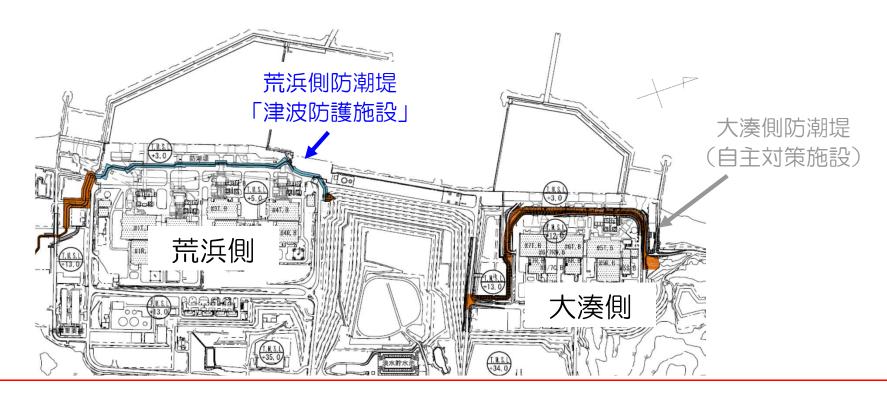
本資料のうち、枠囲みの内容は機密事項に属しますので、公開できません。

柏崎刈羽原子力発電所における津波評価

平成 27年 12月 11日

東京電力株式会社

1.	全体概要	•	•	•	•	•	•	•	•	•	•	3
2.	文献調査	•	•	•	•	•	•	•	•	•	•	9
3.	地震による津波	•	•	•	•	•	•	•	•	•	•	16
4.	地震以外の要因による津波	•	•	•	•	•	•	•	•	•	•	53
5.	地震による津波と海底地すべりによ	る	津	波	の	組	合	せ		•	•	85
6.	基準津波の評価	•	•	•	•	•	•	•	•	•	•	93
7.	津波堆積物調査	•	•	•	•	•	•	•	•	•	•	101
8.	行政機関による津波評価に関する検	訂				•	•	•	•	•	•	114
9.	基準津波による安全性評価	•	•	•	•	•	•	•	•	•	•	121

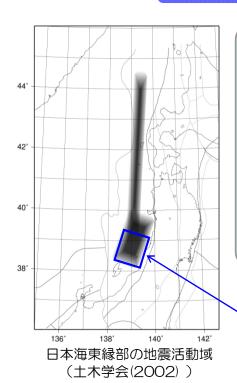

1. 全体概要

- 1. 1 柏崎刈羽原子力発電所の概要
- 1. 2 津波に対する防護の考え方と防潮堤の位置づけ
- 1. 3 既往の津波水位評価の概要
- 1. 4 新規制基準を踏まえた津波水位評価
- 1. 5 津波水位評価の検討方針

- 「重要な安全機能を有する施設及び常設重大事故等対処設備」を内包する建屋、屋外に設置する同施設・設備は、3号炉原子炉建屋内緊急時対策所(3号内緊対所)を内包する3号炉原子炉建屋を除きT.M.S.L.+12mの敷地及びこれよりも高所に配置
 - ✓ 循環水ポンプ, 重要な安全機能を有する海水ポンプはタービン建屋地下に設置
 - ✓ 3号内緊対所を内包する3号炉原子炉建屋はT.M.S.L.+5mの敷地に配置(緊対所はT.M.S.L.+12.8mの2階フロアに設置)
- 重大事故等対処設備のうち可搬型設備は、大湊側高台保管場所(T.M.S.L.+34m), 荒浜側高台保管場所(T.M.S.L.+35m)に保管
- アクセスルートは3号内緊対所に繋がるルートを除き、T.M.S.L.+12mより高所に設定
 - ✓ 3号内緊対所につながるルートはT.M.S.L.+5mの敷地内に設定

1. 2 津波に対する防護の考え方と防潮提の位置づけ

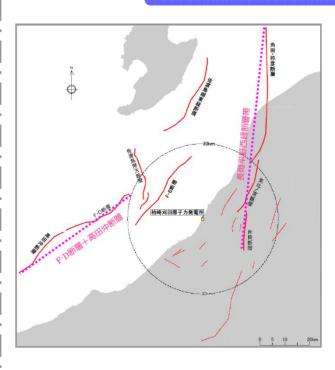
- 大湊側の敷地に設置する施設・設備
 - <u> 敷地の高さ(T.M.S.L.+12m)により津波から防護</u>
 - →防潮堤によらずに津波に対する防護が達成可能であることから防潮堤(大湊側)は基準津波を上回る規模の 津波に備えた<u>自主的な対策設備</u>と整理した。
- 荒浜側の敷地に設置する施設・設備 ※3号内緊対所及び同緊対所につながるアクセスルート 防潮堤により津波から防護
 - →防潮堤により津波に対する防護を実現することから防潮堤(荒浜側)は「津波防護施設」と整理した。
 - →荒浜側防潮堤に対して基準津波を設定した。


1. 3 既往の津波水位評価の概要(耐震バックチェック時)

■ 耐震バックチェック

● 日本海東縁部の地震による津波,敷地周辺海域の活断層による津波,潮位条件を踏まえて検討を実施し

た。

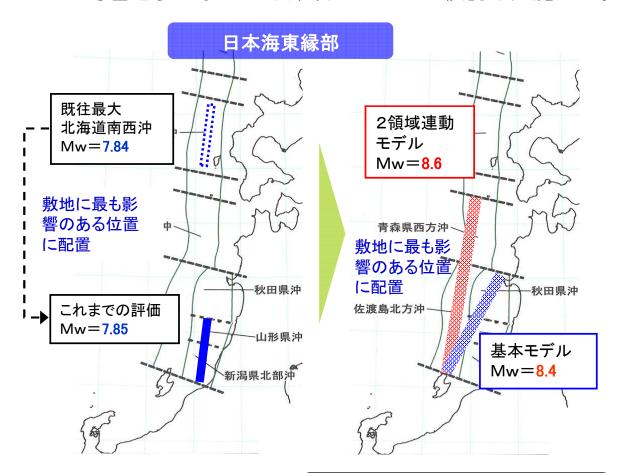

日本海東縁部

- ▶土木学会(2002)に示される日本海東 縁部に想定される地震の基準断層モ デルによるパラメータスタディを実施
- ▶地点への影響を考慮して, 土木学会 (2002)に示される地震活動域のうち, 新潟~山形沖の領域を対象
- ▶地震規模(Mw)は1993年北海道南 西沖地震の津波を再現するモデルの Mw7.84を下回らないようMw=7.85に 設定

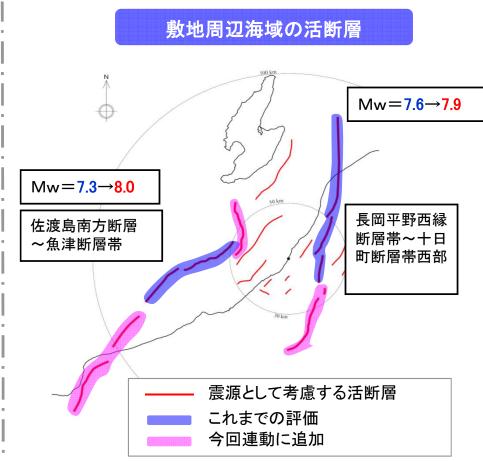
断層設定領域 (新潟~山形沖の領域)

敷地周辺海域の活断層

- ▶2007年7月16日の新潟県中 越沖地震発生後,発電所敷 地前面海域において海上音 波探査および海底地形調査 などを実施した結果と,既往 の調査結果(他機関の調査 結果を含む)を基に敷地周 辺海域における海域活断層 を評価
- ▶敷地周辺海域の活断層に ついて数値シミュレーション を実施
- ▶土木学会(2002)の方法により、すべり量が一様な矩形 断層モデルを適用


取水口前面における津波水位

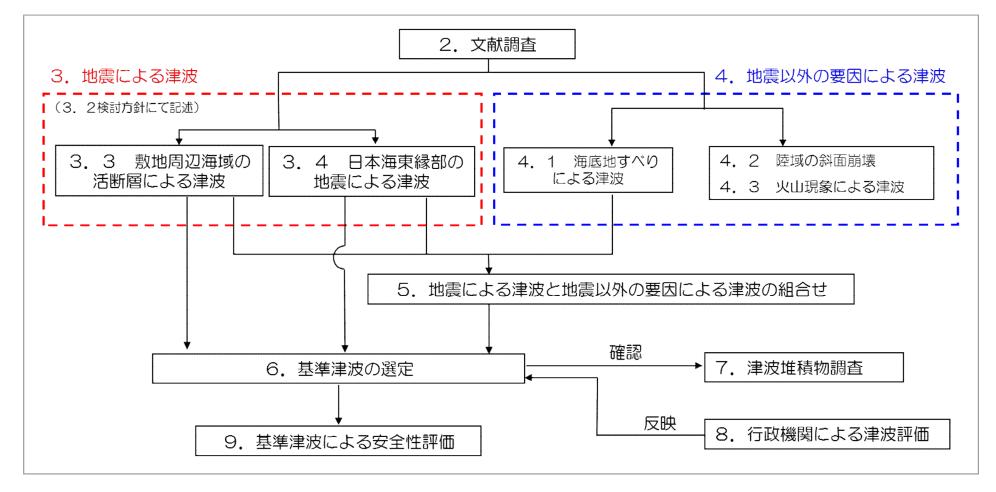
	日本海東縁部	海域活断層
最高水位	T.M.S.L.+3.3m~+3.0m	T.M.S.L+2.1m~+1.9m
最低水位	T.M.S.L3.1m~-2.6m	T.M.S.L3.5m~-3.3m



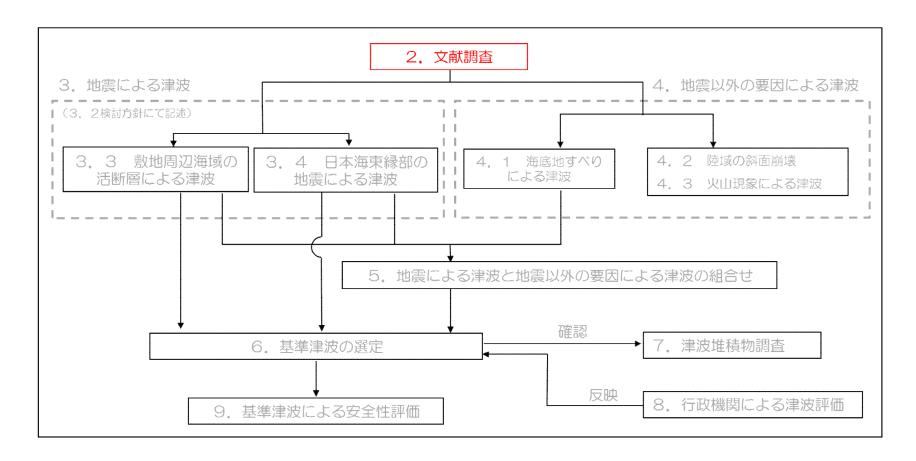
1. 4 新規制基準を踏まえた津波水位評価

- 新規制基準を踏まえた評価では、日本海東縁部の地震、敷地周辺海域の活断層の地震について、 連動を考慮した。
- 海底地すべりによる津波についても検討を実施した。

既往最大規模の波源を地震調査 研究推進本部(2003)が設定して いる地震の発生領域に配置 東北地方太平洋沖地震では地震調査研 究推進本部が設定した地震の発生領域を またがって地震が発生したことを踏まえて、 地震の発生領域の連動を考慮



断層の離隔(5kmルール)や 地質構造の観点から連動を 考慮 より幅の広い専門家の意見 等も踏まえ安全側に考慮


1.5 津波水位評価の検討方針

- 基準津波は、最新の科学的・技術的知見を踏まえ、波源海域から敷地周辺までの海底地形、地質構造及び地震活動性等の地震科学的見地から想定することが適切なものとして策定する。
- 地震による津波のほか、地すべりによる津波など、地震以外の要因及びこれらの組合せによるものを複数選定し、 不確かさを考慮して数値解析を実施して策定する。
- 新規制基準に従い、供用中に施設に大きな影響を及ぼすおそれがある津波を評価した。
- 津波水位評価の検討方針フローを下記に示す。

2. 文献調查

- 2. 1 敷地周辺における既往津波
- 2. 2 潮位条件

2. 1 敷地周辺における既往津波

敷地周辺における既往津波の被害状況及び日本海東縁部における津波の発生状況について、 文献の調査を行った。

日本海沿岸に影響を及ぼした主な津波の一覧表

発生年月日 元号	震央位置 ^{注1)} (緯度・経度)	地震 規模 M ^{注1)}	津波 規模 m ^{注2)}	地震・津波の概要 注3)
701. 5. 12 大宝 1	若狭湾	=	-, - [2]	丹波 地震うこと3日。若狭湾内の丹海郷が海に没したという「冠島伝説」があるが疑わしい。
850. 11. 27 嘉祥 3	山形県沿岸 39.0°N 139.7°E	≒ 7. 0	2, — [2]	出羽 地裂け、山崩れ、国府の城柵は傾頼し、山裂け圧死者多数。最上川の岸崩る。海水は国府から6里(3km)のところまで迫った。
863. 7. 10 貞観 5	新潟県沖	-	-, - [2?]	越中・越後 山崩れ谷埋まり、水湧き、民家破壊し、圧死者多数。直江 津付近にあった数個の小島、この地震のために潰滅したという。
887. 8. 2 仁和 3	新潟県南部沖	-	-, - [2]	越後で津波を伴い、溺死者数千という。京都有感、越後に関する史料の 信憑性不十分。
1092.9.13 寛治6	新潟県沖		-, - [2?]	越後 柏崎〜岩船間の沿岸、海府浦・親不知大津波におそわる。「地震」 とある古記あるも、地震の状況を記した古記録未発見。疑わしい。
1741. 8. 28 寛保 1	北海道南西冲 41.6° N 139.4° E	6. 9	3, — [3. 5]	渡島西岸・津軽・佐渡 渡島大島この月の上旬より活動, 13 日に噴火 した。19 日早朝に津波,北海道で死1467,流出家屋729,船1521 破壊。 津軽で田畑の損も多く,流失潰家約100,死37。佐渡・能登・若狭にも 津波。
1792.6.13 寛政4	北海道西方沖 43³/₄°N 140.0°E	≒ 7. 1	2, — [1]	後志 小樽から積丹岬辺で有感、津波あり。忍路で港頭の岸壁崩れ、海岸に引き揚げていた夷船漂流。出漁中の夷人5人溺死。美国でも溺死若干。

発生年月日 元号	震央位置 ^{注1)} (緯度・経度)	地震 規模 M ^{注1)}	津波 規模 m ^{注2)}	地震・津波の概要 ^{注3)}
1833. 12. 7 天保 4	山形県冲 38.9°N 139.25°E	7 ¹ / ₂ ± ¹ / ₄	2, — [2.5]	羽前・羽後・越後・佐渡 地震被害は山形生内地方で最も多い。湯野浜 〜鼠ヶ関間で最も激しい津波、局地的に7〜8mに達した。波源から遠い 輪島中心部に津波遡上。
1940. 8. 2 昭和 15	北海道西方沖 44.22°N 139.49°E	7. 5	2, <u>2</u> [2]	神威岬沖 震害ほとんどなく、津波による被害が大きかった。波高は、 羽幌・天塩2m、利尻3m、金沢・宮津1m。天塩河口で溺死10。
1964. 6. 16 昭和 39	新潟県沖 38°22′N 139°13′E	7. 5	2, <u>2</u> [2]	新潟県沖 [新潟地震]新潟・秋田・山形の各県を中心に被害があり, 死 26, 家屋全壊 1960, 半壊 6640, 浸水 15297, その他船舶・道路の被 害も多かった。津波が日本海沿岸一帯を襲い, 波高は新潟県沿岸で 畑 以上に達した。栗島が約 1m 隆起した。
1983. 5. 26 昭和 58	秋田・青森県沖 40°21.6′N 139°04.7′E	7. 7	2. 5, <u>3</u> [3]	秋田県沖 [昭和 58 年日本海中部地震]被害は秋田県で最も多く、青森・北海道がこれに次ぐ。日本全体で死104(うち)神波によるもの100)。 傷163(同104)、建物全壊934、半壊2115、流失52、一部破損3258、船 沈没255、流失451、破損1187。津波は早い所では津波警報発令以前に 沿岸に到達した。石川・京都・島根など遠方の府県にも津波による被害 が発生した。
1993. 7. 12 平成 5	北海道南西沖 42°46.9′N 139°10.8′E	7.8	-, <u>3</u> [3]	北海道南西沖 [平成5年北海道南西沖地震]地震に加えて津波による被害が大きく、死202、平明28、傷323。特に地震後間もなく津波に襲われた奥尻島の被害は甚大で、島南端の青苗地区は火災もあって壊滅状態、夜10時十ぎの闇のなかで多くの人命、家屋等が失われた。津波の高さは青苗の市街地で10mを超えたところがある。

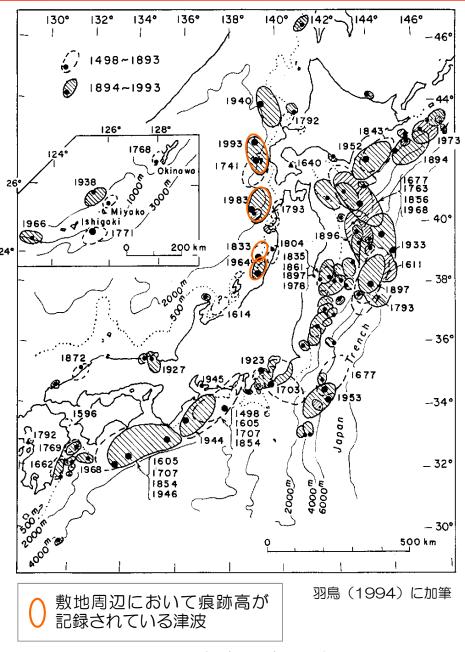
注1) 震央位置(緯度、経度) 及び地震規模Mは、宇佐美(2013)を参照している

注2) 津波規模mは、宇佐美(2013)によるが、下線付き数字は羽鳥による値(宇佐美(2013)より)であり、[]内の値は羽鳥(1984)及び羽鳥(1996)による値を参照している

注3) 地震・津波の概要は、字佐美(2013)、渡辺(1998)、国立天文台(2014)を参照している

2. 1 敷地周辺における既往津波

- 敷地周辺において痕跡高が記録されている津波
 - 敷地周辺において痕跡高が記録されている津波は、 いずれも日本海東縁部を波源としている。


▶1833年の津波 (Mw7.82)

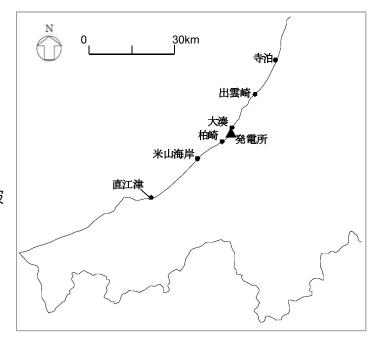
▶1964年新潟地震津波 (Mw7.35)

▶1983年日本海中部地震津波 (Mw7.74)

▶1993年北海道南西沖地震津波(Mw7.84)

注:Mwは土木学会(2002)による

2. 1 敷地周辺における既往津波


- 敷地周辺における既往津波の痕跡高・観測値を整理した。
- 柏崎周辺の沿岸で観測された津波は最大で3m程度である。
- 敷地周辺において、海底地すべり、陸上の斜面崩壊及び火山活動 に伴う津波の記録は知られていない。

■ 地震による津波

- ●1833年の津波
 - ・出雲崎2~3m(羽鳥(1990)より)

- ●1964年新潟地震津波
 - 出雲崎 約1.3m
 - •柏崎約1.5m
 - ・直江津 約1.1 m(相田ほか(1964)、土木学会(1966)より)

- ●1993年北海道南西沖地震津波
 - 寺泊 約1.7 m
 - 大湊 約1.5m
 - 敷地前面 約0.9m
 - ・米山海岸 約1.9m (阿部ほか(1994)より)
- ●1983年日本海中部地震津波
 - 寺泊 約0.5m
 - 出雲崎 約0.6m
 - 敷地前面約0.6m(首藤(1984)より)

■ 発電所における記録

- ●1983年日本海中部地震津波:敷地前面 約0.6m
- ●1993年北海道南西沖地震津波: 敷地前面 約0.9m
- ●2007年新潟県中越沖地震津波: 港外海象計 上昇量0.27m,下降量0.44m

■ 海底地すべり及び陸上の斜面崩壊に伴う津波

●敷地周辺における記録は知られていない

■ 火山活動に伴う津波

- ●敷地周辺における記録は知られていない
- ●佐渡島では2~8mの津波高さが推定されている (1741年渡島大島津波,佐竹・加藤(2002)より)

2. 文献調査

- 2. 1 敷地周辺における既往津波
- 2. 2 潮位条件

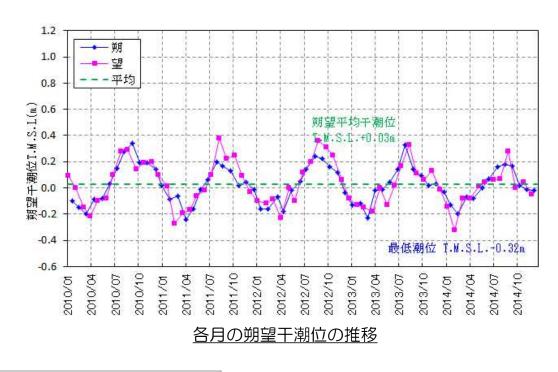
2. 2 潮位条件

■ 発電所近傍における潮位観測結果

- 発電所近傍における潮位の観測は、 発電所の南西約11kmの観測地 点「柏崎」(国土交通省国土地理 院柏崎検潮所)で実施されている。
- 観測地点「柏崎」における過去6 〇年(昭和30年~平成26年) の年最高潮位を表に示す。
- 最高潮位は2004年のT.M.S.L. +1.05mである。

※T.M.S.L.: 東京湾平均海面(旧称T.P.)

観測地点「柏崎」における年最高潮位


	年最高潮位								
年	月	В	時	潮位(m)					
1955	7	22	16	0.62					
1956	12	5	17	0.93					
1957	12	18	23	0.72					
1958	8	21	6	0.65					
1959	9	18	13	0.82					
1960	1	5	20	0.69					
1961	8	7	1	0.83					
1962	8	4	7	0.79					
1963	11	9	5	0.86					
1964	11	23	19	0.78					
1965	12	12	20	0.81					
1966	12	1	1	0.73					
1967	8	29	5	0.71					
1968	1	14	17	0.71					
1969	12	3	10	0.74					
1970	12	4	6	0.84					
1971	9	27	4	0.73					
1972	12	2 17	0	0.96					
1973	11	17	8	0.72					
1974	11	18	20	0.78					
1975	8	23	15	0.75					
1976	10	29	21	0.97					
1977	12	26	1	0.66					
1978	8	3	13	0.69					
1979	3	31	5	0.74					
1980	10	26	17	0.88					
1981	8	23	7	0.92					
1982	10	25	3	0.70					
1983	11	18	17	0.76					
1984	8	23	2	0.81					

1985	11	13	16	0.73
1986	8	30	6	0.71
1987	1	1	2	0.81
1988	7	1	14	0.54
1989	11	30	2	0.69
1990	12	27	14	0.75
1991	2	17	3	0.65
1992	12	14	1	0.74
1993	2	23	16	0.67
1994	9	20	15	0.72
1995	12	24	19	0.77
1996	6	19	14	0.76
1997	1	3	21	0.74
1998	11	17	16	0.83
1999	10	28	3	0.81
2000	2	9	4	0.97
2001	1	2	19	0.73
2002	10	28	5	0.76
2003	9	13	18	0.74
2004	8	20	5	1.05
2005	12	5	3	0.73
2006	11	7	17	0.78
2007	1	7	18	0.85
2008	2	24	5	0.73
2009	12	21	5	0.75
2010	11	10	3	0.91
2011	1	1	0	0.69
2012	4	4	5	0.73
2013	1	26	17	0.74
2014	12	17	23	1.04

2. 2 潮位条件

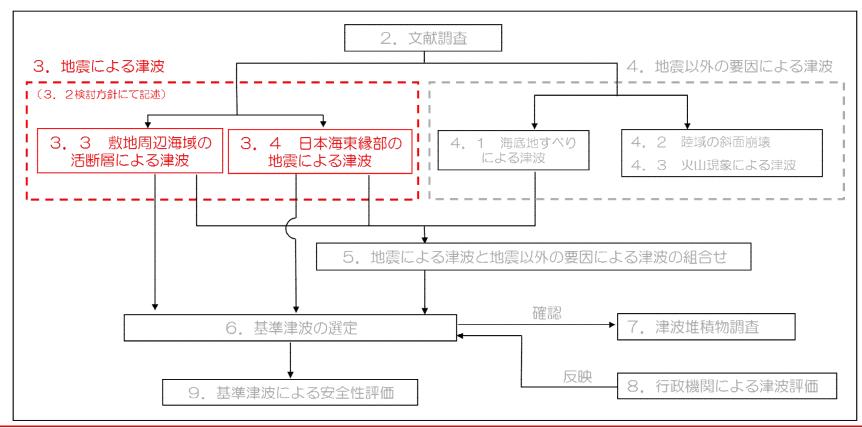
- 朔望満潮位・朔望干潮位の整理(平成22年1月~平成26年12月)
- 潮位条件は、国土交通省国土地理院の「柏崎検潮所」におけるデータを整理した。
- 津波水位評価では、朔望平均満潮位、平均潮位、朔望平均干潮位を適用した。

● 最高潮位 T.M.S.L.+0.91m

● 朔望平均満潮位 T.M.S.L.+0.49m

● 平均潮位 T.M.S.L.+0.26m

● 朔望平均干潮位 T.M.S.L.+O.O3m


● 最低潮位 T.M.S.L.-0.32m

なお、津波の影響が含まれた水位としては、 昭和39年新潟地震津波のT.M.S.L.+1.80mの記録がある。(土木学会、1966)

3. 地震による津波

- 3. 1 数値シミュレーション手法
- 3. 2 地震による津波の検討方針
- 3. 3 敷地周辺海域の活断層による津波
- 3. 4 日本海東縁部の地震による津波
- 3. 5 潮位条件の重ね合わせ

3.1 数値シミュレーション手法

■ 基礎方程式及び計算条件

- 基礎方程式は、非線形長波(浅水理論)を用いた。
- 各計算項目における計算条件は、表のとおりとした。

■ 基礎方程式

$$\begin{split} &\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0 \\ &\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D}\right) + \frac{\partial}{\partial y} \left(\frac{MN}{D}\right) + gD \frac{\partial \eta}{\partial x} - K_h \left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2}\right) + \gamma_b^2 \frac{M \sqrt{M^2 + N^2}}{D^2} = 0 \\ &\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{D}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{D}\right) + gD \frac{\partial \eta}{\partial y} - K_h \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2}\right) + \gamma_b^2 \frac{N \sqrt{M^2 + N^2}}{D^2} = 0 \end{split}$$

t:時間 x, y: 平面座標

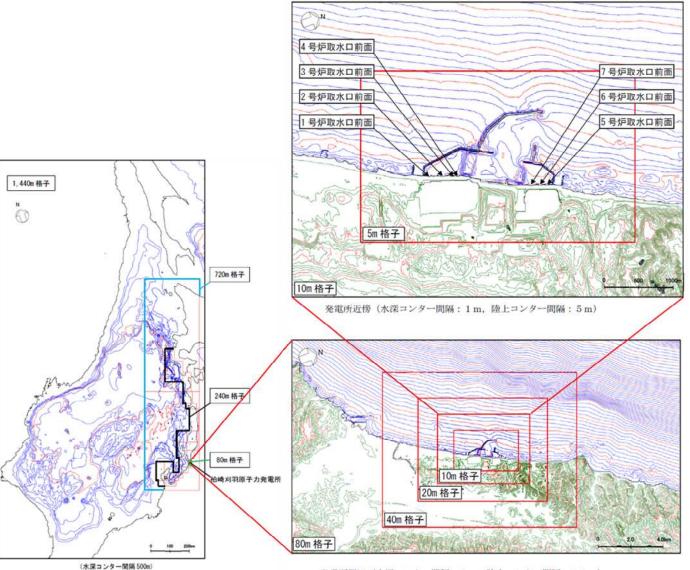
η:静水面から鉛直上方にとった水位変動量

M: x 方向の線流量 N: y 方向の線流量

h:静水深

D: 全水深 $(D=h+\eta)$ g: 重力加速度

 $K_b:$ 水平渦動粘性係数

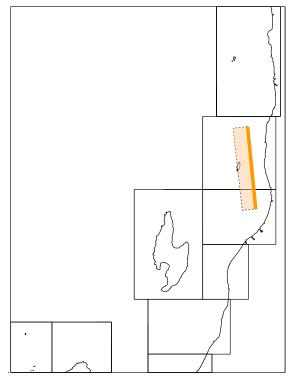

 γ_b^2 : 摩擦係数 $(=gn^2/D^{1/3}, n: マニングの粗度係数)$

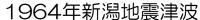
■ 計算条件

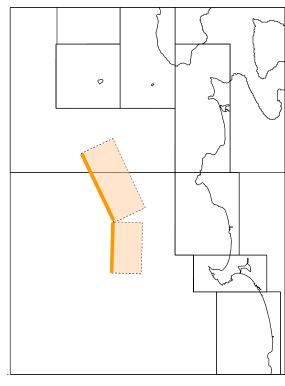
項目	計算条件
計算時間間隔	C.F.L.条件を満たすようにO.1秒に設定
潮位条件	T.M.S.L. +0.26 m(平均潮位)
基礎方程式及び数 値計算スキーム	非線形長波理論(浅水理論)に基づく後藤・小川 (1982)の方法
沖側境界条件	後藤・小川(1982)の自由透過の条件
陸側境界条件	・敷地周辺: (計算格子間隔80m~5m)の領域は小谷 ほか(1998)の陸上遡上境界条件・それ以外は完全反射条件
越流境界条件	越流を本間公式(1940)や相田公式(1977)で考慮
海底摩擦係数	マニングの粗度係数(n = 0.03 m ^{-1/3} s)
水平渦動粘性係数	考慮していない(Kh = O)
初期条件	Mansinha and Smylie(1971)の方法により海底面の鉛 直変位分布を求めて初期水位として与えている
計算時間	4時間

3. 1 数値シミュレーション手法

● 地形データについては、日本水路協会や国土地理院等の最新の地形データ及び発電所近傍や港湾内の最新の深浅測量等の測量結果を数値シミュレーションモデルに反映した。


項目	データ
広域海底地形	> JTOPO30v2(2011.8): 日本水路協会> GEBCO_08(2009.11): IOC, IHO
	M7000シリース*(2008~2011) : 日本水路協会
陸域, 発電所近傍,	➤ 基盤地図5mメッシュ(2013.7) :国土地理院
港湾内	深浅測量(2014.4)防波堤標高測量(2013.10)貯留堰の追加


3. 1 数値シミュレーション手法

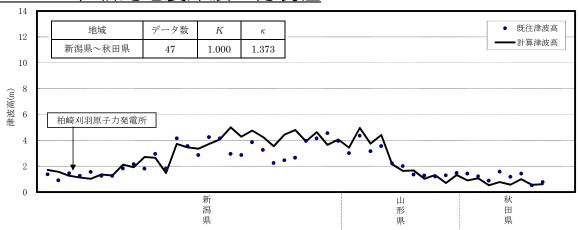

■ 既往津波の再現性の確認

既往津波に対する数値シミュレーションを行い、再現性を確認することにより、数値シミュレーション手法の妥当性を確認する。

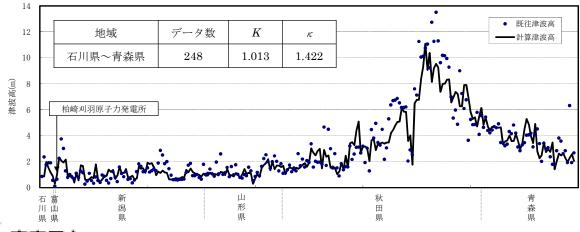
- 既往津波の対象は、文献調査結果を踏まえ、震源が発電所敷地に近く、痕跡高が比較的多く揃っている、以下の2地震を選定した。
 - 1964年新潟地震
 - > 1983年日本海中部地震
- 既往津波の断層モデルは、1964年新潟地震津波では当社作成のモデルを、1983年日本海中部地震津波では相田(1984)の「Model-10」を用いた。

1983年日本海中部地震津波

既往地震の断層モデル


	Mw	断層長さ L(km)	断層幅 W(km)	すべり量 D(m)	上縁深さ d(km)	走向 θ (°)	傾斜角 δ(゚)	すべり角 λ(゚)	備考
1964年 新潟地震	7. 43	65	20	3.85	0.0	194	56	90	東電 オリジナル モデル
1983年 日本海	7. 74	40	30	7.60	2.0	22	40	90	相田 (1984)
中部地震	1.14	60	30	3.05	3.0	355	25	80	(1984) Model-10

3. 1 数値シミュレーション手法


- 再現性の評価の指標として、痕跡高と数値シミュレーションにより計算された津波高との比から求める幾何平均Κ及びバラツキκを用いた。
- 再現性の目安としては、土木学会(2002)より、次のとおり示されている。0.95<K<1.05, κ<1.45

■1964年 新潟地震津波の再現性

K=1.00 $\kappa=1.37$

■1983年 日本海中部地震津波の再現性

K=1.01 $\kappa=1.42$

$$\log K = \frac{1}{n} \sum_{i=1}^{n} \log K_{i}$$

$$\log \kappa = \left\{ \frac{1}{n} \sum_{i=1}^{n} (\log K_{i})^{2} - (\log K)^{2} \right\}^{\frac{1}{2}}$$

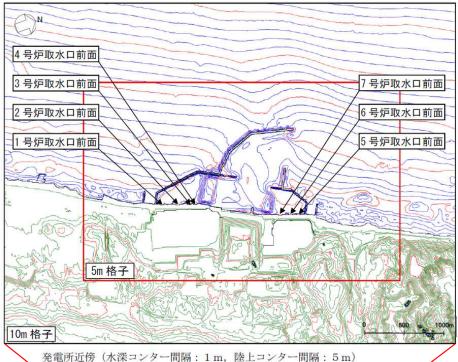
$$K_{i} = \frac{R_{i}}{H}$$

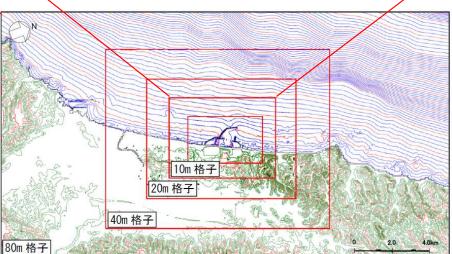
ここに,

R_i: i 番目の地点の観測値(痕跡高) H_i: i 番目の地点の数値シミュレー

ションによる津波高

n:データ数


再現性評価の指標が適合条件 を満足しており、良好な再現 性を確認し、数値シミュレー ション手法は妥当なものと判 断した。


3.1 数値シミュレーション手法

■ 空間格子間隔

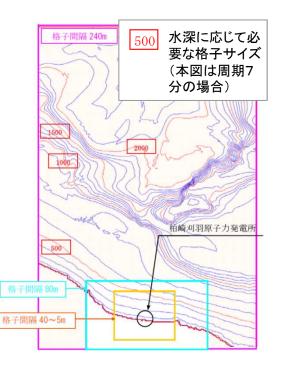
水深と津波の周期から推定される津波の波長をもとに、長谷川ほか(1987)の方法を参考として、空間格子間隔を1440mから5mとした。

長谷川・首藤ほか(1987)提案の方法

計算格子間隔は津波の空間波形の1波長Lの1/20以下に設定すればよい

$$\Delta x \leq \frac{L}{20}$$

ここに、Δx:計算格子間隔

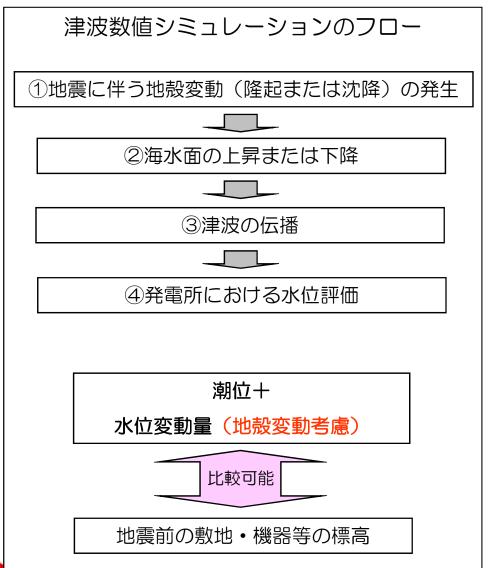

L:1波長

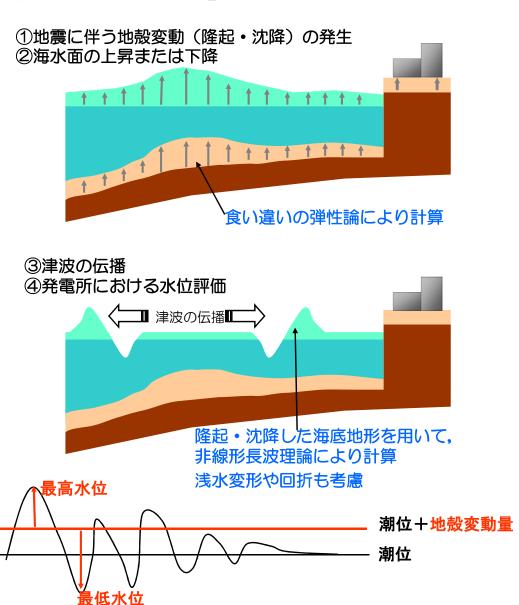
$$L = \sqrt{gh} \times T$$

g:重力加速度

h:水深

T:周期

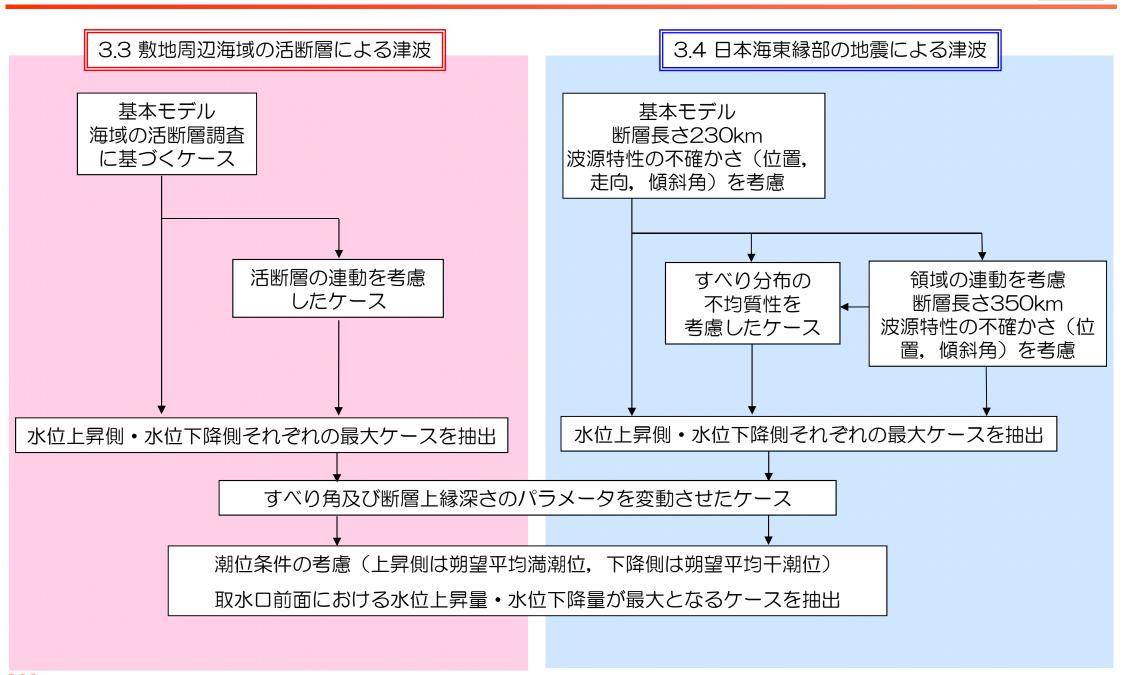



(水深コンター間隔 500m)

発電所周辺(水深コンター間隔: 2 m, 陸上コンター間隔: 1 0 m)

3.1 数値シミュレーション手法

- 地殻変動量の考慮
- ●津波数値シミュレーションの結果の整理にあたっては、地殻変動量を考慮して整理した。



3. 地震による津波

- 3. 1 数値シミュレーション手法
- 3. 2 地震による津波の検討方針
- 3. 3 敷地周辺海域の活断層による津波
- 3. 4 日本海東縁部の地震による津波
- 3. 5 潮位条件の重ね合わせ

3. 2 地震による津波の検討方針

3. 2 地震による津波の検討方針

- 津波評価においては、原子力発電所の津波評価手法について取り纏められた「原子力発電所の津波評価技術、土木学会原子力土木委員会(2002)」(以下、土木学会手法という)に準拠することを基本としている。
- ただし、地震調査研究推進本部(2009) (以下、「強震動予測レシピ」という)の式については適合性申請時に「日本海における大規模地震に関する調査検討会、国土交通省」で検討されていたこと、「確率論的津波ハザード解析の方法、土木学会原子力土木委員会(2011)」において確率論的津波ハザードのロジックツリーの分岐に設定されていることなどを勘案し、検討に加えた。

【土木学会津波評価技術の式:土木学会(2002)】

地震モーメントは<u>断層長さ</u>によって決まる

log L (km) = 0.75Mw-3.77 (Mwが大きいとき: 武村(1998)の式)

 $logMo(N \cdot m) = 1.5Mw + 9.1$

【強震動予測レシピの式:地震調査研究推進本部(2009)】

地震モーメントは<u>断層面積</u>によって決まる

Mo (N·m) = $(S/4.24\times10^{11})^{2}\times10^{-7}$

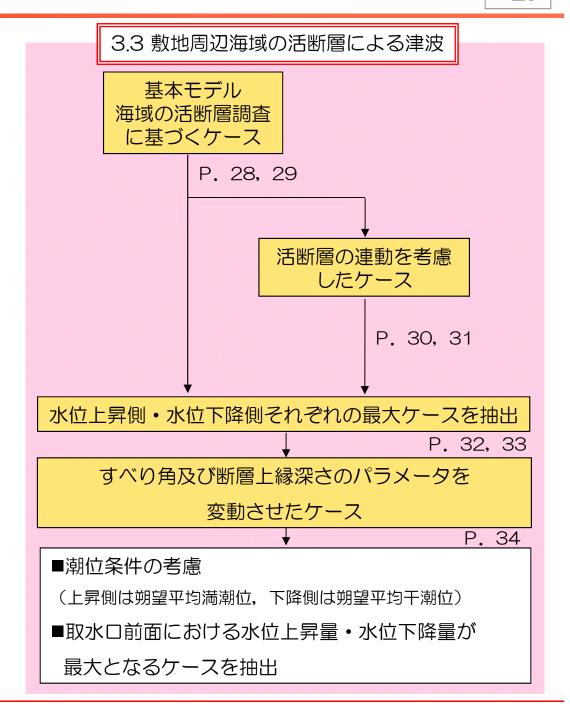
(入倉・三宅(2001)の提案式。地震モーメント7.5X10¹⁸N·m以上)

3. 2 地震による津波の検討方針

- 強震動予測レシピは、地震動評価における震源断層のモデル化についてレシピ化したものであり、津 波評価における波源設定に適用するにあたり、津波評価の特性を考慮して、保守的な設定を行っている。
 - ▶ 長大断層に対するスケーリング則の適用

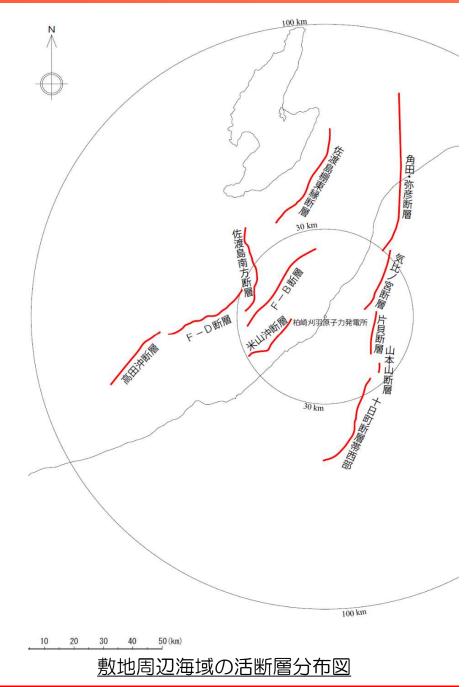
強震動予測レシピでは、長大断層に対しては、断層パラメータの設定に注意が必要であることが指摘されており、長岡平野西縁断層帯の地震動評価では、Murotani.et.al. (2010) を採用しているが、津波評価では、入倉・三宅(2001)の提案式を保守的に採用している。

> 地震発生層厚さ

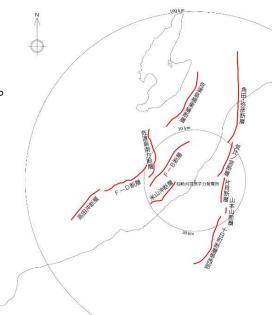

地震動評価では、地震発生層厚さを微小地震の深さ分布から設定しているが、津波評価では、地表面の 地殻変動量の影響が大きいことを考慮し、土木学会手法で示されている上縁深さ(日本海東縁部では地 表面Okm)に設定するなど、保守的な設定をしている。

すべり量の上限

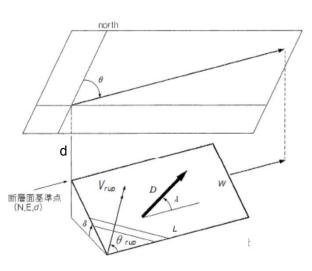
適合性申請後,日本海における大規模地震に関する調査検討会(2015)において日本海の震源断層におけるマグニチュードと断層面積等の関係(スケーリング則)を設定しており、平均モデルですべり量4.5m、最大モデルですべり量6.0mの上限を設けているが、津波評価では、保守的に上限を設けずにすべり量を設定している。


3. 地震による津波

- 3. 1 数値シミュレーション手法
- 3. 2 地震による津波の検討方針
- 3. 3 敷地周辺海域の活断層による津波
- 3. 4 日本海東縁部の地震による津波
- 3. 5 潮位条件の重ね合わせ


■ 基本モデル

- 基本モデルとして、敷地周辺海域における活断層調査結果 に基づく地震について津波数値シミュレーションを行った。
- 検討対象と波源のモデル化方法を以下に示す。
- 活断層調査結果に基づく地震を基本モデルとした。
 - F-D断層~高田沖断層
 - F-B断層
 - ■米山沖断層
 - ■佐渡島南方断層
 - ■佐渡島棚東縁断層
 - 長岡平野西縁断層帯(角田・弥彦断層〜気比ノ宮断層 〜片貝断層)
- 波源のモデル化(スケーリング則)は、土木学会手法 及び強震動予測レシピを用いた。



- 波源のパラメータ:海域活断層の基本モデル
 - 地質調査結果に基づき、断層の位置・長さ・傾斜角を設定した。
 - 長岡平野西縁部断層帯は傾斜角の不確かさとして、35°,50°の2ケースを設定した。
 - 断層上縁深さは、土木学会手法を参考とし、Okmとした。
 - すべり角は、主応力軸の方向に基づき、断層面の走向・傾斜角にしたがって設定した。
 - 地震発生層の厚さは、土木学会手法では15km、強震動予測レシピでは17kmとした。

断層名	波源の モデル化 (スケー リング 則)	Mw	断層 長さ L(km)	断層幅 W(km)	走向 θ(°)	上縁 深さ d (km)	傾斜角 δ(°)	すべり 角 え(°)	すべり 量 D(m)
F-D断層~ 高田沖断層		7.3	55	26	55	0	35	96	2. 6
F-B断層		7.1	36	24	39	0	35	90	1.7
米山沖断層		6.7	21	13	229	0	50	90	1.3
佐渡島 南方断層		6. 9	29	19	0	0	45	62	1. 7
佐渡島棚 東縁断層	土木学会手法	7. 1	37	18	209	0	55	90	2. 5
長岡平野 西縁断層帯 (δ=35°)		7. 6	91	26	187	0	35	72	4. 3
長岡平野 西縁断層帯 (δ=50°)		7. 6	91	20	187	0	50	72	5.8
F-D断層~ 高田沖断層		7.4	55	30	55	0	35	96	2. 6
F-B断層		7. 1	36	30	39	0	35	90	1.7
米山沖断層		6.5	21	20	229	0	50	90	0.5
佐渡島 南方断層	強震動	6.9	29	24	0	0	45	62	1. 1
佐渡島棚 東縁断層	予測	6.9	37	21	209	0	55	90	1. 2
長岡平野 西縁断層帯 (δ=35°)	レシピ	7.7	91	30	187	0	35	72	4.3
長岡平野 西縁断層帯 (δ=50°)		7. 5	91	22	187	0	50	72	3. 2

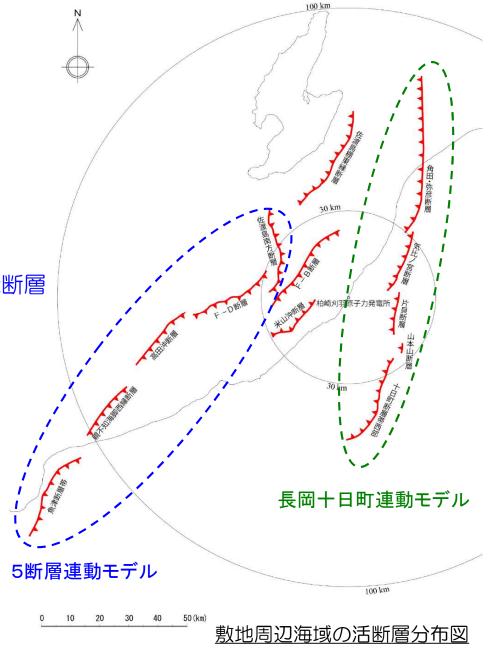
敷地周辺海域の活断層分布図

諸元の定義(土木学会, 2002)

■ 活断層の連動を考慮

活断層の連動を考慮した検討を行うこととし、 「5断層連動モデル」及び「長岡十日町連動モ デル」を検討した。

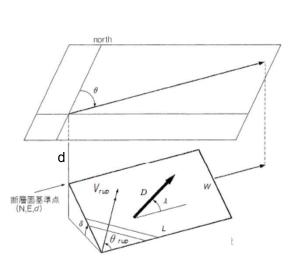
■ 5断層連動モデル 〈 佐渡島南方断層 ~ F-D断層 ~ 高田沖断層 ~ 親不知海脚西縁断層 ~ 魚津断層帯


■長岡十日町連動モデル

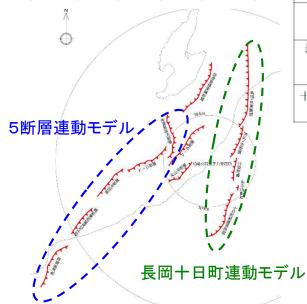
長岡平野西縁断層帯

~ 山本山断層

~ 十日町断層帯西部


〇波源のモデル化(スケーリング則)は,土木学会手法 及び強震動予測レシピを用いた。

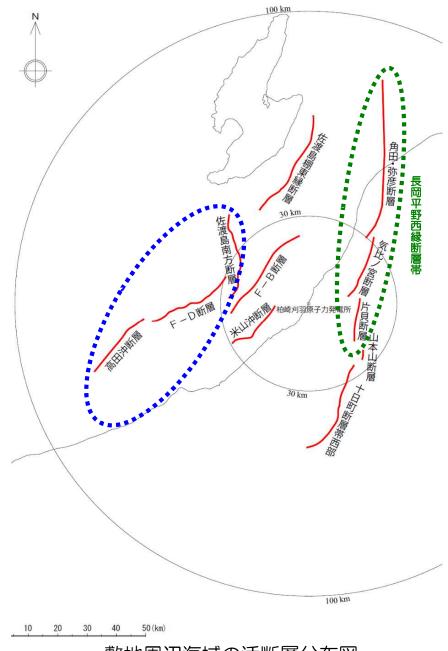
■ 波源のパラメータ:活断層の連動を考慮したモデル


波源モデルの諸元(5断層連動モデル)

断層名	波源のモ デル化 (スケー リング則)	Mw	断層 長さ L (km)	断層幅 W (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべ り角 λ (°)	すべり 量 D (m)	
佐渡島南方断層			29	21	0		45	62		
F-D断層~ 高田沖断層	土木学会	土木学会 手法	8. 0	55	26	55	0	35	96	7. 7
親不知海脚西縁断層 ~魚津断層帯	714		72	26	30		35	90		
佐渡島南方断層			29	24	0		45	62	7. 1	
F-D断層~ 高田沖断層	強震動 予測 レシピ	8. 0	55	30	55	0	35	96		
親不知海脚西縁断層 ~魚津断層帯			72	30	30		35	90		

諸元の定義(土木学会, 2002)

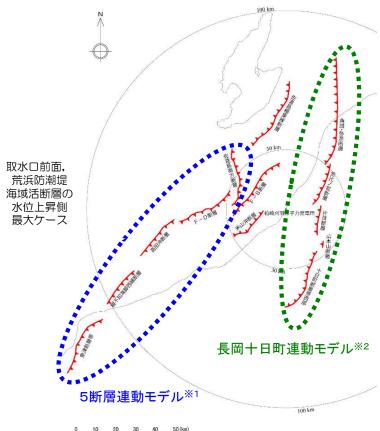
東京電力


波源モデルの諸元(長岡十日町連動モデル)

断層名	波源のモ デル化 (スケー リング則)	Mw	断層 長さ L (km)	断層幅 W (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角δ (°)	すべ り角 ん (°)	すべり 量 D (m)
長岡平野西縁断層帯 〜山本山断層 (δ=35°)		7. 9	99	26	187	0	35	72	6.3
十日町断層帯西部 (δ=35°)	土木学会		33		210			90	
長岡平野西縁断層帯 〜山本山断層 (δ=50°)			手法 7.9	99	20	187	0	50	72
十日町断層帯西部 (δ=50°)		1.0	33		210			90	
長岡平野西縁断層帯 〜山本山断層 (δ=35°)		7.9	99	30	187	. 0	35	72	4.7
十日町断層帯西部 (δ=35°)	強震動		33		210			90	
長岡平野西縁断層帯 〜山本山断層 (δ=50°)	予測・レシピ	7.7	99	22	187	. 0	50	72	
十日町断層帯西部(δ =50°)			33		210			90	

敷地周辺海域の活断層分布図

■ 海域活断層の地震に係る数値シミュレーション結果(基本モデル)


	波源のモデル化			前面の 水位		6 号炉 取水口前面		7号炉 取水口前面		荒浜側 防潮堤
断層名	モノルに (スケーリ ング則)	最大水位 上昇量 (m)	位置	最大水位 下降量 (m)	位置	最大水位 上昇量 (m)	最大水位 下降量 (m)	最大水位 上昇量 (m)	最大水位 下降量 (m)	最大水位 上昇量 (m)
F-D断層~ 高田沖断層		+1. 66	1号炉	-1.73	1号炉	+1. 56	-1.27	+1. 49	-1.24	-
F-B断層	土木学会手法	+1. 36	1 号炉	-2.51	1号炉	+1.07	-2. 23	+1.10	-2.18	-
米山沖断層		+0.78	1 号炉	-0.76	5 号炉	+0.72	-0.73	+0.70	-0.71	-
佐渡島 南方断層		+1. 22	1 号炉	-1. 13	1 号炉	+0.82	-0.98	+0.77	-0.92	-
佐渡島棚 東縁断層		+1. 68	1号炉	-1. 56	1号炉	+1. 28	-1.21	+1. 27	-1.20	-
長岡平野 西縁断層帯 (δ = 35°)		+0. 68	1号炉	-3. 48	1号炉	+0.61	-3. 35	+0. 59	-3. 29	-
長岡平野 西縁断層帯 (δ = 50°)		+1. 36	5号炉	-3. 36	1号炉	+1.34	-3. 05	+1. 29	-3.00	-
F-D断層~ 高田沖断層		<u>+1.72</u>	1 号炉	-1.75	1 号炉	+1. 65	-1.29	+1.61	-1.24	-
F-B断層		+1. 21	1号炉	-2.74	1号炉	+0.92	-2.52	+0.94	-2.43	-
米山沖断層		+0. 52	5号炉	-0.48	1 号炉	+0.52	-0.41	+0.49	-0.40	-
佐渡島 南方断層	強震動予測	+0.88	1 号炉	-0.89	1 号炉	+0.63	-0.87	+0.61	-0.82	ı
佐渡島棚 東縁断層	レシピ	+1. 13	1 号炉	-1.04	1 号炉	+0.81	-0.84	+0.77	-0.81	-
長岡平野 西縁断層帯 (δ = 35°)		+0. 58	1 号炉	-3.82	2 号炉	+0.34	-3. 67	+0.33	-3. 62	-
長岡平野 西縁断層帯 (δ = 50°)		+0.92	5号炉	-2. 41	1 号炉	+0.90	-2.19	+0.86	-2.16	-

■ 海域活断層の地震に係る数値シミュレーション結果(連動を考慮)

	波源の モデル化		断層 長さ	断層幅	走向	上縁深さ	傾斜角	すべり	すべり量		取水口前面	iの最大水位		6 号炉取	水口前面	7号炉取	水口前面	荒浜側 防潮堤						
断層名	断層名 (スケー リング 則)		L (km)	W (km)	θ (°)	d (m)	δ (°)	λ (°)	D (m)	最大水位 上昇量 (m)	位置	最大水位 上昇量 (m)	位置	最大水位 上昇量 (m)	最大水位 下降量 (m)	最大水位 上昇量 (m)	最大水位 下降量 (m)	最大水位 上昇量 (m)						
佐渡島南方断層			29	21	0		45	62																
F-D断層~ 高田沖断層	土木学会 8.0	8. 0	55	26	55	0	35	96	7. 7	+4. 85	3号炉	-2. 67	1 号炉	+3.75	-2.44	+3.88	-2. 35	+6. 01						
親不知海脚西縁断層 ~魚津断層帯			72	26	30		35	90																
佐渡島南方断層			29	24	0		45	62																
F-D断層~ 高田沖断層	強震動	8. 0	55	30	55	0	35	96	7. 1	+4. 75	3号炉	-2. 91	1 号炉	+3.88	-2.44	+3.90	-2. 36	+5. 36						
親不知海脚西縁断層 ~魚津断層帯	レシピ		72	30	30 30	35	90																	
長岡平野西縁断層帯 〜山本山断層 (δ = 35°)		7. 9	99	26	187	0	35	72	6. 3	+0. 92	1 号炉	-4. 60	1 号炉	+0.80	-3. 77	+0.79	-3. 77	-						
十日町断層帯西部 (δ = 35°)	土木学会		33		210			90																
長岡平野西縁断層帯 〜山本山断層 (δ = 50°)	手法 7.9	99	20	187	0	50	72	8. 4	+1.66	1 号炉	-4. 32	1 号炉	+1.63	-3. 77	+1.59	-3. 76	-							
十日町断層帯西部 (δ = 50°)							33		210			90												
長岡平野西縁断層帯 〜山本山断層 (δ = 35°)							7. 9	7.9	99	30	187	0	35	72	6. 2	+0. 49	1 号炉	-4. 88	1 号炉	+0.36	-3. 77	+0.35	-3. 77	-
十日町断層帯西部 (δ = 35°)	強震動		33		210			90																
長岡平野西縁断層帯 〜山本山断層 (δ = 50°)	7.8 レシピ 7.7	ルシピ レシピ 7.7		99	22	187	0	50	72	4. 7	+1. 01	5号炉	-3, 28	1 号炉	+0, 99	-3, 02	+0.95	-2. 97	_					
十日町断層帯西部 (δ = 50°)			33		210			90			3 75 M	3. 20	1.2%,	.0.00	3.02	+0.95								

取水口前面 海域活断層の 水位下降側 最大ケース

敷地周辺海域の活断層分布図

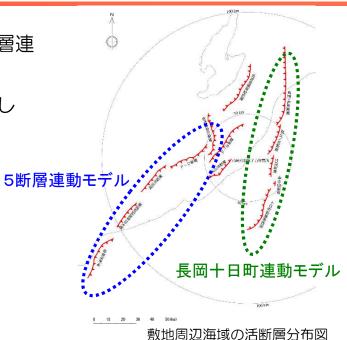
- ※1 佐渡島南方断層 ~ F-D断層
 - ~ 高田沖断層 ~ 親不知海脚西縁断層
 - ~ 魚津断層帯
- ※2 長岡平野西縁断層帯 ~ 山本山断層
 - ~ 十日町断層帯西部

- ●海域の活断層による津波のうち、取水口前面における水位上昇側最大は「5断層連動モデル」、水位下降側最大は「長岡十日町連動モデル」となった。
- それぞれについて、「すべり角」と「上縁深さ」のパラメータスタディを実施した。
- 取水口前面 水位上昇側 最大ケース 5断層連動モデル 土木学会スケーリング

断層名	すべり角の組合せ λ(°)					
	1	2	3	4		
佐渡島南方断層	62	62	38	10		
F-D断層~ 高田沖断層	96	140	118	96		
親不知海脚西縁断層 ~魚津断層帯	90	103	84	62		

	上縁
	深さ
	d (km)
最大ケースを	
選択	0
\rightarrow	2. 5
	5

計5ケースの検討を追加

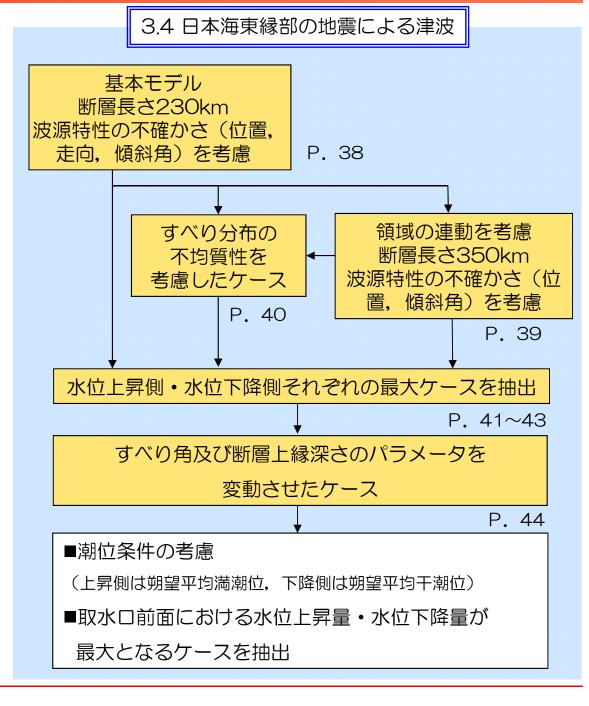

■ 取水口前面 水位下降側 最大ケース 長岡十日町連動モデル 傾斜角35° 強震動予測レシピスケーリング

	すべり角の組合せ							
断層名	λ (°)							
	1	2	3	4				
長岡平野西縁断層帯~	72	72	51	28				
山本山断層		12		20				
十日町断層帯	90	103	84	62				
西部	90	103	04	02				

最大ケースを 選択 →

工业	
深さ	
d (km)	
0	
2. 5	
5	

計5ケースの検討を追加



評価位置	最大水位上昇量(m)	最大水位下降量 (m)		
1号炉取水口前面	+4. 61	-4. 88		
2号炉取水口前面	+4. 99	-4. 70		
3号炉取水口前面	+5. 10	-4. 63		
4号炉取水口前面	+5.03	-4.60		
5号炉取水口前面	+3.94	-3. 27		
6号炉取水口前面	+4.00	-3. 77		
7号炉取水口前面	+4. 17	-3. 77		
荒浜側防潮堤	+6. 35	-		
	5 断層連動モデル	長岡十日町連動モデル		
油ウムコ		(傾斜角 35°)		
決定ケース	すべり角の組合せ①	すべり角の組合せ①		
	上縁深さ 2.5km	上縁深さ 0km		

水位上昇・水位下降それぞれについて,海域の活断層による津波の最大ケースを選定した。

3. 地震による津波

- 3. 1 数値シミュレーション手法
- 3. 2 地震による津波の検討方針
- 3. 3 敷地周辺海域の活断層による津波
- 3. 4 日本海東縁部の地震による津波
- 3. 5 潮位条件の重ね合わせ

3. 4 日本海東縁部の地震による津波

■ 日本海東縁部に想定される地震

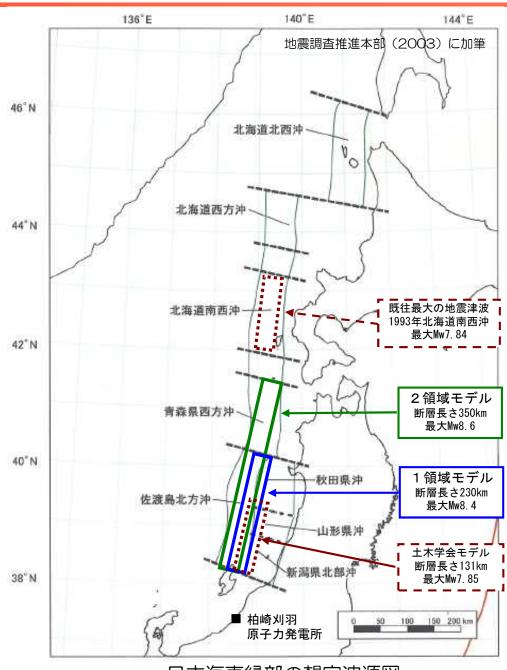
- 地震調査研究推進本部(2003),土木学会手法等の知見を参考 とした。
- 歴史津波のうち地震規模が最も大きいのは、1993年北海道南西 沖地震津波である。
- 津波の基準断層モデルは、土木学会(2002)に示されている。【断層長さ131km、Mw7.84】

日本海東縁部の大地震活動域の既往最大Mw

海域	発生年	津波モデルのMw	既往最大Mw (=Mmax)	「地震本部」による 地震規模(信頼度)
北海道北西沖	なし	-	1	M7.8程度(D)
北海道西方沖	1940	7.7	7.7	M7.5前後(B)
北海道南西沖	1993	7.8	7.8	M7.8前後(B)
青森県西方沖	1983	7.7	7.7	M7.7前後(B)
秋田県沖	なし	_	-	M7.5程度(C)
山形県沖	1833	7.8	7.8	M7.7前後(B)
新潟県北部沖	1964	7.5	7.5	M7.5前後(B)
佐渡島北方沖	なし	_	_	M7.8程度(D)

地震調査推進本部(2003)に加筆

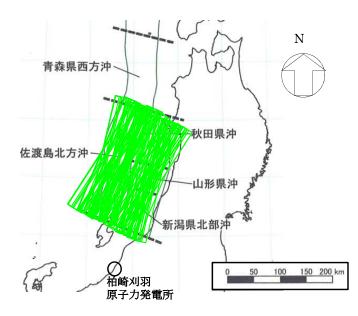
日本海東縁部の想定波源図

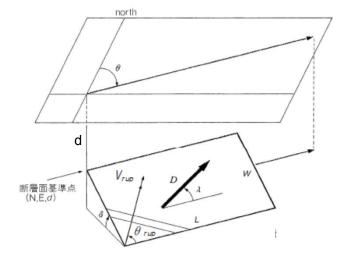

- 日本海東縁部の既往の地震は、記録が限られていることを踏まえ、安全評価上、想定する地震規模を設定した。
- 基本モデルは、地震調査研究推進本部(2003)の評価対象 領域の区分において、佐渡島北方沖が一度の地震で活動する ものとして断層長さを設定した。(以下、「1領域モデル」 という)

【断層長さ230km, 最大Mw8.4】

地震の発生領域の連動を考慮して、佐渡島北方沖と青森県西 方沖の領域が連動するものとして断層長さを設定した。(以 下、「2領域モデル」という)

【断層長さ350km, 最大Mw8.6】

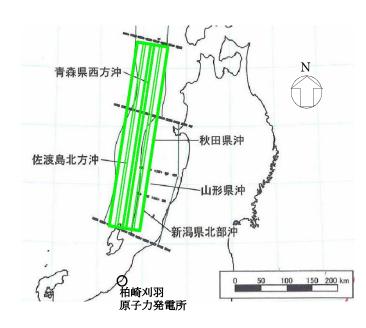

- すべり分布の不確かさとして、2領域モデルについて、アスペリティモデルの検討を行った。
- 波源のモデル化(スケーリング則)は、土木学会手法及び強 震動予測レシピを用いた。


日本海東縁部の想定波源図

- 波源のパラメータ:基本モデル(1領域モデル,断層長さ230km)
 - 佐渡島北方沖、秋田県沖、山形県沖及び新潟県北部沖の範囲における、 「断層の位置」、「走向」及び「傾斜角」の不確かさの組合せを考慮した。(228ケース)
 - 地震発生層の厚さは、土木学会手法では15km、強震動予測レシピでは20kmとした。

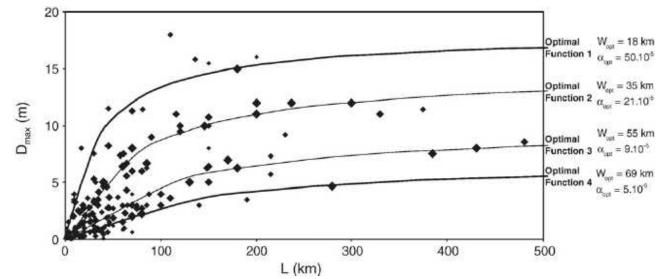
波源	波源の モデル化 (スケー リング則)	Mw	断層 長さ L(km)	断層幅 W(km)	走向 θ (°)	上縁 深さ d (km)	傾斜角 δ(°)	すべり 角 λ(°)	すべり 量 D (m)
		8. 2	230	30	20 ± 10 200 ± 10	0	30	90	9.6
	土木学会 手法	8. 2	230	21	20 ± 10 200 ± 10	0	45	90	13. 5
1領域		8. 2	230	17	20 ± 10 200 ± 10	0	60	90	16. 6
モデル	14年41	8. 1	230	23	20 ± 10 200 ± 10	0	60	90	8.4
	強震動・予測・レシピ・	8.2	230	28	20 ± 10 200 ± 10	0	45	90	10.3
		8. 4	230	40	20 ± 10 200 ± 10	0	30	90	14. 6

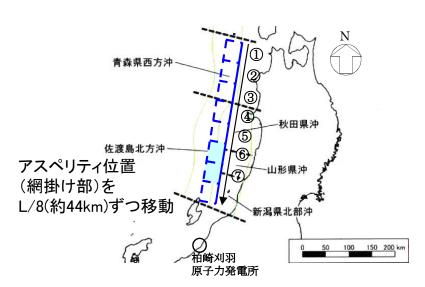
不確かさの検討例



諸元の定義(土木学会, 2002)

- 波源のパラメータ:領域の連動を考慮したモデル(2領域モデル,断層長さ350km)
 - ●領域の連動を考慮した2領域モデル(断層長さ350km)の波源のパラメータを以下に示す。
 - ●領域の範囲における「断層の位置」及び「傾斜角」の不確かさの組合せを考慮した。(24ケース)


波源	波源の モデル化 (スケー リング則)	Mw	断層 長さ L(km)	断層幅 W(km)	走向 θ(°)	上縁 深さ d (km)	傾斜角 δ(°)	すべり角 λ(°)	すべり量 D (m)
	土木学会	8.4	350	30	8 188	0	30	90	15
2領域	手法	8.4	350	17	8 188	0	60	90	25
モデル	強震動 予測	8.3	350	23	8 188	0	60	90	13
	レシピ	8.6	350	40	8 188	0	30	90	22

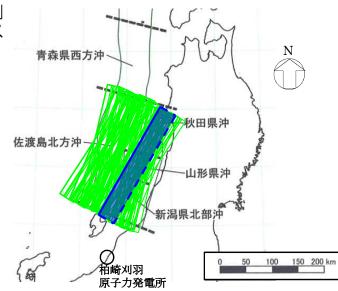

不確かさの検討例

- 波源のパラメータ:アスペリティモデル
- 水位上昇量及び水位下降量が最大となる「断層の位置」 「走向」及び「傾斜角」の組合せケースについて、すべ り分布の不確かさとして、アスペリティモデルの検討を 行った。(7ケース)
- アスペリティは、根本ほか(2009)を参考とし、すべり量を平均すべり量の2倍とする領域を全断層面積の25%に設定した。
- ただし、Manighetti et al.(2007)を参考に、すべり量の上限を20mとした。

水位	Mw	断層 長さ L(km)	断層幅 W(km)	走向 θ (°)	上縁 深さ d(km)	傾斜角 δ(°)	すべり 角 λ(°)	すべり量 D (m)
上昇側	8. 4	350	40	188	5	30	100	20 (アスペリティ領域) 6.7 (背景領域)
下降側	8.4	350	40	8	5	30	100	20 (アスペリティ領域) 6.7 (背景領域)

長大な断層の事例を含む地表地震断層の長さと地震時のずれ量の関係 Manighetti et al.(2007)

不確かさの検討


日本海東縁部の地震による津波

■ 日本海東縁部の地震に係る数値シミュレーション結果(1領域モデル)

波源の モデル化		断層 長さ	断層幅	取水口前面の 最大水位		6号炉 取水口前面	7号炉 取水口前面	荒浜側 防潮堤
(スケーリン グ則)	Mw	L (km)	W (km)	最大水位 上昇量 (m)	位置	最大水位 上昇量 (m)	最大水位 上昇量 (m)	最大水位 上昇量 (m)
	8.2	230	30	+3. 65	1 号炉	+3. 15	+3. 11	+3.57
土木学会手法	8. 2	230	21	+4. 36	5号炉	+4. 32	+4. 33	+4. 17
1,2	8. 2	230	17	+5. 21	5号炉	+5. 20	+5. 18	+5. 22
	8. 1	230	23	+3. 92	5号炉	+3.88	+3. 81	+3.73
強震動予測 レシピ	8.2	230	28	+4. 19	5 号炉	+4. 16	+4. 14	+3.97
	8.4	230	40	+5. 26	5 号炉	+5. 20	+5. 09	+5. 23

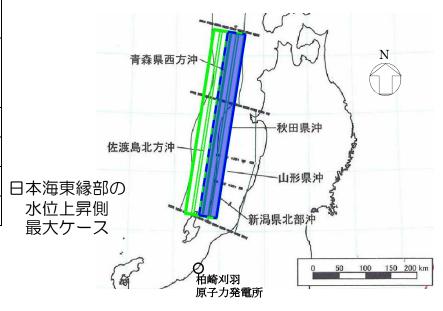
波源の モデル化		断層	断層幅	取水口前面の 最大水位		6号炉 取水口前面	7号炉 取水口前面
(スケーリン グ則)	Mw	長さ L (km)	W (km)	最大水位 下降量 (m)	位置	最大水位 下降量 (m)	最大水位 下降量 (m)
	8. 2	230	30	-3. 67	1号炉	-3.03	-2.99
土木学会 手法	8. 2	230	21	-4.88	1号炉	-3.76	-3. 76
	8. 2	230	17	-4. 47	1号炉	-3.70	-3.71
	8. 1	230	23	-3. 55	1号炉	-3. 27	-3. 20
強震動予測 レシピ	8. 2	230	28	-3. 98	1号炉	-3.38	-3. 30
·	8. 4	230	40	-4.96	1 号炉	-3. 76	-3. 76

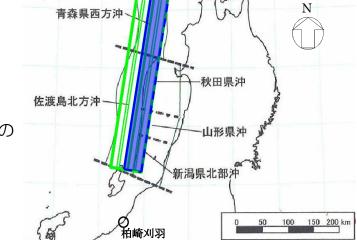
本表中の※ 取水口前面, 荒浜側防潮堤 水位上昇側 最大ケース

*上昇側・下降側の最大ケースが同一

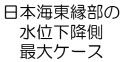
取水口前面 水位下降側

本表中の※ 最大ケース

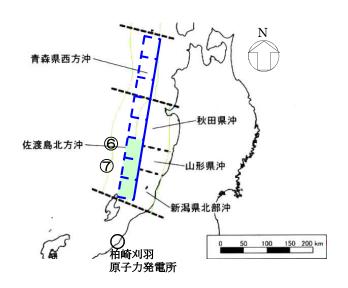


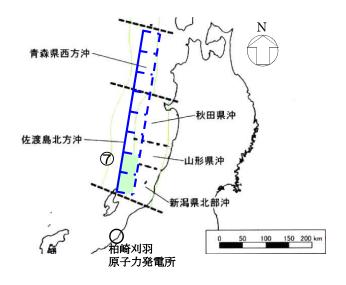

※ 2領域モデルのケースの方が、本表での検討ケースよりも大きい

■ 日本海東縁部の地震に係る数値シミュレーション結果(2領域モデル)

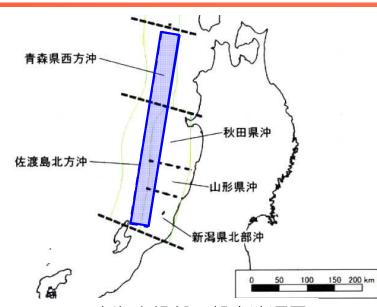

波源の モデル化		断層 長さ	断層幅	取水口前面の 最大水位		6号炉 取水口前面	7号炉 取水口前面	荒浜側 防潮堤
マケル化 (スケーリン グ則)	Mw	上 (km)	W (km)	最大水位 上昇量 (m)	位置	最大水位 上昇量 (m)	最大水位 上昇量 (m)	最大水位 上昇量 (m)
土木学会	8.4	350	30	+3. 75	1号炉	+3. 51	+3. 43	+3. 57
手法	8.4	350	17	+4. 39	1号炉	+4.00	+3.92	+4. 28
強震動予測	8.3	350	23	+3. 36	1 号炉	+3.01	+3.09	+3. 26
レシピ	8.6	350	40	+5. 29	1 号炉	+5. 20	+5. 18	+5. 39

波源の モデル化		断層 長さ	断層幅	取水口前面の 最大水位		6号炉 取水口前面	7号炉 取水口前面
イアル化 (スケーリン グ則)	Mw	L (km)	W (km)	最大水位 下降量 (m)	位置	最大水位 下降量 (m)	最大水位 下降量 (m)
土木学会	8.4	350	30	-3. 66	1号炉	-3. 01	-3. 02
手法	8. 4	350	17	-4. 03	1号炉	-3. 36	-3. 26
強震動予測	8.3	350	23	-3. 59	1号炉	-2.84	-2. 71
レシピ	8.6	350	40	-5. 07	1号炉	-3. 76	-3. 76


原子力発電所



■ 日本海東縁部の地震に係る数値シミュレーション結果(アスペリティモデル)


	アスペリ		断層 長さ	断層幅	取水口前面の 最大水位		6号炉 取水口前面	7号炉 取水口前面	荒浜側 防潮堤
2領域 アスペリティ モデル	ティ位置	Mssz	L (km)	W (km)	最大水位 上昇量 (m)	位置	最大水位 上昇量 (m)	最大水位 上昇量 (m)	最大水位 上昇量 (m)
	6	8.4	350	40	+4. 43	5号炉	+4. 41	+4. 36	+4. 01
	7	8.4	350	40	+4.30	5号炉	+4. 27	+4. 19	+4. 16

	アスペリ		断層 長さ	断層幅	取水口前面の 最大水位		6号炉 取水口前面	7号炉 取水口前面
2領域 アスペリティ モデル	ティ位置	Mw	L (km)	W (km)	最大水位 下降量 (m)	位置	最大水位 下降量 (m)	最大水位 下降量 (m)
	7	8.4	350	40	-4. 29	1号炉	-3. 65	-3. 56

- 日本海東縁部による津波のうち、取水口前面における水位上昇側 および下降側最大は「2領域モデル」となった。
- それぞれについて、「すべり角」と「上縁深さ」のパラメータス タディを実施した。

日本海東縁部の想定波源図

■ 取水口前面 水位上昇・下降側 最大ケース2領域モデル 強震動予測レシピスケーリング

7th 7E	すべり角
波源	λ(°)
	80
2 領域モデル	90
	100

最大ケース を選択 →

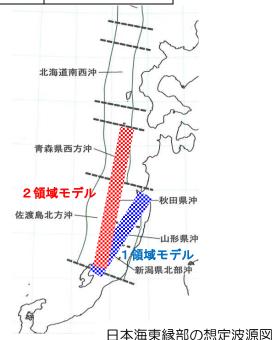
上縁深さ
d (km)
0
2. 5
5

計4ケースの検討を追加

評価位置	最大水位上昇量(m)	最大水位下降量(m)
1号炉取水口前面	+5. 90	-5.51
2号炉取水口前面	+5. 73	-5. 48
3号炉取水口前面	+5. 57	-5.48
4号炉取水口前面	+5. 51	-5. 51
5号炉取水口前面	+5. 44	-3. 26
6 号炉取水口前面	+5. 43	-3. 76
7号炉取水口前面	+5. 46	-3.76
荒浜側防潮堤	+6. 05	-
	2領域モデル	2領域モデル
油学を、フ	強震動予測レシピ	強震動予測レシピ
決定ケース	すべり角 100°	すべり角 100°
	上縁深さ 5km	上縁深さ 5km

水位上昇・水位下降それぞれについて、日本海東縁部による津波の最大ケースを選定した。

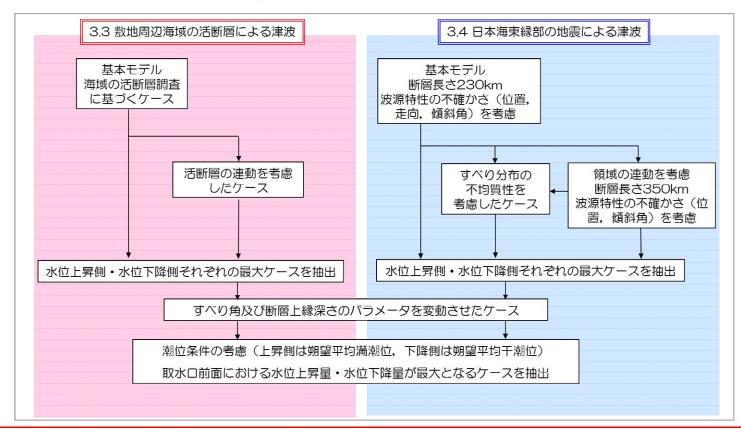
3. 4 日本海東縁部の地震による津波(【参考】1領域モデルの詳細パラメータスタディ)


- 概略パラメータスタディで選定された2領域モデルと1領域モデルの水位上昇量の差が小さいことから、念のため 1領域モデルについて「すべり角」と「上縁深さ」をパラメータとした詳細パラメータスタディを実施した。
- 評価の結果, 2領域モデルの水位上昇量を下回ることを確認した。

■ パラメータ(1領域,2領域モデル共通)

٠t+ ١Æ	すべり角			
波源	λ(°)			
	80			
1領域モデル 2領域モデル	90			
2領球モアル	100			

最大ケース を選択


上縁深さ	
d (km)	
0	
2. 5	
5	

	最大水位_	上昇量(m)
評価位置 	2領域 モデル	1領域 モデル
1号炉取水口前面	+5.90	+5.18
2号炉取水口前面	+5.73	+5.20
3号炉取水口前面	+5.57	+5.16
4号炉取水口前面	+5.51	+5.14
5号炉取水口前面	+5.44	+5.26
6号炉取水口前面	+5.43	+5.20
7号炉取水口前面	+5.46	+5.09
荒浜側防潮堤	+6.05	+5.23
決定ケース	すべり角:100° 上縁深さ:5km	すべり角:90° 上縁深さ:0km

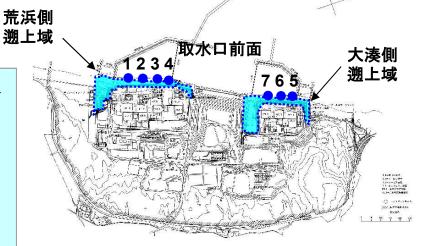
3. 地震による津波

- 3. 1 地震による津波の検討方針
- 3. 2 数値シミュレーション手法
- 3. 3 敷地周辺海域の活断層による津波
- 3. 4 日本海東縁部の地震による津波
- 3. 5 潮位条件の重ね合わせ

3. 5 潮位条件の重ね合わせ(取水口前面)

潮位条件との重ね合わせを考慮するため、海域の活断層及び日本海東縁部の地震による津波それぞれの最大ケースについて、計算開始潮位を上昇側は朔望平均満潮位(T.M.S.L.+O.49m)、下降側は朔望平均干潮位(T.M.S.L.+O.03m)として数値シミュレーションを実施した。

最大となる波源モデルの諸元(海域の活動層)

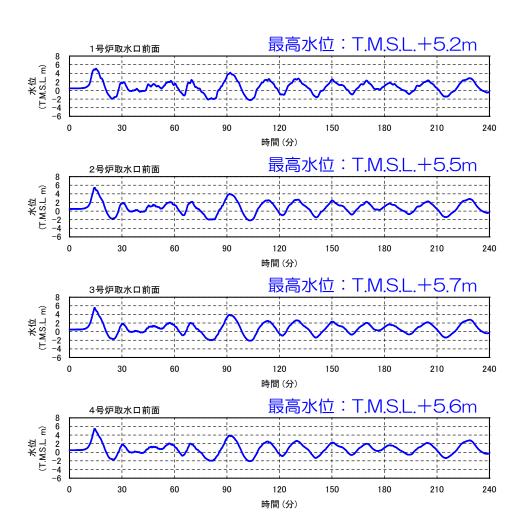

水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 W (km)	走向 θ (°)	上縁 深さ d (km)	傾斜角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
	佐渡島 南方断層	5断層連動		29	21	0		45	62	
最高 水位 ケース	F-D断層~ 高田沖断層	モデル 土木学会 手法	8. 0	55	26	55	2.5	35	96	7. 7
	親不知海脚 西縁断層~ 魚津断層帯			72	26	30		35	90	
最低水位	長岡平野西縁 断層帯~ 山本山断層	長岡十日町 連動モデル (傾斜角 35°) 強震動予測 レシピ	7.9	99	30	187	0	35	72	6. 2
ケース	十日町断層帯 西部			33		210			90	

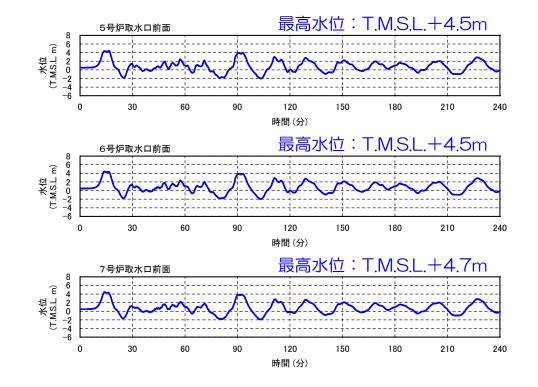
最大となる波源モデルの諸元(日本海東縁部)

水位	波源	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 W (km)	走向 θ (°)	上縁 深さ d (km)	傾斜角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
最高 水位 ケース	2 領域 モデル	強震動予測レシピ	8.6	350	40	188	5	30	100	22
最低 水位 ケース	2 領域 モデル	強震動予測レシピ	8.6	350	40	8	5	30	100	22

取水口前面における最高水位及び最低水位(地震による津波に潮位を重ね合わせ)

1.					水化	立. T. M	. S. L.	(m)			
水位	地震			取	水口前	面			荒浜側	遡上域	
1		1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側
上	海域の活断層 (5断層連動モデル)	+5.2	+5. 5	+5. 7	+5.6	+4.5	+4.5	+4.7	+6. 9	+7. 1	+7.3
昇側	日本海東縁部 (2領域モデル)	+6. 5	+6. 3	+6. 2	+6.1	+6.0	+6.0	+6.0	+6.6	+6.6	+7.4
下降	海域の活断層 (長岡十日町連動モデル)	-4.8	-4. 6	-4. 5	-4.5	-3.0	-3.5	-3. 5	e —	(+0.2)	(+1.0)
側	日本海東縁部 (2領域モデル)	-5.3	-5.3	-5.3	-5. 4	-3.0	-3.5	-3. 5	(+5. 0)	(+5.1)	(+5.7)

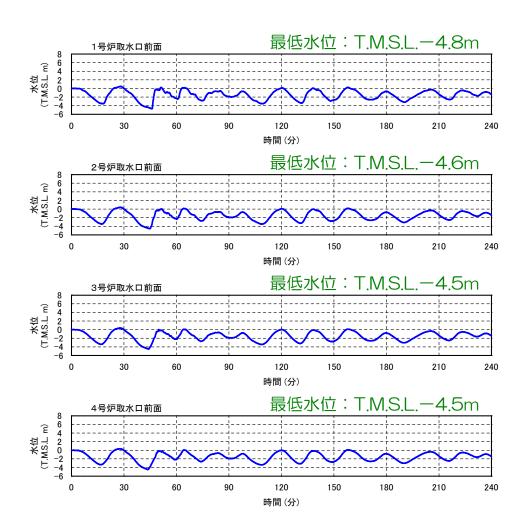

水位上昇・水位下降それぞれに ついて,最大ケースを評価した。

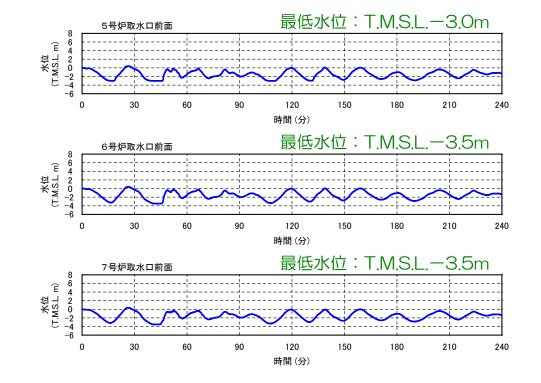

3.5 潮位条件の重ね合わせ〔時刻歴波形〕 (海域の活断層:取水口前面水位上昇側最大ケース)

■ 5断層連動モデル

朔望平均満潮位T.M.S.L.+O.49mを考慮

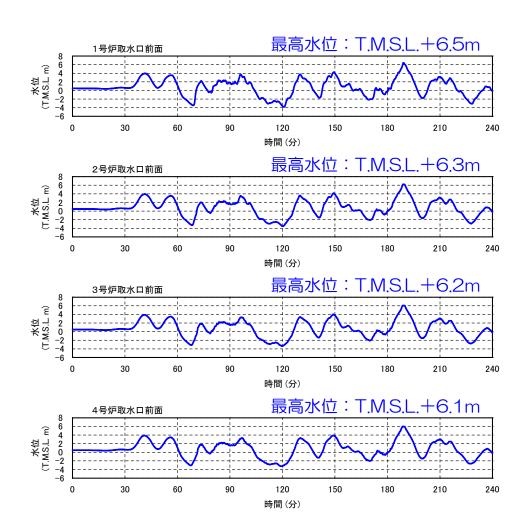
水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 ₩ (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
	佐渡島 南方断層	5 断層連動		29	21	0		45	62	
最高 水位	F-D断層~ 高田沖断層	モデル	8. 0	55	26	55	2. 5	35	96	7. 7
ケース	親不知海脚 西縁断層~ 魚津断層帯	土木学会手法		72	26	30		35	90	

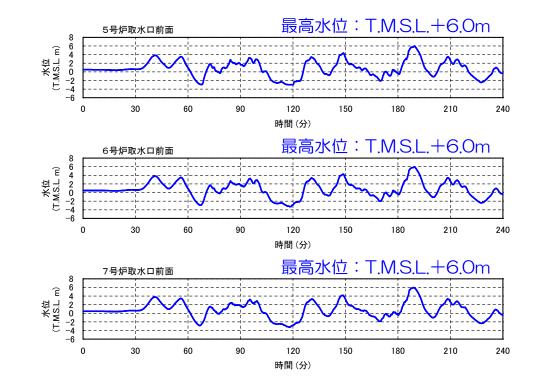



3.5 潮位条件の重ね合わせ〔時刻歴波形〕 (海域の活断層:取水口前面水位下降側最大ケース)

■ 長岡十日町連動モデル(傾斜角35°)

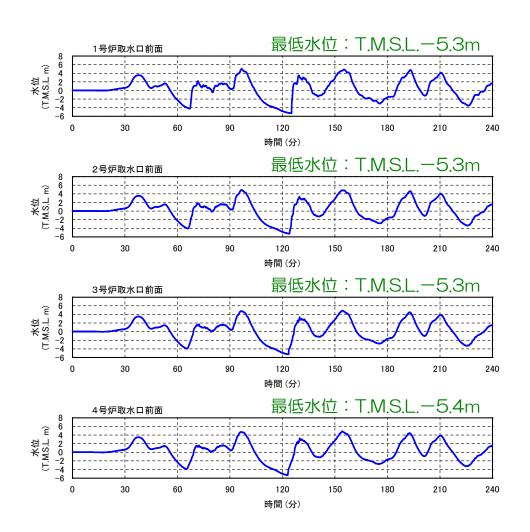
朔望平均干潮位T.M.S.L.+O.O3mを考慮

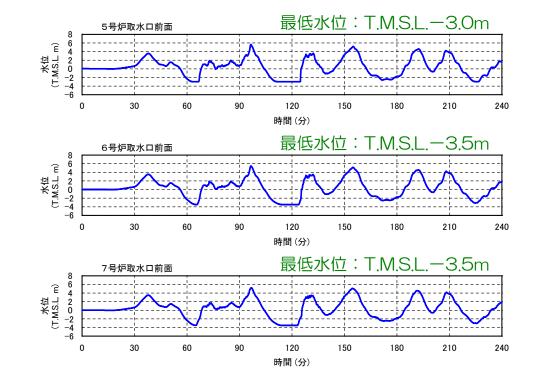

水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 ₩ (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
最低 水位	長岡平野西縁断 層帯〜 山本山断層	長岡十日町 連動モデル (傾斜角35°)	7. 9	99	30	187	0	35	72	6. 2
ケース	十日町断層帯西 部	強震動予測 レシピ		33		210		,	90	


3. 5 潮位条件の重ね合わせ〔時刻歴波形〕 (日本海東縁部:取水口前面水位上昇側最大ケース)

■ 2領域モデル

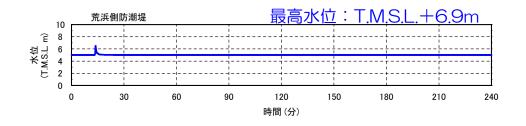
朔望平均満潮位T.M.S.L.+O.49mを考慮


水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 ₩ (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
最高 水位 ケース	2 領域 モデル	強震動予測レシピ	8.6	350	40	188	5	30	100	22


3.5 潮位条件の重ね合わせ〔時刻歴波形〕 (日本海東縁部:取水口前面水位下降側最大ケース)

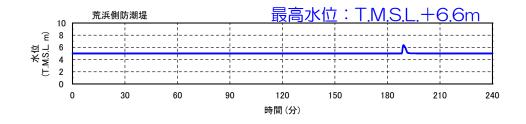
■ 2領域モデル

朔望平均干潮位T.M.S.L.+O.O3mを考慮



水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 ₩ (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
最低 水位 ケース	2 領域 モデル	強震動予測レシピ	8.6	350	40	8	5	30	100	22

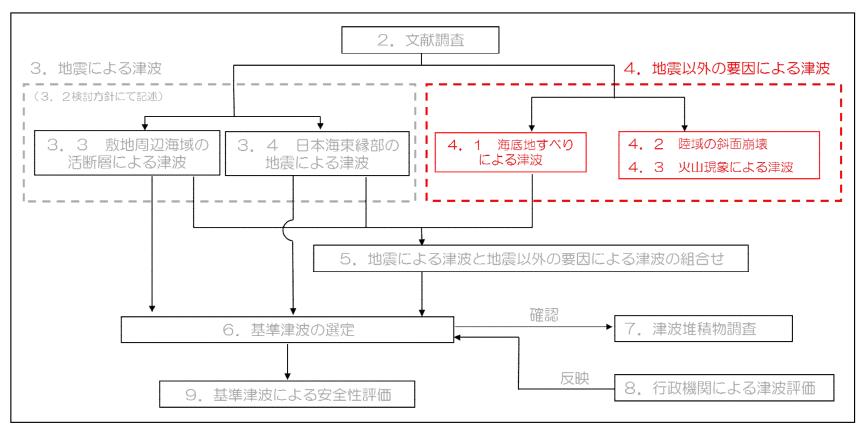
■ 海域の活断層:5断層連動モデル


朔望平均満潮位T.M.S.L.+O.49mを考慮

水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 ₩ (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
	佐渡島 南方断層	5 断層連動		29	21	0		45	62	
最高 水位	F-D断層~ 高田沖断層	モデル	8. 0	55	26	55	2. 5	35	96	7. 7
ケース	親不知海脚 西縁断層~ 魚津断層帯	土木学会 手法	0.0	72	26	30		35	90	

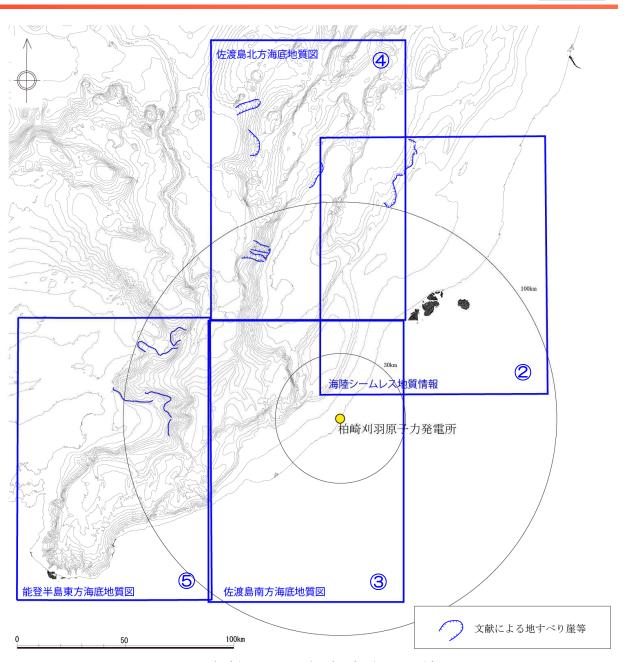
■ 日本海東縁部: 2領域モデル

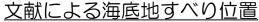
朔望平均満潮位T.M.S.L.+O.49mを考慮



水位	断層名	波源の モデル化 (スケーリ ング則)	Mw	断層 長さ L (km)	断層幅 ₩ (km)	走向 θ (°)	上縁 深さ d (km)	傾斜 角 δ (°)	すべり 角 λ (°)	すべり 量 D (m)
最高 水位 ケース	2 領域 モデル	強震動予測 レシピ	8.6	350	40	188	5	30	100	22

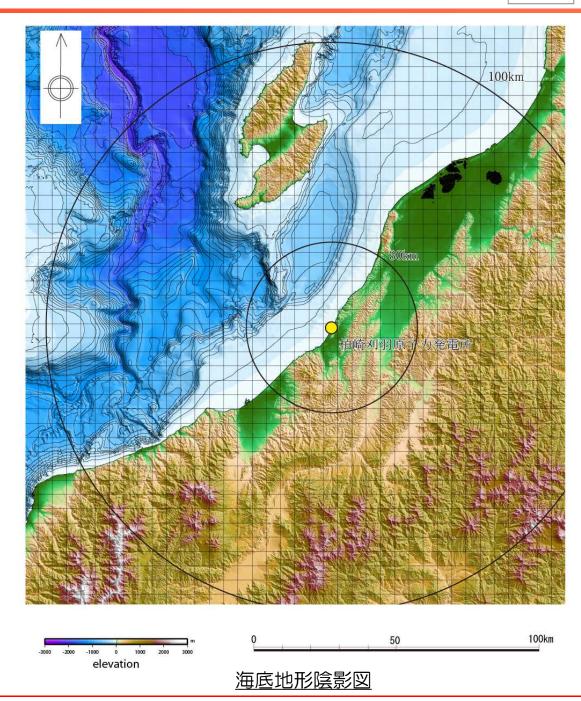
3. 5


4. 地震以外の要因による津波

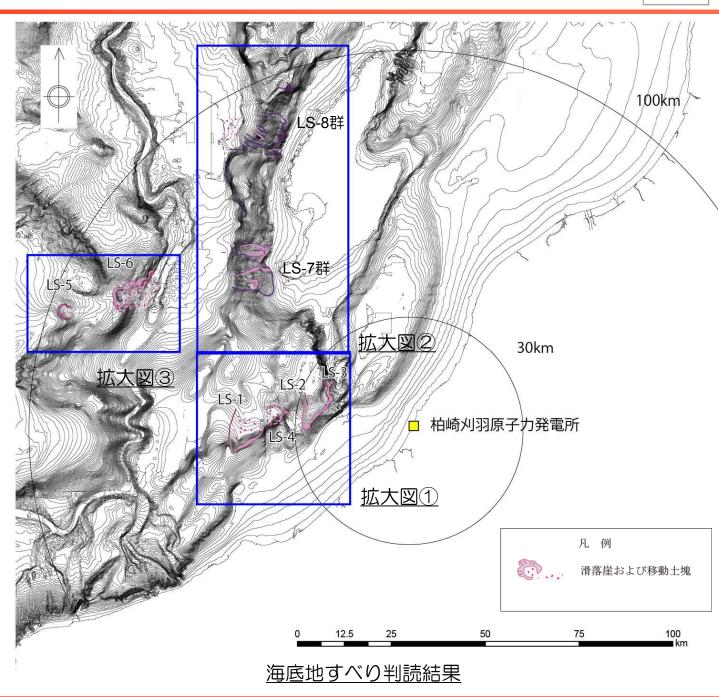

- 4. 1 海底地すべりによる津波
- 4. 2 陸域の斜面崩壊による津波
- 4. 3 火山現象による津波

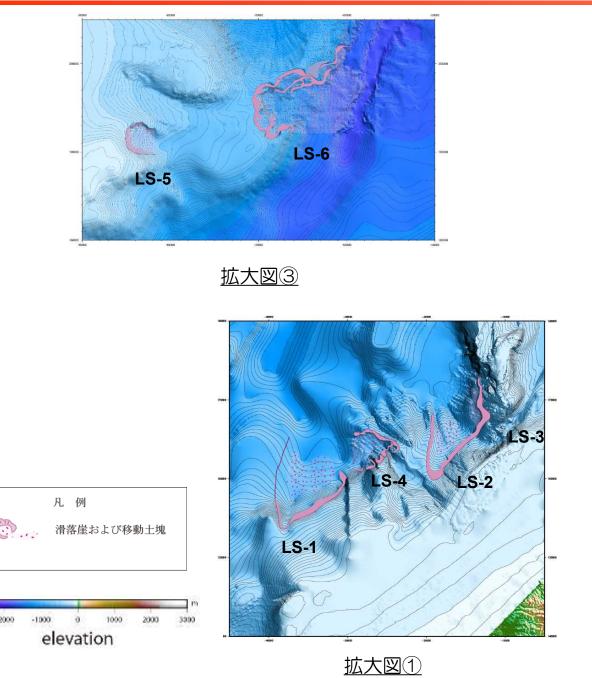
4. 1 海底地すべりによる津波(1) 文献調査結果

- 敷地周辺海域における海底の地形・地質に関する主な文献は以下のとおり。
 - ① 日本周辺海域の中新世最末期以降の地質 構造発達史(徳山ほか,2001)
 - ② 新潟沿岸域20万分の1海底地質図説明書 (海陸シームレス地質情報,新潟沿岸域, 数値地質図S-2)(井上ほか,2011)
 - ③ 佐渡島南方海底地質図(岡村ほか, 1994)
 - ④ 佐渡島北方海底地質図(岡村ほか, 1995)
 - ⑤ 能登半島東方海底地質図(岡村, 2002)
- 文献によると、敷地周辺海域の敷地から半径約80kmの範囲には、海底地すべり地形は指摘されていない。



4. 1 海底地すべりによる津波(2)海底地すべり地形の抽出

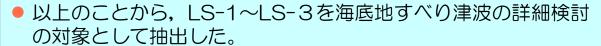

- 敷地周辺の海域(半径100kmを目安)を対象として海底地形判読を実施し、地すべり地形を抽出した。
- 地形陰影図の作成には、海底地形デジタルデータ M7000シリーズ(日本水路協会)を用いた。
- 海底地すべり地形の判読に際しては、既往の研究における海底地すべり地形の形状やタイプを参照し、馬蹄形・円弧形などの滑落崖、不規則な凹凸を示す崩壊物堆積域(移動土塊)を抽出した。

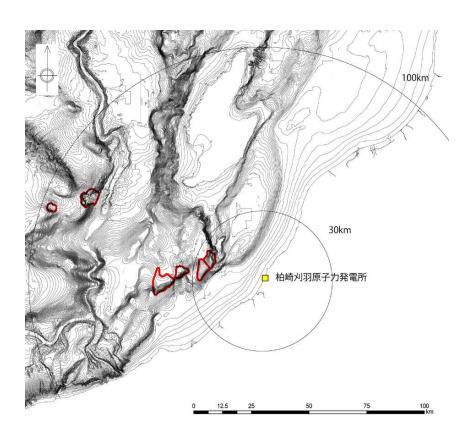


4. 1 海底地すべりによる津波(2)海底地すべり地形の抽出

- 判読の結果,敷地の西方沖に4つの 海底地すべり地形を抽出した。 (LS-1, LS-2, LS-3, LS-4)
- 敷地から遠方の西北西沖に2つの海 底地すべり地形を抽出した。(LS-5, LS-6)
- 敷地から佐渡島を挟んで反対側の海 底に、複数の海底地すべり地形を抽 出した。(LS-7群, LS-8群)
- 抽出した地形の拡大図を次ページに示す。

4. 1 海底地すべりによる津波(3)詳細検討の対象とする海底地すべり地形の絞り込み

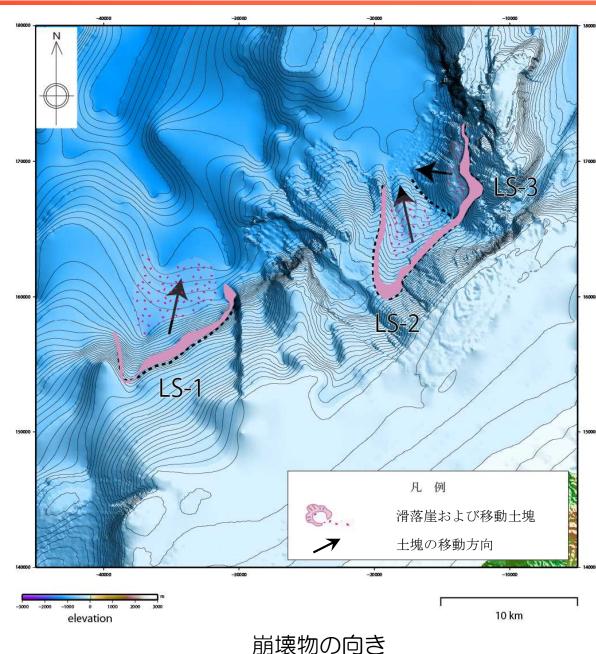

■対象の絞り込み

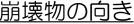

● 海底地すべり地形について、面積、体積、敷地からの距離等の概略 パラメータから対象とする海底地すべりを選定した。

海底地すべり地形の概略パラメータ抽出結果一覧表

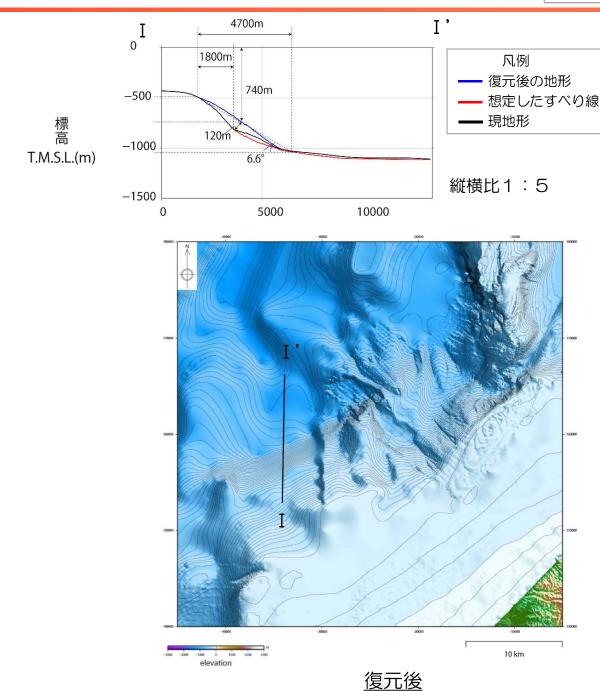
111	面積	厚さ	比高	傾斜	水深	体積	敷地からの	
地すべり	(km²)	(m)	(m)	(°)	(m)	(km³)	距離(km)	
LS-1	56.8	120	520	3.5	800	3.4	44	
LS-2	33.5	130	350	2.9	750	2.2	27	
LS-3	22.5	150	550	5.7	650	1.7	25	
LS-4	20.2	120	450	4.4	750	1.2	36	
LS-5	11.0	120	310	4.4	450	0.7	97	
LS-6	41.8	180	840	6.5	1250	3.8	84	

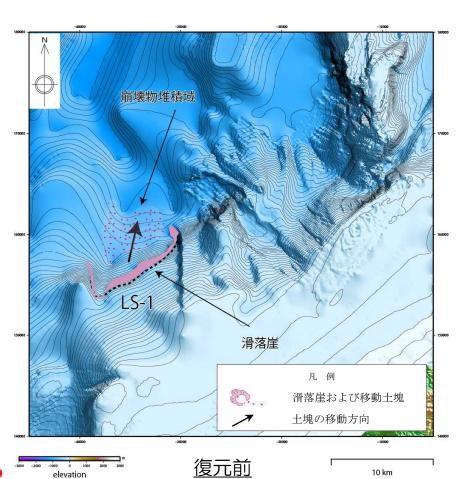
- LS-5及びLS-6は、LS-1~LS-4と比べると、体積は大きくは変わらず、敷地からの距離は明らかに遠いため、敷地への影響はLS-1~LS-4よりも小さいものと考えられる。
- LS-4は、LS-2及びLS-3と比べると、体積はやや小さく、敷地からの距離が3割ほど遠いことから、敷地への影響はLS-3よりも小さいものと考えられる。

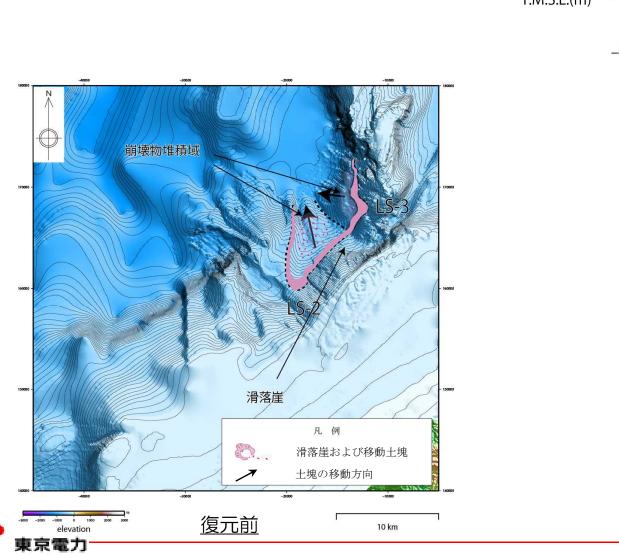

海底地すべり地形の位置図

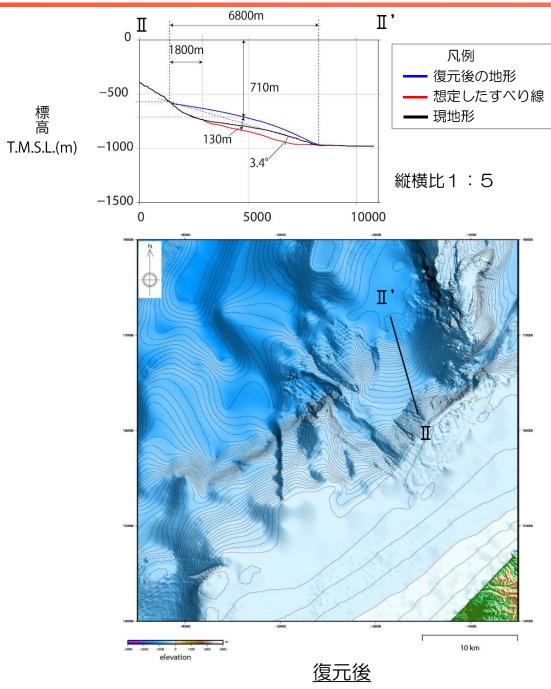

海底地すべりによる津波(4)海底地すべり地形の復元

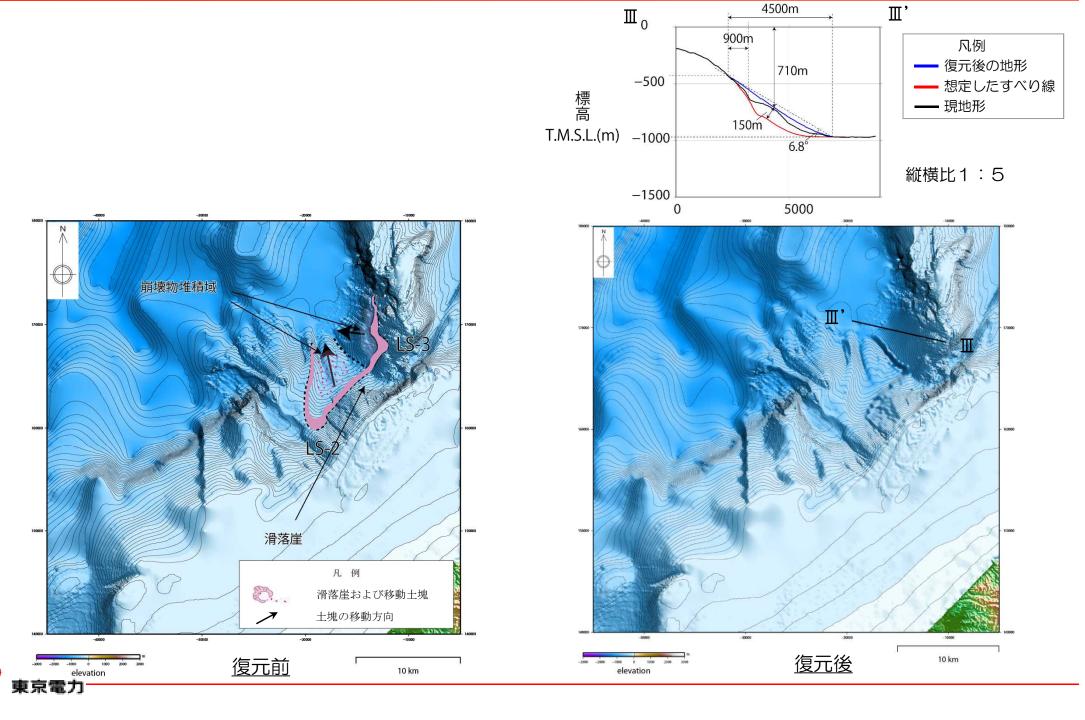
● 海底地すべりLS-1~LS-3を対象に、津波数値シ ミュレーション用の復元地形を作成した。


復元方法は、以下のとおり

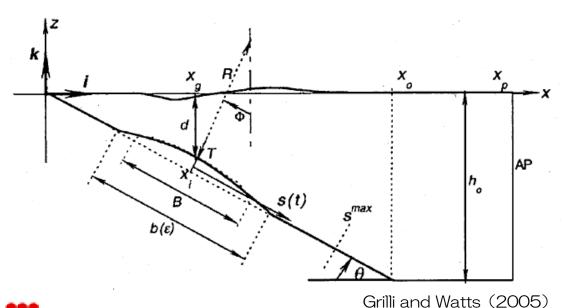

- 馬蹄形を呈する滑落崖と、その前方に地形の高まり や地形コンターの乱れを呈する崩壊物堆積域を抽出 した。
- すべり線は、急崖部と崩壊物が堆積していない前方 の地形面とを、滑らかに接続することで推定した。 ここでは、急崖部には地すべり崩壊物は堆積してい ないものと想定した。
- 地すべり発生前の地形の復元は、緩傾斜面の崩壊物 堆積域を覆うように復元することとし、周辺地形の 標高等を参照し、地すべり崩壊域の谷地形を埋める ことで推定した。







東京電力


(5) 数値シミュレーション ①Watts らの予測式に基づく手法

■ 数値シミュレーションの検討方針

● 海底地すべりによる津波の数値シミュレーションは、Watts et al. (2005) の予測式に基づく手法と、二層流モデル (Maeno and Imamura, 2007) に基づく手法の2通りとした。

■ Watts et al. (2005) の予測式に基づく手法

- 復元した海底地すべり地形に基づき, Watts et al. (2005) の予測式に基づく数値シミュレーションを実施した。
- Watts et al. (2005) では、実験や海底地すべりの 数値解析モデルの再現性が確認されている。

 η_{02D} :波源振幅(現象が2次元的な場合)

$$\eta_{0,2D} = S_0 \left(\frac{0.131}{\sin \theta} \right) \left(\frac{T}{b} \right) \left(\frac{b \sin \theta}{d} \right)^{1.25} \left(\frac{b}{R} \right)^{0.63} (\Delta \Phi)^{0.39} (1.47 - 0.35(\gamma - 1))(\gamma - 1)$$

 η_{03D} :波源振幅(現象が3次元的な場合)

$$\eta_{0,3D} = \eta_{0,2D} \left(\frac{w}{w + \lambda_0} \right)$$

 $\eta(x, y)$:初期水位波形

$$\eta(x,y) \approx -\frac{\eta_{0,3D}}{\eta_{\min}} \operatorname{sech}^{2} \left(\kappa \frac{y - y_{0}}{w + \lambda_{0}} \right) \left(\exp \left\{ -\left(\frac{x - x_{0}}{\lambda_{0}} \right)^{2} \right\} - \kappa' \exp \left\{ -\left(\frac{x - \Delta x - x_{0}}{\lambda_{0}} \right)^{2} \right\} \right)$$

η_{min}:振幅を除く右辺の最大値

 γ : 崩壊部比重 b: 崩壊部長さ T: 崩壊部厚さ

w:崩壊部幅 d:崩壊部水深 θ :斜面勾配 g:重力加速度

 C_d : 抗力係数 (=0) C_m : 付加質量係数 (=1) S: 移動距離

 S_0 :特性距離 $S_0 = \frac{S}{2}$ R:曲率半径 $R = \frac{b^2}{8T}$

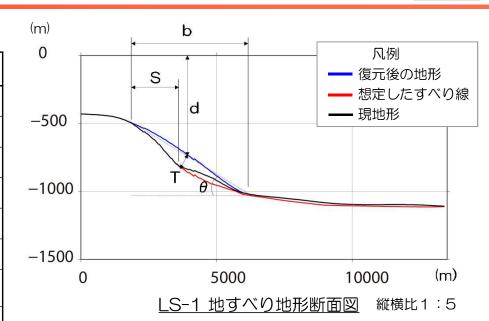
 $\Delta\Phi$: 回転角 $\Delta\Phi = \frac{2S_0}{R}$ t_0 : 特性時間 $t_0 = \sqrt{\frac{R}{g}}\sqrt{\frac{\gamma + C_m}{\gamma - 1}}$

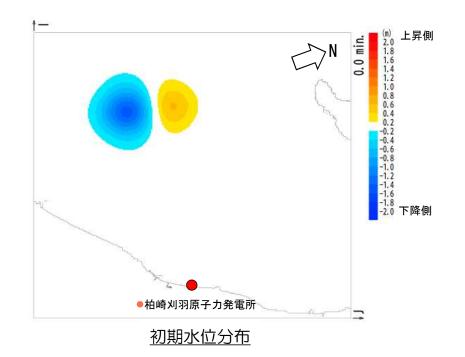
 λ_0 : 特性津波波長 $\lambda_0 = t_0 \sqrt{gd}$ Δx : ガウス分布間距離 $\Delta x = \frac{\lambda_0}{2}$

κ, κ': 形状パラメータ (κ=3)

4. 1 海底地すべりによる津波

(5) 数値シミュレーション ①Watts らの予測式に基づく手法


■ LS-1


予測式パラメータ

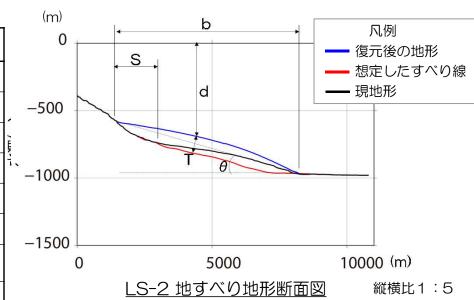
			設定値	設定根拠
γ		崩壊部比重	2. 0	松本ら(1998)を参照
b	(m)	崩壊部長さ	4700	復元後の地形図から判読
Т	(m)	崩壊部厚さ	120	崩壊部頂点における崩壊深さ
w	(m)	崩壊部幅	8700	復元後の地形図から判読
d	(m)	初期の崩壊部水深	740	崩壊部頂点の水深
θ	(deg)	斜面勾配	6. 6	崩壊部の斜面勾配
S	(m)	移動距離	1800	堆積域が不明瞭なため, 崩壊部上 端点から堆積部上端点までの距離
T'	(m)	堆積部厚さ	50	地すべり地形より設定
S ₀	(m)	特性距離	900	$S_0 = S/2$
R	(m)	曲率半径	23010	$R = b^2/(8T)$
Δφ	(rad)	回転角	0. 078	$\Delta \phi = 2S_0/R$
t ₀	(8)	特性時間	84	$t_0 = \sqrt{R/g} \cdot \sqrt{(\gamma + C_m)/(\gamma - 1)}$
λ_0	(m)	特性津波波長	7147	$\lambda_0 = t_0 \cdot \sqrt{gd}$
⊿X	(m)	ガウス分布間距離	3574	$\Delta X = \lambda_0/2$
κ'		形状パラメータ	0. 74	崩壊部厚さT=120m, 堆積部厚さ T'=50mの比から, 上昇側振幅=下 降側振幅×0.42として設定

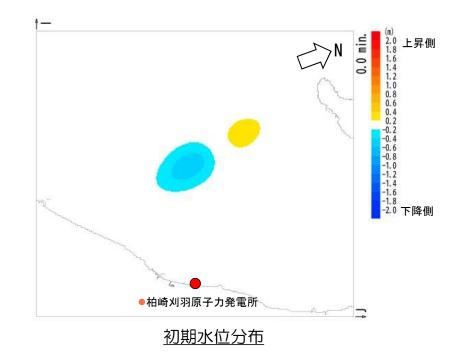
波源振幅の推定値

$\eta_{0,2D}$	2.69m
$\eta_{0,3D}$	1.48m

4. 1 海底地すべりによる津波

(5) 数値シミュレーション ①Watts らの予測式に基づく手法


■ LS-2


予測式パラメータ

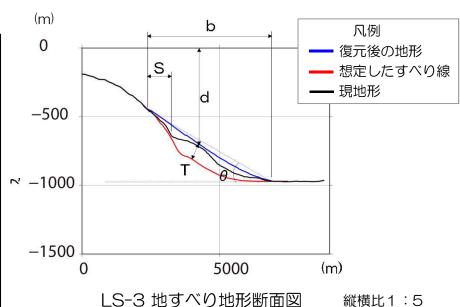
			設定値	設定根拠
γ		崩壊部比重	2. 0	松本ら(1998)を参照
b	(m)	崩壊部長さ	6800	復元後の地形図から判読
T	(m)	崩壊部厚さ	130	崩壊部頂点における崩壊深さ
w	(m)	崩壊部幅	4000	復元後の地形図から判読
d	(m)	初期の崩壊部水深	710	崩壊部頂点の水深
θ	(deg)	斜面勾配	3. 4	崩壊部の斜面勾配
S	(m)	移動距離	1800	堆積域が不明瞭なため, 崩壊部上 端点から堆積部上端点までの距離
T'	(m)	堆積部厚さ	70	地すべり地形より設定
S ₀	(m)	特性距離	900	$S_0 = S/2$
R	(m)	曲率半径	44462	$R = b^2/(8T)$
$\Delta \phi$	(rad)	回転角	0. 040	$\Delta \phi = 2S_0/R$
t ₀	(8)	特性時間	117	$t_0 = \sqrt{R/g} \cdot \sqrt{(\gamma + C_m)/(\gamma - 1)}$
λ_0	(m)	特性津波波長	9732	$\lambda_0 = t_0 \cdot \sqrt{gd}$
⊿X	(m)	ガウス分布間距離	4866	$\Delta X = \lambda_0/2$
κ'		形状パラメータ	0. 81	崩壊部厚さT'130m, 堆積部厚さ T'=70mの比から, 上昇側振幅=下 降側振幅×0.54として設定

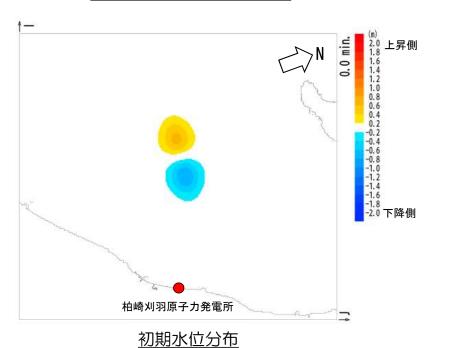
波源振幅の推定値

$\eta_{0,2D}$	1.84m
$\eta_{0,3D}$	0.54m

4. 1 海底地すべりによる津波

(5) 数値シミュレーション ①Watts らの予測式に基づく手法


■ LS-3


予測式パラメータ

			設定値	設定根拠
γ		崩壊部比重	2. 0	松本ら(1998)を参照
b	(m)	崩壊部長さ	4500	復元後の地形図から判読
Т	(m)	崩壊部厚さ	150	崩壊部頂点における崩壊深さ
W	(m)	崩壊部幅	4500	復元後の地形図から判読
d	(m)	初期の崩壊部水深	710	崩壊部頂点の水深
θ	(deg)	斜面勾配	6.8	崩壊部の斜面勾配
S	(m)	移動距離	900	堆積域が不明瞭なため, 崩壊部上 端点から堆積部上端点までの距離
T'	(m)	堆積部厚さ	130	地すべり地形より設定
S ₀	(m)	特性距離	450	$S_0 = S/2$
R	(m)	曲率半径	16875	$R = b^2/(8T)$
$\Delta \phi$	(rad)	回転角	0. 053	$\Delta \phi = 2S_0/R$
t ₀	(8)	特性時間	72	$t_0 = \sqrt{R/g} \cdot \sqrt{(\gamma + C_m)/(\gamma - 1)}$
λ ₀	(m)	特性津波波長	5995	$\lambda_0 = t_0 \cdot \sqrt{gd}$
⊿X	(m)	ガウス分布間距離	2998	$\Delta X = \lambda_0/2$
κ'		形状パラメータ	0. 95	崩壊部厚さT=150m, 堆積部厚さ T'=130mの比から, 上昇側振幅= 下降側振幅×0.87として設定

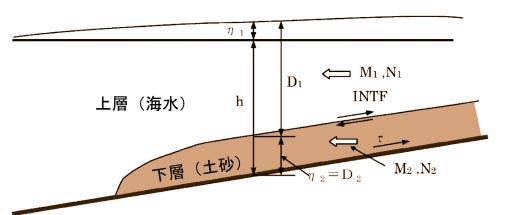
波源振幅の推定値

$\eta_{0,2D}$	1.80m
$\eta_{0,3D}$	0.77m

(6) 数値シミュレーション ②二層流モデルに基づく手法

復元した海底地すべり地形に基づき、二層流モデル (Maeno and Imamura, 2007) に基づく数値シミュ レーションを実施した。

計算条件


計算時間 間隔 Δ t	計算開始潮位 T. M. S. L.	海底摩! (マニングの n (s/	粗度係数)	界面抵抗係数 f _{int}	渦動粘性係数 ν (m²/s)	
(s)	(m)	上層	下層	THE STATE OF THE S	下層	
0.05	+0.26 (平均潮位)	0. 03	0.08	0.2	0. 1	

「上層 (海水)]

$$\frac{\partial (\eta_1 - \eta_2)}{\partial t} + \frac{\partial M_1}{\partial x} + \frac{\partial N_1}{\partial y} = 0$$

$$\frac{\partial M_1}{\partial t} + \frac{\partial}{\partial x} \left(\frac{{M_1}^2}{D_1} \right) + \frac{\partial}{\partial y} \left(\frac{M_1 N_1}{D_1} \right) + gD_1 \frac{\partial \eta_1}{\partial x} = -\beta \frac{\tau_{1,x}}{\rho_1} - (1 - \beta) \cdot INTF_x$$

$$\frac{\partial N_1}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_1 N_1}{D_1} \right) + \frac{\partial}{\partial y} \left(\frac{N_1^2}{D_1} \right) + gD_1 \frac{\partial \eta_1}{\partial y} = -\beta \frac{\tau_{1,y}}{\rho_1} - (1 - \beta) \cdot INTF_y$$

「下層(土砂)]

$$\frac{\partial \eta_2}{\partial t} + \frac{\partial M_2}{\partial x} + \frac{\partial N_2}{\partial y} = 0$$

$$\frac{\partial M_2}{\partial t} + \frac{\partial}{\partial x} \left(\frac{{M_2}^2}{D_2} \right) + \frac{\partial}{\partial y} \left(\frac{M_2 N_2}{D_2} \right) + gD_2 \left(\alpha \frac{\partial D_1}{\partial x} + \frac{\partial \eta_2}{\partial x} - \frac{\partial h}{\partial x} \right) = DIFF_{2,x} + \alpha \cdot INTF_x - \frac{\tau_{2,x}}{\rho_2}$$

$$\frac{\partial N_2}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_2 N_2}{D_2} \right) + \frac{\partial}{\partial y} \left(\frac{N_2^2}{D_2} \right) + gD_2 \left(\alpha \frac{\partial D_1}{\partial y} + \frac{\partial \eta_2}{\partial y} - \frac{\partial h}{\partial y} \right) = DIFF_{2,y} + \alpha \cdot INTF_y - \frac{\tau_{2,y}}{\rho_2}$$

ここに、添え字の 1,2 はそれぞれ上層、下層を、x,y はそれぞれ x, y 方向を 表す。

n:水位変動量 (n:静水面からの水位変化量, n:土砂流の厚さ)

g: 重力加速度 M.N: x, y 方向の線流量

 ρ : 密度 (ρ_1 =1.03g/m³, ρ_2 =2.0g/m³) α : 密度比 (= ρ_1/ρ_2)

 β :下層に土砂がない時 β =1、下層に土砂がある時 β =0

 τ/ρ :底面摩擦力 (n: マニングの粗度係数)

$$\frac{\tau_{1,x}}{\rho_1} = \frac{gn^2}{D_1^{7/3}} M_1 \sqrt{M_1^2 + N_1^2} , \quad \frac{\tau_{1,y}}{\rho_1} = \frac{gn^2}{D_1^{7/3}} N_1 \sqrt{M_1^2 + N_1^2}$$

$$\frac{\tau_{2,x}}{\rho_2} = \frac{gn^2}{D_2^{7/3}} M_2 \sqrt{M_2^2 + N_2^2} , \quad \frac{\tau_{2,y}}{\rho_2} = \frac{gn^2}{D_2^{7/3}} N_2 \sqrt{M_2^2 + N_2^2}$$

INTF: 界面抵抗力($f_{int}:$ 界面抵抗係数, u, v: x, y 方向の流速),

$$INTF_x = f_{int} \overline{u} \sqrt{u^2 + v^2}$$
, $INTF_y = f_{int} \overline{v} \sqrt{u^2 + v^2}$

$$\overline{u} = u_1 - u_2$$
, $\overline{v} = v_1 - v_2$

DIFF: 渦動粘性項 ($\nu:$ 渦動粘性係数),

4. 1 海底地すべりによる津波 (6)数値シミュレーション ②二層流モデルに基づく手法

■ パラメータ設定:下層(土砂)の密度

- 下層(土砂)の密度の設定については下表の値が考えられる。
- 1.25は火砕流の値として設定されており、海底地すべりの崩壊物の密度としては小さいものと考えられる。
- 敷地における実測値である1.8程度が最も現実に近い値と考えられる。

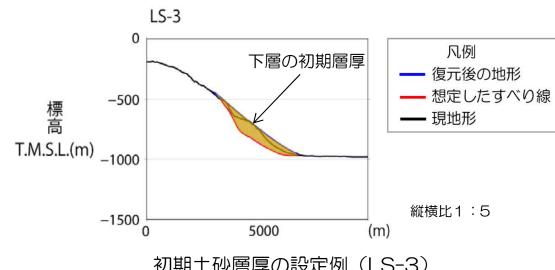
下層の密度 ρ ₂ (g/cm³)	設定根拠
1.25	Maeno & Imamura (2007)の鬼界カルデラ噴火時の解析での設定値
1.8	 海上音波探査記録によると、LS-1~LS-3の移動土塊は、主に海域の層序区分でBu層に相当し、Bu層は陸域の層序区分で安田層・番神砂層などに相当する。 敷地におけるボーリング調査の結果から、湿潤密度は安田層が1.76、番神砂層が1.84であることを確認している。 LS-1~LS-3の密度は、平均的に1.8程度と推定される。
2.0	松本ら(1998) の1741年渡島大島火山津波の再現計算での設定値

二層流解析で算定される津波水位は、一般に崩壊物密度が大きいほど、高くなる傾向があることを踏まえ、保守的な値として2.0と設定した。

海底地すべりによる津波

(6) 数値シミュレーション ②二層流モデルに基づく手法

■ パラメータ設定:下層(土砂)の底面粗度係数n₂

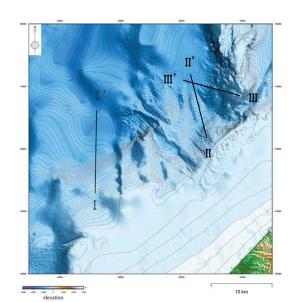

- 下層(十砂)の底面粗度係数の設定については下表の値が考えられる。
- 実現象を対象としてて設定された値には、0.08または0.40がある。
- 日本海側での検討事例であることを踏まえると、0.40が現実に近い値と考えられる。

下層の底面粗度係数 n ₂ (m ^{-1/3} ·s)	設定根拠
0.12	Kawamata et al.(2005)および今村ほか(2001)の実験の再現計算での設定値
0.40	Kawamata et al.(2005)の1741年渡島大島火山津波の再現計算での設定値
0.08	Maeno & Imamura (2007)の鬼界カルデラ噴火時の解析での設定値

二層流解析では底面粗度係数の設定値が小さいほど、下層の動きが速くなり波源で振幅が大きい津波が発生する ため、算定される津波水位は高くなる傾向があることを踏まえ、保守的な値として0.08と設定した。

■ 初期下層(土砂)層厚の設定

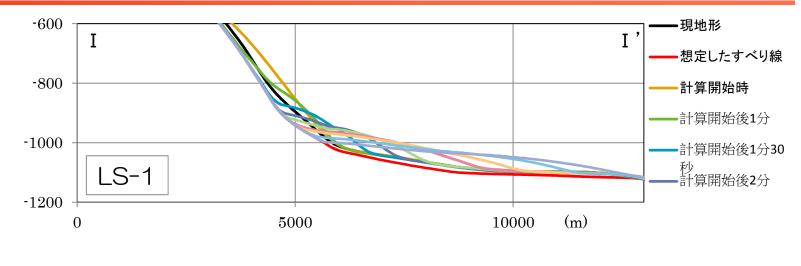
- 復元地形と地すべり面から、初期土砂層厚=復元地形の標 高一地すべり面の標高として作成した。
- この設定は、以下の点から保守的な設定と考えられる。
- 判読される地すべり土塊を覆う復元地形を想定しているこ とから、移動土塊の体積を大きめに想定している。
- 複数回の地すべりで形成された可能性があるところ、1回 の地すべりで形成されたものとして設定している。

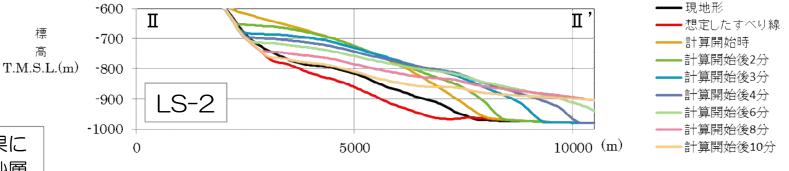


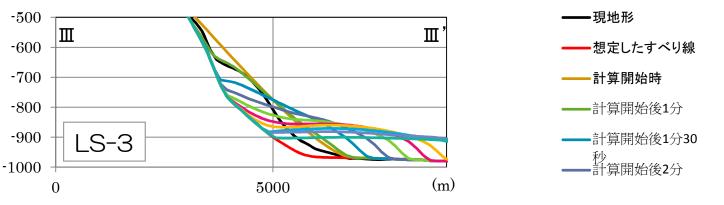
初期土砂層厚の設定例(LS-3)

(6) 数値シミュレーション ②二層流モデルに基づく手法

標


■ 土砂層厚の時系列推移



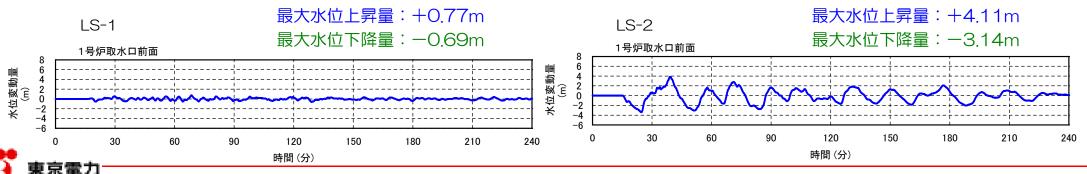

抽出断面の位置

数値シミュレーションの結果に ついて、各時刻における土砂層 厚の時系列推移を整理した。

移動土塊は、現地形を包絡するよ うに移動していることから、初期 土砂層厚の設定では、土塊の体積 が大きめに想定されており、保守 的な設定であることを確認した。

地すべり面と現地形、各時刻における土砂層厚の比較

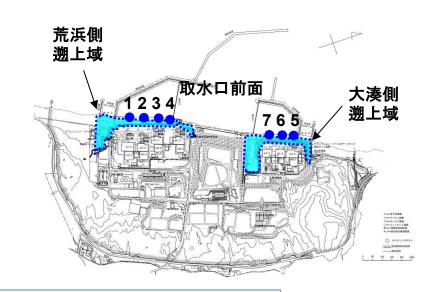
70


4. 1 海底地すべりによる津波(7)数値シミュレーション結果

- 数値シミュレーション結果(平均潮位からの水位変動量)
- 発電所における最大水位は二層流モデルに基づく手法の方が大きいこと、ならびに、Wattsらの手法は予測式であるが二層流モデルの手法は土塊の移動を解析上考慮しており、より精度が高いと考えられることから、以降の検討は二層流モデルに基づく手法で実施する。
- なお、二層流モデルの検討は、保守的なパラメータ設定を使用した。
 - 現実的パラメータ設定 下層(土砂)の底面粗度係数=0.40,下層(土砂)の密度=1.8
 - ・保守的パラメータ設定 下層(土砂)の底面粗度係数=0.08,下層(土砂)の密度=2.0

		取水口前面の 最大水位				6 号炉 取水口前面		7 号炉 取水口前面		荒浜側 防潮堤
手法	地すべり	最大水位 上昇量 (m)	位置	最大水位 下降量 (m)	位置	最大水位 上昇量 (m)	最大水位 下降量 (m)	最大水位 上昇量 (m)	最大水位 下降量 (m)	最大水位 上昇量 (m)
	LS-1	+0.77	1号炉	-0.69	5号炉	+0.68	-0.65	+0.51	-0.57	_
Watts	LS-2	+0.56	5号炉	-0.49	5号炉	+0.50	-0.44	+0.37	-0.37	-
	LS-3	+0.60	5号炉	-0.55	5号炉	+0.55	-0.48	+0.40	-0.39	_
	LS-1	+2.97	5号炉	-2.06	1号炉	+2.71	-1.65	+2.27	-1.56	-
二層流	LS-2	+4. 11	1号炉	-3. 14	1号炉	+3.32	-2.63	+3. 27	-2.50	+5. 58
	LS-3	+3.61	5号炉	-3.72	1号炉	+3. 52	-2.53	+3. 25	-2. 44	+3. 03

時刻歴波形の例: Watts et al. (2005) の予測式に基づく手法


時刻歴波形の例:二層流モデルに基づく手法

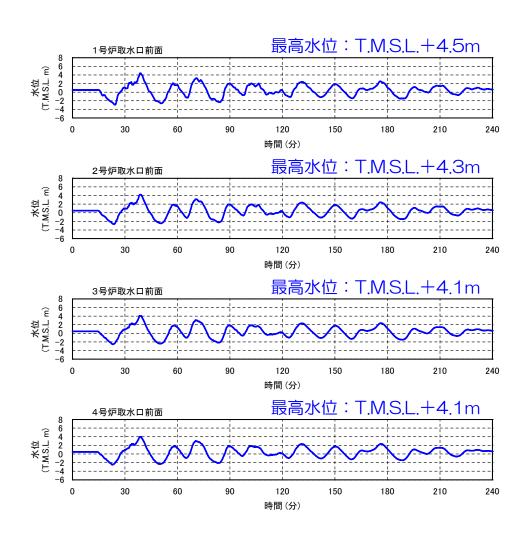
4. 1 海底地すべりによる津波(7)数値シミュレーション結果

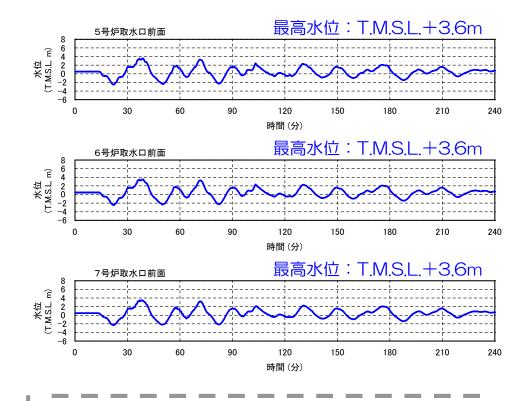
■ シミュレーション結果(朔望潮位を考慮)

 海底地すべりによる津波のうち、二層流モデルの手法における最大ケースについて、計算開始潮位を上昇側は朔望平均満潮位 (T.M.S.L.+O.49m)、下降側は朔望平均干潮位 (T.M.S.L.+O.03m)として、最高水位及び最低水位を評価した。

最高水位及び最低水位(地すべりによる津波に朔望平均潮位を考慮)

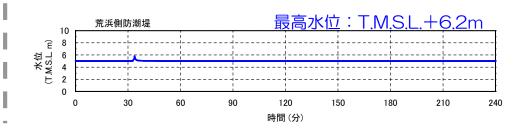
→l.c	-10					水化	水位 T.M.S.L. (m)					
	水位	地すべり	取水口前面								遡上域	
	1.1.		1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側
	上昇側	LS-2	+4. 5	+4.3	+4.1	+4. 1	+3.6	+3.6	+3.6	+6.2	+6.3	+5.1
	下降側	LS-3	-3.9	-3.6	-3. 5	-3. 4	-2.8	-2.7	-2.6	(+3. 1)	(+5.9)	(+4.8)


水位上昇・水位下降それぞれについて、最大ケースを評価した。

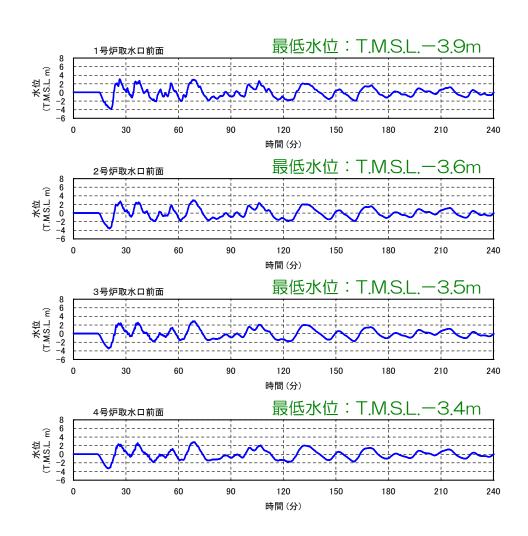


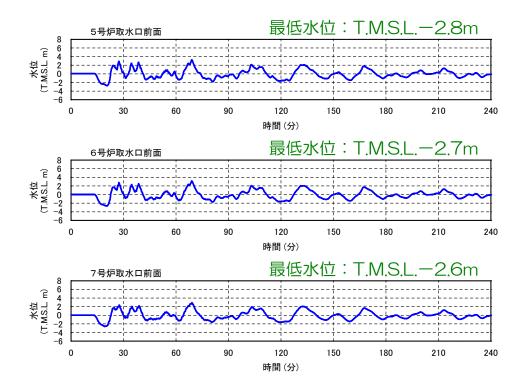
4. 1 海底地すべりによる津波(7)数値シミュレーション結果

- 取水口前面水位上昇側最大ケース
- **■** LS-2


朔望平均満潮位T.M.S.L.+O.49mを考慮

- ■荒浜側防潮堤水位上昇側最大ケース
- **■** LS-2

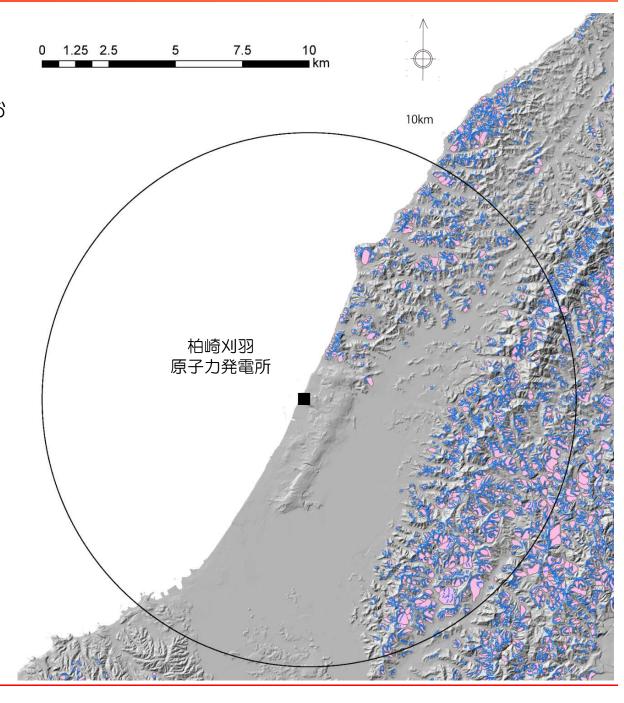

朔望平均満潮位T.M.S.L.+O.49mを考慮



4. 1 海底地すべりによる津波(7)数値シミュレーション結果

- 取水口前面水位下降側最大ケース
- **■** LS-3

朔望平均干潮位T.M.S.L.+O.O3mを考慮

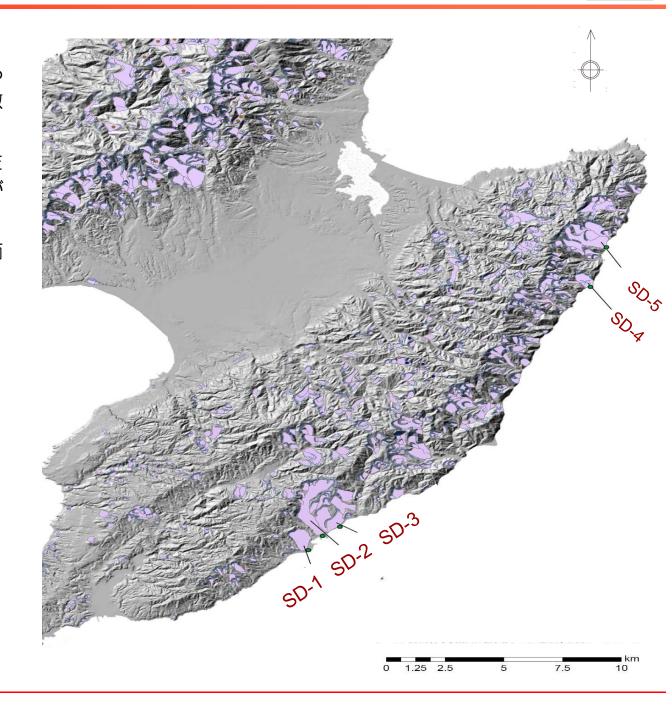


4. 地震以外の要因による津波

- 4. 1 海底地すべりによる津波
- 4. 2 陸域の斜面崩壊による津波
- 4.3 火山現象による津波

4. 2 陸域の斜面崩壊による津波(1)敷地周辺陸域における地すべり地形

- 敷地周辺陸域において、地すべりならびに斜面崩壊による歴史津波の記録は知られてない。
- 検討の対象は、防災科学技術研究所(2004)において、敷地周辺陸域の発電所から半径約10km範囲の海岸付近における地すべり地形とした。
- その結果、海沿いに地すべり地形が示されている ものの、規模が小さいこと、ならびに、発電所側 を向いていないことから、斜面崩壊に伴う津波の 影響は小さいものと考えられる。



4. 2 陸域の斜面崩壊による津波(2)佐渡島における地すべり地形

■地すべり地形の抽出

- 佐渡島は、敷地から約50km以上離れている ものの、佐渡島南岸は、佐渡海峡を挟んで敷 地と相対する位置にあたる。
- 防災科学技術研究所(1986)によると,佐 渡島南岸において,海沿いに地すべり地形が 示されている。
- 比較的規模の大きい地すべり地形として5箇所を抽出した。

陸域の斜面崩壊による津波(2)佐渡島における地すべり地形 4. 2

■ Huberの予測式による検討

- 5箇所の地すべり地形について、Huber et al.(1997)の予測式による評価を実施した。
- 発電所での全振幅は、最も大きいSD-5で約3.7mとなった。
- この他の地すべりに伴う津波の影響は、SD-5を上回ることはないものと考えられることから、SD-5を対象として空 中写真判読を実施し、地形の詳細分析を行った上で、TITAN-2Dによる土砂崩壊シミュレーションを行い、二層流モ デルによる津波数値シミュレーションを実施した。

地すべり地形	L 長さ (m)	W 幅 (m)	H 高低差 (m)	D 推定厚さ (m)	概略体積 (m³)	発電所 までの 距離 (km)	α すべり面 傾斜角 (°)	γ 進行角 (゜)	d1 突入位置 水深 (m)	H1 発電所での 全振幅 (m)	d2 発電所前面 水深 (m)	H2 水深差を考 慮した発電所 での 全振幅 (m)
SD-1	1,300	750	175	75	73,125,000	51	28	20	15	1.3	10	1.4
SD-2	4,000	400	350	40	64,000,000	51	28	16	15	1.7	10	1.8
SD-3	600	1,050	65	35	22,050,000	51	28	22	15	0.6	10	0.6
SD-4	900	600	165	60	32,400,000	63	28	65	70	1.3	10	2.1
SD-5	2,350	700	475	70	115,150,000	67	28	55	60	2.4	10	3.7

【Huber et al.(1997)による水深と波高の関係式】

$$H_2/H_1 = (d_1/d_2)^{1/4}$$

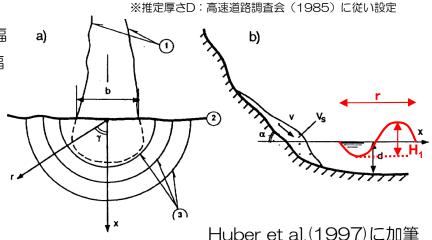
$$\frac{H_1}{d_1} = 2 \times 0.88 \sin \alpha \cos^2 \left(\frac{2\gamma}{3}\right) M^{\frac{1}{2}} \left(\frac{\rho_s}{\rho_w}\right)^{\frac{1}{4}} \left(\frac{r}{d_1}\right)^{\frac{-2/3}{3}}$$

$$M = \frac{V_S}{bd_1^2}$$

H₁:発生位置での全振幅

H₂:敷地前面での全振幅

d』: 発生位置の水深

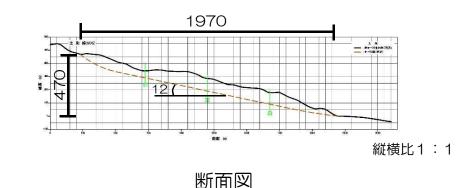

d₂:敷地前面の水深

∨s:体積

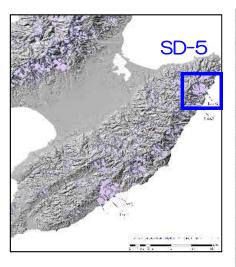
r:敷地全面までの距離

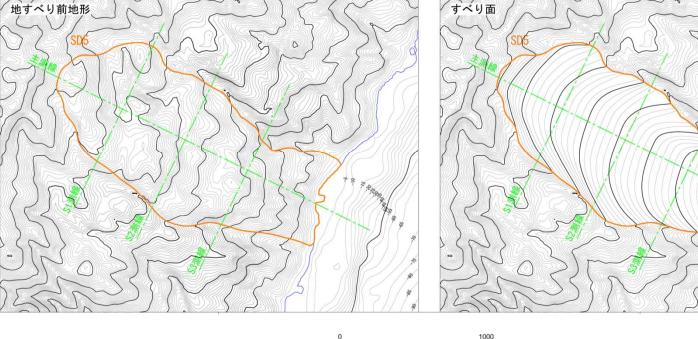
α: 傾斜角

γ:進行角



4. 2 陸域の斜面崩壊による津波(2)佐渡島における地すべり地形


現況地形


■SD-5:土砂崩壊シミュレーション(TITAN-2D)

- SD-5について空中写真判読を実施し、地形の詳細分析を行い、すべり面形状を推定した。
- 不確かさの考慮として、防災科学技術研究所(1986) が示す4つの地すべり土塊の連動の可能性を考慮した。
- 推定したすべり面形状を用いて、TITAN-2Dによる土砂崩壊シミュレーションを実施した。

推定したすべり面

東京電力

4. 2 陸域の斜面崩壊による津波 (参考) 土砂崩壊シミュレーション (TITAN-2D) 手法の概要

- TITAN-2Dは、岩屑なだれ・火砕流等の多数の粒子の集合体からなる連続体とみなし、その流動に関して重力を駆動力とする運動方程式を数値的に解いている。
- 主に陸上の山体崩壊等に用いられ、基盤岩の一部が力学的な安定を失って崩壊する現象の再現に適している。

○連続の式※

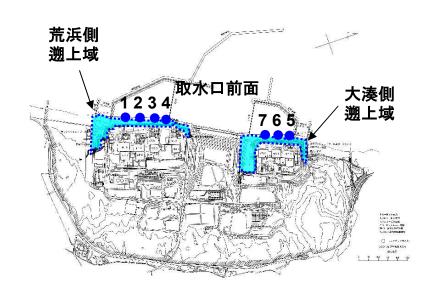
$$\frac{\partial h}{\partial t} + \frac{\partial \overline{hu}}{\partial x} + \frac{\partial \overline{hv}}{\partial y} = 0$$

〇運動方程式※

$$\frac{\partial \overline{hu}}{\partial t} + \frac{\partial}{\partial x} \left(\overline{hu^2} + \frac{1}{2} k_{ap} g_z h^2 \right) + \frac{\partial \overline{huv}}{\partial y}$$

$$= -h k_{ap} \operatorname{sgn} \left(\frac{\partial u}{\partial y} \right) \frac{\partial h g_z}{\partial y} \sin \phi_{\text{int}} - \frac{u}{\sqrt{u^2 + v^2}} \left[g_z h \left(1 + \frac{u}{r_x g_x} \right) \right] \tan \phi_{\text{bed}} + g_x h$$

ここで、hは層厚、u、vは速度、 k_{ap} は主動(受動)土圧係数、gは重力加速度、rは斜面の曲率、 ϕ_{int} は内部摩擦角、 ϕ_{bed} は底面摩擦角、sgn:実数aに対して、sgn(a)=1、($a \ge 0$) -1、(a < 0)である。 (上付きのバーは層の断面方向の平均を、添え字のx、y、zはそれぞれの座標軸方向の成分を示す)。


4. 2 陸域の斜面崩壊による津波(2)佐渡島における地すべり地形

■SD-5:津波数値シミュレーション(二層流モデル)

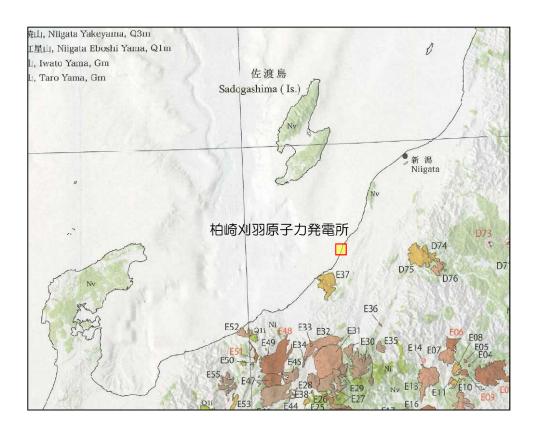
- SD-5について、TITAN-2Dによる土砂崩壊シミュレーション結果を 用い、二層流モデル(Maeno and Imamura、2007)による津波数 値シミュレーションを実施した。
- 数値シミュレーションの検討条件は、保守的パラメータ設定(崩壊物密度2.0g/cm³, 粗度係数(下層)0.08m⁻¹/3・s)を使用した。
 (P.69参照)

■津波数値シミュレーション結果(平均潮位からの水位変動量)

- 取水口前面における水位変動量は、最大水位上昇量が+1.52m、最大水位下降量が-1.00mである。
- この変動量は、海底地すべりによる津波の最大水位上昇量の+4.11m、最大水位下降量の-3.72mと比べて有意に小さい。
- このため、地震による津波と地震以外の要因による津波の組み合わせ 検討における、地震以外の要因による津波の検討対象として、海底地 すべりによる津波を選定した。

单位:T.M.S.L.[m]

			遡上域水位						
	1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	荒浜側	大湊側
上昇側	1.52	1.33	1.22	1.07	1.05	0.99	0.94	2.19	2.17
下降側	-0.69	-0.63	-0.47	-0.39	-1.00	-0.86	-0.73	ı	_


陸域の斜面崩壊による津波の影響は、小さいものと考えられる。

4. 地震以外の要因による津波

- 4. 1 海底地すべりによる津波
- 4. 2 陸域の斜面崩壊による津波
- 4. 3 火山現象による津波

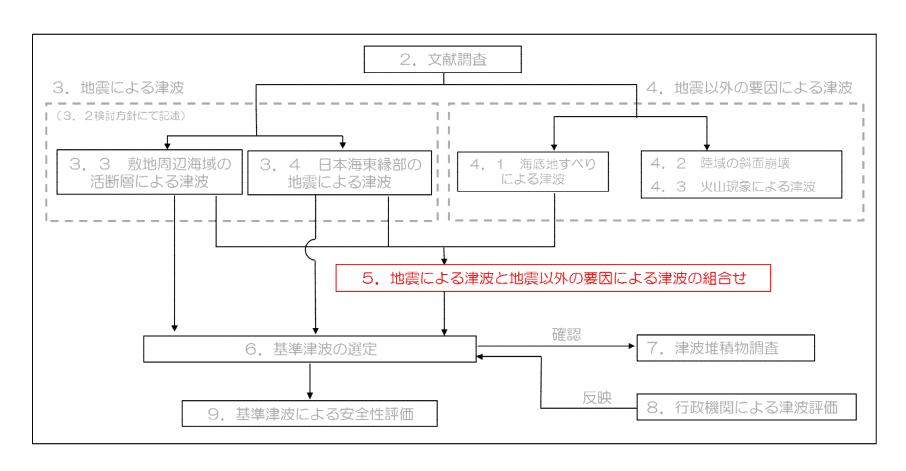
4. 3 火山現象による津波

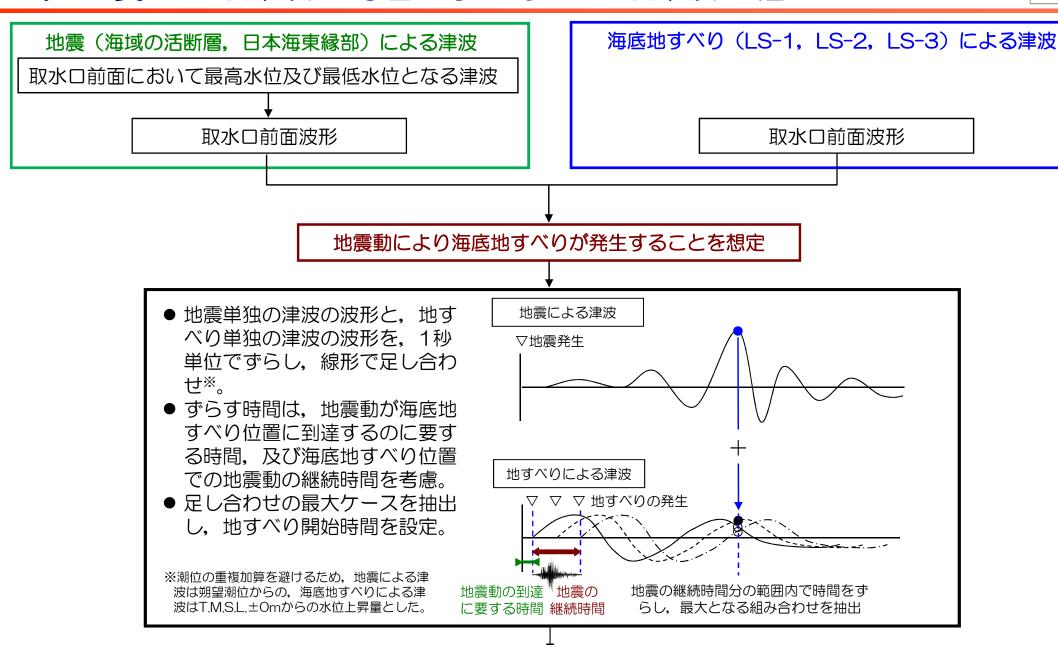
敷地周辺において海底火山の存在は認められない。(海上保安庁(2013),産業技術総合研究所(2013))

産業技術総合研究所(2013)に加筆

4. 3 火山現象による津波

- 敷地から遠方ではあるものの、1741年の津波は、渡島大島の火山活動に伴う 山体崩壊による津波とされている。
- 敷地周辺において、この津波の記録は知られていない。
- 佐渡島での津波高さは、2~8mと推定されている。(佐竹・加藤, 2002)
- 比較のため、津波高さが推定されている各地点における、数値シミュレーションにより検討した地震による津波の高さを整理した。


	1741年渡島大島津波	地震による津波のパラメータスタディ					
地点名	の推定高さ(m) (佐竹・加藤,2002)	沿岸における 最大津波高さ(m)	波源				
鷲崎	5	17. 5	日本海東縁部(1領域モデル)				
両津	8	18. 1	日本海東縁部(1領域モデル)				
水津	2	19. 5	日本海東縁部(1領域モデル)				
相川	4	8. 9	日本海東縁部(2領域モデル)				


- 1741年渡島大島津波が、敷地へ到達した可能性は否定できないものの、数値シミュレーションにより 検討した地震による津波は、津波高さが推定されている各地点で、推定津波高さを十分に上回っていることを確認した。
- このため、火山現象による津波の影響は、地震による津波の影響を下回るものと判断される。

5. 地震による津波と海底地すべりによる津波の組合せ

5. 地震による津波と海底地すべりによる津波の組合せ

地震と海底地すべりの組合せ検討(同一の波動場における数値計算)

5. 地震による津波と海底地すべりによる津波の組合せ(取水口前面)

地震, 地すべり及び潮位の組合せ条件

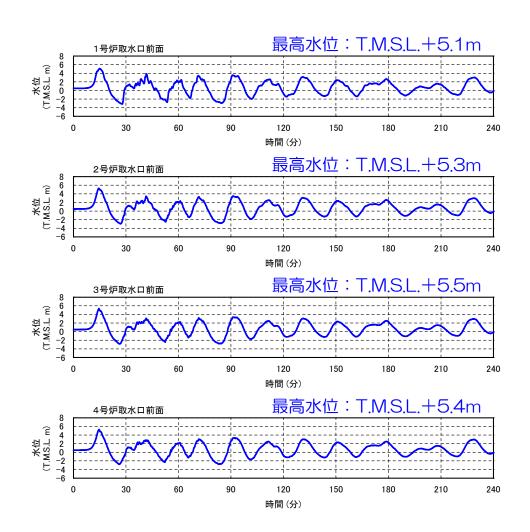
水位	地震	地すべり	地すべり 開始時間 (秒)	潮位 T. M. S. L. (m)
上昇	海域の活断層 (5断層連動モデル)	LS-2	120*1 113*2	+0.40
側	日本海東縁部 (2領域モデル)	LS-2	184	+0.49
下降	海域の活断層 (長岡十日町連動モデル)	LS-3	48	+0.03
側	日本海東縁部 (2領域モデル)	LS-3	163	+0.03

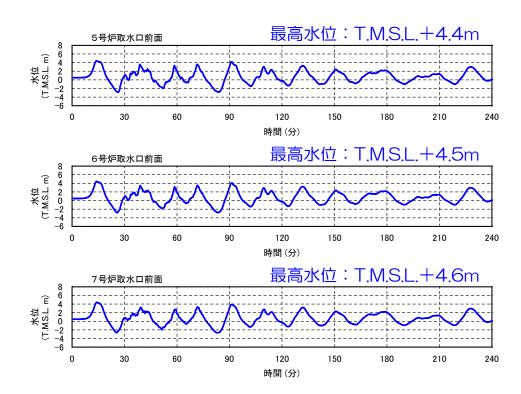
*1:取水口前面における線形重ね合わせで最大となるケース

*2: 荒浜側放水口前面における線形重ね合わせで最大となるケース

<u>地震</u>, 地すべり及び潮位の組合せの最高水位及び最低水位

	ι.			水位 T. M. S. L. (m)									
	水位	地震	地すべり		取水口前面								上域
				1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側
	上昇	海域の活断層 (5断層連動モデル)	LS-2	+5.1	+5.3	+5. 5	+5.4	+4.5	+4. 5	+4.6	+7. 6	+7. 6	+7. 5
	則	日本海東縁部 (2領域モデル)	LS-2	+6.8	+6. 7	+6. 5	+6.4	+6. 2	+6. 2	+6.1	+7. 1	+7. 4	+6. 9
	下降	海域の活断層 (長岡十日町連動モデル)	LS-3	-4.9	-4.7	-4. 6	-4.6	-3.0	-3. 5	-3.5	_	(+3. 1)	(+3.0)
	伸側	日本海東縁部 (2領域モデル)	LS-3	-5. 2	-5. 2	-5. 2	-5. 2	-3.0	-3.5	-3.5	(+6. 7)	(+7. 4)	(+6. 4)

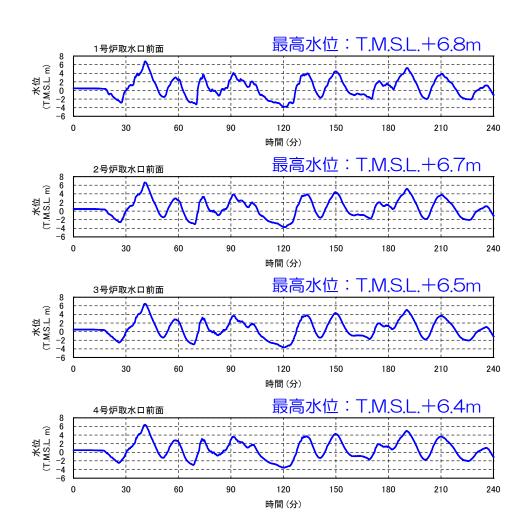

- 地震による津波と海底地すべりによる 津波の組合せでは、地震動の継続時間 を考慮した。
 - ▶ 地震単独の津波の波形と、地すべり単独の津波の波形を、1秒単位でずらし、線形で足し合わせ。
 - ▶ ずらす時間は、地震動が海底地すべり 位置に到達するのに要する時間、及び 海底地すべり位置での地震動の継続時間を考慮。
 - ▶ 足し合わせの最大ケースを抽出。
 - ▶ 地震による津波と地すべりによる津波 を、同一の波動場にて数値計算。
- 潮位条件との重ね合わせを考慮するため,計算開始潮位を上昇側は朔望平均満潮位(T.M.S.L.+O.49m),下降側は朔望平均干潮位(T.M.S.L.+O.03m)とした。

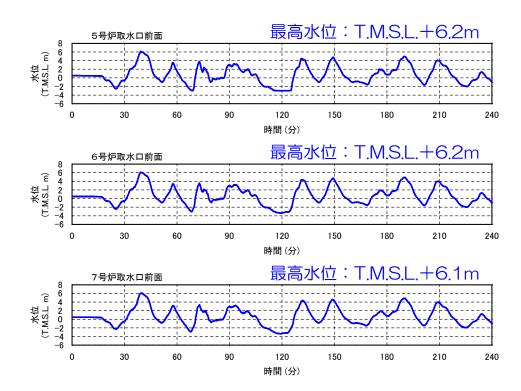

水位上昇・水位下降それぞれについて, 地震津波と地すべり津波との組合せ最大 ケースを評価した。

5. 地震による津波と海底地すべりによる津波の組合せ〔時刻歴波形〕 海域の活断層+地すべり(取水口前面水位上昇側最大ケース)

■ 5断層連動モデル + LS-2

朔望平均満潮位T.M.S.L.+O.49mを考慮

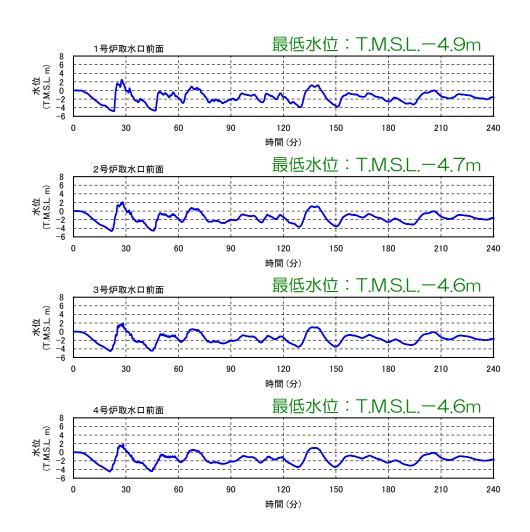


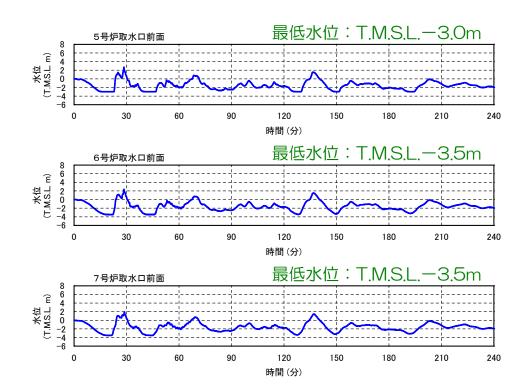


5. 地震による津波と海底地すべりによる津波の組合せ〔時刻歴波形〕日本海東縁部+地すべり(取水口前面水位上昇側最大ケース)

■ 2領域モデル + LS-2

朔望平均満潮位T.M.S.L.+O.49mを考慮

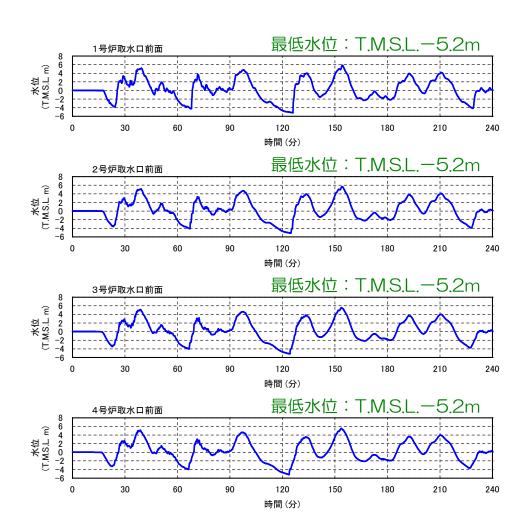


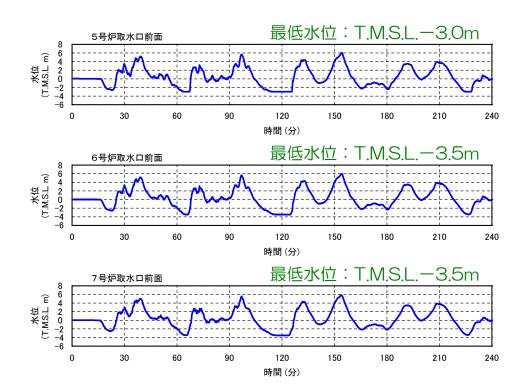


5. 地震による津波と海底地すべりによる津波の組合せ〔時刻歴波形〕 海域の活断層+地すべり(取水口前面水位下降側最大ケース)

■ 長岡十日町連動モデル + LS-3

朔望平均干潮位T.M.S.L.+O.O3mを考慮

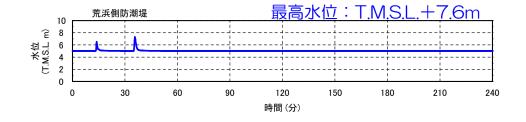




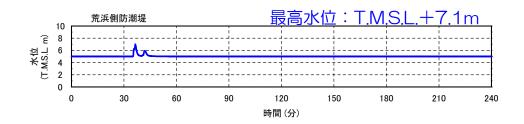
5. 地震による津波と海底地すべりによる津波の組合せ〔時刻歴波形〕日本海東縁部+地すべり(取水口前面水位下降側最大ケース)

■ 2領域モデル + LS-3

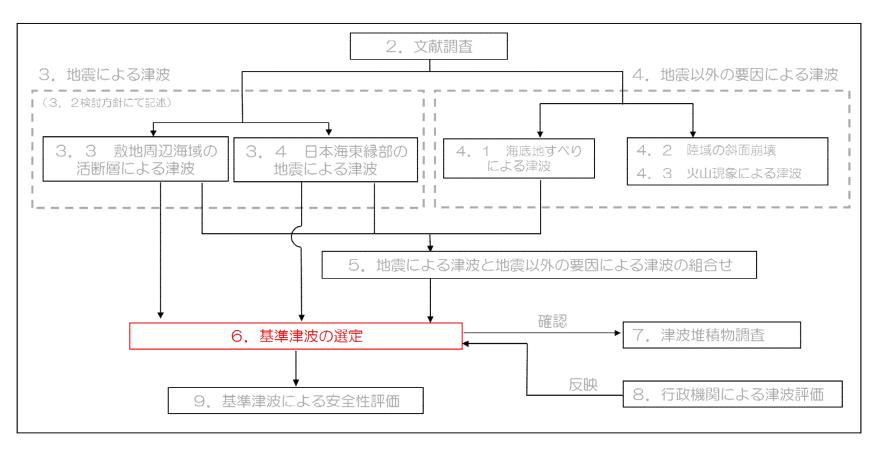
朔望平均干潮位T.M.S.L.+O.O3mを考慮



5. 地震による津波と海底地すべりによる津波の組合せ〔時刻歴波形〕 海域の活断層,日本海東縁部+地すべり(荒浜側防潮堤水位上昇側最大ケース)

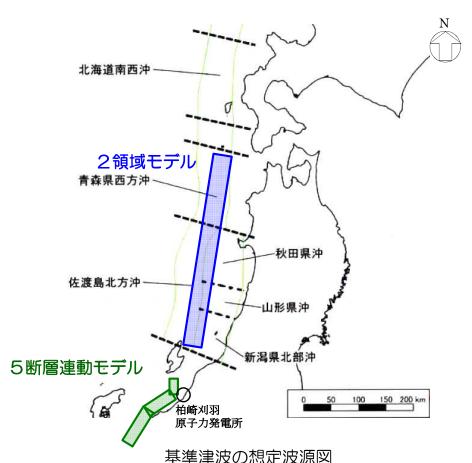

■ 海域の活断層:5断層連動モデル+ LS-2

朔望平均満潮位T.M.S.L.+O.49mを考慮



■ 日本海東縁部:2領域モデル+ LS-2

<u>朔望平均満潮位T.M.S.L.+O.49mを考慮</u>


6. 基準津波の評価

6. 基準津波の評価

- 「地震による津波」「地すべりによる津波」「地震による津波と海底地すべりによる津波の組合せ」の中から、取水口前面において最高 水位及び最低水位となるケースを選定した。
- 上昇側最大は、「地震と地すべりの組合せによる津波」のうち、日本海東縁部(2領域モデル)とLS-2の組合せケース。
- 下降側最大は、「地震による津波」のうち、日本海東縁部(2領域モデル)のケース。
- 荒浜側防潮堤の最高水位となるケースおよび荒浜側、大湊側遡上域最大ケースは共に「地震と地すべりの組合せによる津波」のうち、海域の活断層(5断層連動モデル)とLS-2の組合せケース。

地震による津波

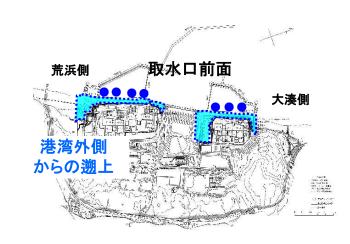
			水位 T.M.S.L. (m)											
水位	地震	取水口前面								遡上域				
12%		1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側			
上昇	海域の活断層 (5 断層連動モデル)	+5. 2	+5.5	+5. 7	+5.6	+4.5	+4. 5	+4. 7	+6. 9	+7. 1	+7. 3			
チ側	日本海東緑部 (2領域モデル)	+6, 5	+6.3	+6. 2	+6. 1	+6.0	+6.0	+6.0	+6.6	+6.6	+7.4			
下降	海域の活断層 (長岡十日町連動モデル)	-4.8	-4.6	-4. 5	-4. 5	-3.0	-3. 5	-3, 5	-	(+0, 2)	(+1.0)			
側	日本海東緑部 (2領域モデル)	-5. 3	-5. 3	-5. 3	-5. 4	-3.0	-3, 5	-3, 5	(+5.0)	(+5.1)	(+5.7)			

海底地すべりによる津波

	地すべり	水位 T.M.S.L. (m)											
水位				荒浜側	遡上域								
11/4		1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側		
上昇側	LS-2	+4. 5	+4. 3	+4. 1	+4.1	+3.6	+3. 6	+3.6	+6. 2	+6.3	+5. 1		
下降側	LS-3	-3. 9	-3. 6	-3. 5	-3.4	-2.8	-2. 7	-2.6	(+3. 1)	(+5.9)	(+4.8)		

地震と地すべりの組み合わせによる津波

			水位 T. M. S. L. (m)										
水位	地震	地すべり	取水口前面								遡	上域	
111.			1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	防潮堤	荒浜側	大湊側	
上昇	海域の活断層 (5断層連動モデル)	LS-2	+5. 1	+5.3	+5.5	+5. 4	+4.5	+4. 5	+4.6	+7.6	+7.6	+7.5	
側	日本海東縁部 (2領域モデル)	LS-2	+6.8	+6. 7	+6. 5	+6. 4	+6. 2	+6. 2	+6.1	+7.1	+7. 4	+6.9	
下败	海域の活断層 (長岡十日町連動モデル)	LS-3	-4.9	-4.7	-4.6	-4.6	-3.0	-3. 5	-3.5	=	(+3. 1)	(+3.0)	
降側	日本海東縁部 (2領域モデル)	LS-3	-5. 2	-5. 2	-5. 2	-5. 2	-3.0	-3. 5	-3.5	(+6.7)	(+7. 4)	(+6. 4)	

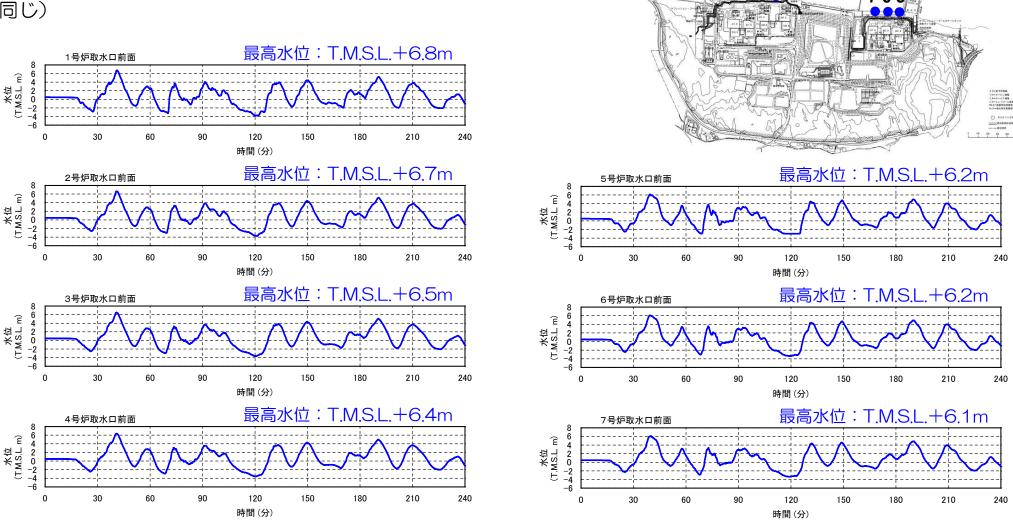


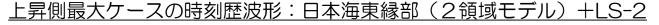
6. 基準津波の評価

- これまでの検討を踏まえ、基準津波として選定されるケースは下記の通り。
- なお, 基準津波策定位置は, 施設や沿岸からの反射波の影響, 大陸棚の斜面の影響が微少となる, 水深100 m (敷地の沖合約7 km) を選定した。

単位:T.M.S.L.(m)

水位	地震	組合せ	1号炉	2号炉	3号炉	4号炉	5号炉	6号炉	7号炉	基準津波 策定位置
取水口前面 上昇側	日本海東縁部 (2領域モデル)	地震+潮位 +地すべり	+6.8	+6.7	+6.5	+6.4	+6.2	+6.2	+6.1	+3.5
取水口前面 下降側	日本海東縁部 (2領域モデル)	地震+潮位	-5.3	-5.3	-5.3	-5.4	-3.0	3.5	-3.5	-4.0
荒浜側防潮堤	海域の活断層 (5断層連動モデル)	地震+潮位 +地すべり				+7.6				+2.7

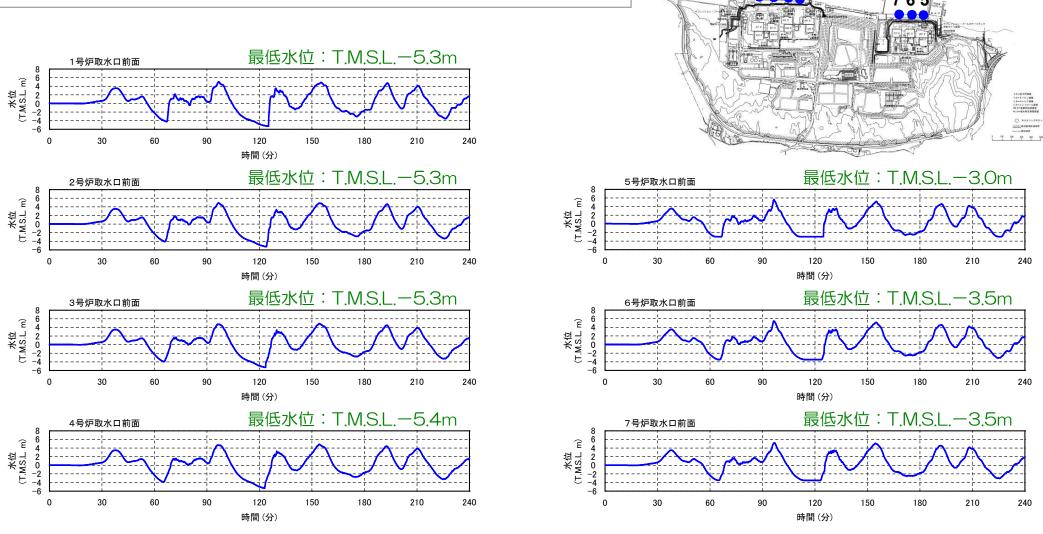

施設や沿岸からの反射波の影響,大陸棚の斜面の影響が 微小となる,水深100m(敷地の沖合約7km)を選定


取水口前面

6. 基準津波の評価〔時刻歴波形〕(取水口前面上昇側最大ケース)

■ 上昇側最大ケース

「地震と地すべりの組合せによる津波」のうち、日本海東縁部(2 領域モデル)+LS-2について時刻歴波形を示す。(5章のケースに 同じ)

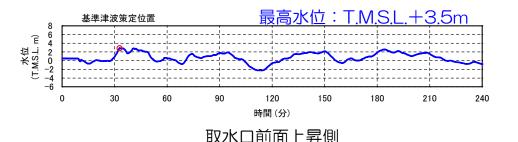


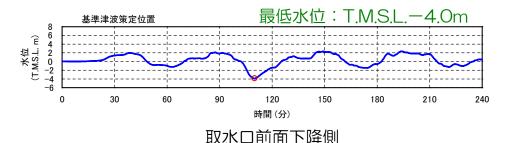
取水口前面

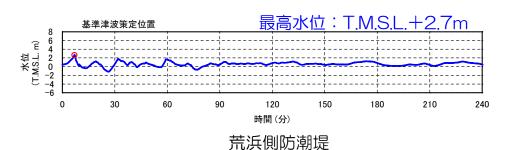
6. 基準津波の評価〔時刻歴波形〕(取水口前面下降側最大ケース)

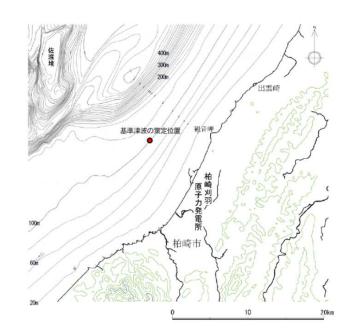
■ 下降側最大ケース

「地震による津波」のうち、日本海東縁部(2領域モデル) について時刻歴波形を示す。(3.5章のケースに同じ)






6. 基準津波の評価〔時刻歴波形〕(基準津波策定位置・荒浜側防潮堤)

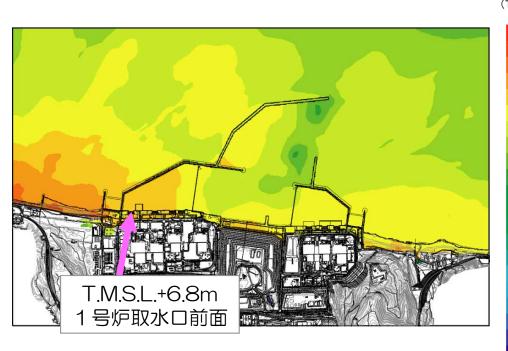

■ 基準津波の策定位置における時刻歴波形

選定された基準津波のケースにおいて基準津波策 定位置における時刻歴波形を示す。

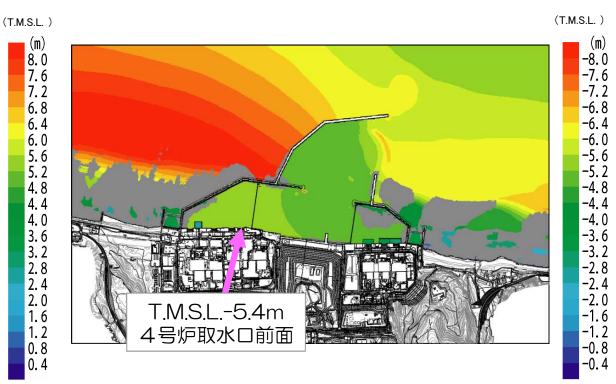


■ 荒浜側防潮堤上昇側最大ケース

「地震と地すべりの組合せによる津波」のうち、 5断層連動モデル+LS-2について時刻歴波形を 示す。



6. 基準津波の評価〔水位分布〕(取水口前面)

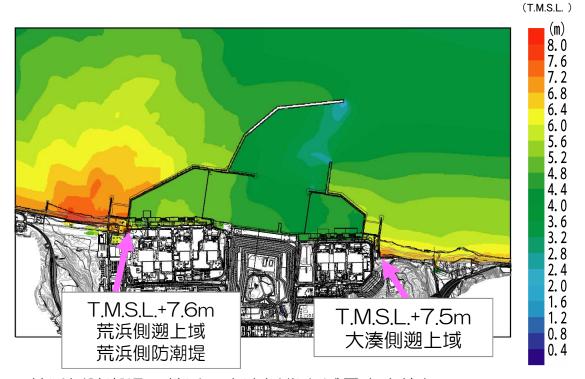

基準津波(上昇側最大ケース、下降側最大ケース)のそれぞれについて、水位分布 (最大水位上昇量分布,最大水位下降量分布)を示す。

(m)

取水口前面上昇側最大ケース: 日本海東縁部(2領域モデル)+LS-2

最大水位上昇量分布

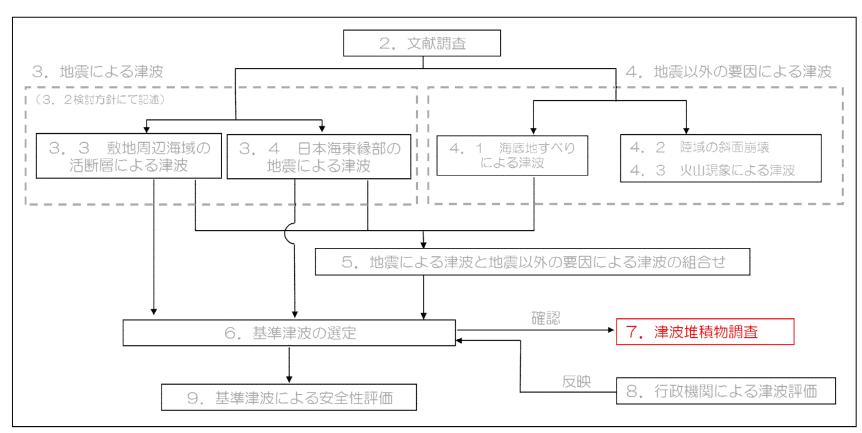
取水口前面下降側最大ケース: 日本海東縁部(2領域モデル)


最大水位下降量分布

※全水深10cm以下を露出域(灰色部)として表示

6. 基準津波の評価〔水位分布〕(荒浜側防潮堤および遡上域最大水位ケース)

荒浜側防潮堤および港湾外側からの遡上として、荒浜・大湊側遡上域のそれぞれについて、最大水位上昇量分布図を示す。



荒浜側防潮堤&荒浜・大湊側遡上域最大水位ケース: 海域の活断層(5断層連動モデル)+地すべり(LS-2)

最大水位上昇量分布

7. 津波堆積物調査

- 7. 1 新潟県内における津波堆積物調査に係る文献調査
- 7. 2 調查地点選定
- 7. 3 津波堆積物調査
- 7. 4 解析結果との比較

新潟県内における津波堆積物調査に係る文献調査

■ 新潟県内沿岸における津波堆積物調査及び完新世堆積物調査に係る文献調査

斎藤ほか(1997)による佐渡 加茂湖における調査結果


- 加茂湖湖底からの試料において、深度約8m~17mで 6枚の異常堆積物を確認。
- ・ 堆積相の分析から地震・ 津波に関係した堆積物と評価。

市原ほか(2006)による新潟市 信濃川における調査結果

- 信濃川河川敷において試料採取を実施。
- ・砂層中で認められるクライミングリップル※の成因を津波 として評価している。
- ・1833年山形県沖の地震、もしくはそれ以前の津波堆積 物である可能性が高いとしている。
- ※堆積物が供給された流れの中で形成される規則的な峰と谷から形成される微地形 の一種。

ト部(2013)による佐渡 加茂湖における調査結果

- 加茂湖湖底からの試料において、20以上の砂層を確認。
- 約9000 年間で26 回(平均すると約350 年に1 回の割 合)の津波と推定されるイベント堆積物を認定。
- ただし、津波堆積物の認定に関してさらに詳細な検討が 必要としている。

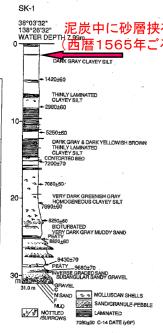



図7. ボーリング柱状図(佐渡島加茂湖, SK-1)

斎藤ほか(1997)を編集

第8回新潟県津波対策検討委員会資料を編集

- 国土交通省の検討会では、日本海東縁部沿岸における 津波堆積物調査地点として、新潟県内においては次 の5地点が挙げられている。
 - 佐渡市 大野亀
 - 佐渡市 加茂湖
 - 佐渡市 春日崎
 - 村上市 岩船潟
 - 新潟市 角海浜
- このうち大野亀及び春日崎の2地点については、津波 堆積物に基づく津波高さが推定されている。(推定 津波高さ=津波堆積物基底標高+2ml)

津波堆積物に基づく津波の推定波高

地域	地点	津波の年代	現在の津波堆積物 基底標高	地殻変動量 (12.5万年前以降の 変わ除わまま)	地般変動補正後の 津波堆積物	津波の推定波高 (堆積物基底+2m)		点の位置 S読み取り)
	F-0000	ACCOUNTS IN TRACE	(m)	平均隆起速度) (m/ky)	基底標高(m)	(m)	緯度	経度
	島牧村大平川	AD1993	7.4	0.8		9. 4	42. 7237	140.0722
渡島半島西岸	せたな町後志利別川	AD1741%	2. 6	0.5		4.6%	42. 4153	139. 8428
	せたな町水垂	AD1993	7.0	0.5		9. 0	42.3520	139. 7857
	奥尻島ワサビヤチ川	11~130	4. 4	0. 6	3. 9	5. 9	42.0673	139. 4499
	奥尻島-1(貝取澗)	AD1741%	7. 3	0.6		4.6%	42.0661	139. 4389
奧尻島	奥尻島-2	AD1993	9. 9	0.6		11.9	42.0720	139. 4250
	奥尻島-3	AD1993	5. 0	0.6		7. 0	42.0776	139. 4236
	奥尻島-4	AD1993	4. 9	1.0		6. 9	42. 1570	139. 4120
	乙部町姫川	AD1741%	1.8	0.2		4.6%	41.9736	140. 1450
	江差町五厘沢	130	5. 1	0. 2	4. 9	6. 9	41.9500	140. 1409
渡島半島西岸	上ノ国町大安在浜	AD1741%	6. 9	0.3		4.6%	41.8003	140. 0734
	上ノ国町ラスタッペ岬北方	11~130	12. 0	0.3	11.5	13.5	41.6938	140. 0112
西津軽	小泊	AD1983	4. 7	0.3		6. 7	41. 1365	140. 2861
白神山地沿岸	深浦町鳥居崎	1.1ka	14.0(遡上点) 8.5(堆積物)	0.8	13. 1 7. 6	9.6 11.4(平均)	40. 7323	139. 9959
	深浦町椿山	AD1983	4. 7	0.7		6. 7	40. 5947	139. 8649
男鹿半島	船川	150	4. 5	0. 9	4. 1	6. 1	39.8615	139.7733
	飛島①	AD1833	4.8	0.5		6. 8	39. 2054	139. 5491
山形沖飛島	飛島⑤	12~130	4. 6	0. 5	4. 2	6. 2	39. 1872	139, 5402
	飛島⑥	AD1833	7. 8	0.5		9. 8	39. 1849	139. 5415
# :afe	大野亀	1833/1762	4.9	0.6		6. 9	38. 3190	138. 4634
佐渡	春日崎	1833/1762	4. 1	0.6		6. 1	38, 0170	138. 2232

新潟県内のデータ

○津波水位の推定

- ①津波堆積物の基底の標高を柱状図より読み取り。
- ②過去の津波については、津波堆積物基底の標高を、12.5万年前から現在までの平均隆起速度から、津波発生時の標高に補正。 津波の年代に幅がある場合は、年代幅の中央値とした。
- ③津波の推定波高は、浸水高さを2mとして津波堆積物基底標高(現在及び地殻変動補正値)から算定した。
- 〇深浦町鳥居崎地点は、津波堆積物による津波波高推定値(地殻変動補正後の堆積物基底+2m=9.62m)と遡上高(地殻変動補正値13.12m)の中間値とした。
- ※1741年の津波は渡島大島の噴火に伴う山体崩壊によるもので、海域活断層を波源とするものではないが参考値として示した。

新潟県による津波堆積物検討地点

	地点	津波堆積物 基底標高
	大野亀	4.9m
佐渡市	春日崎	4.1m
近 <i>版</i> 口	加茂湖	Om以下
	真野	Om以下
新潟市	角海浜	8~9m
上越市	直江津	Om以下

7. 津波堆積物調査

- 7. 1 新潟県内における津波堆積物調査に係る文献調査
- 7. 2 調查地点選定
- 7. 3 津波堆積物調査
- 7. 4 解析結果との比較

7. 2 調査地点選定

調査地点は、以下の事項を考慮して選定した。

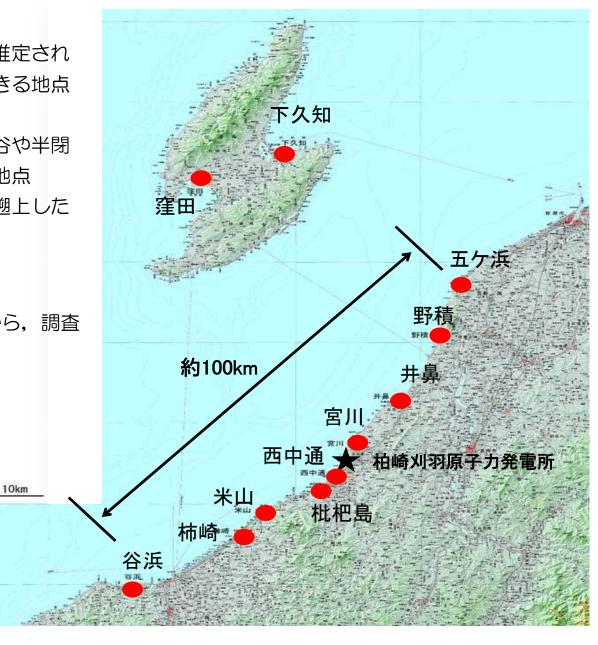
- ▶ 湿地や沼地等, 堆積環境が長期的に安定していたと推定される地点(過去, そのような環境下であったと推定できる地点を含む)
- ▶海との連絡が隔絶している砂丘間低地や沼地、溺れ谷や半閉鎖的な湾など堆積物の保存環境が良いと想定される地点
- ▶海岸線沿いや河口または河川沿いにおいて、津波が遡上した可能性のある地点

発電所周辺の本州側沿岸地域および佐渡島沿岸地域から,調査 地点として,以下の11地点を選定した。

【新潟県佐渡島沿岸】

佐渡市 下久知・窪田

【新潟県本州側沿岸】


新潟市 五ケ浜

長岡市 野積・井鼻

柏崎市 宮川•西中通•枇杷島•米山

上越市 柿崎•谷浜

それぞれの地点で2~10箇所,合計で55箇所において,試料を採取し,堆積物調査を実施した。

7. 津波堆積物調査

- 7. 1 新潟県内における津波堆積物調査に係る文献調査
- 7. 2 調查地点選定
- 7. 3 津波堆積物調査
- 7. 4 解析結果との比較

■ イベント堆積物の分析・評価の流れ

採取した試料を観察し、粘土層や泥炭層中のイベント堆積物(主に砂層) 堆積物の層相観察の他, 含有する微化石, 粒度, 地層の堆積年代を分析・測定 イベント堆積物※の堆積要因(津波、高潮、洪水、土石流等)を検討 津波起因の可能性が高い 津波起因の可能性がある 津波以外の要因の 可能性が高い

※ここでいうイベント堆積物は、津波以外にも、高潮、河川の洪水、土石流など環境の急変を示唆する地層であり、静穏な環境で堆積した泥炭層や粘土層中に挟在する、主として砂層もしくは泥層とした。

7. 3 津波堆積物調査

- イベント堆積物の分析・検討として、 層相の観察、珪藻化石分析、粒度・ 粒子組成分析等を実施した。
- 佐渡島では、1地点(下久知:標高約1m)のイベント堆積物を津波起因の可能性が高いと評価した[表中の□]。
- 本州側で2地点(井鼻:標高約3.5 m,西中通:標高約3m及び約0.5 m),佐渡島で2地点(下久知:標高約4m,窪田:標高約2.5m)のイベント堆積物を津波起因の可能性があると評価した[表中の□]。
- 宮川, 枇杷島, 米山, 柿崎の4地点 のイベント堆積物は, 津波以外の要 因の可能性が高いと判断した。
- ・ なお、津波起因の可能性の高い堆積物が確認された下久知地点近傍の加茂湖においては、斎藤ほか(1997)・ト部(2013)で、地震・津波に関係したと評価される堆積物が報告されている。

\Box	調査地点	イベン	卜堆積物	津	は波堆積物の可能性の判定根	支拠	総合判定
	胸宜地从	有無	分布標高	層相	海水生種の珪藻	粒度・粒子組成	松百刊是
	下久知①	有	約1m	○ 腐植粘土塊を含む 上方細粒化、下面境界が明瞭	0	海浜砂に複数の種類がある ため、比較困難	•
佐渡島	下久知②	有	約4 m	○ 下面境界が明瞭 淘汰良好	総産出数は極めて 少なく判定不可	海浜砂に複数の種類がある ため、比較困難	A
	窪田	有	約2.5m	△ 下面境界が明瞭 淘汰不良	0	時代が古く、 比較困難	A
	五ケ浜	無	/	/	/	/	
	野 積	無	/	/	/	7	-
	井 鼻	有	約3.5m	△ シルト塊を含む 下面境界がやや不明瞭	0	△ 海浜砂にやや類似	A
	宮 川①	有	約6.5m	下面境界が明瞭	×	△ 海浜砂にやや類似	
	宮 川②	有	約5.5m	△ 下面境界が明瞭 薄層のため堆積構造不明	総産出数は極めて 少なく判定不可	△ 山砂にやや類似	
本	西中通①	有	約0.5m	○ シルト塊を含む、上方細粒化 下面境界が明瞭	△ (総産出数は少ない)	時代が古く、 比較困難	A
州	西中通②	有	約3.5m 約0.5m	△ 粘土薄層のため 堆積構造不明	×	/ 粘土薄層のため	
側	西中通③	有	約3 m	△ 粘土薄層のため 堆積構造不明	0	料土薄層のため	A
[191]	枇杷島	有	約-1m	× 下面境界が不明瞭 淘汰不良	0	時代が古く、 比較困難	
	米 山	有	約8.5m	○ 下面境界が明瞭 現砂丘砂に類似	×	/	
	柿 崎①	有	約-1.5m	△ 腐植土塊含む 下面境界がやや不明瞭	×	時代が古く、 比較困難	
	柿 崎②	有	約-1 m	△ 粘土薄層のため 堆積構造不明	×	時代が古く、 比較困難	
J	谷 浜	無	/	/	/	/	-

(判定根拠の凡例)

〇:津波堆積物であることを肯定する方向の結果

×:津波堆積物であることを否定する方向の結果

(総合判定の凡例)

●:イベント堆積物があり、津波起因の可能性が高い

□:イベント堆積物があるが、津波以外の要因の可能性が高い

△:津波堆積物であることを肯定も否定も可能な結果

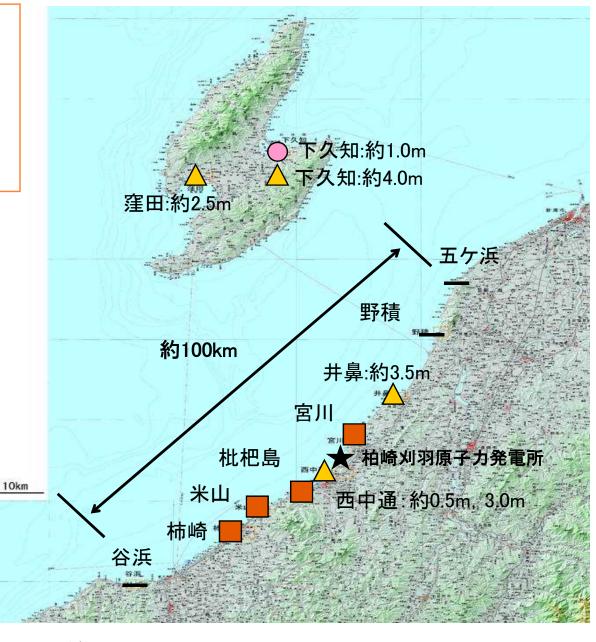
/:分析未実施

▲:イベント堆積物があり、津波起因の可能性がある

一:評価に適する堆積物が分布せず、評価できない

7. 3 津波堆積物調査(まとめ)

○:イベント堆積物があり、津波起因の可能性が高い


△:イベント堆積物があり、津波起因の可能性がある

: イベント堆積物があるが、津波以外の要因の 可能性が高い

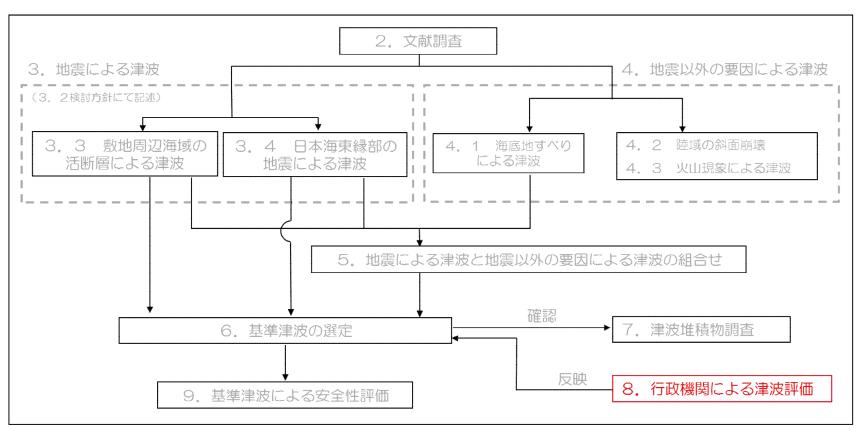
- : 評価に適する堆積物が分布せず, 評価できない

- イベント堆積物の分析・検討 の結果、佐渡島で1地点(下 久知:標高約1.0m)のイベン ト堆積物について、津波起因 の可能性が高いと評価した。
- 本州側で2地点(井鼻:標高約3.5m,西中通:標高約0.5,3.0m),佐渡島で2地点(下久知:標高約4.0m,窪田:標高約2.5m)のイベント堆積物について,津波起因の可能性があると評価した。

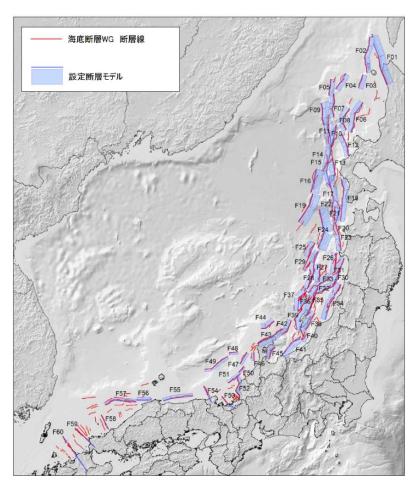
下久知地点の津波堆積物(Sk-1コア写真)

7. 津波堆積物調查

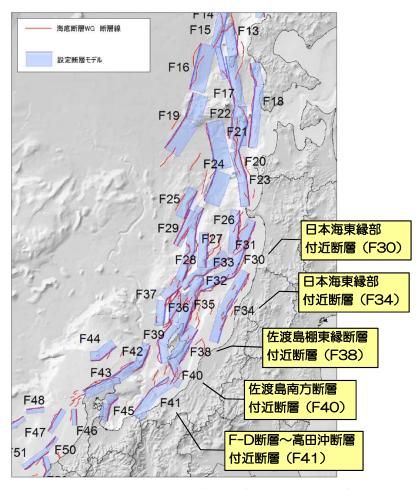
- 7. 1 新潟県内における津波堆積物調査に係る文献調査
- 7. 2 調查地点選定
- 7. 3 津波堆積物調査
- 7. 4 解析結果との比較


		油油点さの割得がもっ		数値解析結果		
地区		津波高さの記録がある 既往最大の歴史津波 (m)	堆積物の分布標高 (m)	想定津波群による最大 津波高さ(m)	波源	
佐渡	下久知	約4~5(両津) (1833年天保山形沖)	1. 0 4. 0	19. 8	日本海東縁部 (1領域モデル)	
市	窪田	約0.7~1.1(河原田) (1993年北海道南西沖)	2. 5	5. 8	日本海東縁部 (2領域モデル)	
長岡市	井鼻	約2~3(出雲崎) (1833年天保山形沖)	3. 5	7. 9	日本海東縁部 (2領域モデル)	
柏崎市	西中通	約1.5(柏崎) (1964年新潟地震)	0. 5 3. 0	6. 5	海域の活断層 (5断層連動モデル)	

数値解析により評価した津波高さは、津波起因の可能性が高いあるいは津波起因の可能性があると評価したイベント堆積物の分布標高及び歴史津波を、十分に上回っていることを確認した。


8. 行政機関による津波評価に関する検討

- 8. 1 国の検討会によるモデル
- 8. 2 地方自治体によるモデル

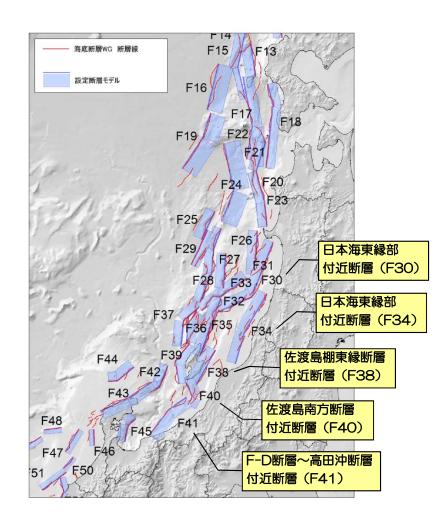


8. 1 国の検討会によるモデル

- 国土交通省・内閣府・文部科学省による「日本海における大規模地震に関する調査検討会報告書(平成26年9月)」(以下,「検討会」という)において,日本海における最大クラスの津波断層モデルの設定に関する検討結果が示された。
- 検討会モデルの中から、柏崎刈羽原子力発電所への影響が比較的大きい津波断層モデルを抽出して、数値シミュレーションを行い、発電所における当社評価水位と比較した。

津波断層モデル位置

抽出した津波断層モデル(北陸~東北)

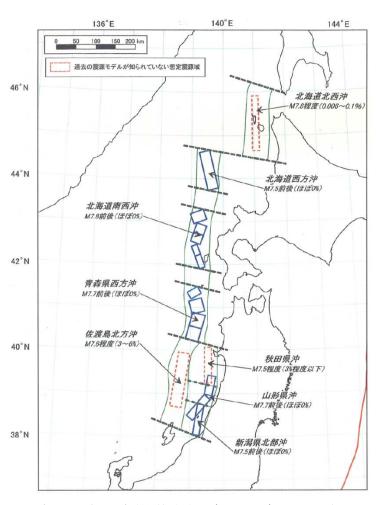

断層パラメータの比較

領域		波源		Mw	L(km)	W(km)	θ(°)	d(km)	δ(°)	λ(°)	D(m)
	水水毛刀		土木学会手法	7.1	37	18	209	0	55	90	2.5
	佐渡島棚東縁断層	佐渡島棚東縁断層 強震		6.9	37	21	209	0	55	90	1.2
	検討会 F38			7.5	62.6	23.6	209	1.3	45	95	3.89
	東京電力		土木学会手法	6.9	29	19	0	0	45	62	1.7
	佐渡島南方断層		強震動予測レシピ	6.9	29	24	0	0	45	62	1.1
	検討会			7.0	14.7	18.9	26	1.6	45	84	0.00
	F40			7.2	27.7	18.9	338	1.6	45	66	2.80
海域活断層	東京電力		土木学会手法	7.3	55	26	55	0	35	96	2.6
海 以	F-D断層~高田沖	断層	強震動予測レシピ	7.4	55	30	55	0	35	96	2.6
	検討会 F41			7.0	51.5	22.7	37	1.9	45	76	4.66
			7.6	34.1	22.7	55	1.9	45	102	4.00	
	東京電力 5断層連動モデル	佐渡島南方断層	土木学会手法強震動予測レシピ	8.0	29	21	0	0	45	62	7.7
		F-D断層~高田沖断層			55	26	55	2.5	35	96	
		親不知海脚西縁断層~魚津断層帯			72	26	30	5.0	35	90	
		佐渡島南方断層			29	24	0	0	45	62	
		F-D断層~高田沖断層		8.0	55	30	55	2.5	35	96	7.1
		親不知海脚西縁断層~魚津断層帯			72	30	30	5.0	35	90	1
	東京電力		土木学会手法	8.2	230	30, 21, 17	20±10, 200±10		30, 45, 60	90	9.6, 13.5, 16.6
	日本海東縁部1領域	域モデル	強震動予測レシピ	8.1, 8.2, 8.4	230	23, 28, 40	20±10, 200±10	0 2.5	60, 45, 30	90	8.4, 10.3, 14.6
	東京電力		土木学会手法	8.4	350	30, 17	8, 188	5.0	30, 60	90	15, 25
日本海東縁部	日本海東縁部2領域	域モデル	強震動予測レシピ	8.3, 8.6	350	23, 40	8, 188		60, 30	90	13, 22
	検討会 F30		7.8	96.1	19.3	202	1.3	45	98	6.00	
			/.8	56.5	19.3	247	1.3	45	120	6.00	
	検討会			7.7	71.9	19.7	211	1.1	45	106	5.45
	F34			7.7	52.0	19.7	197	1.1	45	97	0.40

数値シミュレーション結果

	取水口前面の水位	最高水位 (T.M.S.L.[m])	最低水位 (T.M.S.L.[m])
	F38	+3. 1	-2. 3
検	F40	+2. 8	-1. 9
雪寸	F41	+3.8	-2. 7
会	F30	+2. 2	-1. 9
	F34	+3. 2	-2. 3
	当社評価	+6.8	-5. 4

検討会モデルによる数値シミュレーションの結果は,いずれも、当社想定を下回ることを確認した。


8. 行政機関による津波評価に関する検討

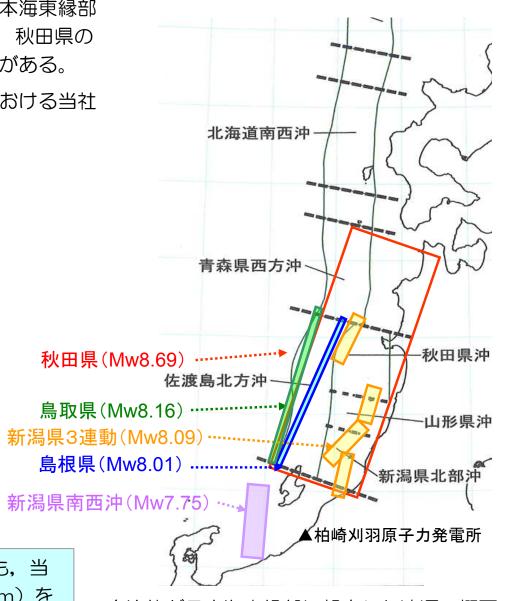
- 8. 1 国の検討会によるモデル
- 8.2 地方自治体によるモデル

8. 2 地方自治体によるモデル

- 日本海東縁部における既往最大の地震は、1993年北海道南西沖地震(断層長さ131km, Mw7.84)。
- 既往最大規模相当を想定した自治体は、北海道・青森県。
- 既往最大を上回る地震規模を想定した自治体は、秋田県・山形県・新潟県・石川県・福井県・鳥取県・島根県。
- 最も地震規模が大きいモデルは、秋田県の断層長さ350km, Mw8.7。

	最大規模	 莫の地震	相中位黑
	断層長さ	マグニチュード	想定位置
北海道 (2013)	_	(M7.8)	北海道南西沖など
青森県 (2013)	_	Mw7.9	青森県西方沖
秋田県 (2013)	350km	Mw8.7	青森県西方沖~佐渡島北方沖
山形県 (2012)	_	(マグニチュード8.5)	佐渡島北方沖
新潟県 (2014)	_	Mw8.09	佐渡島北方沖
富山県 (2012)	_	_	_
石川県 (2012)	167km	Mw7.99	佐渡島北方沖
福井県 (2012)	167km	Mw7.99	佐渡島北方沖
鳥取県 (2012)	222km	Mw8.16	佐渡島北方沖
島根県 (2012)	223km	Mw8.01	佐渡島北方沖
(参考) 既往最大の地震	131km	Mw7.84	1993年北海道南西沖地震

地震調査研究推進本部(2003)の領域区分

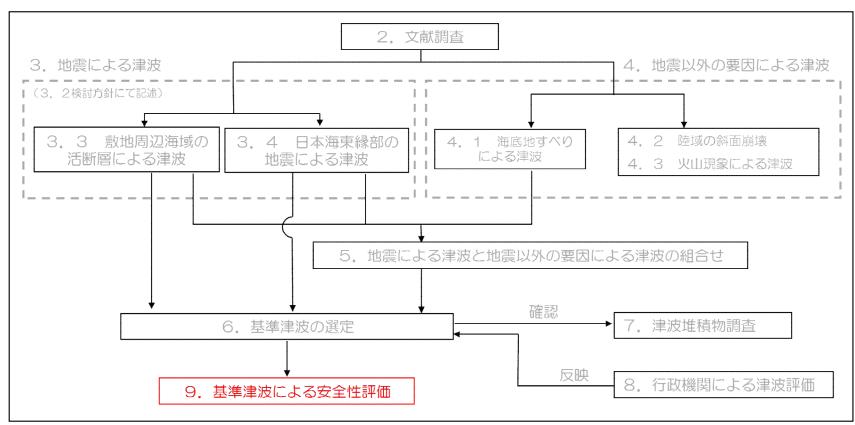

8. 2 地方自治体によるモデル

- 日本海東縁部の地震に関する行政機関の津波想定のうち、日本海東縁部に規模の大きい波源を想定したもの(Mw8以上)としては、秋田県のモデル、新潟県のモデル、鳥取県のモデル、島根県のモデルがある。
- 当該モデルを用いて数値シミュレーションを行い、発電所における当社 評価水位と比較した。

取水口前	前面の水位	最高水位 (T.M.S.L.[m])	最低水位 (T.M.S.L.[m])
秋田県		+4. 0	-4. O
±5.53.50	3連動地震	+3. 2	-3. 4
新潟県	新潟県 南西沖地震※	+4. 1	-2. 4
鳥	取県	+3. 3	-2. 7
島根県		+2. 4	-2. 2
当社	注評価	+6.8	-5. 4

※ 農林水産省ほか(1996)による想定域D

自治体モデルによる数値シミュレーションの結果は、いずれも、当 社想定(最高水位T.M.S.L.+6.8m 、最低水位T.M.S.L.-5.4m)を 下回ることを確認した。


自治体が日本海東縁部に想定した波源の概要

地震調査研究推進本部(2003)に加筆

9. 基準津波による安全性評価

- 9. 1 取水路の水理特性による水位変動
- 9. 2 津波による海底地形変化の検討方針
- 9. 3 検討結果

9. 1 取水路の水理特性による水位変動

■ 計算条件

計算領域	取水口~スクリーン室~取水路~取水ピット~取水路分岐~ 補機取水路~補機取水ピット
計算時間間隔△t	0.005秒
取水条件	CWP(循環水ポンプ): 停止RSW(原子炉補機冷却海水ポンプ):1,800(m³/h/台) × 6 台TSW(タービン補機冷却海水ポンプ): 停止
摩擦損失係数 (マニングの粗度 係数)	n=0.02m ^{-1/3} ·s
貝の付着代	貝代10cmを考慮
局所損失係数	電力土木技術協会(1995): 火力・原子力発電所土木構造物の設計ー補強改訂版ー 千秋信ー(1967):発電水力演習, 土木学会(1999):水理公式集[平成11年版]による
貯留堰	津波数値シミュレーションに反映
基準津波	上昇側:日本海東縁部(2領域モデル)+LS-2 下降側:日本海東縁部(2領域モデル)
初期水位	上昇側:朔望平均満潮位(T.M.S.L+0.49m) 下降側:朔望平均干潮位(T.M.S.L.+0.03m)
計算時間	地震発生から4時間

開水路の連続式と運動方程式

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0 \qquad \frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + gA \frac{\partial H}{\partial x} + gA \left(\frac{n^2 |v|v}{R^{4/3}} + \frac{1}{\Delta x} f \frac{|v|v}{2g} \right) = 0$$

管路の連続式と運動方程式

$$\frac{\partial Q}{\partial x} = 0 \qquad \frac{\partial Q}{\partial t} + gA \frac{\partial H}{\partial x} + gA \left(\frac{n^2 |v| v}{R^{4/3}} + \frac{1}{\Delta x} f \frac{|v| v}{2g} \right) = 0$$

ここで.

t: 時間(s), Q: 流量(\mathring{m}/s), ν : 流速(=Q/A)(m/s)

x: 管底に沿った座標(m), A: 流水断面積(m)

H: 圧力水頭+位置水頭 (管路の場合),位置水頭(開水路の場合) (m)

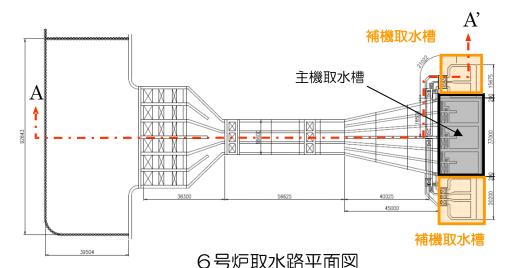
g: 重力加速度(m/s²), n:マニングの粗度係数(m-1/3s)

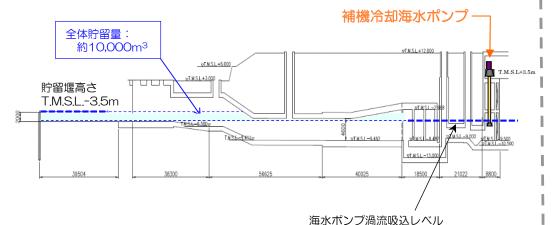
R:径深(m), $\Delta x:$ 管路の流れ方向の長さ(m), f:局所損失係数

水槽の連続式

$$A_P \frac{dH_P}{dt} = Q_S$$

ここで、Ap: 水槽の平面積(水位の関数となる)(m)

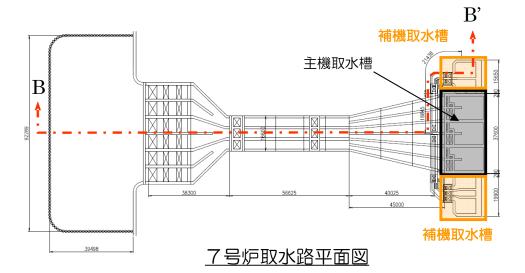

Hp:水槽水位(m)

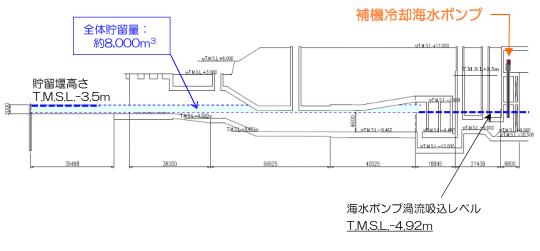

Qs: 水槽へ流入する流量の総和(m³/s), t: 時間(s)

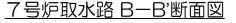
9.1 取水路の水理特性による水位変動

■ 6, 7号炉取水路設備

取水路内貯留量:約4,000m³ 貯留堰内貯留量:約6,000m³ **全体貯留量:約10,000m³**

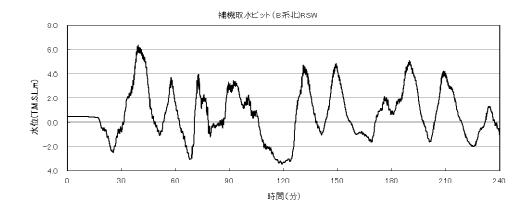


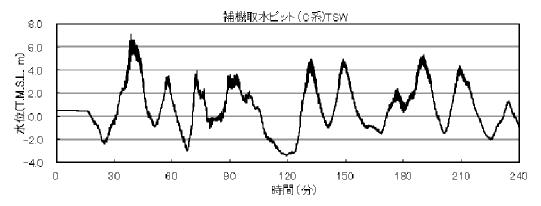

6号炉取水路 A-A'断面図


T.M.S.L.-5.24m

取水路内貯留量:約3,000m3

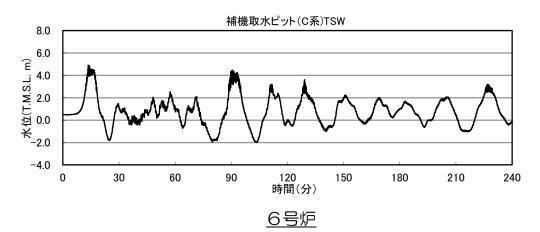
貯留堰内貯留量:約5,000m³ **全体貯留量:約8,000m³**

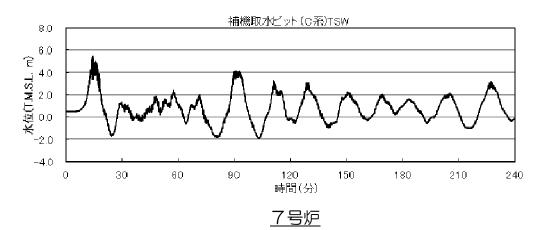




9. 1 取水路の水理特性による水位変動(上昇側)

- 6号炉、7号炉について、基準津波による取水路内の各ポンプ位置(補機取水槽)における水位を検討した 結果、最高水位はいずれもT.M.S.L.+7m程度である。
- 取水路の水位変動に対して、取水路点検用立坑の天端高はT.M.S.L.+12.2mであり、また補機取水槽の開口部(T.M.S.L.+3.5m)には浸水防止設備(閉止板)を設置しており、敷地及び建屋への津波の流入がないことを確認した。


6号炉

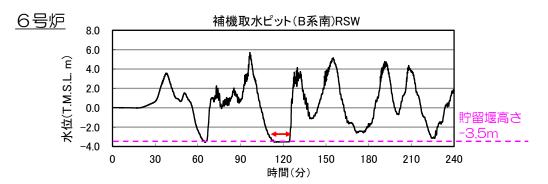

<u> 7号炉</u>

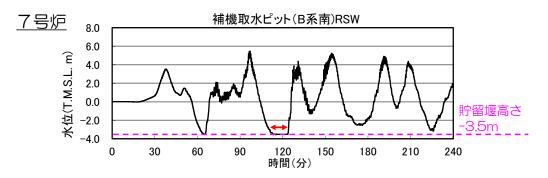
				水 位	T.M.S.L. (m)		
		取水口前面	補機海水ポンプ A系RSW	補機海水ポンプ B系北RSW	補機海水ポンプ B系TSW	補機海水ポンプ B系南RSW	補機海水ポンプ C系TSW
6号炉	日本海東縁部 (2領域モデル)+LS-2	+6.12	+6.27	+6.37	+6.35	+6.36	+6.36
7号炉	日本海東縁部 (2領域モデル)+LS-2	+6.09	+6.91	+6.24	+6.16	+6.17	+7.12

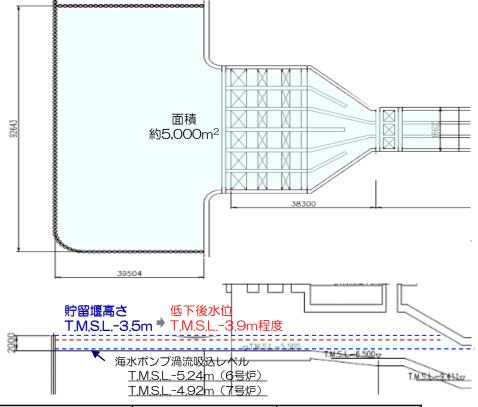
9. 1 取水路の水理特性による水位変動(【参考】上昇側:海域活断層)

- 海域の活断層のうち取水口前面の水位上昇側が最大となる5断層連動モデルを波源とする津波についても、 取水路の水理特性による水位変動を検討した。
- 6号炉,7号炉について,取水路内の各ポンプ位置における水位を検討した結果,最高水位はいずれもTSWポンプ位置におけるT.M.S.L +5m程度となった。
- 取水路の水位変動に対して、取水路点検用立坑の天端高はT.M.S.L.+12.2mであり、また補機取水槽の開口部(T.M.S.L.+3.5m)には浸水防止設備(閉止板)を設置しており、敷地及び建屋への津波の流入がないことを確認した。

				水 位	T.M.S.L. (m)		
		取水口前面	補機海水ポンプ A系RSW	補機海水ポンプ B系北RSW	補機海水ポンプ B系TSW	補機海水ポンプ B系南RSW	補機海水ポンプ C系TSW
6号炉	海域の活断層 (5断層連動モデル)	4.48	4.80	4.71	4.72	4.72	4.91
7号炉	海域の活断層 (5断層連動モデル)	4.59	5.19	4.85	4.78	4.79	5.43

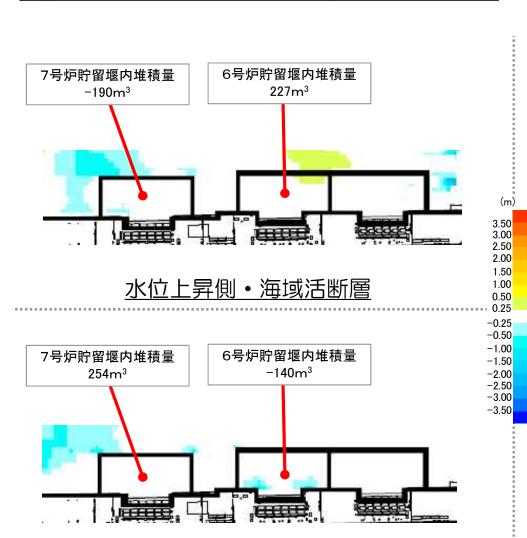

9.1 取水路の水理特性による水位変動(下降側)


ポンプによる取水が全体貯留量に及ぼす影響について確認した。


• 水位が貯留堰を下回る時間における取水量及び水位低下量を算定し、全体貯留量や全体貯留高と比較した結果、取水量に対する全体貯留量には十分な裕度があり、取水への影響はないことを確認した。

● また,貯留堰内の砂の堆積量を確認した結果,全体貯留量に対して,最大堆積量は約4%程度であり,取水への影

響はないことを確認した。


下降側最小ケース		貯留堰を下回る継続 時間	時間あたり取水量	取水量 (水位低下量)	全体貯留量 (全体貯留高)
6号炉	日本海東縁部 (2領域モデル)	約11分	180m ³ /min (約0.04m/min)	約1,980m ³ 〈 (約0.4m)	× 約10,000m ³ (約1.74m)
7号炉	日本海東縁部 (2領域モデル)	約11分	180m ³ /min (約0.04m/min)	約1,980m ³ 〈 (約0.4m)	約8,000m ³ (約1,42m)

9.1 【参考】貯留堰内の砂の堆積量

- 水位が貯留堰を下回る時間(120分後)における貯留堰内の砂の堆積量は下図に示すとおり。
- 高橋ほか(1999)の手法による堆積侵食分布(120分後) 浮流

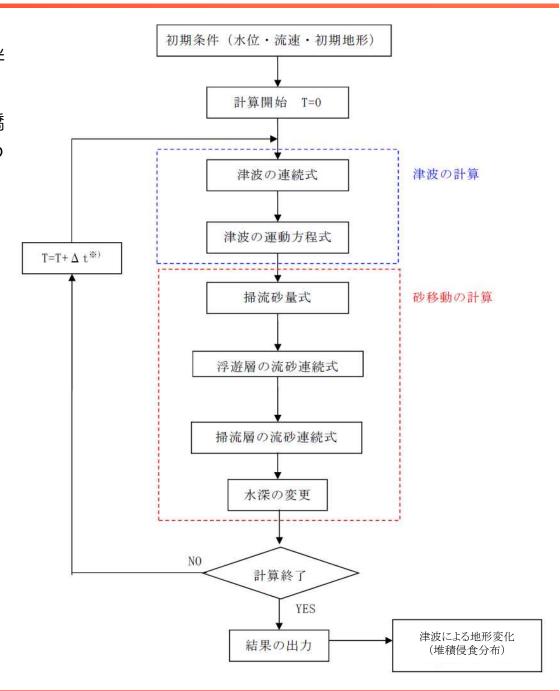
浮遊砂上限濃度 1%

7号炉貯留堰内堆積量 8m³ 6号炉貯留堰内堆積量 307m³

水位上昇側 • 日本海東縁部

7号炉貯留堰内堆積量 351m³ 6号炉貯留堰内堆積量 -27m³

水位下降側 • 日本海東縁部


水位下降側 • 海域活断層

9. 基準津波による安全性評価

- 9. 1 取水路の水理特性による水位変動
- 9. 2 津波による海底地形変化の検討方針
- 9. 3 検討結果

9. 2 津波による海底地形変化の検討方針(1)検討概要

- 津波の水位変動以外の事象に対する評価として、津波に伴 う砂移動について、数値シミュレーションを実施する。
- 数値シミュレーションは、藤井ほか(1998)および高橋 ほか(1999)の手法に基づき、津波の挙動とそれに伴う 砂移動を同時に計算した。
- 検討フローは右図のとおり。
- 計算時間は4時間とした。

9. 2 津波による海底地形変化の検討方針(2)基礎方程式・計算条件

- 藤井ほか(1998) および高橋ほか(1999) の方法を下表に示す。
- 海底砂の物性値・粒度分布は以下のとおりであり、高橋ほか(1999)の手法では、浮遊砂濃度の上限値を1%に 設定した。

	藤井ほか(1998)の方法	高橋ほか(1999)の方法
地盤高の連続式	$\frac{\partial Z}{\partial t} + \alpha \left(\frac{\partial Q}{\partial x}\right) + \frac{E - S}{\sigma(1 - \lambda)} = 0$	$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q}{\partial x} + \frac{E - S}{\sigma} \right) = 0$
浮遊砂濃度連続式	$\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} - \frac{E - S}{D} = 0$	$\frac{\partial(C_s D)}{\partial t} + \frac{\partial(MC_s)}{\partial x} - \frac{E - S}{\sigma} = 0$
流砂量式	$Q = 80\tau_*^{1.5} \sqrt{sgd^3}$	$Q = 21\tau_*^{1.5} \sqrt{sgd^3}$
巻き上げ量の算定 式	$E = \frac{(1-\alpha)Qw^2\sigma(1-\lambda)}{Uk_z \left[1 - \exp\left\{\frac{-wD}{k_z}\right\}\right]}$	$E = 0.012\tau_*^2 \sqrt{sgd} \cdot \sigma$
沈降量の算定式	$S = wC_b$	$S = wC_s \cdot \sigma$
摩擦速度の計算式	log-wake 則を鉛直方向に 積分した式より算出	マニング則より算出 $u_* = \sqrt{gn^2U U /D^{1/3}}$

項目	設定値	設定根拠
密度 ρ	$2.69\mathrm{g/cm^3}$	敷地前面海域の浚渫砂における物理特性試験結果
中央粒径d	0.27mm	敷地前面海域の浚渫砂における物理特性試験結果
空隙率 λ	0.4	高橋ほか(1992)

Z:水深変化量(m)

t:時間(s)

x:平面座標(m)

Q:単位幅,単位時間当たりの掃流 砂量(m³/s/m)

τ*:シールズ数

σ:砂の密度

λ:空隙率

 $s: \sigma/\rho-1$

d:砂の粒径(中央粒径)

g: 重力加速度(m/s²)

ρ: 海水の密度(g/cm³)

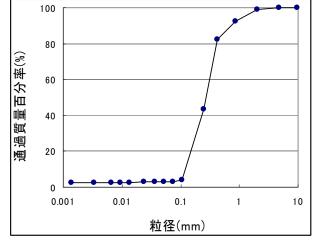
U:流速(m/s)

D:全水深(m)

 $M: U \times D(m^2/s)$

n: Manningの粗度係数(=0.03m⁻ 1/3s)

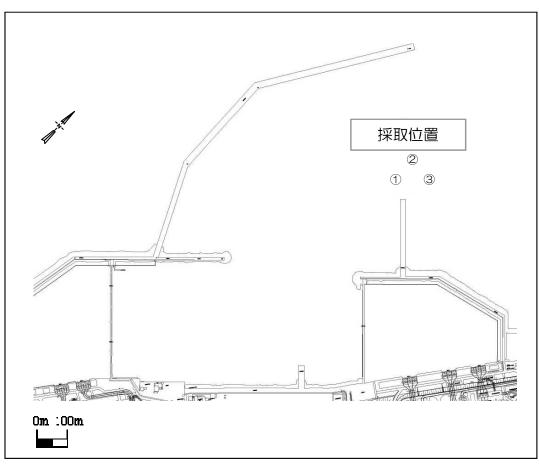
w: 土粒子の沈降速度(Rubey 式より算出)(m/s)


Cs: 浮遊砂体積濃度(浮遊砂 濃度連続式より算出)

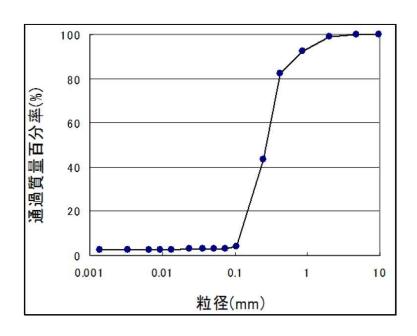
α:局所的な外力のみに移動 を支配される成分が全流砂 量に占める比率(=0.1)

C:浮遊砂濃度(kg/m³)

Cb:底面浮遊砂濃度(kg/m³)


kz:鉛直拡散係数(m²/s)

海底砂の粒度分布


9.2 津波による海底地形変化の検討方針(3)海底砂の採取位置について

- 敷地前面海域における浚渫砂を基に、砂の粒径、密度を設定。
- 粒径については、代表として中央粒径(D50)を採用。

採取值	位置	义
-----	----	---

項目	設定値	設定根拠			
密度 ρ	2. 69g/cm ³	浚渫砂の物理特性試験結果 (平成19年度)			
中央粒径d	0. 27mm	浚渫砂の物理特性試験結果 (平成19年度)			

粒径加積曲線

9. 2 津波による海底地形変化の検討方針(4)浮遊砂濃度の上限について

- 論文整理に基づく高橋ほか(1999)における浮遊砂濃度上限値に関する評価
 - 高橋ほか(1999)の浮遊砂濃度上限値について、砂移動評価に関する論文を整理した。
 - 上限値5%の検証結果から、浮遊砂濃度上限値5%は過大評価になると考えられる。
 - 上限値1%の検証結果から、浮遊砂濃度上限値1%は妥当な設定値であると考えられる。
 - 以上より、高橋ほか(1999)の浮遊砂濃度上限値は1%を基本とし、評価を実施した。

高橋ほか(1999)の検証事例

実規模検証	文献	計算使用砂粒径	計算格子間隔	浮遊砂 濃度上限	浮遊砂濃度上限に関する評価
気仙沼湾 (1960年 チリ地震津波)	玉田ほか (2009)	0.001~ 1mm	25m, 5m	1%,5%	・計算格子間隔が5mの場合,浮遊砂濃度上限 5%では実績値より侵食深を過大に評価
八戸港 (1960年 チリ地震津波)	藤田ほか (2010)	0.26mm	10.3m	1%,2%,5%	・浮遊砂濃度上限5%は過大に評価・浮遊砂濃度上限1~2%の場合の再現性が良好
宮古港 (2011年東北地方 太平洋沖地震津波)	近藤ほか (2012)	0.08mm	10m	1%	・土砂移動の全体的な傾向は良く一致・防波堤堤頭部の最大洗掘深や断面地形も定量的 に概ね良い一致
気仙沼湾 (2011年東北地方 太平洋沖地震津波)	森下ほか (2014)	O.3mm	10m	1% $C_{sat} = \alpha \times \sqrt{U^2 \times V^2}$	 砂移動評価に影響を及ぼす因子として、無次元掃流力、流砂量式係数、飽和浮遊砂濃度の3つを抽出 上記の3つの因子を同時に変えたモデルにより、再現性が向上する可能性を示唆 飽和浮遊砂濃度については、摩擦速度の関数とすることで再現性向上につながることを示唆

 C_{sat} : 飽和浮遊砂濃度 U,V:断面平均流速成分 α :係数 (0.01)

9. 基準津波による安全性評価

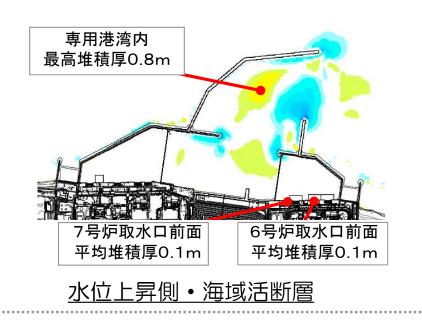
- 9. 1 取水路の水理特性による水位変動
- 9. 2 津波による海底地形変化の検討方針
- 9. 3 検討結果

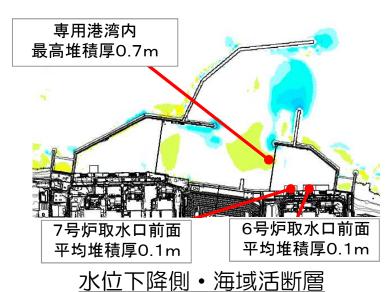
9.3 検討結果

- 基準津波を評価対象として、砂移動の数値シミュレーションを実施した結果のうち、取水口前面の最終堆積厚さを下表に示す。
- 取水口前面における砂の堆積厚さの最大は、3号炉取水口前面の約1.2m(取水路横断方向の平均値)。
- 6/7号炉取水口前面の最大値は、7号炉取水口前面の約0.6m(取水路横断方向の平均値)。

数値シミュレーション結果

				-	right House	工业结局	٤ ()		
水位	地震		取水口前面堆積厚さ(m)						
		手法	1号	2号	3号	4号	5号	6 号	7号
			炉	炉	炉	炉	炉	炉	炉
上昇側	海域の活断層 (5 断層連動モデル)	藤井ほか	0. 1	0. 1	0. 1	0. 1	0. 1	0. 1	0. 1
		高橋ほか	0. 1	0.3	0.6	0.6	0. 1	0. 1	0.2
	日本海東縁部 (2領域モデル)	藤井ほか	0. 1	0. 1	0. 1	0. 1	0. 1	0. 1	0.1
		高橋ほか	0. 5	0. 9	1. 2	1. 1	0.4	0.3	0.6
下降側	海域の活断層 (長岡十日町連動モデル)	藤井ほか	0. 1	0. 1	0. 1	0. 1	0. 1	0. 1	0.1
		高橋ほか	0. 2	0. 4	0. 5	0. 4	0. 1	0. 1	0. 2
	日本海東縁部 (2領域モデル)	藤井ほか	0. 2	0. 2	0. 2	0. 2	0. 1	0. 1	0. 1
		高橋ほか	0. 2	0. 7	1. 0	0.8	0. 2	0. 2	0. 4


※取水口前面の堆積厚さは、取水路横断方向の堆積厚さの平均値


※高橋ほか(1999)における浮遊砂濃度の上限値は1%

※藤井ほか(1998)における浮遊砂濃度の上限値は5%

6,7号炉取水口前面の最高堆積厚さは約0.6mであり、取水路の高さ(5m程度)に対して十分小さく、 取水への影響はないことを確認した。

■ 藤井ほか(1998) の手法による堆積侵食分布(最終地形)

7号炉取水口前面 平均堆積厚0.1m 水位上昇側•日本海東縁部

専用港湾内 最高堆積厚1.2m

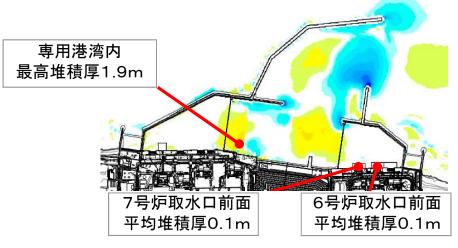
(m)

3.50 3.00

2.50

2.00 1.50

1.00


0.50 0.25 -0.25 -0.50 -1.00

-1.50

-2.00 -2.50

-3.00

-3.50

水位下降側 • 日本海東縁部

■ 高橋ほか(1999) の手法による堆積侵食分布(最終地形)

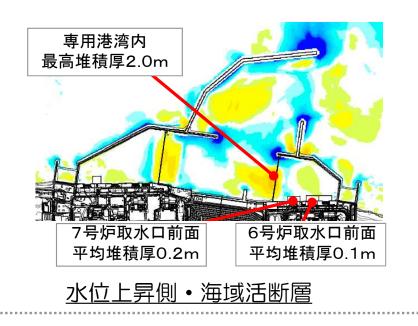
(m)

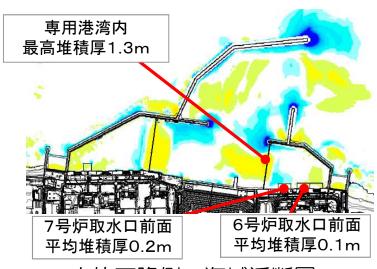
3.50 3.00

2.50

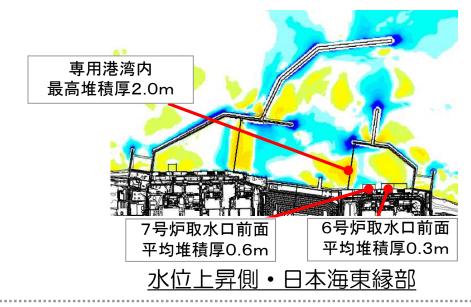
2.00 1.50

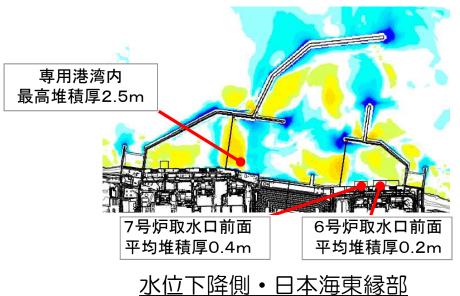
1.00 0.50


-0.25 -0.50 -1.00


-1.50

-2.00 -2.50


-3.00


-3.50

水位下降側 • 海域活断層

参考文献

- 土木学会原子力土木委員会津波評価部会(2002):原子力発電所の津波評価技術。
- 地震調査研究推進本部地震調査委員会(2003):日本海東縁部の地震活動の長期評価。
- 宇佐美(2013):最新版 日本被害地震総覧[599]-2012,東京大学出版会。
- 羽鳥(1984):日本海の歴史津波,月刊海洋科学, Vol.16, No9, pp.538-545.
- 羽鳥(1996):日本近海における津波マグニチュードの特性,津波工学研究報告第13 号,東北大学工学部災害制御研究センター,pp.17-26.
- 渡辺(1998):日本被害津波総覧[第2版],東京大学出版会。
- 国立天文台編(2014):理科年表 平成26年, 丸善,
- 羽鳥(1994):歴史津波ー危険度の地域性、地震工学振興会ニュース、No.135、pp.5-9.
- 羽鳥(1990): 天保4年(1833) 山形沖地震とその津波の規模, 地震第2輯, 第43巻, pp.227-232.
- 土木学会新潟震災調査委員会編(1966):昭和39 年新潟地震震害調査報告。
- 相田ほか(1964):1964年6月16日新潟地震にともなう津波の調査,東京大学地震研究所彙報,第42号,pp.741-780.
- 首藤(1984):1983年日本海中部地震津波の痕跡高,東北大学工学部津波防災実験所研究報告,第1号,pp.88-267.
- 阿部ほか(1994):北海道南西沖地震津波の新潟県における浸水高の分布,東京大学地震研究所彙報, Vol. 69, pp.159-175.
- 佐竹・加藤(2002):1741 年寛保津波は渡島大島の山体崩壊によって生じた、月刊海洋号外No.28、pp.150-160。
- 後藤・小川(1982): Leap-frog 法を用いた津波の数値計算法, 東北大学工学部土木工学科資料.
- 小谷ほか(1998):GIS を利用した津波遡上計算と被害推定法,海岸工学論文集,第45 巻,pp.356-360.
- 本間(1940): 低溢流堰堤の流量係数,土木学会誌,第26巻,pp.635-645,849-862.
- 相田(1977):三陸沖の古い津波のシミュレーション、東京大学地震研究所彙報, Vol.52, pp.71-101.
- Mansinha and Smylie (1971): The displacement fields of inclined faults, Bulletin of the Seismological Society of America, Vol.61, No.5, pp.1433-1440.
- 相田(1984):1983年日本海中部地震津波の波源数値モデル,東京大学地震研究所彙報,Vol.59,pp93-104.
- 長谷川ほか(1987):津波の数値実験における格子間隔と時間積分間隔に関する研究、土木学会論文集、No.381、Ⅱ-7、pp.111-120.
- 土木学会原子力土木委員会津波評価部会(2011):確率論的津波ハザード解析の方法。
- 武村(1998):日本列島における地殻内地震のスケーリング則ー地震断層の影響および地震被害との関連ー,地震第2輯,第51巻,pp.211-228.
- 入倉・三宅(2001):シナリオ地震の強震動予測,地学雑誌,110,pp.849-875.
- 地震調査研究推進本部地震調査委員会(2009):震源断層を特定した地震の強震動予測手法(「レシピ」).
- 根本(2009):日本海におけるアスペリティを考慮した津波波源モデルの検討,土木学会論文集B2(海岸工学), Vol.B2-65, No.1, pp.346-350.
- Manighetti et al. (2007) : Earthquake scaling, fault segmentation, and structural maturity, Earth and Planetary Science Letters, 253, pp.429-438.
- 徳山ほか(2001):日本周辺海域の中新世最末期以降の地質構造発達史.
- 井上ほか(2011):新潟沿岸域20万分の1海底地質図説明書,海陸シームレス地質情報,新潟沿岸域,数値地質図S-2.
- 岡村ほか(1994):20万分の1佐渡島南方海底地質図,海洋地質図43,地質調査所。
- 岡村ほか(1995):20万分の1佐渡島北方海底地質図,海洋地質図46,地質調査所.
- ▶ 岡村(2002):20万分の1能登半島東方海底地質図,海洋地質図59,独立行政法人 産業技術総合研究所 地質調査総合センター.

参考文献

- Watts et al. (2005): Tsunami Generation by Submarine Mass Failure. II: Preditive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.
- Grilli and Watts (2005): Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analysis, Journal of Waterway, Port, Coastal, and Ocean Engineering., ASCE, pp. 283-297.
- Maeno and Imamura (2007): Numerical investigations of tsunamis generated by pyroclastic flows from the Kikai caldera, Japan, Geophysical Research Letters, Vol.34.
- 松本ほか(1998): 土石流による津波発生・伝播モデルの開発,海岸工学論文集,第45巻,pp.346-350.
- Kawamata (2005): Model of tsunami generation by collapse of volcanic eruption: The 1741 Oshima-Oshima tsunami, Tsunamis: Case Studies and Recent Developments, pp.79-96.
- 今村ほか(2001): 土砂突入による津波発生機構に関する基礎検討,海岸工学論文集,第48巻,pp.321-325.
- 防災科学技術研究所(2004):地すべり地形分布図,防災科学技術研究所研究資料,第244号。
- 防災科学技術研究所(1986):地すべり地形分布図「村上・佐渡」.
- Huber et al. (1997): Forecasting impulse waves in reservoirs. Dix-neuvième Congrès desGrands Barrages C31:993-1005. Florence, Italy, Commission, International des Grands Barrages, Paris.
- 高速道路調査会(1985):地すべり地形の安定度評価に関する研究報告書, P.33,P.36.
- 海上保安庁海洋情報部(2013):海域火山データベース, http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/list-2.htm
- 産業技術総合研究所(2013):日本の火山(第3版).
- 斎藤ほか(1997) 科学技術振興調整費「日本海東縁における地震発生ポテンシャル評価に関する総合研究」(第Ⅰ期平成6~8 年度)成果報告書2.1.2 津波・乱泥流堆積物調査.
- 市原ほか(2006):信濃川河川堆積物中にみられる遡上津波の堆積相,月刊地球,Vol.28,pp.518-522.
- ◆ ト部(2013):新潟県佐渡市加茂湖および村上市旧岩船潟における津波堆積物、日本地球惑星科学連合2013年大会予稿集。
- 日本海における大規模地震に関する調査検討会(2014):日本海における大規模地震に関する調査検討会報告書。
- 北海道(2013):津波浸水予測図等について。http://www.pref.hokkaido.lg.jp/sm/ktk/tunamisinnsuiyosokuzu.htm
- 青森県(2013):津波浸水予測図. http://www.pref.aomori.lg.jp/kotsu/build/tunami-yosoku.html
- 秋田県(2013):地震被害想定調査に係る津波関連データについて。http://www.pref.akita.lg.jp/www/contents/1356530698859/
- 山形県(2012):津波浸水域予測図パンフレット. http://www.pref.yamagata.jp/ou/kankyoenergy/020072/tsunami1.pdf
- 新潟県(2014):津波浸水想定図. http://www.pref.niigata.lg.jp/bosaikikaku/h25tunami.html http://www.pref.niigata.lg.jp/bosaikikaku/tunami.html
- 富山県(2012):津波シミュレーション調査の調査結果の概要http://www.pref.toyama.jp/cms_sec/1004/kj00011669.html
- 石川県(2012):石川県津波浸水想定区域図。http://www.pref.ishikawa.jp/bousai/tsunami/index.html
- 福井県(2012):福井県における津波シミュレーション結果の公表について、http://www.pref.fukui.lg.jp/doc/kikitaisaku/kikitaisaku/tunami-soutei.html
- 鳥取県(2012):鳥取県津波対策検討委員会。http://www.pref.tottori.lg.jp/tsunami/
- 島根県(2012):島根県津波浸水想定区域マップ。http://web-gis.pref.shimane.lg.jp/tsunami/
- 農林水産省構造改善局・農林水産省水産庁・運輸省港湾局・建設省河川局(1996):日本海東縁部地震津波防災施設整備計画調査報告書。
- ▶ 電力土木技術協会(1995):火力・原子力発電所土木構造物の設計(増補改訂版).
- 千秋信一(1967):発電水力演習,学献社.

参考文献

- 土木学会水理委員会水理公式集改訂小委員会編(1999):水理公式集(平成11年版)
- 藤井ほか(1998):津波による海底地形変化に関する研究,海岸工学論文集,第45巻,pp.376-380.
- 高橋ほか(1999):掃流砂層・浮遊砂層間の交換砂量を考慮した津波移動床モデルの開発,海岸工学論文集,第46 巻,pp.606-610.
- 高橋ほか(1992):土砂移動を伴う津波計算法の開発,海岸工学論文集,第39巻,pp.231-235.
- 玉田ほか(2009):河川での津波防災検討における津波移動床モデルの適用性に関する研究,土木学会論文集B2(海岸工学), Vol.B2-65, No.1, pp.301-305.
- 藤田ほか(2010):津波による海底地形変化評価モデルの現地適用性に関する研究,海岸工学論文集,第26巻,pp.213-218.
- 近藤ほか(2012):港湾での津波による土砂移動計算の再現性評価,土木学会論文集B2(海岸工学), Vol.68, No.2, I_369-I_400.
- 森下ほか(2014):2011年東北地方太平洋沖地震津波襲来時の気仙沼湾を対象とした津波移動床モデルの再現性向上、土木学会論文集B2(海岸工学)、Vol.70、No.2、 [_491-[_495.