロッド表面温度は実験値よりも高 くなっている⁽³⁾⁽⁴⁾。このことから,噴霧流冷却モデルの保守性が示され た。

また, KWUの実規模大模擬燃料集合体(340本ロッド)を使用した再冠水 過渡試験における二相水位下の熱伝達係数を修正 Bromley の式で予測した 結果を添付図 2-10 に示す。修正 Bromley の式は,過渡時の膜沸騰領域にお いて試験データと極めて良く一致する⁽⁵⁾。

以上により、有効性評価への適用において問題はない。

添付図 2-8 膜沸騰熱伝達係数モデル

添付図 2-9 Sun-Saha の噴霧流冷却モデルと実験値の比較⁽³⁾⁽⁴⁾

添付図 2-10 修正 Bromley の式と実験値の比較⁽⁵⁾

(4) 遷移沸騰

燃料が再冠水し,燃料棒表面温度が最小安定膜沸騰温度より降下した後 に膜沸騰から遷移沸騰への遷移が生じる。SAFERコードは,安定膜沸 騰状態での最小過熱度ΔT_{MIN}における膜沸騰熱伝達係数 H_{FB}と沸騰遷移点に 対する被覆管過熱度ΔT_{CHF}における核沸騰熱伝達係数 H_{NB}を内挿する相関式 を適用している。添付図 2-11に遷移沸騰熱伝達係数モデルを示す。安定膜 沸騰状態における最小過熱度ΔT_{MIN}は Iloe je の式⁽⁶⁾を使用して計算する。

Iloeje の式の実験データベースは、1000psia (6.9MPa)の単一圧力にお ける過渡沸騰実験であるが、異なる圧力への外挿性を具備させるため Berenson の最小プール膜沸騰温度相関式に基づき、質量流束及び熱平衡ク オリティの効果に対応できるよう拡張している。実験データと Iloeje の式 を添付図 2-12 に示すが、Iloeje の式は実験条件下において良く一致してい る。

添付図 2-11 遷移沸騰熱伝達係数モデル

添付図 2-12 最小安定膜沸騰温度に関する Iloe je の式⁽⁶⁾

4. 各解析コードによる熱伝達相関式の比較

添付表 2-2 にSAFERコード以外の燃料被覆管温度評価に使用されて いる熱伝達相関式を比較して示す。これらの熱伝達評価手法を比較すると, 膜沸騰の熱伝達相関式にそれぞれ特徴があり, SAFER 及び RELAP4 は沸騰遷 移後及び炉心再冠水後の膜沸騰も対象にしており, SCAT は沸騰遷移後のみ を対象にして相関式を採用している。

- ・SAFER 沸騰遷移後及び炉心再冠水後の熱伝達の予測として噴霧流 冷却の相関式と修正 Bromley の式をボイド率の関数として 使用する相関式を採用している。沸騰遷移後の高ボイド率領 域には過熱蒸気中に液滴が分散した噴霧流に対する熱伝達 相関式を,炉心再冠水後の低流量膜沸騰及びプール膜沸騰に 対しては修正 Bromley 式を採用している。
- RELAP4 強制対流膜沸騰に対しては Groeneveld 5.9 あるいは Dougall-Rohsenow を採用している。いずれも蒸気の強制対 流が主要な伝熱機構であるという仮定のもとに得られたも のである。
- SCAT 沸騰遷移後のドライアウト領域における熱伝達の予測式としては、本コードは修正 Dougall-Rohsenow 式を採用している。

なお、膜沸騰の熱伝達相関式 Dougall-Rohsenow 式は、蒸気単相流の乱流熱伝達 の式である Dittus-Boelter 式を二相流に適用した式であるが、米国 10CFR50 Appendix K においては、Dougall-Rohsenow 式の適用条件によっては熱伝達率を非 保守的に評価するとされており、参考文献(9)では、添付図 2-13 に示すように高 圧かつ高クオリティ条件下において熱伝達率を過大評価する傾向にあるとしてい る。また、日本原子力研究所(JAERI)で行われた定常ポスト限界熱流束(CHF) 試験⁽¹⁰⁾によると、高過熱度で Dougall-Rohsenow 式による予測値が実験値を上回 るとの知見もある。SAFERコードは、Dougall-Rohsenow 式を使用していない が、その基礎となった Dittus-Boelter 式に基づく噴霧流熱伝達率モデルを使用し ているため、Dougall-Rohsenow 式の適用方法を確認することにより、SAFER コードにおける噴霧流熱伝達のSun-Sahaのモデルの適用方法の妥当性を確認する。

参考文献(9)によると、非保守性の要因は蒸気温度を飽和としているためであ るとしている。また、JAERIで行われた定常ポストCHF 試験データにおいても、添 付図2-14の上段の図に示すように物性値を飽和温度条件で評価すると高過熱度で 予測値が実験値を上回る結果になっている。JAERIの実験から、ポストCHF 熱伝達 係数を保守的に予測するには、スセルト数及びプラントル数は蒸気温度を膜温度 として求め、レイノルズ数中の密度は飽和温度、粘性は膜温度としてレイノルズ 数を求めて、Dougall-Rohsenow 式を用いるとしている⁽¹⁰⁾。

この予測法による熱伝達係数の予測値と実験データの比較を伝熱面過熱度に対して整理した結果を添付図 2-15(1)に示す。この図によれば、伝熱面過熱度が十分に大きくなれば、熱伝達係数の予測値は実験データに漸近するが、高過熱度まで結果を保守的に評価する。また、添付図 2-15(2)及び添付図 2-15(3)に示されているように、本予測法が広い条件範囲(2MPa~18MPa, 33~1100kg/(m²s))で、蒸気流のヌセルト数を十分保守的に予測することが分かる。

一方,SAFERコードは,単相蒸気熱伝達のDittus-Boelter 式及び噴霧流熱 伝達のSun-Sahaのモデルの適用においては,蒸気の過熱を考慮した蒸気温度に基 づく物性値を使用しており,これらの式の適用方法は添付図 2-7 及び添付図 2-9 に示したように保守的であることを確認している。また,JAERIの実験データにお いても,物性値を膜温度で求めた場合の予測値は,添付図 2-14の中段の図に示す ように,実験結果より小さい値になるとしている。したがって,SAFERコー ドにおけるこれらの相関式の適用方法は妥当である。

解析コード	SAFER	RELAP4/MOD6	SCAT
		$/{ m U4}/{ m J3}$ (7) (8)	
流動様式		(WREM-JINS/B コー	
		ドシステム)	
核沸騰	Jens-Lottes	Thom	Jens-Lottes
強制対流蒸発	_	Schrock-Grossman	
遷移沸騰	_	McDonough-Milich	_
		-King	
膜沸騰	Sun-Saha	Groeneveld 5.9,	修正 Dougall-
	及び	Dougall-Rohsenow	Rohsenow
	修正 Bromley	及び Bromley	
単相蒸気	Dittus-Boelter	Dittus-Boelter	_
噴霧流	Sun-Saha	_	_

添付表 2-2 燃料被覆管温度評価に使用されている熱伝達相関式

添付図 2-13 Dougall-Rohsenowの式による熱伝達係数評価値(計算値/実験値)⁽⁹⁾

添付図 2-14 伝熱面表面過熱度とポスト CHF 熱伝達率の関係⁽¹⁰⁾ (試験 10120812; 7MPa, 562kg/m²s, 2.9m)

添付図 2-15(1) 伝熱面表面過熱度とポスト CHF 熱伝達率の関係⁽¹⁰⁾

添付図 2-15(2) Nu/Re^{0.8}と Pr の関係(高過熱度データ)⁽¹⁰⁾

添付図 2-15(3) Nu 数の実験値と予測値との比較⁽¹⁰⁾

参考文献

- W. H. Jens and P. A. Lottes, "Analysis of Heat Transfer, Burnout, Pressure Drop and Density Data for High-Pressure Water", Argonne National Laboratory, ANL-4627, 1951.
- (2) F.W. Dittus and L.M.K. Boelter, "Heat Transfer in Automobile Radiators of the Tubular Type", University of California Publications in Engineering, Vol. 2, No. 13, 1930, 443-461
- (3) 「沸騰水型原子力発電所 非常用炉心冷却系モデル(SAFER)」,株式 会社東芝,TLR-044 改訂 3, 平成 10 年 2 月
- (4)「沸騰水型原子力発電所 非常用炉心冷却系 (ECCS)の新性能評価手法 について」,株式会社日立製作所,HLR-032 訂 3,平成 10 年 5 月
- (5) J.E.Leonard et al., "Calculation of Low Flow Film Boiling Heat Transfer for BWR LOCA Analysis", NEDO-20566-1-A Revision 1, October 1982.
- (6) O.C.Iloeje et al., "An Investigation of the Collapse and Surface Rewet in Film Boiling in Forced Vertical Flow", Transaction of ASME, Journal of Heat Transfer, May 1975.
- (7) 平成8年度 東通原子力発電所の原子炉冷却材喪失事故(大破断)解析
 に関する報告書,(財)原子力発電技術機構 原子力安全解析所,
 INS/M96-40,平成9年3月
- (8) ABWR の冷却材流量喪失事故解析及び主蒸気管破断事故解析 成果報告書,
 (財)原子力工学試験センター 原子力発電総合安全センター 原子力安
 全解析所, JINS-0955 M87-H2-H01,昭和63年3月
- (9) "Compendium of ECCS Research for Realistic LOCA Analysis", NUREG-1230, December 1988.
- (10) 井口 他, "BWR 定常ポスト CHF 試験結果-限界熱流東及びポスト CHF
 熱伝達-", JAERI-Research 2001-060, 2002 年 1 月

1. 事故時の燃料破損につながる要因分析

事故時の燃料破損につながる要因分析結果を添付表 2-3 に示す。添付表 2-3 より、有効性評価における燃料破損の要因は LOCA と同様に、炉心露出に伴う 被覆管温度上昇、原子炉減圧に伴う内圧支配によるものであり、新たな要因 はない。

添付表 2-3 事故時の燃料破損につながる要因分析結果

燃料破損の要因	有効性評価における分析
給水喪失,冷却材流出によ	炉心露出による被覆管温度の上昇,原子炉手
る炉心露出に伴う被覆管	動減圧により燃料棒外圧が低下することによ
温度上昇,原子炉減圧に伴	り、燃料棒内圧支配に伴う被覆管破裂に至る
う燃料棒内圧支配による	可能性がある。
被覆管破裂	
反応度投入事象に伴う急	出力運転中の事故では,1 \$を超える急激な
激な出力上昇による高温	反応度は投入されないため除外できる。
破裂破損, PCMI 破損	
高熱流束下での沸騰遷移	有効性評価で仮定している起因事象の全給水
(BT)に伴う被覆管の高温	流量喪失及び外部電源喪失事象では BT は発生
酸化による脆性破壊	しない。仮に、事象初期に BT が発生した場合
	でも、被覆管温度評価は従来設置許可申請書
	添付書類十設計基準事故解析では最大でも
	600℃程度であること、また、温度上昇は短期
	間で収まるため被覆管酸化層の増加は無視で
	きる程度であることから、脆化による破損は
	ないと考えられるため除外できる。

2. 破裂判定曲線の適用性

有効性評価では、従来の設計基準事故(LOCA)解析と比較して炉心露出開 始時間が遅く、また、炉心露出時間が長くなる。設計基準事故評価(LOCA) 及び有効性評価において、同じ燃料棒破裂判定曲線を適用することについて、 被覆管の膨れ・破裂に及ぼす影響を検討した結果を以下に示す。

(1) 燃料棒内圧と原子炉圧力の差圧(燃料棒内外圧差)

燃料棒内圧の計算に用いられる燃料プレナム部ガス温度は被覆管温度に 依存するため、長時間露出時の温度上昇は燃料棒内圧の計算に考慮される。 また、原子炉圧力は、従来 LOCA 解析も大気圧近傍にまで減圧され、有効性 評価でも事故後長期は大気圧近傍まで減圧される。

したがって,有効性評価における燃料棒内外圧差は,従来の設計基準事故(LOCA)の想定範囲と同等である。

(2) 被覆管最高温度(温度上昇率)

炉心露出開始時間が遅くなる場合,定性的には,崩壊熱が低いことにより被覆管の温度上昇率が小さくなる傾向になる。また,炉心露出時間が長くなると被覆管最高温度が高くなる傾向になる。BWR プラントの有効性評価における燃料被覆管温度上昇率は概ね 2℃/s 程度であり,被覆管の最高温度は 800℃~900℃程度となっている。

一方,燃料棒破裂判定曲線の策定に際しては,温度上昇率が 0℃/s から 5.6℃/s,また,破裂温度は 20℃から約 1500℃の実験データを使用して, 破裂判定曲線を策定している。⁽¹⁾

したがって,有効性評価における被覆管温度上昇率及び被覆管最高温度 は燃料棒破裂判定曲線の実験データの範囲内である。

(3) ジルコニウム-水反応による被覆管酸化

炉心露出時間が長くなるとジルコニウム-水反応が長時間継続し、被覆 管の酸化により被覆管の延性が低下する可能性がある。有効性評価におけ る PCT は、ジルコニウム-水反応が著しくなる温度(約 1000℃)以下であ り、被覆管の酸化割合も大きくはない。

したがって、有効性評価における被覆管酸化の範囲は、約1500℃の高温 まで加熱した破裂実験データの範囲内にあると考える。

以上より,有効性評価においても設計基準事故評価(LOCA)と同じ燃料棒 破裂曲線を適用できると考える。

〔参考資料〕

(1)「沸騰水型原子力発電所 非常用炉心冷却系 (ECCS) 性能解析モデルについて」,日立 GE ニュークリア・エナジー株式会社,HLR-018 訂 4,平成 26 年 6 月