資料1-4

本資料のうち、枠囲みの内容は機密事項に属しますので公開できません。

柏崎刈羽原子力発電所 6号及び7号炉

5号炉原子炉建屋内緊急時対策所の 耐震設計について

平成28年12月

東京電力ホールディングス株式会社

目次

- 1. はじめに
- 2. 5号炉原子炉建屋の地震応答解析モデルについて
- 3. 緊急時対策所の耐震評価の見通しについて
- 4. まとめ

参考資料・1 5号炉原子炉建屋 埋込み効果を考慮することの妥当性確認

1. はじめに

本資料は,緊急時対策所のうち,緊急時対策所が設置される5号炉原子炉建屋の地震応 答解析モデルについて示すと共に,基準地震動 Ss による地震応答解析を実施し,耐震成立 性の見通しについて示すものである。

なお、5号炉原子炉建屋内緊急時対策所の系統機能である、居住性の確保、必要な情報の 把握、通信連絡、電源の確保各々についての設備の耐震性、及び地震を想定した場合の5 号炉原子炉建屋内緊急時対策所の屋内アクセスルートの成立性については、重大事故対処 設備について「3.18緊急時対策所(設置許可基準規則第61条に対する設計方針を示す資料)」 で示す。 2. 5号炉原子炉建屋の地震応答解析モデルについて

5 号炉原子炉建屋は,重大事故等対処施設において「常設耐震重要重大事故防止設備及 び常設重大事故緩和設備の間接支持構造物」(以下、「間接支持構造物」という)に分類さ れる。また,5号炉原子炉建屋を構成する壁及びスラブの一部は緊急時対策所遮蔽に該当 し,緊急時対策所遮蔽は重大事故等対処施設において「常設耐震重要重大事故防止設備」, 「常設重大事故緩和設備」に分類される。

5号炉原子炉建屋は、柏崎刈羽原子力発電所5号炉の建設時の工事計画認可申請書(以下,「既工認」という)において、地震応答解析を実施しているが、今回工認においては地 震応答解析モデルを一部見直す予定である。

以下では、今回工認で採用予定の地震応答解析モデル及び地震応答解析モデルの既工認 時からの変更点について示した上で、妥当性及び適用性について説明する。

2.1 構造概要

緊急時対策所が設置される5号炉原子炉建屋は,地下4階,地上4階建てで,基礎底面からの高さは75.0mである。平面は,地下部分では一辺83.0mの正方形,最上階では51.0m(NS)×53.0m(EW)のほぼ正方形をなしている。

建屋の主体構造は鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造)で、屋根トラス は鉄骨造である。原子炉建屋は原子炉棟とその付属棟より構成されており、それら両棟は 同一基礎スラブ上に設置された一体構造である。その主たる耐震要素は、原子炉格納容器 の回りを囲んでいる原子炉一次遮蔽壁、原子炉棟の外壁及び付属棟の外壁である。基礎は、 泥岩上に直接設置されている。5号炉原子炉建屋内緊急時対策所は、5号炉原子炉建屋の3 階に設置されており、原子炉建屋躯体の一部が緊急時対策所遮蔽を構成している。

建屋の概略平面図を図 2.1-1 に, 建屋の断面図を図 2.1-2 及び図 2.1-3 に, 緊急時対策所の設置位置を図 2.1-4 に示す。

図 2.1-1 建屋概略平面図(基礎版上)

図 2.1-2 建屋断面図 (NS 方向)

図 2.1-3 建屋断面図(EW 方向)

地処での中安は機変支査に見しまたので八朋でままい。				
YF組みの内谷は				

図 2.1-4 緊急時対策所の設置位置

2.2 地震応答解析モデル

地震応答解析に用いるモデルは,建屋を質点系とし地盤を等価なばねで評価した建屋-地盤連成モデルとする。建屋の地震応答解析モデル図及び諸元を図 2.2-1 に,地盤モデルを 表 2.2-1 に示す。

建屋は、曲げ変形とせん断変形をする質点系としてモデル化しており、建屋側方の地盤 は水平ばねで、また、建屋底面下の地盤は水平ばね及び回転ばねで置換している。地下部 分側面の地盤水平ばねは、各質点の支配深さに従って地盤を水平に分割し、波動論により 評価している。なお、表層部分については、基準地震動 Ss による地盤の応答レベルを踏ま え、ばね評価を行わないこととする。

また,基礎スラブ底面における地盤の水平及び回転ばねは,それ以深の地盤を等価な半 無限地盤とみなして,波動論により評価している。

復元力特性は、建屋の方向別に、層を単位とした水平断面形状より、「原子力発電所耐震 設計技術指針 JEAG4601-1991 追補版」(以下、「JEAG4601-1991」という)に基づいて設 定する。水平方向の地震応答解析は、上記復元力特性を用いた弾塑性応答解析とする。

入力地震動は,解放基盤表面レベルに想定する基準地震動 Ss を用いることとする。埋込 みを考慮した水平モデルであるため,モデルに入力する地震動は,一次元波動論に基づき, 解放基盤表面レベルに想定する基準地震動 Ss に対する地盤の応答として評価する。また, 基礎底面レベルにおけるせん断力を入力地震動に付加することにより,地盤の切り欠き効 果を考慮する。

T. M. S. L. (m)	質点 番号	質点重量 W(kN)	回転慣性重量 I _G (×10 ⁶ kN・m ²)	部材 番号	せん断 断面積 A _S (m ²)	断面2次 モーメント I(m ⁴)
1 51.0	1	39, 440	10.5			
2 39.5	(2)	50, 840	20.4	1	42.6	29,000
12		00,010	2001 I	2	61.0	53,000
³ S ^{33.0}	(3)	249, 590	146.1	3	336 1	260 100
4 27.8	(4)	341,850	187.1		550.1	200, 100
4	Ô	477 550	000.7	4	411.7	331,700
5	0	477, 550	202. 1	5	566.6	470, 700
⁶	6	471,970	300. 9		700.0	500,000
7 5.3	(7)	454, 390	299.4	6	702.2	599,000
. 1		, 		7	837.9	656,800
-1.1	(8)	608,920	373.9	8	919-7	730 500
9 -10.1	9	637, 660	436.1			,
10 -17 5	1D	<u>815</u> 450	479 1	9	1, 079. 7	801,400
		615, 450	472.1	10	6, 889. 0	3,955,000
¹¹ -24.0		526,750	304.0			
P	***	4, 674, 410				

(NS 方向)

∭-----

∭-----

∭------

1 -~~~ <u>^//</u>

T. M. S. L. (m)	質点 番号	質点重量 W(kN)	回転慣性重量 I _G (×10 ⁶ kN・m ²)	部材 番号	せん断 断面積 A _S (m ²)	断面2次 モーメント I(m ⁴)
1 51.0	1	39, 440	14.3			
	2	50,840	18.0	1	54.5	38,000
2		· · · · · · · · · · · · · · · · · · ·		2	67.6	55, 500
° 🖤 33.0	(3)	249, 590	153. 1	3	396 5	263 600
4 27.8	(4)	341,850	192.5		000.0	200, 000
				4	429.9	338, 300
° 🖤 20.3	(5)	477, 550	268.4	5	521 4	474 400
⁶ 12. 3	6	471,970	293.0		001.1	11 1, 100
_ [6		171.000	0.05.0	6	766. 7	602,200
ʻ 🌑 5.3	Û	454, 390	285.8	7	816 6	667 000
8 -1.1	8	608,920	365.3		010.0	001,000
			100.1	8	951.2	741,800
-10.1	(9)	637,660	432.1	9	1 033 9	813 800
	10	815, 450	476.9		1,000.0	010, 000
				10	6,889.0	3, 955, 000
M24.0	Û	526, 750	304.0			
<u> </u>	計	4, 674, 410				

(EW 方向)

図 2.2-1 建屋質点系モデル図及び諸元

標高		層厚	単位体積		せん断波	初期せん断
T.M.S.L.	፲ ዞ ድድ		重量	ポアソン比	速度	弾性係数
	地頁	Н	γ	ν	Vs	G ₀
(m)		(m)	(kN/m^3)		(m/s)	(kN/m^2)
+12.0		4.0	17.9	0.41	140	34,600
+8.0	砂層	4.0	17.9	0.40	170	54,900
+4.0		4.0	17.9	0.40	200	69,600
0.0	安田層	9.0	17.5	0.48	310	171,000
-9.0		51.0	16.7	0.45	490	409,000
-60.0	西山層	40.0	17.2	0.44	560	550,000
-100.0		34.0	18.0	0.43	610	683,000
-134.0	(解放) 基盤)	-	19.9	0.42	710	1,020,000

表 2.2-1 地盤モデル

2.3 既工認モデルからの変更点

2.3.1 既工認モデルからの変更点について

5号炉原子炉建屋については、既工認で耐震計算書を添付しているが、今回工認においては地震応答解析モデルを一部見直す予定である。地震応答解析モデルにおける主要な変 更点を表 2.3-1 に示す。

採用予定の項目のうち,補助壁については,設計時には耐震要素として考慮していなかった壁のうち,規格規準に適合する壁を新たな耐震要素として選定するものであることから,5号炉原子炉建屋の地震応答解析モデルにも適用可能な項目であると考えられる。詳細については後述する。

また、5号炉原子炉建屋は、既工認時は設計基準強度に基づくコンクリート剛性を用いて いたが、今回工認では、6、7号炉と同様に強度試験データに基づく実強度を採用する。た だし、5号炉原子炉建屋は6、7号炉各建屋とは設計基準強度が異なるため、5号炉原子炉 建屋としての強度試験データを整理した上で、コンクリート実剛性算出に使用する実強度 の数値を検討する。

なお、建屋地盤相互作用効果を考慮するための地震応答解析モデルとして、既工認では、 格子型モデル(多質点系並列地盤モデル)を採用していたが、今回工認では、埋込みSRモ デルを採用する。埋込みSRモデルは、「JEAG4601-1991」に基づき設定するものであり、 柏崎刈羽原子力発電所3、4、6、7号炉原子炉建屋等の既工認で採用実績のあるモデルであ ることから、技術的な論点とはならない変更点であると考えている。

また、表 2.3-1 で示した主要な変更点以外の変更点としては、「建屋の弾塑性解析」及び 「表層地盤の埋込み効果の無視」が挙げられる。「建屋の弾塑性解析」については、既工認 では採用していないが、「JEAG4601-1991」に基づき採用するものであり、妥当性・適用 性が確認されている項目であると判断している。また、「表層地盤の埋込み効果の無視」に ついては、地震動レベルの増大を踏まえその効果を無視するとしたものである。これらの2 項目については、6、7 号炉の地震応答解析モデルで採用を予定しており、主要な論点とは なっていないことから、ここでも主要な変更点としては抽出しないこととした。

項目	既工認	既工認 今回工認	
耐震要素 (建屋壁) のモデル化	外壁などの主要な壁 のみモデル化	左記に加え,考慮可能 な壁(補助壁)を追加 でモデル化	6,7 号炉原子炉建屋,タ ービン建屋等の地震 応答解析モデルで採 用予定の項目。
建屋コンクリート 剛性	設計基準強度 (240kg/cm ²)に基 づく剛性を使用	コンクリート実強度 に基づく剛性を使用	一上
地震応答解析 モデル	格子型モデル	埋込み SR モデル	同上

表 2.3-1 5 号炉原子炉建屋 地震応答解析モデルの主要な変更点

2.3.2 考慮する補助壁について

補助壁の選定基準の設定にあたっては、先行審査を含む既工認で適用実績のある規準である、日本建築学会:「原子力施設鉄筋コンクリート構造計算規準・同解説(2005)」(以下, RC-N規準という)を参考とし、表 2.3-2 に示す選定条件を設定することとする。

また,地震応答解析で用いる解析モデルへの反映方針としては,「JEAG4601-1991」に おけるスケルトン評価法のベースとなった実験の内容や耐震壁と補助壁の違い(鉄筋比, 直交壁の有無)を踏まえ,補助壁のせん断スケルトンカーブとしては第1折れ点で降伏す る完全弾塑性型とし,曲げスケルトンとしては補助壁の剛性を無視する保守的な設定とす る。

なお、実際の地震応答解析は、複数の耐震壁と補助壁のスケルトンカーブを軸毎に集約 した合算後のスケルトンカーブを用いて解析を実施している。スケルトンカーブの集約方 法を図 2.3-1 に示す。

以上で説明した補助壁の選定方針及び地震応答解析モデルへの反映方針は, 6, 7 号炉原 子炉建屋等で採用する補助壁の取り扱いと同一であり,全ての既設建屋に適用可能な手法 であると考えられることから,5号炉原子炉建屋に対して適用することは妥当であると判 断した。

なお、柏崎刈羽原子力発電所では、鉄筋コンクリート造建物の躯体について、躯体の健 全性維持の観点から、社内マニュアル[※]に基づく定期点検を実施しており、補助壁を含めた 全ての壁が維持管理の対象となっていることから、耐震要素として補助壁を新たに考慮し た場合についてもこれまでと同様の維持管理を実施することで特段の支障は生じないもの と考えられる。

※NE-55-7「原子力発電所建築設備点検マニュアル」

項目	RC-N 規準 (算定外の規定)	補助壁の選定条件	
際国、内江古さ	・壁の厚さは 200mm 以上,かつ壁の	・壁の厚さは 300mm 以上,かつ壁の	
型字・内伝筒さ	内法高さの 1/30 以上	内法高さの 1/30 以上	
	・壁のせん断補強筋比は、直交する各		
ぜん断補強筋比	方向に関し,それぞれ 0.25%以上	同左	
	・複筋配置		
壁筋	・D13 以上の異形鉄筋を用い,壁の見	同左	
	付面に関する間隔は 300mm 以下		
		 下階まで壁が連続している、もしく 	
その他条件		は床スラブを介して壁に生じるせん断	
		力を下階の耐震壁に伝達できる壁	
		・フレーム構面外でも上記を満たす壁	

表 2.3-2 補助壁の選定条件

図 2.3-1 スケルトンカーブの算定フロー

表 2.3・2 で示した考え方に基づき,耐震要素として考慮する補助壁の選定を実施した。 既工認で考慮していたせん断断面積(耐震壁のみ)と今回工認で考慮するせん断断面積 (耐震壁+補助壁)について整理した結果を表 2.3・3 に示す。

	NS 方向		EW 方向		
階	既工認	今回工認	既工認	今回工認	
	(耐震壁)	(耐震壁+補助壁)	(耐震壁)	(耐震壁+補助壁)	
CRF	42.6	42.6	54.5	54.5	
$4\mathrm{F}$	61.0	61.0	67.6	67.6	
3F	295.8	336.1	299.8	396.5	
$2\mathrm{F}$	335.8	411.7	344.4	429.9	
$1\mathrm{F}$	484.0	566.6	462.7	521.4	
B1F	570.7	702.2	602.1	766.7	
B2F	658.6	837.9	661.1	816.6	
B3F	724.3	919.7	740.8	951.2	
B4F	802.2	1079.7	805.4	1033.9	

表 2.3-3 K5R/B 既工認と今回工認のせん断断面積の整理表(単位:m²)

2.3.3 5号炉原子炉建屋の地震応答解析に採用するコンクリート実剛性について

今回工認においては、6・7 号炉原子炉建屋、同タービン建屋、コントロール建屋、廃棄 物処理建屋について、地震応答解析においてコンクリート実剛性を採用する予定である。5 号炉原子炉建屋についても、地震応答解析においてコンクリート実剛性を採用する予定で あるが、6、7 号炉原子炉建屋等とは設計基準強度が異なることから、5 号炉原子炉建屋と しての建設時の強度試験データを整理した上で、コンクリート実剛性算出に使用する実強 度の数値を検討する。

5 号炉原子炉建屋の 28 日強度の統計値を表 2.3・4 に示す。本統計値は,5 号炉原子炉建 屋の各階,各部位ごとに打設の際に採取した供試体から得られており,十分な数のデータ から算出されているため,建屋コンクリートの平均的な 28 日強度を推定する統計値として 妥当性・信頼性を有していると考えられる。コンクリートは一般的に強度が安定した後も 緩やかに強度が増進する傾向があると言われているが,ここでは保守的に 28 日以降の経年 によるコンクリート強度の増進効果を無視することとし,地震応答解析で採用するコンク リート実剛性の設定にあたっては、28 日強度の平均値である 328kg/cm²を保守的に評価し て有効数字 3 桁を切り下げ, 320kg/cm² (31.3N/mm²) という値を用いることとした。地 震応答解析に採用するコンクリート物性値を表 2.3・5 に示す。

なお、本項目で設定したコンクリート実強度は、解析で用いるコンクリート部の剛性算 出のために使用する値であり、応力解析で用いるコンクリートの許容値としては、従来の 計算と同様に設計基準強度を採用する方針である。

表 2.3-4 K5RB の 28 日強度統計値

28 日強度平均値 (kg/cm ²)	328
標準偏差 (kg/cm ²)	33
最小值 (kg/cm ²)	245
最大値 (kg/cm ²)	421
標本数	772

表 2.3-5 地震応答解析に採用するコンクリート物性値

コンクリート実強度	$320 kg/cm^2$ (31.3N/mm ²)
ヤング係数	$2.48 imes10^4$ N/mm 2
せん断弾性係数	1.03×10^4 N/mm ²

3. 緊急時対策所の耐震評価の見通しについて

3.1 影響検討の方針

本検討では、2.2 で示した地震応答解析モデルを用いて、基準地震動 Ss による地震応答 解析を実施し、5 号炉原子炉建屋の耐震安全性を概略的に確認する。本検討は概略検討であ るため、検討に用いる地震動としては、図・3.1.1 に示す基準地震動 Ss-1~7 の応答スペクト ルを踏まえ、建屋応答への影響が大きいと考えられる基準地震動 Ss-1 を代表波として選定 する。基準地震動 Ss-1 の加速度時刻歴波形を図 3.1-2 に示す。

耐震安全性への影響確認に当たっては,最大接地圧が地盤の極限支持力を超えないこと を確認する。また,支持機能の維持については,最大せん断ひずみが許容限界を超えない ことを確認する。

緊急時対策所遮蔽の構造強度については,最大せん断ひずみが許容限界を超えないこと を確認する。

また,遮蔽性及び支持機能の維持については,最大せん断ひずみが許容限界を超えない ことを確認する。

各要求機能に対する許容限界は表 3.1-1 の通り設定する。

図 3.1-1 基準地震動の応答スペクトル (大湊側・水平方向)

図 3.1-2 加速度時刻歷波形(基準地震動 Ss-1H)

要求機能	機能設計上の 性能目標	地震力	部位	機能維持の ための考え方	許容限界 (評価基準 値)
構造強度を有		基準地震動	耐震壁 (緊急時対策所遮 蔽)	最大せん断ひずみが 構造強度を確保する ための許容限界を超 えないことを確認	最大せん断 ひずみ 2.0×10 ⁻³
		08		最大接地圧が地盤の	極限支持力度
		基礎地盤	支持力度を超えない	4,412kN/m ²	
				ことを確認	$(450t/m^2)$
気密性 (注1)	換気機能とあ いまって気密 機能を維持す ること		_	_	_
遮蔽性	遮蔽体の損傷 により遮蔽性 を損なわない こと	基準地震動 Ss	耐震壁 ^(注2) (緊急時対策所遮 蔽)	最大せん断ひずみが 遮蔽性を維持するた めの許容限界を超え ないことを確認	最大せん断 ひずみ 2.0×10 ⁻³
支持 機能 (注3)	 機器・配管系等 の設備を支持 する機能を損 なわないこと 	基準地震動 Ss	耐震壁 (注2)	最大せん断ひずみが 支持機能を維持する ための許容限界を超 えないことを確認	最大せん断 ひずみ 2.0×10 ⁻³

表 3.1-1 地震応答解析による評価における許容限界(重大事故等対処施設としての評価)

(注 1) 気密性については、原子炉建屋のコンクリート躯体とは別に設置される鋼製の高気密室により機能を維持する 方針である。

(注 2) 建屋全体としては、地震力を主に耐震壁で負担する構造となっており、柱、梁、間仕切壁等が耐震壁の変形に 追従すること、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑え られるため、各層の耐震壁が最大せん断ひずみの許容限界を満足していれば、建物・構築物に要求される機能 は維持される。

(注3)「支持機能」の確認には、「内包する設備に対する波及的影響」の確認が含まれる。

3.2 地震応答解析結果

基準地震動 Ss-1 による最大応答値を、それぞれ図 3.2-1~6 に示す。

図 3.2-3 最大応答せん断力 NS 方向

図 3.2-5 最大応答曲げモーメント NS 方向

3.3 耐震安全性評価結果

基準地震動 Ss-1 による地震応答解析結果に基づく接地圧は NS 方向で 2,060kN/m², EW 方向で 2,061kN/m² であり,設置地盤の極限支持力 4,412kN/m² (450tf/m²) に対して十分 な余裕がある。

基準地震動 Ss-1 による最大応答せん断ひずみ一覧を図 3.3-1 及び図 3.3-2 に,最大応答 をせん断スケルトン曲線上にプロットした結果を図 3.3-3~図 3.3-11 に示す。これより, 建屋各階の応答は,評価基準値(2.0×10⁻³)を満足することが確認できる。また,緊急時対策 所遮蔽に該当する部位を含む層(3階)の応答はせん断スケルトン曲線上の第1折れ点以下 であり,概ね弾性状態であることが確認出来る。

図 3.3-3 せん断スケルトン曲線上へのプロット (CRF)

図 3.3-4 せん断スケルトン曲線上へのプロット (4F)

図 3.3-5 せん断スケルトン曲線上へのプロット (3F*)

※緊急時対策所遮蔽を含む部位

図 3.3-6 せん断スケルトン曲線上へのプロット (2F)

図 3.3-7 せん断スケルトン曲線上へのプロット (1F)

図 3.3-8 せん断スケルトン曲線上へのプロット(B1F)

図 3.3-9 せん断スケルトン曲線上へのプロット(B2F)

図 3.3-10 せん断スケルトン曲線上へのプロット(B3F)

図 3.3-11 せん断スケルトン曲線上へのプロット(B4F)

4. まとめ

建屋内に緊急時対策所が設置される予定の柏崎刈羽原子力発電所5号炉原子炉建屋について、今回工認の耐震評価に用いる動解モデルを示した上で、既工認モデルからの変更点を整理し、その妥当性を確認した。

また,基準地震動 Ss に対する 5 号炉原子炉建屋の耐震成立性を確認することを目的として,基準地震動 Ss-1 による地震応答解析を実施した。その結果,5 号炉原子炉建屋の応答が評価基準値を満足することを確認した。

詳細な評価結果は、今回工認の時点で示すこととするが、今回の地震応答解析結果から は、重大な課題が存在するとは考えられない。

以上

参考資料-1 5号炉原子炉建屋 埋込み効果を考慮することの妥当性確認

はじめに

5号炉原子炉建屋の地下部建屋側面と地盤の接触面積比を確認することで,動解モデル において埋込み効果(側面水平ばね)を考慮することの妥当性を確認する。

地盤接触面積比による埋込み効果を考慮することの妥当性確認

表-1 に、図面を元に計算した5号炉原子炉建屋の地盤と建屋の接触面積比率を示す。4 面の建屋・地盤の接触面積比(地盤と接している壁面積/地中外壁面積)を平均化した場合の 接触地盤面積比は86.0%であった。

「JEAG4601-1991」において引用されている「建屋埋込み効果の評価法の標準化に関す る調査報告書」^{*1}によると埋込みを見込むためには,建屋は少なくとも三面が埋め込まれ ていることが必要であるとされている。また、「JEAC4601-2008」^{*2}において引用されて いる、「埋め込み基礎の接触状況が構造物の応答に与える影響について」^{*3}等の文献では、 建物・構築物の地下部分の大部分(3面または面積で75%以上)が周辺地盤と接している 場合には、全埋込みと同様な埋込み効果が期待できるものとされている。

5 号炉原子炉建屋は 86.0%が地盤と接していることから、埋込み効果を考慮することは 妥当であると考えられる。

	地下部表面積	接地表面積	接触面積比	洪 老
	(m^2)	(m^2)	(%)	佣芍
北側	2988	2988	100%	
				トレンチが存在するため
南側	2988	2954	98.9%	わずかに地盤と接してい
				ない部分がある。
東側	2988	2894	96.9%	同上
				西側にタービン建屋が存
西側	2988	1440	48.2%	在するため接地表面積が
				他の3面と比較し小さい
合計	11952	10276	86.0%	

表-1 地盤と建屋の接触面積比率

※1:社団法人日本電気協会 電気技術基準調査委員会 建屋埋込み効果の評価方の標準化に関 する調査報告書:昭和 62 年 6 月

※2:社団法人日本電気協会 原子力発電所耐震設計技術規定 JEAC4601-2008, 2009

※3:吉田ほか:埋め込み基礎の接触状況が構造物の応答に与える影響について 第11回日本 工学シンポジウム, pp1287-1292,2002