原子力発電所の環境放射能測定結果

(令和4年度 第2四半期)

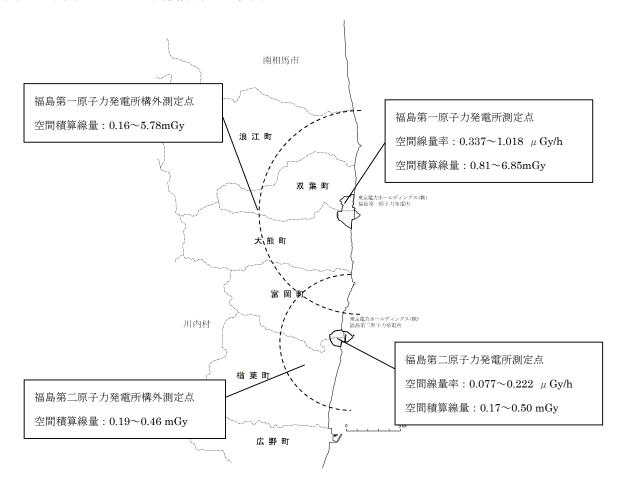
東京電力ホールディングス株式会社

福島第一廃炉推進カンパニー福島第一原子力発電所福島第二原子力発電所

目 次

第1 測定結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 1
第2 測定項目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 11
第3 測定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 15
第4 測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 19
 空間放射線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第5 原子力発電所周辺環境放射能測定値一覧表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 24
1. 空間放射線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 24
2. 環境試料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 26
福島第二原子力発電所	
1. 空間放射線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 29
2. 環境試料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 31
添付資料	
放射性廃棄物管理状況及び試料採取時の付帯データ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 34
福島第一原子力発電所	
放射性廃棄物管理状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 35
試料採取時の付帯データ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 38
福島第二原子力発電所	
放射性廃棄物管理状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 41
試料採取時の付帯データ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
空間線量率等の変動グラフ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 46
〈参考〉地下水バイパス及びサブドレン他浄化設備の処理済水の評価,排水毎の運用目標値・	
〈参考〉福島第一原子力発電所敷地境界近傍ダストモニタ指示値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 75

この報告書は、令和4年12月5日に開催された「環境モニタリング評価部会」において、令和4年度第2四半期の測定結果について報告し、検討されたものをとりまとめたものです。


第1 測定結果の概要

東京電力ホールディングス(株)福島第一原子力発電所及び福島第二原子力発電所が,令和4年度第2四半期(7月~9月)に実施した原子力発電所周辺の環境放射能測定結果は以下に示すとおりであり,福島第一原子力発電所の事故による影響を受けた空間線量率については事故前の測定値の範囲を上回り,環境試料については一部を除いて事故前の測定値の範囲を上回っておりますが,年月の経過とともに減少する傾向にありました。

1 空間放射線

- 〇空間線量率については、福島第一原子力発電所及び福島第二原子力発電所ともに、今期の測定値 (月間平均値 $0.077\sim1.018\,\mu\,\mathrm{Gy/h}$) は、事故前の測定値の範囲 (月間平均値 $0.031\sim0.049\,\mu\,\mathrm{Gy/h}$) を上回っていますが、概ね前四半期と同程度の値となりました。
- ○空間積算線量(90 日換算値)については、福島第一原子力発電所及び福島第二原子力発電所と もに、今期の測定値(0.16~6.85mGy)は、事故前の測定値の範囲(0.10~0.16mGy)を上回ってい ますが、年月の経過とともに減少する傾向にありました。

※今期の空間線量率及び空間積算線量の範囲

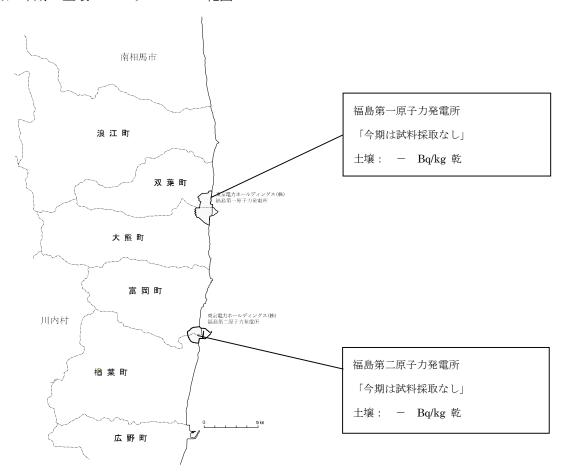
2 環境試料の核種濃度

○ 大気浮遊じん,海水,海底土,ほんだわらについて,福島第一原子力発電所で12試料,福島 第二原子力発電所で12試料について,核種濃度の調査を実施しました。

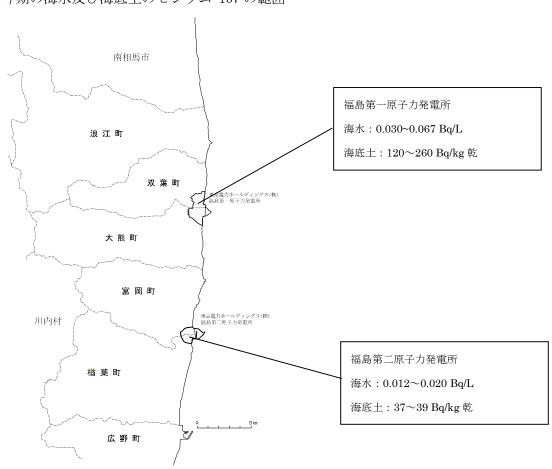
福島第一原子力発電所については、すべての試料からセシウム-137が検出され、海水を除くすべての試料からセシウム-134が検出されましたが、事故直後と比較すると低下しており、前四半期と比較すると概ね横ばい傾向にあります。


福島第二原子力発電所については、大気浮遊じんの一部を除く試料から、セシウム-137が検出され、海底土の試料からセシウム-134が検出されましたが、事故直後と比較すると低下しており、前四半期と比較すると概ね横ばい傾向にあります。ほんだわらのセシウム-137の測定値について、測定再開(令和元年)以降の最大値となっていますが、測定数が少なく測定のばらつき等があると考えられ、ほんだわらについては多年草のため、蓄積状況・濃度変化について継続して調査・監視し注視していきます。

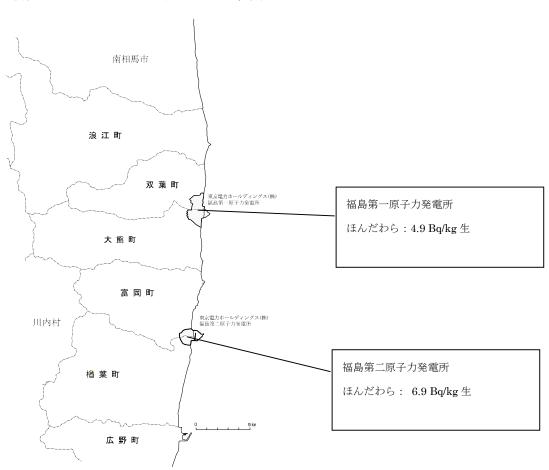
○ 海水について、福島第一原子力発電所の3試料及び福島第二原子力発電所の3試料でトリチウムの調査を実施しました。


福島第一原子力発電所の3試料のうち北放水口の1試料からトリチウムが検出されましたが、事故前の測定値と同程度の値でした。

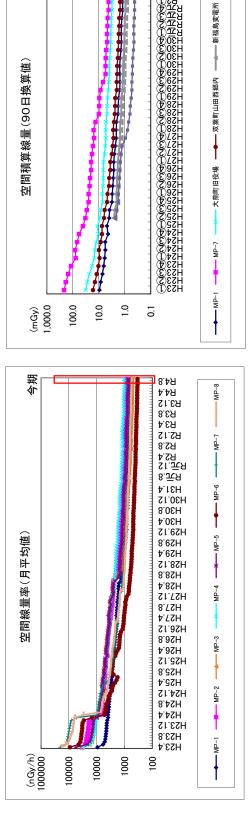
福島第二原子力発電所については、すべての試料から、トリチウムは検出されませんでした。

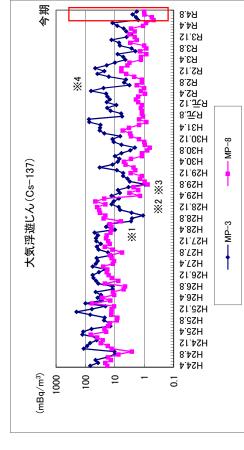

※今期の大気浮游じんのセシウム-137の範囲

※ 今期の土壌のセシウム-137 の範囲


※今期の海水及び海底土のセシウム-137の範囲

※今期の松葉のセシウム-137の範囲


※今期のほんだわらのセシウム-137 の範囲



福島第一原子力発電所 環境モニタリングトレンドグラフ(1/3)

今期

── 川添中上/原

8.4A

P4.4

8.6A \$1.6A

P3.4

R2.12

8.2A

21.元月 4.2月

8.귟Я

430.12 4.18H

8.0EH

4.0EH

H29.12

128.12 429.4 429.8

8.82H

4.82H

21.72H

8.72H

4.72H

426.4 H26.8 H26.12

H25.12

H25.8

H25.4

8.42H

H24.4

0.01

H24.12

MP-8

→ MP-3

※1:MP-3で機器本体の除染及び検出器並びに吸入配管等の取り替えによる低下(H28年3月完了) ※2:降雨により地表面からの大気浮遊じんの拡散が抑制されたことによる低下

※3:MP-8で機器本体の除染及び検出器並びに吸入配管等の取り替えによる低下(H29年3月完了)※4:MP-3については中間貯蔵施設関連作業等の影響による周辺土壌の舞い上がりによる上昇

注):機器本体や配管の除染・取り替えまでの期間は、事故時に付着した放射性物質が徐々に剥離し、検出部で計数された影響で大気浮遊じん濃度が高く推移したものと推測した。

※MP-31な H28年10月より, MP-81なH29年10月より運用開始した。

 (Bq/m^3)

8

0.10

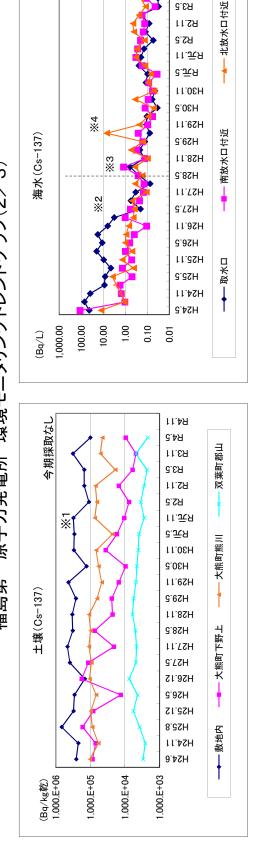
今期

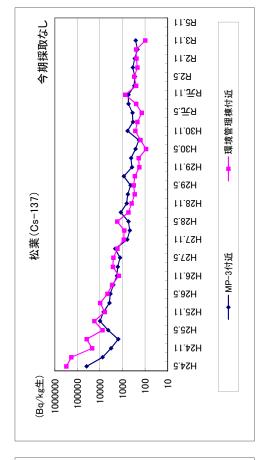
大気浮遊じん(全ベータ)

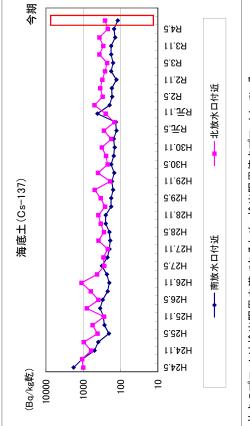
環境モニタリングトレンドグラフ(2/3) 福島第一原子力発電所

今期

R4.5

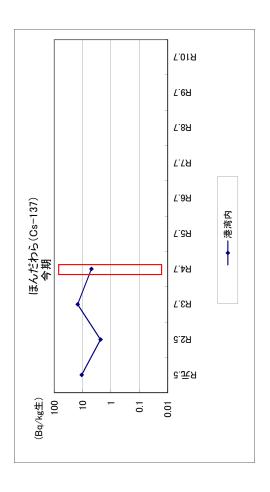

11.EA


B3.5

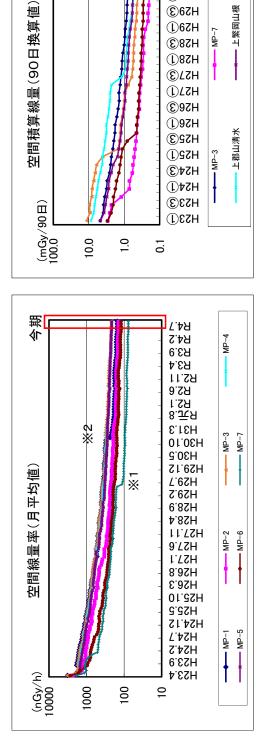

11.2A

R2.5

በ.玩Я


・白抜きのプロットは検出限界未満であるため、検出限界値をプロットしている。

・海水については、事故後は緊急時の簡易法で分析しており検出限界値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。 ※1:熊川, 郡山地点は国の中間貯蔵施設対象区域となったことにより採取箇所変更(R元年第1四半期より)


^{※5:}取水口·採取地点変更(港湾中央→港湾口: H27.5)

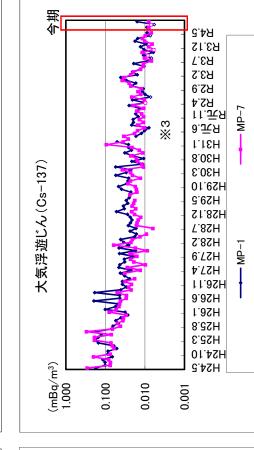
^{※3:}海水については,前回値より上昇が見られますが,試料採取日の前日までの降雨に伴う影響と考えます。(H28.9)

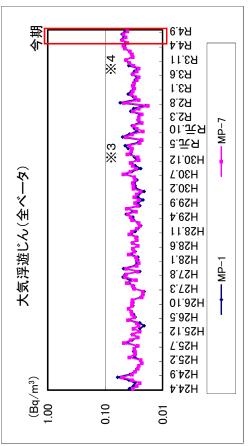
^{※4:}海水については、前回値より上昇が見られますが、試料採取日の当日の降雨に伴う影響と考えます。(H29.8)

環境モニタリングトレンドグラフ(1/3) 福島第二原子力発電所

Ľ¢Ū

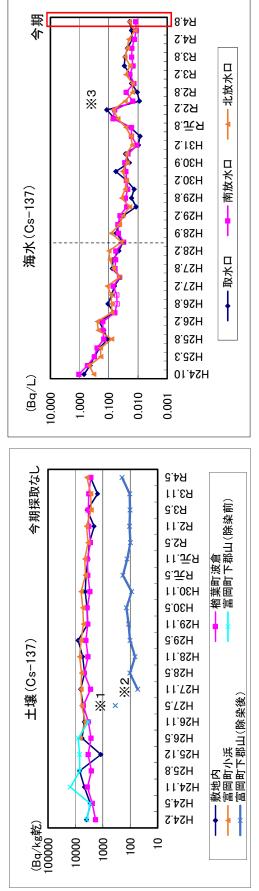
R33

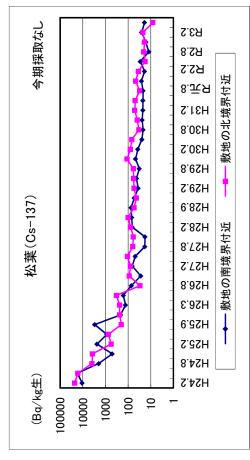

L3①

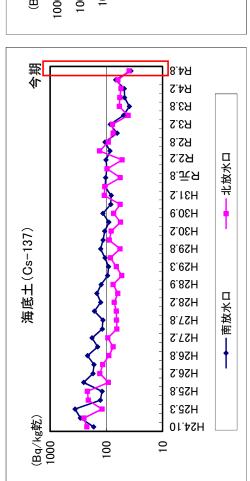

R2(3)

R2①

©**∓**Я

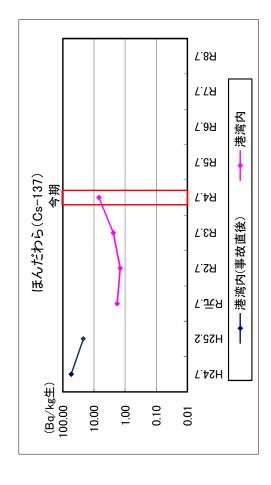

ŪѫЯ H303 H30(1) - 画面第一中学校





・自抜きのプロットは検出下限値未満であるため,検出下限値をプロットしている。 ※1:MP-7へのアクセス道路及び法面の造成工事による減少。 ※2:MP-1近傍への大気浮遊じん採取用の局舎設置工事に伴う,伐採・掘削等による減少。 ※3:局舎移設工事に伴う欠測。 ※4:令和3年9月にダストモニタ更新に伴う校正線源変更を行ったことにより,以降は機器効率の違いにより、従来の測定結果より高い値となっている。

環境モニタリングトレンドグラフ(2/3) 福島第二原子力発電所



・白抜きのプロットは検出下限値未満であるため,検出下限値をプロットしている。 ・海水については,事故後は緊急時の簡易法で分析しており検出限界値が高かったが,平成28年4月(点線)から分析方法を従来の方法に戻し,検出下限値が低下。 ※1:富岡町下郡山地点の除染作業に伴う,表土剥ぎ取りによる減少。(参考値) ※2:富岡町下郡山地点の表土剥ぎ取り後の盛土による減少。 ※3:採取前の降雨に伴う,河川からの流入量増加による指示値の変動。

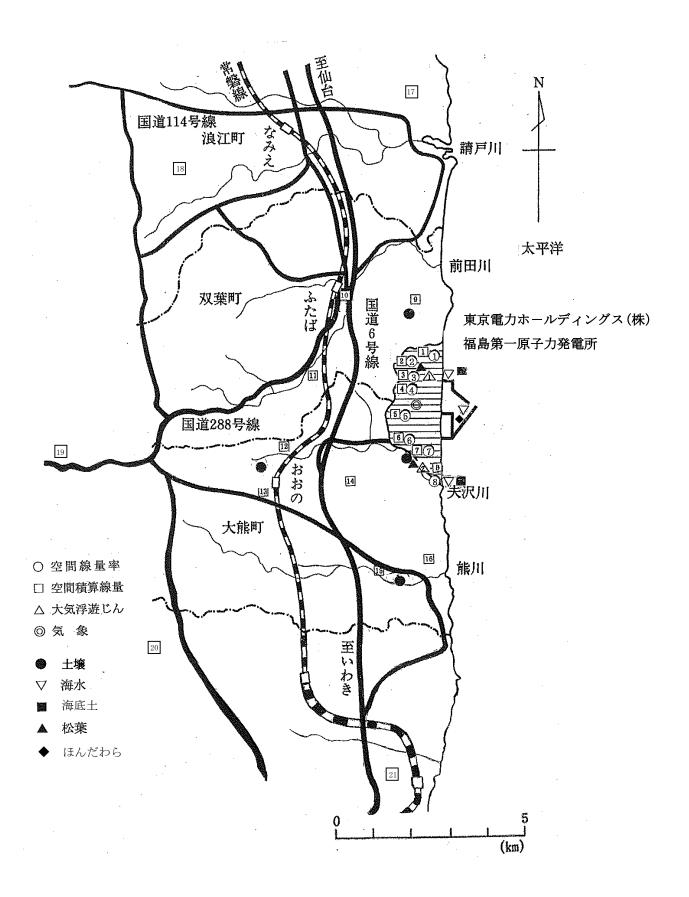
福島第二原子力発電所 環境モニタリングトレンドグラフ(3/3)

第 2 測 定 項 目

福島第一原子力発電所測定分

(令和4年7月~令和4年9月)

1 測定項目


(1)空間放射線

項目	地点数	測定頻度	実施機関
空間線量率	8	連続	東京電力ホールディングス(株) 福島第一廃炉推進カンパニー
空間積算線量	2 1	3カ月積算	福島第一原子力発電所

(2) 環境試料

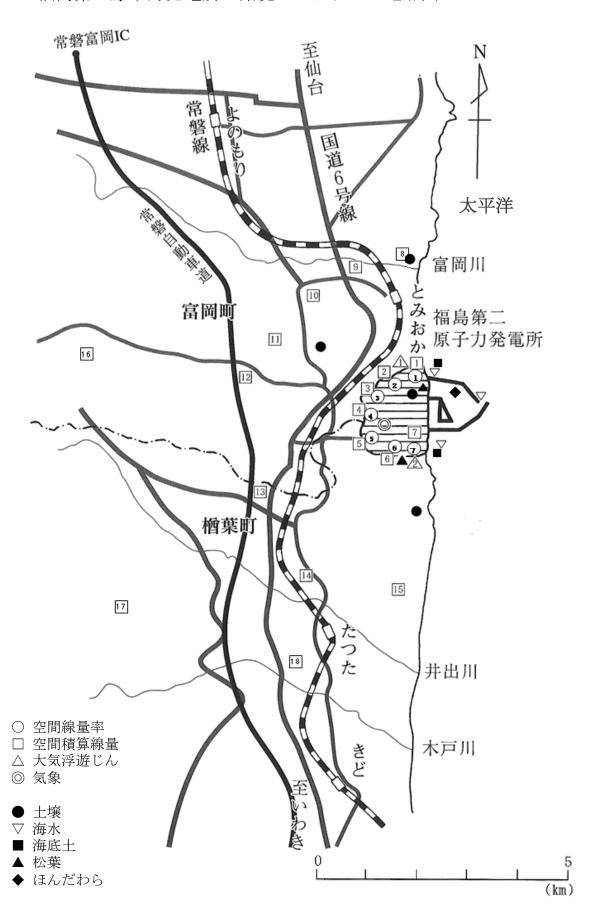
X	· 分	4.≑	料	Þ	州上米	採取頻度	採取回数			測定	試	料 数			実施機関
	<u>为</u>	記人	杆	泊	地点数	休以頻及	(今期)	γ	³ H	90Sr	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	$^{241}\mathrm{Am}$	$^{244}\mathrm{Cm}$	关
大気	ほ浮遊じん	大気	浮遊	じん	2	毎月	3	6							
海	オ	海		水	3	年4回	1	3	3						東京電力ホールディングス(株) 福島第一廃炉推進カンパニー
海	底 土	: 海	底	土	2	年4回	1	2							福島第一原子力発電所
指標	票海洋生物	ほん	だ	わら	1	年1回	1	1							

福島第一原子力発電所 環境モニタリング地点図

福島第二原子力発電所測定分

(令和4年7月~令和4年9月)

1. 測定項目


(1)空間放射線

	項目			地点数	測定頻度	実 施 機 関	
空	間	線	量	率	7	連続	東京電力ホールディングス(株)
空	間	積	算 線	量	18	3 カ月積算	福島第二原子力発電所

(2)環境試料

区	分	4 ∉	料	Þ	+ 上米	採取頻度	採取回数			浿	定試料				実	施	機	関
	2)]	B1√	14	70	地点数	休以頻及	(今期)	γ	³ H	⁹⁰ Sr	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm				
大気浮	遊じん	大気	浮遊	全じん	2	毎月	3	6									-L. 1.	
海	水	海		水	3	年4回	1	3	3						ル	·ディ (棋		
海	氐 土	海	底	土	2	年4回	1	2									第二 発電所	斤
指標海	洋生物	ほん	だ	わら	1	年1回	1	1										

福島第二原子力発電所 環境モニタリング地点図

第 3 測 定 方 法

福島第一原子力発電所測定方法

	測定項目	測定装置	測 定 方 法
			検 出 器:アルゴンガス封入式球形電離箱
			(富士電機, 高純度アルゴンガス8気圧140)
空	空間線量率	モニタリングポスト	測定位置: 地表上約1.6m
間			校正線源:Ra—226
			測 定 法:文部科学省編「蛍光ガラス線量計を用いた環境γ線量測定法」
放			(平成14年制定)
射			検 出 器: 蛍光ガラス線量計, 旭テクノグラス SC-1
	空間積算線量	蛍光ガラス線量計	測 定 器: 旭テクノグラス FGD-202
線			測定位置:地表上約1m
			校正線源: Cs-137
			測 定 法:6時間連続集じん,6時間放置後全アルファ及び全
			ベータ放射能を同時測定
	大気		集じん法:ろ紙ステップ式,使用ろ紙:HE-40T
	、 デーベー バー バー バー バー バー バー イー		吸引量:約90m ³ /6時間
	及び	ダストモニタ	検 出 器: ZnS(Ag) シンチレータとプラスチックシンチレータ
	全 ベ ー タ		のはり合わせ検出器 (Aloka ADC-121R2)
	放 射 能		採取位置:地表上約3m
			校正線源:U ₃ O ₈ 、Am-241
			測 定 法:原子力規制庁編「ゲルマニウム半導体検出器によるガンマ線
環			スペクトロメトリー」(令和2年改訂)
			大気浮遊じんは1カ月の集じんろ紙をU8容器に入れ測定。
		Ge 半 導 体 検 出 装 置	大気存近しんは1カ月の集しんつ私をU8谷器に八れ側足。 土壌・海底土は乾燥後に測定。
		世十等 平 供 山 表 直	松葉(指標植物)は生試料により測定。
	核 種 濃 度		海水は、リンモリブデン酸アンモニウム法及び二酸化マンガン
境			共沈法で処理後測定。
			ほんだわら(指標海洋生物)は乾燥試料により測定。
			測 定 器:Ge半導体検出器(ORTEC GEM35-76-LB-A-S型)
			波高分析器 (SEIKO EG&G MCA-7シリーズ(4096ch))
			測 定 法:文部科学省編「トリチウム分析法」(平成14年改訂)
試)	液体シンチレーション	海水のトリチウムは蒸留後測定。
		横 出 装 置	測 定 器:ローバックグラウンド液体シンチレーション検出装置
			(Aloka LSC-LB7型)
			測 定 法:文部科学省編「放射性ストロンチウム分析法」
	ストロンチウム -90	ローバックグラウンド	のうちイオン交換法(平成15年改訂)
	濃度	ガスフロー計数装置	測 定 器:ローバックグラウンドガスフロー計数装置 (All Inc. ADC 4000FE)
料			(Aloka LBC-4202B型) 校正線源:Sr-90
	フ゜ルトニウム -238		測 定 法:文部科学省編「放射性プルトニウム分析法」
		シリコン半導体検出器	のうちイオン交換法(平成2年改訂)
	濃度		測 定 器:ORTEC Alpha Duo 第二老機関 (/姓) ルエ) にて八七
			第三者機関((株)化研)にて分析
	アメリシウム -241		測 定 法:文部科学省編「放射性アメリシウム分析法」
	キュリウム -244	シリコン半導体検出器	のうちイオン交換法(平成2年改訂)
	濃度		測 定 器: ORTEC Alpha Duo 第三者機関 (/姓) ルアン にて八七
<u></u>			第三者機関((株)化研)にて分析

福島第二原子力発電所測定方法

	測定項目	測定装置	測 定 方 法
			検 出 器:2″φ×2″NaI(T0)シンチレーション検出器
	_ = # # = -		(富士電機,温度補償・エネルギー補償回路付)
空	空間線量率	モニタリングポスト	測定位置:地表上約1.6m
間			校正線源:Cs-137及びRa-226
			測 定 法:文部科学省編「蛍光ガラス線量計を用いた環境
放			γ線量測定法」(平成14年制定)
射		W . I. 22 - 25 - 15 - 15 - 15 - 15 - 15 - 15 -	検 出 器:蛍光ガラス線量計,旭テクノグラス SC-1
線	空間積算線量	蛍光ガラス線量計	測 定 器:旭テクノグラス FGD-202
形水			測定位置:地表上約1m
			校正線源:Cs-137
			測 定 法:6時間連続集じん,6時間放置後全アルファ及び全
			ベータ放射能を同時測定
	大 気		集じん法:ろ紙ステップ式,使用ろ紙:HE-40T
	浮遊じんの全アルファ		吸引量:約90m³/6時間
	ペのァびタ ^は がア ベ ガア ベ ガア ベ	ダストモニタ	検 出 器:プラスチックシンチレーターにZnS(Ag)
	全 ベ ー タ 放 射 能		を吹き付け塗布した検出器(HITACHI ADC-7221)
	双 豹 肥		採取位置: 地表上約3m
			校正線源:Am-241及びC1-36
			測 定 法:原子力規制庁編「ゲルマニウム半導体検出器によるガンマ線
			スペクトロメトリー」(令和2年改訂)
			大気浮遊じんは1カ月の集じんろ紙をU8容器に入れ測定。
		Ge 半 導 体 検 出 装 置	
			松葉(指標植物)は生試料により測定。
環	核 種 濃 度		海水は、リンモリブデン酸アンモニウム法及び二酸化マンガン
			共沈法で処理後測定。
			ほんだわら(指標海洋生物)は乾燥試料により測定。
境			 測 定 器:Ge半導体検出器(ORTEC GEM35-76-LB-A-S型)
			波高分析器 (SEIKO EG&G MCA-7シリーズ(4096ch))
試		ローバックグラウンド	測 定 法:文部科学省編「トリチウム分析法」(平成14年改訂)
	トリチウム	液体シンチレーション	
	濃 度	検 出 装 置	】 測 定 器:ローバックグラウンド液体シンチレーション検出装置
料			(Aloka LSC-LB7型)
			測 定 法:文部科学省編「放射性ストロンチウム分析法」
	7 1 7 1 4 4 1 00	日、水、石井二山、下	のうちイオン交換法(平成15年改訂)
	ストロンナワム -90 濃 度	ローバックグラウンドガスフロー計数装置	測 定 器:ローバックグラウンドガスフロー計数装置
			(Aloka LBC-4202B型)
			校正線源:Sr-90
	フ゜ルトニウム -238		測 定 法:文部科学省編「放射性プルトニウム分析法」
	フ゜ルトニウムー	シリコン半導体検出器	のうちイオン交換法(平成2年改訂)
	239+240 濃 度		測 定 器:ORTEC Alpha Duo
	灰 及		第三者機関((株)化研)にて分析
	7 1 1 2 4 2 044		測 定 法:文部科学省編「放射性アメリシウム分析法」
	アメリシウム -241 キュリ ウム -244	シリコン半導体検出器	のうちイオン交換法(平成2年改訂)
	濃度		測 定器: ORTEC Alpha Duo
			第三者機関((株)化研)にて分析

環境試料放射能測定方法詳細一覧表

(Cs-134、Cs-137・ストロンチウム-90・

プルトニウム-238、239+240・アメリシウム-241・キュリウム-244)

	試料名	大気浮遊じん			土壤	i								
項目	核 種	Cs-134, Cs-137	Cs-134、Cs-137	Sr-90	Pu-238	Pu-239+240	Am-241	Cm-244						
	採取方法	ダストモニタによる連続採取 ・採取位置:地表上約3m		採取は採取器などを用い、裸未耕土の表層深さ(0mmから50mm)から一地点あたり5~6箇所より、採取する。										
	採取容器等	ろ紙(HE-40T)			採土暑	1								
試料採取	採取量	11,000m ³ 程度	福島第二:10%2程度 福島第二:3%8程度											
	現場での前処理 (酸などの薬品添加 を実施しているか)	なし		ti										
	採取器具のコンタミ 防止 (試料採取器具を適 切に使用している か)	試料毎に分けて採取している。		福島第一 採土器を地点毎に用意し、使用している。 福島第二 採土器は共用している。なお、採取の都度、洗浄を行っている。										
	方法	1ヶ月分の集じんろ紙の集じん箇 所を打ち抜き型を用いて打ち抜き、U8容器に収納する。	105°Cに調整した乾燥機で乾燥し放冷 し、インクリメント縮分方法により縮分 する。	105℃に調整した乾燥機で乾燥 し放冷し、インクリメント縮分方 法により縮分した試料を用いて イオン交換法。	105℃に調整した乾燥機で乾燥 し放冷し、インクリメント縮分方 法により縮分した試料を用いて イオン交換法。	105℃に調整した乾燥機で乾燥 し放冷し、インクリメント総分方 法により総分した試料を用いて イオン交換法。	105℃に調整した乾燥機で乾燥 し放冷し、インクリメント縮分方 法により縮分した試料を用いて イオン交換法。	105℃に調整した乾燥機で乾燥 し放冷し、インクリメント縮分方 法により縮分した試料を用いて イオン交換法。						
前処理	分取、縮分の代表 性 (高濃度試料分析の 際に、試料を分取し て測定している場 合)	50¢ミリの円の中心から47¢ミリ を打ち抜き、88.36%を採取する。 ろ紙には均一に採取されている。		1地点当たり数箇所から採	採取した試料を混合し、さらに、その試料から均等に分取している。(インクリメント縮分法)									
	前処理でのコンタミ防止とその確認法	・打ち抜きに使用する器具は、地 点ごとに分けて使用している。 ・心路容器は、新品を使用しラッピ ングしている。 ・定期的に、施設の汚染確認を行 い、問題ないことを確認している。	・試料毎に、U8容器は新品を使用し ラッピングしている。 ・定期的に、施設の汚染確認を行い、 問題ないことを確認している。	・試料毎に、ステンレス皿は新品を使用している。 ・定期的に、施設の汚染確認を 行い、問題ないことを確認している。	・分取、総分については、地点ご と機材を使い分けを実施しコン タミ防止している。 ・使用する機材について確実な 洗浄を行っている。 ・電着坂については、新品の物 を使用している。	・分取、総分については、地点ご と機材を使い分けを実施コン タミ防止している。 ・使用する機材について確実な 洗浄を行っている。 ・電着坂については、新品の物 を使用している。	・分取、縮分については、地点ご と機材を使い分けを実施コン タミ防止している。 ・使用する機材について確実な 洗浄を行っている。 ・電着坂については、新品の物 を使用している。	・分取、縮分については、地点ご と機材を使い分けを実施しコン タミ防止している。 ・使用する機材について確実な 洗浄を行っている。 ・電着坂については、新品の物 を使用している。						
	測定装置	Ge半導体検出装置	Ge半導体検出装置	ローバックグラウンドガスフロー 計数装置		シリコン半	· 導体検出器	•						
	測定試料状態	生	乾土	鉄共沈物	イオン交換分離溶液 (電着用試料)	イオン交換分離溶液 (電着用試料)	イオン交換分離溶液 (電着用試料)	イオン交換分離溶液 (電着用試料)						
	測定容器	U8容器	U8容器	ステンレス皿(25mm¢)	電着板 ステンレス銅製(35mm ϕ)	電着板 ステンレス銅製(35mm φ) ステンレス銅製(35mm φ		電着板 ステンレス鋼製(35mm ϕ)						
	供試料量	測定吸気量:約90m³/6h (ろ紙枚数:約124枚)	約100g	100g	\$950g									
測定	測定時間	80,000秒	福島第一 (敷地内) 1,000秒 (その他) 3,600秒 福島第二 3,600秒	3,600秒	80,000₩									
	測定下限値	福島第一 Cs-134:0.0067~0.014mBq/m3 Cs-137:0.0072~0.014mBq/m3 福島第二 Cs-134:0.0050~0.0069mBq/m3 Cs-137:0.0047~0.0074mBq/m3	福島第一 Cs=134:10~200Bq/kg乾 Cs=137:11~190Bq/kg乾 福島第二 Cs=134:2.5~12Bq/Kg乾 Cs=137:2.3~12Bq/Kg乾	福島第一 0.22~0.29Bq/kg乾 福島第二 0.19~0.20 Bq/kg乾	福島第一 0.012~0.017Bq/kg乾 福島第二 0.012~0.014Bq/kg乾	福島第一 0.011~0.015Bq/kg乾 福島第二 0.011~0.015Bq/kg乾	福島第一 0.011~0.014Bq/kg乾 福島第二 0.011~0.015Bq/kg乾	福島第一 0.012~0.013Bq/kg乾 福島第二 0.012~0.015Bq/kg乾						
	測定におけるコンタ ミ防止とその確認法	定期的にGe半導体検出器においてBG測定を行い、汚染のないことを確認している。	定期的にGe半導体検出器において BG測定を行い、汚染のないことを確 認している。	試料毎に新品のステンレス皿を 使用し、検出器の汚染について は、測定時にBG測定を行って いる。	試料毎に新品の電着坂を使用 している。また、検出器の汚染 については、BG測定を行ってい る。	試料毎に新品の電着坂を使用 している。また、検出器の汚染 については、BG測定を行ってい る。	試料毎に新品の電着坂を使用 している。また、検出器の汚染 については、BG測定を行ってい る。	試料毎に新品の電着坂を使用 している。また、検出器の汚染 については、BG測定を行ってい る。						
	使用線源	Co-58,60,Mn-54, Ba-133,Cs-137	Co-58,60,Mn-54, Ba-133,Cs-137	Sr-90	Pu-242	Pu-242	Am-243	Am-243						
	C/138886	日本アイソトープ協会製造のJCS これによりトレーサビリティを担保	校正証明書付きの標準線源を使用している。	ている。	NIST証明書付の標準	溶液を使用している。	Dakks証明書付の標準	■溶液を使用している。						
校正	線源校正頻度	(納入時)体積線源で幾何効率校 正。コイン線源で計数効率校正。 (半年毎)コイン線源で計数効率校 正。	(納入時)体積線源で幾何効率校正。 (納入時)メーカーにて効		1回/年エネルギー校正を実施 している。	1回/年エネルギー校正を実施 している。	1回/年エネルギー校正を実施 している。	1回/年エネルギー校正を実施 している。						
	BG測定頻度	1回/月 200,000秒	福島第一 1回/月 50,000秒 福島第二 1回/月 200,000秒	測定の都度	本業務開始前 及び1回/月	本業務開始前 及び1回/月	本業務開始前 及び1回/月	本業務開始前 及び1回/月						
	備考	【福島第一】 平成29年9月より測定時間変更 (3800秒-80000秒)	【福島第一,福島第二】	【福島第一、福島第二】 平成25年度より測定を再開	【福島第一、福島第二】 平成26年度より測定を開始									

項目	試料名		海水		海;		松葉	ほんだわら
T T	核種	Cs-134、Cs-137	H-3	Sr-90	Cs-134, Cs-137	Sr-90	Cs-134, Cs-137	Cs-134, Cs-137
	採取方法		表面水をポリ容器に汲み取り境 搾し、2Lポリ容器に分取する。 分取する。		採取地点で波打ち際の海砂を スコップ等により、ビニール袋に 採取する。	採取地点で波打ち際の海砂を スコップ等により、ビニール袋に 採取する。	採取地点付近にある樹木より2年業を 採取する。	採取地点付近にあるほんだわらを採取する。 (種類:ほんだわら又はまめだわら)
	採取容器等	キュービテナー	ポリビン	キュービテナー	ビニール袋	ビニール袋	ビニール袋	ビニール袋
試料採取	採取量	40L	2L	40L	1kg程度	1kg程度	0.1kg程度	2kg程度
	現場での前処理 (酸などの薬品添加 を実施しているか)	海水1Lに対し1mLの 濃塩酸を添加	なし	海水1Lに対し1mLの 濃塩酸を添加	なし	なし	なし	なし
		毎に新品の容器を使用し、試料	採取容器については、採取地点 毎に新品の容器を使用し、試料 水にて共洗いを実施している。	採取容器については、採取地点 毎に新品の容器を使用し、試料 水にて共洗いを実施している。	福島第一 採泥器は地点毎に用意し、使用 している。 福島第二 採泥器は共用している。なお、 採泥器の都度、洗浄を行ってい る。	福島第一 採泥器は地点毎に用意し、使用 している。 福島第二 採泥器は共用している。なお、 採取の都度、洗浄を行ってい る。	採取地点毎に新品の袋に採取している。	新品の袋に採取している。
		リンモリブデン酸アンモニウム法 及び二酸化マンガン共沈法	減圧蒸留法	イオン交換法	105℃に調整した乾燥機で乾燥 し放冷し、インクリメント縮分方 法により縮分する。	105°Cに調整した乾燥機で乾燥 し放冷し、インクリメント総分方 法により総分した試料を用いて イオン交換法。	はさみを使用し、細かく切断しU8容器 に収納する。 (灰化せず生状態で測定)	・ほんだわらを水洗いし、虫やゴミ等を除去する。 ・洗濯ネットに入れ、洗濯機で脱水する。
前処理	分取、縮分の代表 性 (高濃度試料分析の 際に、試料を分取し て測定している場 合)	20Lキュービテナー2本から15L ずつ分取。	1Lポリビンより上澄水100mLを 分取。	用。	た試料を混合し、さらに、その試	た試料を混合し、さらに、その試	探取した約100gの松葉から、 U8容器に40gを分取している。	・脱水後、ほんだわらをステンレスバット に500g相当を入れ105°でで一晩乾燥 する。 ・乾燥ほんだわらをミキサーで粉砕し 8容器に充填する。 「試料は複数の個体から少量ずつ分 提し、はさみで切る、その後十分混合し てから定量を各容器充填する。】
	前処理でのコンタミ 防止とその確認法	・試料毎に、U8容器は新品を使用しラッピングしている。 ・定期的に、施設の汚染確認を 行い、問題ないことを確認している。	・試料の処理前に、使用する器 具の洗浄と乾燥を実施してい る。 ・定期的に、施設の汚染確認を 行い、問題ないことを確認してい る。	を使用している。 ・定期的に、施設の汚染確認を	・試料毎に、U8容器は新品を使用しラッピングしている。 ・定期的に、施設の汚染確認を 行い、問題ないことを確認している。	を使用している。 ・定期的に、施設の汚染確認を	・試料毎に、U8容器は新品を使用し ラッピングしている。 ・定期的に、始後の汚染確認を行い、 問題ないことを確認している。	・U8容器は、新品を使用しラッピングしている。 ・定期的に、施設の汚染確認を行い、問題ないこと を確認している。
	測定装置		ローバックグラウンド液体シンチ レーション検出装置	ローバックグラウンドガスフロー 計数装置	Ge半導体検出装置	ローバックグラウンドガスフロー 計数装置	Ge半導体検出装置	Ge半導体検出装置
	測定試料状態	リンモリブデン酸アンモニウムと 二酸化マンガンの混合物	液体シンチレーション混合物	鉄共沈物	乾土	鉄共沈物	生	乾燥物
	測定容器	B容器	100mlバイアル	ステンレス皿(25mm φ)	U8容器	ステンレス皿(25mm φ)	U8容器	U8容器
	供試料量	約30L	50ml	40L	約100g	100g	約 40g	約500g
測定	測定時間	80,000秒	30,000秒	3,600秒	80,000秒	3,600秒	10,000秒	80,000秒
	測定下限値	Cs-137:0.0012~0.0016Bq/L 福島第二	福島第二	福島第一 0.00042~0.00044Bq/L 福島第二 0.00043~0.00046Bq/L	福島第一 Cs-134:0.61~0.80Bq/kg乾 Cs-137:0.61~0.82Bq/kg乾 福島第二 Cs-134:0.53~0.61Bq/kg乾 Cs-137:0.59~0.71Bq/kg乾	福島第一 0.1984/kg乾 福島第二 0.18~0.19Bq/kg乾	福島第一 Cs-134:3.9~4.3Bq/kg生 Cs-137:4.3~4.8Bq/kg生 福島第二 Cs-134:3.5~4.2Bq/kg生 Cs-137:4.1~4.5Bq/kg生	福島第一 Cs-134:0.17Bq/kg 生 Cs-137:0.23Bq/kg 生 福島第二 Cs-134:0.18Bq/kg 生 Cs-137:0.20Bq/kg 生
	測定におけるコンタ ミ防止とその確認法	定期的にGe半導体検出器にお いてBG測定を行い、汚染のない ことを確認している。	試料毎に新品のバイアル瓶を 使用し、検出器の汚染について は、測定時にBG測定を行って いる。	試料毎に新品のステンレス皿を 使用し、検出器の汚染について は、測定時にBG測定を行って いる。	定期的にGe半導体検出器においてBG測定を行い、汚染のないことを確認している。	試料毎に新品のステンレス皿を 使用し、検出器の汚染について は、測定時にBG測定を行って いる。	定期的にGe半導体検出器において BG測定を行い、汚染のないことを確 認している。	定期的にGe半導体検出器においてBG 測定を行い、汚染のないことを確認して いる。
	使用線源	Co-58,60,Mn-54, Ba-133,Cs-137	H-3	Sr-90	Co-58,60,Mn-54, Ba-133,Cs-137	Sr-90 きの標準線源を使用している。	Co-58,60,Mn-54, Ba-133,Cs-137	Co-58,60,Mn-54, Ba-133,Cs-137
校正	1,1110.151.150.	(納入時)体積線源で幾何効率 校正。コイン線源で計数効率校 正。 (半年毎)コイン線源で計数効率 校正。	(納入時)メーカーにて効率校正。 (1年毎)メーカー点検時に密封 線源にて効率確認。	(納入時)メーカーにて効率校 正。 (1年毎)メーカー点検時に密封 線源にて効率確認。	これによりトレーサビリティを担 (納入時)体積線源で幾何効率 校正。コイン線源で計数効率校 正。 (半年毎)コイン線源で計数効率 校正。	保している。 (納入時)メーカーにて効率校正 (1年毎)メーカー点検時に密封 線源にて効率確認。	(納入時)体積線源で幾何効率校正。 コイン線源で計数効率校正。 (半年毎)コイン線源で計数効率校正。	(納入時)体積線源で幾何効率校正。コイン線源で計数効率校正。 イン線源で計数効率校正。 (半年毎)コイン線源で計数効率校正。
	BG測定頻度	1回/月 200,000秒	測定の都度	測定の都度	1回/月 200,000秒	測定の都度	福島第一 1回/月 50,000秒 福島第二 1回/月 200,000秒	1回/月 200,000秒
		【福島第一、福島第二】 甲成28年第1四半期より前処理 を再開(マリオ)ーリンモリブデ ン酸アンモニウム法及び二酸化 マンガン共沈法)	-	[福島第一,福島第二] 平成25年度より測定を再開	【福島第一、福島第二】 平成26年度より乾燥器での前処 理を再開及び測定時間変更 (3600秒→80000秒)	【福島第一、福島第二】 平成25年度より測定を再開	【福島第一】 平成20年第1四半期より測定時間変 更(3600秒-10000秒) 【福島第二】 平成20年第3四半期より測定時間変 更(3600秒-10000秒)	令和元年度より測定を再開

第 4 測 定 結 果

1. 空間放射線

(1)空間線量率

東京電力ホールディングス(株)福島第一原子力発電所敷地境界8地点,福島第二原子力発電所敷地境界7地点で電離箱検出器またはNaIシンチレーション検出器により空間線量率を常時測定しました。各地点の測定結果は以下のとおりです。

詳細な測定値は、福島第一24ページ、福島第二29ページを参照

ア. 月間平均値

各測定地点における月間平均値は、全ての地点において福島第一原子力発電所の事故(以下「事故」という。)の影響により、依然として事故前の月間平均値を上回っています。また、降雨等の影響による線量率の変動が見られますが、概ね前四半期と同程度の値となっています。

空間線量率の月間平均値

(単位:nGy/h)

	測定					過去の月間平均値	
機関名	地点数	7 月	8 月	9 月	H26∼	事故直後	事故前
福島第一	* 1	341 ~ 1,008	341 ~ 1,014	$337 \sim 1,018$	$342 \sim 4,893$	$1,785 \sim 204,134$	31 ~ 45
原子力発電所	0	事故直後の最大値と比較すると今期最大値は約1/201に減少			342 4, 693	1, 765 204, 134	31 - 45
福島第二	7	77 ~ 222	77 ~ 221	$77 \sim 219$	77 ~ 767	$274 \sim 13,695$	37 ~ 49
原子力発電所	1	事故直後の最大値と比較すると今期最大値は約1/62に減少			11 - 5 161	274 - 15, 695	31 - 5 49

(注) 1. 「過去の測定値の範囲」は,

H26~: 平成26年度から前四半期まで。

事故直後:事故後(平成23年3月11日)から平成25年度まで。

事故前:平成13年9月から事故前(平成23年3月10日)まで。

*1. 福島第一原子力発電所 MP-7, 8については,高線量率の環境下にあることから, 新たな放出によって上空を通過する放射性物質を検知しやすくするため,検出器廻りに 遮へいを設置し,地表面等からの放射線の影響を抑えています。

イ. 1時間値の変動状況

各測定地点における1時間値は、降雨等の影響による変動があるものの発電所からの放射性物質の放出などに 由来する変動はありませんでした。

また、1時間値は、従来降雨により線量率の上昇があると考えられますが、事故以降の線量の高い点においては、 降雨によって地表からの放射線が遮へいされることによる線量低下の方が大きいため、一時的に線量率が低下し、 その後の地表面の乾燥に伴って降雨前の線量レベルにまで回復する変動が見られます。

なお、線量率の下がってきた地点においては、従来通りに降雨による線量率の上昇が見られます。

空間線量率の最大値(1時間値)

(単位:nGv/h)

	測定	測定 各地点の最大値の範囲			過去の最大値			
機関名	地点数	7 月	8 月	9 月	H26∼	事故直後	事故前	
福島第一	*1	352 ~ 1,078	$352 \sim 1,057$	$345 \sim 1,061$	5, 084	327, 467	188	
原子力発電所	0	事故直後の最大値と比較すると今期最大値は約1/304に減少			5, 004	321, 401	100	
福島第二	7	97 ~ 240	102 ~ 241	89 ~ 230	795	199 000	160	
原子力発電所	1	事故直後の最大値と比較すると今期最大値は約1/755に減少			195	182, 000	162	

*1. 福島第一原子力発電所 MP-7,8については、高線量率の環境下にあることから、 新たな放出によって上空を通過する放射性物質を検知しやすくするため、検出器廻りに 遮へいを設置し、地表面等からの放射線の影響を抑えています。

(2)空間積算線量

今期間は、令和4年7月7日から令和4年10月6日までの91日間で、福島第一原子力発電所21地点、福島第二原子力発電所18地点で蛍光ガラス線量計(RPLD)により空気中の放射線量を測定しました。90日換算値は、全ての地点において事故前の最大値を上回る値が観測されました。なお、事故以降は、年月の経過とともに減少傾向にありました。詳細な測定値は、福島第一25ページ、福島第二30ページを参照

単位: (mGy/90日)

te .				714	· (moj/ 00 p)	
	測定	積算線量		過去の測定値		
LUIV PIPE A	地点数	(令和4年7月7日~	HOC -	車投声效	事补兴	
機関名		令和4年10月6日)	H26∼	事故直後	事故前	
福島第一	0.1	$0.16 \sim 6.85$	0 17 - 25 00	0 49 - 919 95	0 10 - 0 16	
原子力発電所	21	事故直後の最大値と比較すると 今期最大値は約1/46に減少	$0.17 \sim 35.00$	$0.42 \sim 312.25$	0. 10 ~ 0. 16	
福島第二	10	$0.17 \sim 0.50$	0.17	0.44 10.15	0.11	
原子力発電所	18	事故直後の最大値と比較すると 今期最大値は約1/24に減少	$0.17 \sim 3.24$	$0.44 \sim 12.15$	$0.11 \sim 0.15$	

(注) 1. 「過去の測定値」は,

H26~: 平成26年度から前四半期まで。

事故直後:事故後(平成22年度第4四半期)から平成25年度まで。

事故前:平成15年度第1四半期から事故前の平成22年度第3四半期まで。

2. 環境試料

(1) 大気浮遊じん

福島第一原子力発電所のダストモニタ(2地点)については、機器本体及びダスト吸入配管等の取り替えが完了し、MP3地点は平成28年10月から全アルファ放射能及び全ベータ放射能の連続測定を開始し、MP8地点については、平成29年10月から全アルファ放射能及び全ベータ放射能の連続測定を開始しました。

は、平成29年10月から全アルファ放射能及び全ベータ放射能の連続測定を開始しました。 福島第二原子力発電所のダストモニタ(2地点)は、平成24年度より、大気浮遊じんの全アルファ放射能及び全ベータ放射能の連続測定を開始しました。MP1地点については、平成31年2月~4月に局舎移設を行い、2地点とも令和3年9月にダストモニタの更新を行いました。

各地点の測定値は,以下のとおりです。

詳細な測定値は、福島第一26ページ、福島第二31ページを参照

ア. 月間平均値

福島第一原子力発電所の月間平均値は、いずれも事故前の月間平均値と同等であり、事故の影響による測定値の変動は見られませんでした。

福島第二原子力発電所の月間平均値は、いずれも事故前の月間平均値と同等であり、事故の影響による測定値の変動は見られませんでした。

大気浮遊じんの全アルファ放射能及び全ベータ放射能の月間平均値

(単位: Bq/m³)

		項	目	測定		月間平均値		j	過去の月間平均値	Ĩ.
機関名	•	快	Ħ	地点数	7 月	8 月	9 月	H26∼	事故直後	事故前
福島第一	放	ア ル 射	ファ 能	2	0.012~0.014	0.012~0.014	0.011~0.012	0.005~0.027	*	0.014~0.022
原子力発電所	全放	ベ 射	ー タ 能	2	0.031~0.033	0.031~0.033	0.028~0.032	0.020~0.091	*	0.028~0.039
伸 局 弗 一	放	アル 射	ファ 能	2	0.010~0.011	0.012	0.009~0.010	0.006~0.029	0.008~0.035	0.005~0.030
原子力発電所	全放	ベ 射	ー タ 能	()	0.044~0.047	0.048~0.051	0.041~0.045	0.018~0.055	0.021~0.061	0.019~0.058

(注) 「過去の測定値の範囲」は、

H26~:平成26年度から前四半期まで。(尚,福島第一原子力発電所は平成28年度第3四半期から)

事故直後:事故後(平成23年3月11日)から平成25年度まで。

事故前:平成13年から事故前(平成23年3月10日)まで。

※は測定値なし (機器周辺の空間線量が高い事及び機器本体及び吸入配管の取り替えを実施し, MP3地点は平成28年10月, MP8地点は平成29年10月から運用開始したため)

イ.変動状況

福島第一原子力発電所において最大値は、事故前の最大値と同程度でした。また、全アルファ・全ベータ放射能に相関が見られることから、変動の要因は自然放射能の影響と思われます。

ただし、一部の相関逸脱箇所については、周辺土壌の一時的な舞い上がりの影響と思われます。

福島第二原子力発電所の各地点の最大値は、事故前の最大値と同程度でした。また、全アルファ・全ベータ放射能に良い相関が見られることから、変動の要因は自然放射能の影響と思われます。

大気浮遊じんの全アルファ放射能及び全ベータ放射能の最大値

(単位: Bq/m³)

							過去の最大値	<u> </u>
	項目	測定		最大値			週去の取入他	
機関名		地点数	7 月	8 月	9 月	H26∼	事故直後	事故前
福島第一			0.11~0.12	0.059~0.078	0.056~0.070	0. 17	*	0. 17
原子力発電所	全 ベ ー タ 放 射 能		0.17~0.20	0.11~0.12	0.10~0.11	0. 65	*	0. 24
福島第二			0.088~0.091	0.049~0.062	0.045~0.061	0. 15	0. 14	0. 20
原子力発電所	全 ベ ー タ 放 射 能		0.27~0.28	0.17~0.19	0.15~0.19	0. 22	0. 23	0. 29

※は測定値なし(機器周辺の空間線量が高い事及び機器本体及び吸入配管の取り替えを実施し、MP3地点は 平成28年10月、MP8地点は平成29年10月から運用開始したため)

(2) 環境試料の核種濃度

福島第一原子力発電所が今期間に測定した環境試料は、大気浮遊じんが2地点6試料、海水が3地点3試料、海底土が2地点2試料、ほんだわらが1地点1試料の4品目で合計12試料でした。

福島第二原子力発電所が今期間に測定した環境試料は、大気浮遊じんが2地点6試料、海水が3地点3試料、海底土が2地点2試料、ほんだわらが1地点1試料の4品目で合計12試料でした。

詳細な測定値は、福島第一27~28ページ、福島第二32~33ページを参照

ア. 福島第一原子力発電所測定分

福島第一原子力発電所測定分の環境試料のうち、大気浮遊じん、海水、海底土、ほんだわらの4品目合計12試料からセシウム-137が検出され、大気浮遊じん、海底土、ほんだわらの3品目9試料からセシウム-134が検出されました。すべての試料において測定値の変動はありますが、平成26年以降の測定値の範囲内となっております。

なお、海水のトリチウムについては3試料のうち北放水口の1試料から検出されましたが、事故直後、H26~の測定値と比較すると低く、事故前の測定値と同程度の値でした。

「福島第一原子力発電所測定分」 環境試料中のガンマ線放出核種濃度

試料名	地点数	ガンマ線	測定値		過去の測定値	
此代行	地点数	放出核種	例是胆	H26∼	事故直後	事故前
大気浮遊じん	2	C s -134	0.012 ~ 0.067	0.013 ~ 18	1.7 ~ 88	ND
(mBq / m^3)	2	C s -137	$0.55 \sim 2.5$	$0.48 \sim 76$	2.6 ~ 200	ND
海水	3	C s -134	ND	ND \sim 6.0	ND \sim 76	ND
(Bq/L)	J	C s -137	$0.030 \sim 0.067$	0.031 ~ 18	ND \sim 110	ND \sim 0.003
海 底 土	2	C s -134	$3.5 \sim 7.5$	4.6 ∼ 350	110 ~ 1,200	ND
(Bq/kg 乾)	4	C s -137	120 ~ 260	130 ~ 1,100	210 ~ 1,800	ND \sim 1.2
ほんだわら	1	C s -134	0.21	$0.12 \sim 0.75$	*	ND
(Bq/kg 生)	1	C s -137	4.9	2.4 ~ 15	*	ND

※は測定値なし(令和元年度より測定再開)

(注) 1. 「過去の測定値の範囲」は、

H26~: 平成26年度から前四半期まで。

事故直後:事故後(平成23年3月11日)から平成25年度まで。

事故前:平成13年から事故前(平成23年3月10日)まで。

2. NDは検出限界未満。

「ND~(数値)」とあるのは、検出限界未満の試料と検出限界を超えて検出された試料とがあることを示し、検出された試料の中での最大値を右側に表記しました。

「福島第一原子力発電所測定分」 環境試料中のベータ線放出核種濃度

	試料名	地点数	ベータ線	測定値		過去の測定値	
	八个个	地点数	放出核種	例是但	H26∼	事故直後	事故前
海 (水 Bq/L)	3	H-3	ND \sim 0.44	ND \sim 340	ND \sim 180	ND \sim 0.67

イ. 福島第二原子力発電所測定分

福島第二原子力発電所測定分の環境試料のうち、大気浮遊じんの一部及び海水、海底土、ほんだわらの4品目合計10試料からセシウムー137が検出され、海底土の1品目2試料から、セシウムー134が検出されました。すべての試料において測定値の変動はありますが、事故直後と比較すると低く、概ね横ばい傾向にあります。ほんだわらについては、セシウムー137の測定値で測定再開(令和元年)以降の最大値となっていますが、測定数が少なく測定のばらつき等があると考えられ、ほんだわらについては多年草のため、蓄積状況・濃度変化について継続して調査・監視し注視していきます。

なお、海水のトリチウムについてはすべての試料から検出されませんでした。

「福島第二原子力発電所測定分」 環境試料中のガンマ線放出核種濃度

試料名	地点数	ガンマ線	測定値		過去の測定値	
武州石	地点剱	放出核種	例是個	H26∼	事故直後	事故前
大気浮遊じん	2	C s -134	ND	ND \sim 0.070	ND \sim 0.75	ND
(mBq / m^3)	2	C s -137	ND \sim 0.016	ND \sim 0.20	ND \sim 1.1	ND
海水	3	C s -134	ND	ND \sim 0.043	ND \sim 0.36	ND
(Bq/L)	3	C s -137	$0.012 \sim 0.020$	ND \sim 0.12	$0.079 \sim 1.1$	ND \sim 0.003
海 底 土	2	C s -134	$0.73 \sim 1.4$	$1.5 \sim 74$	41 ~ 200	ND
(Bq/kg 乾)	2	C s -137	$37 \sim 39$	39 ~ 220	92 ~ 360	ND \sim 1.5
ほんだわら	1	C s -134	ND	ND	12 ~ 35	ND
(Bq/kg 生)	1	C s -137	6. 9	$1.4 \sim 2.4$	$22 \sim 54$	ND \sim 0.060

(注) 1. 「過去の測定値の範囲」は、

H26~: 平成26年度から前四半期まで。

事故直後:事故後(平成23年3月11日)から平成25年度まで。

事故前:平成13年から事故前(平成23年3月10日)まで。

2. NDは検出限界未満。

「ND~(数値)」とあるのは、検出限界未満の試料と検出限界を超えて検出された試料とがあることを示し、検出された試料の中での最大値を右側に表記しました。

「福島第二原子力発電所測定分」 環境試料中のベータ線放出核種濃度

	試料名		地点数	ベータ線	測定値		過去の測定値	
	政府右		地点数	放出核種	例是胆	H26 \sim	事故直後	事故前
海 (Bq/L	水)	3	H-3	ND	ND	ND	ND \sim 0.77

第5 原子力発電所周辺環境放射能測定値一覧表

福島第一原子力発電所 1.空間放射線 (1)空間線量率

上段:平均值 中段:(最大値) 下段:(最小値)

> 線量率:nGy/h 測定時間:h

> > 単位:

. [直																								
	3	測定時間																								
		線量率																								
	2	測定時間																								
		線量率																								
	R5.1	測定時間																								
,	R	線量率																								
	12	測定時間																								
	1	線量率																								
	1	測定時間																								
	11	線量率																								
	10	測定時間																								
	10	線量率																								
		測定時間		720			720			720			720			720			720			720			720	
	6	線量率	582	(604)	(534)	828	(698)	(752)	528	(246)	(495)	1,018	(1,061)	(924)	724	(292)	(621)	337	(345)	(325)	288	(603)	(552)	554	(292)	(526)
	8	測定時間		744			744			744			744			744			744			744			744	
	8	線量率	969	(623)	(568)	841	(870)	(794)	533	(220)	(206)	1,014	(1,057)	(971)	728	(757)	(684)	341	(352)	(331)	290	(909)	(240)	555	(292)	(541)
	7	測定時間		744			744			744			744			744			744			744			744	
	-	線量率	989	(019)	(228)	837	(068)	(777)	282	(261)	(206)	1,008	(1,078)	(934)	912	(692)	(651)	341	(352)	(331)	589	(019)	(263)	222	(573)	(536)
	3	測定時間		715			716			720			720			720			720			720			718	
	9	線量率	699	(601)	(524)	088	(928)	(740)	930	(222)	(489)	1,003	(1,057)	(880)	902	(753)	(571)	342	(354)	(326)	889	(209)	(545)	929	(699)	(529)
	5	測定時間		744			744			741			741			740			741			741			744	
	4,	線量率	699	(288)	(540)	688	(878)	(777)	541	(226)	(514)	1,020	(1,071)	(934)	719	(757)	(644)	344	(353)	(331)	593	(809)	(262)	629	(572)	(480)
	R4.4	測定時間		720			720			720			720			720			720			720			720	
	Ré	線量率	573	(169)	(546)	849	(888)	(802)	545	(291)	(524)	1,037	(1,074)	(977)	732	(992)	(629)	346	(322)	(337)	298	(612)	(929)	292	(575)	(220)
0		定項目	- 1			- 2			- 3			- 4			- 5			9 –			2 -			8 -		
1	三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三	測定地点名	M P			M P			M P	_		M P			M P	_		M P			M P			M P		
į	/	No.	П			2			3			4			2			9			7			_∞		

注)・空間線量率の測定は高線量率モニタリングポストによる。

※点検に伴う欠測期間は下記の通り。

MP-4:令和4年5月18日 MP-8:令和4年6月10日 MP-3:令和4年5月12日 MP-7:令和4年5月30日 MP-5:令和4年5月20日 MP-6:令和4年5月25日 MP-2:令和4年6月3日 MP-1:令和4年6月1日

[・]久測時には代替測定器にて測定し、指示値に異常がないことを確認している。

[・]震災後MP-6, 7, 8については, 高線量率の環境下にあることから, 新たな放出によって上空を通過する放射性物質を検知しやすくするため,

検出器廻りに遮へいを設置し,地表面等からの放射線の影響を抑えていた。

尚,MP-6については事務棟工事などにより周辺環境の線量率が低下したことから,平成25年7月に検出器廻りの遮へいを撤去している。

福島第一原子力発電所

(2)空間積算線量

(4)	(4/工)内(1)						(単位:mG	mGy)
//		R4. 4. 7		R4.7.7				
		\sim R4.7.	7	\sim R4. 10. 6		~	?	
Š	所 通 上 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田	積算線量	画 四 数	積算線量	通 数 数	積算線量 日 日	測定積算線量	通加工数
1		1.00 (0.99)	91	0.99 (0.98)	91			
2	M P - 2	1.57 (1.55)	91	1.56 (1.54)	91			
3	M P - 3	1.00 (0.99)	91	0.99 (0.98)	91			
4	M P - 4	1.08 (1.07)	91	1.07 (1.06)	91			
2	M P - 5	1.36 (1.34)	91	1.35 (1.34)	91			
9	M P - 6	0.83 (0.82)	91	0.82 (0.81)	91			
7	M P - 7	3.47 (3.43)	91	3.44 (3.41)	91			
8	M P - 8	7.01 (6.93)	91	6.93 (6.85)	91			
_% 6	文業 町都 山 塚 ノ 腰	0.73 (0.72)	91	0.72 (0.71)	91			
10	双葉町長塚鬼木	0.58 (0.57)	91	0.57 (0.56)	91			
11	きい 西 郷	1.34 (1.33)	91	1.33 (1.31)	91			
12	53	2.87 (2.84)	16	2.84 (2.81)	91			
13		2.33 (2.31)	91	2.30 (2.27)	91			
14^{*}	* する 大和	4.34 (4.29)	91	4.29 (4.24)	91			
15	大熊町熊川緑ヶ丘	5.90 (5.84)	91	5.84 (5.78)	91			
16^{*}	大熊町熊川久麻川	4.31 (4.26)	91	4.26 (4.21)	91			
17^{*}	3#4	0.17 (0.17)	91	0.16 (0.16)	91			
18	狼江町淵蘇帶光?購	0.36 (0.36)	91	0.36 (0.36)	91			
19	6	0.81 (0.80)	91	0.80 (0.79)	91			
20	富岡町新福島変電所	0.79 (0.78)	91	0.78 (0.77)	91			
21	富岡町東京電光西源寮	0.46 (0.45)	91	0.46 (0.45)	91			
(100)	41 1				_			1

※No9:郡山堂ノ上から郡山塚ノ腰へ地点変更(国の中間貯蔵施設造成対象区域となったことによる変更:平成28年度第3四半期より) ※No14:小入野東大和久およびNo16:熊川久麻川地点については,国の中間貯蔵施設造成対象区域となったことにより測定地点変更(令和元年度第1四半期より) ※No17:北棚塩総合集会所から棚塩安養院へ地点変更(建屋解体工事が実施されることによる変更:令和3年度第1四半期より) 1. () 内は, 90日換算値。 (浜)

下段:(最大値) 上段:平均值

測定値:Bq/m³ 単位: 測定時間:h

環境試料
 大気容遊じんの全アルファ及び全ベータ放射能

1			I	ı	I
3	測定時間				
	測定値				
	測定時間				
2	遡沱筪				
.1	測定時間				
R5. 1	測定値				
12	測定時間				
1	測定値				
1	測定時間				
1	測定值				
10	測定時間				
1	測定値				
	測定時間	720	720	720	720
6	測定値	0.012 (0.070)	0.028 (0.11)	0.011	0.032 (0.10)
8	測定時間	744	744	712	712
3	測定値	0.014 (0.078)	0.031 (0.12)	0.012 (0.059)	0.033
2	測定時間	622	729	733	733
į, s	測定值	0.014 (0.11)	0.031 (0.17)	0.012 (0.12)	0. 033 (0. 20)
9	測定時間	720	720	720	720
)	測定値	0, 015 (0, 11)	0. 033 (0. 16)	0.014 (0.094)	0. 036 (0. 16)
5	測定時間	744	744	630	630
43	測定值	0.012 (0.078)	0.036 (0.15)	0.012 (0.062)	0.034 (0.11)
.4	測定時間	718	718	718	718
R4. 4	遡定値	0.014 (0.11)	0.039 (0.19)	0.013	0.036
測定年月	測定項目	全アルファ放射能	金ベータ数 射能	全アルファ放射能	全ベータ放射能
	測定地点名		MP – 3 **	38	M P N N N N N N N N N N N N N N N N N N
//	三		Σ	;	ži

※ 福島第一原子力発電所のダストモニタ: MP 3 については、写成28年10月より本連用開始。 : MP 8 については、写成29年10月より本連用開始。

・欠測時には,可機型連続ダストモニタにて測定し,指示値に異常がないことを確認している。

*点検に伴う欠測期間は下記の通り。

MP-3:令和4年4月26日, 7月21日·22日

MP-8:令和4年4月22日, 7月27日·28日

また、MP-8については,雨水浸水による機器停止に伴い,今和4年5月27日から令和4年5月31日まで欠測した。 なお,令和4年8月26日に機器停止に伴い欠測が発生したが、絶縁抵抗測定等を実施し,問題の無いことを確認できたことから,令和4年8月26日に測定を再開した。

(2)大気浮遊じんの核種濃度

껋		取	時期	510	54,4	黎2	種 59-2		濃 95.7	庚	(mBq/m ³)	/m³)	137.	1440
R4 4	_	>	RA A 30		- Mn	CO NI	orFe ND	0 0 1 1	rZr ND	qN ₂₂	reg Ku	0.95	S 3	Ce
	5. 1	· · · · ·		N	N N	N N	ND	N	ND	QN N	N QN	0.34	12	ND
	6. 1	\sim		ND	ND	ND	ND	ND	ND	ND	ND	0.052	1.6	ND
R4.	7. 1	\sim	7.	ND	ND	ND	QN	ND	QN	ND	ND	0.051	1.9	ND
R4.	8. 1	\sim 1	R4.	ΠN	ND	ND	QN	ND	QN	QΝ	ND	0.067	2.5	ND
R4.	9. 1	1 \sim	R4. 9.30	ND	ND	ND	QN	ND	ND	QN	ND	0.049	1.8	ND
R4.	i. 4. 1	1 \sim	R4. 4.30	ND	ND	ND	QN	ND	ND	ND	ND	0.035	1.1	ND
R4	. 5. 1	1 \sim	R4. 5.31	ND	ND	ND	ND	ND	ND	QN	ND	0.028	0.86	ND
R4.	6. 1	1 \sim	R4. 6.30	ND	ND	ND	QN	ND	ND	ΠN	ND	0.013	0.48	ND
R4.	. 7. 1	1 \sim	R4. 7.31	ND	ND	ND	ND	ND	ND	ΠN	ND	0.012	0.55	ND
R4.	8. 1	\sim 1	R4. 8.31	ND	ND	ND	QN	ND	ND	QN	ND	0.025	0.98	ND
R4.	. 9. 1	1 \sim	R4. 9.30	ND	ND	ND	QN	ND	ND	ΠN	ND	0.028	1.0	ND

(注) 1. 「ND」は検出限界未満である。

(3)環境試料中の核種濃度

天然		$^{40}\mathrm{K}$	330		220		200	C L	350		\	\		\	\			\	\		360	330			360	430				450
10	_	. 244Cm	分析中		分析中		分析中	1	分析中		\	\		\	\			\	\		\	\			\	\				\
	- 1	²⁴¹ Am ²	分析中 分		分析中 分		分析中分		分析甲 允		\	\		\	\			\	\		\	\			\	\				\
		²³⁹⁺²⁴⁰ Pu	分析中 5		分析中 5	_	分析中 9	+	分析中 9		/	\		/	\			\	\		/	\			/	\				\
		²³⁸ Pu ²³	分析中 3		分析中 3		分析中		分析中 ~		\	\		/	\			\	\		/	\			\	\				\
		$^{90}\mathrm{Sr}$			20		2.5	c	3.9		0.002	\		0.002	\			0.001	\		3.9	\			2.0	\				\
1	Ķ	131 I	/		/		\	\	\		\	/		\	\			\	\		/	\			\	\				\
	•	$^{3}\mathrm{H}$	/		\		\	\	\		M	N)		M	N)			0.61	0.44		/	/			/	\				\
1	送	$^{144}\mathrm{Ce}$	(N)		ON.		Ð	Ę	2		\mathbb{N}	ŒN		\mathbb{M}	Œ			Ð	(N		ON.	ND			\mathbb{N}	\square				R
4		137 Cs	100,000		9,500		45,000	000	2,200		0.081	0.030		0.074	0.042			0.12	0.067		150	120			220	260				4.9
		$^{134}\mathrm{Cs}$	3, 100		300		1,300		61		0.003	ND		0.002	ND			0.003	ND		5. 1	3.5			6. 1	7.5				0.21
排	#	¹⁰⁶ Ru	ND		N		Ø	Ę	2		M	Ø		M	N N			Ð	Ø		ND	ND			M	Ø				Ø
		qN_{g6}	(N)		ON.		Ð	Ę	2		\mathbb{N}	ŒN		\mathbb{M}	Œ			Ð	(N		(N)	ND			\mathbb{N}	\square				R
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ŀ	$^{95}\mathrm{Zr}$	ND		N		Ð	Ę	2		\mathbb{N}	N		M	N			Ð	R		ND	ND			\mathbb{N}	Ø				Ø
		$^{\rm eo}$ Co	ND		N		Ð	Ę	2		N	ON.		M	ON.			Ø	Ø		ND	M			N	Ø				Ø
	-	$^{59}\mathrm{Fe}$	ND		ND		N	Ę	2		ND	ND		ND	ND			QN	ON		ND	ND			ND	ON				QN
		58 Co	ND		ND		R	Ę	2		ND	ON		ND	ON			N N	ON		ND	ND			ND	N N				ON.
	- 1	$^{54}\mathrm{Mn}$	ND		ND		N N	Ę	2		ND	ND		ND	ND			ND	ND		ND	ND			ND	N				N)
		$^{51}\mathrm{Cr}$	ND		ND		E I	Ę	2		\	\		\	\			\	\		ND	N			ON I			_1	11	N N
	単位					Ba/kg載	- 0 1								D= /I	η/bα								Ba/kg截	tou/ka			4 1/ - 0	bq⁄ kg⁄±	Bq/kg生
	长	年月日	R4. 5.18		R4. 5.18	- 1	R4. 5.18		R4. 5.18		R4. 5.20	R4. 8.18		R4. 5.19	R4. 8. 19			R4. 5.19	R4. 8. 19		R4. 5.19	R4. 8.19			R4. 5.19	R4. 8.19				R4. 7.13
	い曲カ	地点名	圣		Lt の がみ 下	Ħ	く _ま がわ 開		におり やま 野(1	Ŕ		1 2 4 4	X			Ť	I *		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* *			4 4 4	, r.	3 付近	理棟付近	湖
	朱安岛	及び採取地点名	† 49#		坦锡半	Ę.	大熊町		AV 横	K				 東京電力ホール		ス無福島	A 一原十 力器電所		<u></u>				東京電力 ホール	ディング	ス株福島毎一屆子		<u> </u>	M P -	環境管	禄
K	せ	位	-	-	2	+	en		4			-	1			4			c	0		-	7			6	1	1	2	1
	4 XIX	部				半	(K							-	金世内					¥ ¥	の様
¥	臣					+	1								¥									革				¥	11	ほんだわ

福島第二原子力発電所 1. 空間放射線 (1)空間線量率

上段:平均值 中段: (最大値) 下段: (最小値)

線量率: n G y / h 測定時間: h

単位:

	_																					
	測定時間																					
60	線量率																					
	測定時間																					
2	線量率																					
1	測定時間																					
R5.	線量率																					
	測定時間																					
12	※ 本																					
	測定時間																					
11	線量率																					
	測定時間																					
10	線量率																					
	測定時間		720			720			720			720			720			720			720	
6	線量率	150	(157)	(137)	139	(148)	(131)	219	(230)	(203)	211	(221)	(200)	213	(220)	(208)	120	(128)	(113)	77	(68)	(74)
	測定時間		744			744			744			744			744			744			744	
∞	線量率	151	(167)	(144)	140	(163)	(135)	221	(241)	(212)	213	(231)	(202)	214	(233)	(208)	120	(142)	(113)	77	(102)	(74)
	測定時間		744			744			744			744			744			744			744	
7	線量率	150	(165)	(144)	140	(157)	(135)	222	(240)	(211)	214	(231)	(204)	214	(228)	(208)	119	(136)	(113)	77	(26)	(74)
	測定時間		720			720			720			720			720			720			720	
9	線量率	150	(162)	(138)	139	(151)	(132)	219	(237)	(200)	213	(230)	(201)	215	(225)	(207)	119	(134)	(112)	77	(91)	(73)
	測定時間		744			744			737			738			738			738			738	
5	線量率	151	(166)	(143)	140	(156)	(135)	219	(237)	(207)	214	(230)	(202)	217	(231)	(210)	120	(138)	(114)	LL	(94)	(75)
R4. 4	測定時間		713			713			720			720			720			720			720	
R4	線量率	155	(162)	(148)	142	(153)	(136)	224	(235)	(214)	217	(226)	(207)	221	(227)	(216)	123	(132)	(117)	82	(61)	(92)
測定年月	测定 地点4		$\mathrm{MP}-1$			MP-2			MP - 3			MP - 4			MP-5			MP-6			MP-7	
V	No.		I			2			3			4			5			9			7	

注)欠測時には,可搬型モニタリングポストを設置し,指示値に異常がないことを確認している。

※点検に伴う欠測期間は下記の通り。 MP-1:令和4年4月26日 MP-3:令和4年5月11日 MP-5:令和4年5月17日 MP-7:今和4年5月19日

MP-2: 令和4年4月27日 MP-4: 令和4年5月12日 MP-6: 令和4年5月18日

(2) 空間積算線量

	计可读事 医电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路	DA			T C	7				(単位:mGy	y y)
1	倒	K4. 4. \sim	4. <i>t</i> R4. 7.	7	к4. <i>(</i> .	. '. ' R4. 10.	9.	>		~	
	定 海 河 河 河 河 河 河 市 河 河 市 地 点 名	積	積算線量) 別 数	積	積算線量	侧 足 数	積算線量) 別 数	積算線量	当後
	M - P - 1	0.46	(0.45)	91	0.46	(0.46)	16				
	M P - 2	0.34	(0.34)	91	0.35	(0.35)	16				
	M P - 3	0.54	(0.53)	16	0.51	(0.50)	16				
	M P - 4	0.48	(0.48)	91	0.49	(0.48)	91				
	M P - 5	0.52	(0.51)	91	0.51	(0.50)	91				
	M P - 6	0.28	(0.28)	91	0.28	(0.28)	16				
	M P - 7	0.17	(0.17)	16	0.17	(0.17)	16				
	富岡町小・神楽	0.37	(0.37)	91	0.37	(0.37)	91				
	富岡町島郡 だいいち ちゅうがっこう	0.30	(0.30)	91	0.26	(0.26)	91				
	富岡町 $^{rac{1}{2}}$ 。 $^{(o)}$ $^{\sharp 5}$ 社 $^{ u}$ 宅	0.33	(0.33)	91	0.32	(0.32)	91				
	\#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.40	(0.40)	91	0.40	(0.40)	91				
	富岡町上部100mm 上郡	0.47	(0.47)	91	0.47	(0.46)	91				
	楢葉町些 繁岡 山根	0.40	(0.40)	91	0.40	(0.40)	91				
	楢葉町井 甬 脊 光 東	0.38	(0.38)	91	0.39	(0.39)	91				
	楢葉町や繁岡一丁坪	0.39	(0.39)	91	0.39	(0.39)	91				
	富岡町芝都山岩井戸	0.41	(0.41)	91	0.41	(0.40)	91				
	楢葉町井 聞 荒 若	0.22	(0.22)	91	0.23	(0.23)	91				
	楢葉町槍葉 キャラボっこう	0.18	(0.18)	91	0.19	(0.19)	91				
	() 内は, 90日換算値。										

福島第二原子力発電所

2. 環境試料 (1)大気浮遊じんの全アルファ及び全ベータ放射能

潮定值:Bq/m³ 上段:平均值 単位: 測定時間:h 下段:(最大值)

co	測定時間												
	測定値												
2	測定時間												
	測定值												
1	測定時間												
R5. 1	測定値												
12	測定時間												
1	測定値												
1	測定時間												
11	測定值												
01	測定時間												
10	測定值												
	測定時間	720	720	720	720								
6	測定値	0.010 (0.061)	0.045	0.009	0.041 (0.15)								
8	測定時間	744	744	744	7 44								
	測定値	0.012 (0.062)	0.051	0.012 (0.049)	0.048 (0.17)								
7	測定時間	744	744	744	744								
	測定値	0.011 (0.091)	0.047	0.010 (0.088)	0.044								
9	測定時間	829	829	829	829								
	測定值	0.012 (0.067)	0.052 (0.21)	0.012 (0.057)	0.050 (0.18)								
	測定時間	744	744	744	744								
5	測定値	0.008	0.043 (0.14)	0.008	0.041 (0.12)								
. 4	測定時間	720	720	720	720								
R4. 4	測定値	0.009 (0.069)	0. 046 (0. 24)	0. 011 (0. 072)	0.048								
測定年月	測定項目	か フ ア 財 財 部	併 人 人 上 を 部	サ マ マ ド を 発	か 対 を を 所 の が の が の が が が が が が が が が が が が が が								
	测定地点名		MP -1		I VIII								
	嵐			MF									

注)欠測時には、モニタリングボスト指示値、スタックモニタ指示値に異常がないこと,及びブラントに放射性物質の放出に係る事象が発生していないことを確認している。 ※点験に伴うな測期間は下記の通り。 MP-1:令和4年6月21日,22日 MP-7:令和4年6月23日,24日

(2)大気浮遊じんの核種濃度

l l						1		ı			ı	1			1	ı	ı		1	ı	
	144 Ce	ND	ND	ND	N	ND	ND					ND	N	N	ND	N	ND				
	$^{137}\mathrm{Cs}$	ND	0.009	N	0.009	ND	0.016					0.010	0.007	N	0.008	N	0.008				
	134 Cs	ND	ND	ND	ND	ND	ND					ND	N	ND	ND	ND	ND				
(mBq/m^3)	¹⁰⁶ Ru	ND	ND	ND	ND	ND	ND					ND	N	ND	ND	ND	ND				
度 (II	$q_{N_{96}}$	N	ND	N	R	ND	ND					N	N	N	N	N	N				
濃	$^{95}\!\mathrm{Zr}$	N	ND	N	N	ND	ND					N	N	N	N	N	N				
種	оЭ ₀₉	ND	ND	ND	ND	ND	ND					ND	ND	ND	ND	ND	ND				
核	₂₉ Fе	ND	ND	ND	ND	ND	ND					ND	N	N	ND	N	N				
	00 ₈₉	N	ND	N	N	ND	ND					N	N	N	N	N	N				
	⁵⁴ Mn	ND	ND	ND	ND	ND	ND					ND	N	N	ND	N	ND				
	$^{51}{ m Cr}$	ND	ND	ND	ND	ND	ND					ND	N)	N	ND	N	N				
14. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	採取時期	R4. 4. 1 ~ R4. 4.30	R4. 5. 1 \sim R4. 5.31	R4. 6. 1 \sim R4. 6.30	R4. 7. 1 ~ R4. 7.31	R4. 8. 1 ~ R4. 8.31	R4. 9. 1 \sim R4. 9.30					R4. 4. 1 ~ R4. 4.30	R4. 5. 1 \sim R4. 5.31	R4. 6. 1 \sim R4. 6.30	R4. 7. 1 ~ R4. 7.31	R4. 8. 1 ~ R4. 8.31	R4. 9. 1 \sim R4. 9.30				
	採取地点名						,	MP-I									7.07	INI F -			
>	No.			_			-	٦ -	-								C	7			

注)「ND」は検出限界未満である。

高門	然種	$^{40}\mathrm{K}$	320	350		400		069	\	\		\	\			\	\		200	410			490	340					190
泉子力 榮	天核																		2	4			4	33					1
福島第二原子力発電所		m 244Cm	中分析中	中分析中		中 分析中		中分析中	+										\	\			\	\					
甲		u 241Am	- 分析中	- 分析中	_	- 分析中		分析中	\	\		\	\			\	\		\	\			\	\					\
		$^{239+240}\mathrm{Pu}$	分析中	分桥中		分析中	-	分析中	\	\		\	\			\	\		\	\			\	\					\
		238 Pu	分析中	分析中	-	分析中		分析中	\	\		/	/			/	/		/	\			\	\					\
		$^{90}\mathrm{Sr}$	0.49	2.2		0.40		N N	0.001	\		0.001	/			0.001	/		0.21	\			0.25	\					/
	庚	131 I	/	/		/		/	/	/		/	/			/	/		/	/			/	/					/
		$^{3}\mathrm{H}_{\mathrm{g}}$	\	\		/		\	N	N		N	N			N	N		/	\			/	/					/
	熊	144 Ce	ND	£	!	ND		ON NO	N)	N N		ON	ON			ON	ON		ON	N			ND	ND					ON
		137 Cs	2,800	2, 700		3,800		200	0.016	0.019		0.011	0.012			0.013	0.020		89	37			62	39					6.9
		134 Cs		81		110		5.2	(N			N)	ON)			ON)	N)		1.8	1.4			1.8	0.73					ND
	種	¹⁰⁶ Ru	ON O	8	!	ND		N N	ON.	N N		ON	ON			ON	ON		ND	N			ND	ND					ND
		qN_{26}	ND	Œ	!	ND		N N	N	Ø		N	N			N)	N		ND	N			M	ND					ND
	颒	$^{95}\mathrm{Zr}$	ON O	Ø	!	ND		ND ND	ND ON	N N		ON	ON			ND	ON		ND	ND ND			ND	ND					ND
		, o _{O₀₉}	P.	Ð	!	N		2	_N	Ð		_N	N			ON.	N		ON)	_N			N	N					N)
		₅₉ Fе е	N)	Ø	!	ND		QN Q	R	Ø		ND	ND			ND	ND		ND	ND			ND	ND					ND
		₅₈ Co	I ON	£	+	ND I		- EN	- N			I ON	I QN			I QN	I QN		I ON	ND I			ND I	ND I					ND I
		⁵⁴ Mn ⁵⁸	N ON			ND N		N N	N ON			ND ON	ND N			N) (N)	ND N		ND N	ND N			ND N	ND N					ND N
			\vdash						N	N		N	N			N	N												
	每	$^{51}\mathrm{Cr}$	ON			CM ND		N											ND	ND		华	ON J	ND			Ŧ	H	(生 ND
	田 申 位 P P P P P P P P P P P P P P P P P P						6	2		6	5 0.71	ďα		6	2		6	2	I	Ra/ko散		5			Da /lra/A	Pd/ v	4 Bq/kg生		
	п	Н	R4. 5.26	R4. 5.26		R4. 5.26		R4. 5.26	R4. 5.19	∞.		R4. 5.19	R4. 8.			R4. 5.19	R4. 8.		R4. 5.19	R4. 8.			R4. 5.19	R4. 8.					
	# u v v x x x x x x x x x x x x x x x x x	4	Æ	4	Æ	#4)		こおりやま		I	l I K									 - - -				٦ ۲			早付近	早付近	港湾内 R4.7.
庚	호	권	型	五 声 淡		田 田 選		를 교			7.	the state of the s	グ 計 ま	E	平		幸 			班	Ē	× 4 4		元 字)南境界付近)北境界	操
姟種禯	根 ¾ 型 ₫	ž Š	敷		番	ł	恒	画图				東京電力	キデ 1 ゲ	ス様福島第二原子	力発電別						東京電子	きず イブ	ス㈱福島第二原子				敷地の	敷地の北境	茎 1 敷 地
4中の	数 又 不 文	17	1			<u></u> "	o	4		*			c H H				•	<u> </u>				多さ	底出	- 6	1		# 1	¥ 2	
3)環境試料中の核種濃度	を輝き	۲)				₩ X			+				+									型 <u></u> ≥	(海			_	神		ちら葉
(3)漿	英					Н							淮	ŧ								祈开					14	A	ほんだわ
~[~											Ä	÷					Щ.				4	ć	~					

注) 1 「ND」は検出限界未満,「/」は対象外核種。 2 上記の他,人工放射性核種は検出されなかった。

添付資料

放射性廃棄物管理状況及び試料採取時の付帯データ

自 令和4年7月

至 令和4年9月

東京電力ホールディングス株式会社

福島第一廃炉推進カンパニー福島第一原子力発電所福島第二原子力発電所

福島第一原子力発電所

放射性廃棄物管理状況(令和4年度 第2四半期)

a. 1~4号機原子炉建屋及び1~3号機格納容器からの追加放出量

				(単位:Bq)
/	_	粒子状物質	犬物質	1 1
		1 3 4 Cs	1 3 7 $C_{\rm S}$	備考
1	1~4号機合計※1	1. 5×10^{7} *2	1. 3×1.0^{7}	「福島第一原子力発電所 特定原子力施設に係る 実施計画」において,「1~4号機原子炉建屋及 び1~3号機原子炉格納容器以外からの追加的放
	1 号機	1. 6×10^{6} *2	1. 2×10^{6}	出は,極めて少ないと考えられる」と評価されていることから,1~4号機における気体廃棄物の放出量としては,1~4号機原子炉建屋及び1~
K	2 号機	1. 7×10^{6} *2	1. 9×10^6 *3	3 号機格約容器から放出される134Cs及び137Cs を対象としている。 月1回以上の試料採取により得られた放射能濃度
Ħ H	3 号機	5. 9×10 ⁶ *2	5. 1×10^{6}	(Bq/cm³) に排気設備風量又は風量推定値 (m³/h) を乗ずることによって放出率 (Bq/h) を求め,そ の放出率に報告対象期間の時間 (h) を乗ずること によって,追加放出量を求めている。
	4号機	5. 4×10 ⁶ *2	4. 9×10 ⁶ **3	
放出	放出管理の目標値 (年間)	4. 3×10^{10}	4. 3×10^{10}	
				_

%1 四格五人の関係より,「号機毎の合計値」と「1~4号機合計」が合わない場合が有る。 %2 全て 134 Csの検出下限値を用いて放出量を算出している。 %3 全て 137 Csの検出下限値を用いて放出量を算出している。

⁽¹⁾ 放射性気体廃棄物の放出量 (1~4号機)

(2) 放射性気体及び放射性液体廃棄物の放出量

a. 放射性気体廃棄物の放出量

(単位: Bd)

原子所国設合計 後出されず 後出されず 後出されず 3.1×10 ⁴ 1.2×10 ¹⁰ 放射性気体解棄物の放出放射能量 (a) 12・4 対象 (b) 2条2(で 原型が発展が発展 (b) 2・5×10 ³ 放射性気体解棄物の放出放射能量 (c) 12・4 対象 (c) 2・5×10 ³ 放射性気体解棄物の放出放射能量 (c) 12・4×10 ⁴ (c) 2・5×10 ³ 放射性気体解薬物の放出放射能量 (c) 12・4×10 ⁴ (c) 2・1×10 ⁴ (c) 2・1×10 ⁴ (c) 2・1×10 ⁴ (c) 3・1×10								
(新田されず 検出されず 検出されず 3.1×10 ⁴ 1.2×10 ¹⁰			全希ガス	$^{131}\mathrm{I}$	$^{133}\mathrm{I}$	全粒子状物質	3 H	
(新田されず 検出されず 検出されず 検出されず 検出されず 検出されず (検出されず 検出されず 検出されず 検出されず 検出されず 検出されず (検出されず 検出されず 検出されず (検出されず 検出されず 検出されず (検出されず 検出されず (検出されず 検出されず (検出されず を出されず (検出されず を 3×10 ¹) (検出されず (検出されず 1×10 ¹) (検出されず (検出されず 1×10 ¹) (検知されず 1×10 ¹) (検知さ 1×10 ¹) (検知	原子	-炉施設合計	検出されず	検出されず	検出されず	3. 1×10 ⁴	1. 2×10^{10}	
横田されず 検田されず 検田されず 検田されず 検田されず 検田されず 検田されず 横田されず	rC		検出されず	検出されず	検出されず	検出されず	9. 5×10 ⁹	放射性気体廃棄物の放出放射能量 (Bq) は, 排気中の
気口**3		焼却炉建屋排気筒		検出されず	検出されず	療田されず	検出されず	放射性物質の濃度 (Bq/cm³) に排気量 (m²) を乗じて 求めている。 なお、放射性物質が検出されない場合は、放出放射能量 (Bq) の算出は実施せず" 検出されず"と表示した。
排気口 検出されず 検出されず 検出されず 検出されず 検出されず 検出されず 検出されず 気筒 —— 検出されず 検出されず 検出されず 検出されず 1** —— 6.3×10¹ 検出されず 2.8×10¹⁵ 1.4×10¹¹ — 6.3×10¹ 検出されず	大	機器除染設備排気ロ ^{※3} 及び 広大防止ハウス排気ロ ^{※2}				3. 1×10 ⁴		検出されずとは,以下の濃度未満の場合をいう。 全希ガス:2×10 ⁻² (Bq/cm³) 1311:7×10 ⁻⁹ (Bq/cm³) 1331:7×10 ⁻⁸ (Ba/cm³)
気筒 ——— 検出されず。 検出されず。 検出されず ³ 1 ^{*4} —— 6.3×10 ¹ 2.8×10 ¹⁵ 1.4×10 ¹¹ —— 6.3×10 ¹	É,	斉然科共用プール排気口	検出されず	検出されず	検出されず	検出されず	2. 1×10 ⁹	全粒子状物質: 4×10^{-9} $^{(Bq/cm)}$ $^{(Bq/cm)}$ $^{(13.7GS}$ で代表した) $^{(14.7GS)}$ $^{(14.5GG)}$ $^{(14.5GG)}$
2. 8×10 ¹⁵ 1. 4×10 ¹¹ 6. 3×10 ¹	型	散燒却炉建屋排気筒		検出されず	検出されず	検出されず	検出されず	
2. 8×10^{15}	<i>?</i> →	由処理装置排気口 ^{※4}				6. 3×10 ¹	検出されず	
	間放	出管理目標値 ^{※1}	×					

^{~ ~ ~ ~} ****

特定原子力施設に係る実施計画値 (5,6号機の合計値)。 汚染拡大防止ハウス排気口は排気設備停止中。 大型機器除染設備排気口から以下の期間で粒子状物質放出あり。 2022年7月13日から2022年7月20日において、平均で2.4×10⁻⁹ (Bq/cm³) で放出あり。 2022年8月17日から2022年8月24日において、平均で2.0×10⁻⁹ (Bq/cm³) で放出あり。 2022年8月17日から2022年8月31日において、平均で5.9×10⁻⁹ (Bq/cm³) で放出あり。

²⁰²²年8月31日から2022年9月5日において、平均で1.8×10⁻⁹(Bq/cm³)で放出あり。 2022年9月13日から2022年9月20日において、平均で1.1×10⁻⁹(Bq/cm³)で放出あり。 大型機器除染設備排気口及び汚染拡大防止ハウス排気口は、大型機器点検建屋内にあり、大型機器点検建屋排気口の測定結果は検出されておらず、環境への影響はない。 油処理装置排気口は、採取期間が短いことから分析時間を延長し測定を実施したが、^{8.9}Sr及び^{8.0}Srにおいて、測定指針に定める測定下限濃度4×10⁻¹⁹(Bq/cm³)を 満足していないことから、検出下限濃度未満ではあるものの粒子状物質を放出したものとして評価した。 *

b. 放射性液体廃棄物の放出量

									(単位: Bq)
	/	全核種				核種別			
		(³ Hを除く)	5 1 $_{ m Cr}$	⁵ ⁴ Mn	^{5 9} Fe	5 8 Co	°00 o 9	1 3 1 I	1 3 4 Cs
原子	原子炉施設合計	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
	1号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
排水口	2号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
	3号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
	4号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
別内訳	5号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
	6号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
年間放	年間放出管理目標值※1	7. 4×10^{10}							

備		・1~4号機排水口は, 閉塞済み。							
H _E		放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	$7.4 \times 10^{12\%2}$
	ベータ線を放出 する放射性物質	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	
	アルファ線を放出 する放射性物質	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	ı
核種別	$^{\mathrm{JS}}_{0~6}$	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	
	$^{ m JS}_{ m 6~8}$	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	
	1 3 7 Cs	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	
		原子炉施設合計	1号機排水口	2号機排水口	3号機排水口	4号機排水口	5号機排水口	6 号機排水口	年間放出管理目標值※1
		原子		排水口			別内訳		年間放

5号機排水口および6号機排水口の放出管理目標値を示す。 なお,現在,実施計画においては1号機排水口~4号機排水口の放出管理目標値を設定していない。 **¾**

※2 トリチウムについては、放出管理の年間基準値を記載。

(続き)

試料採取時の付帯データ

(ア) 海 水

			採耳		点名				採取	年月日	気温(℃)	水温(℃)	рН	Cl ⁻ (‰)
									R4.	5. 20	18.6	15.3	8. 1	18. 4
第		(系	Ŕ)	取	水	口	R4.	8. 18	23.0	21.4	8. 1	18. 2
///		(71	<u> </u>)	ΗХ	/K	Н						
									R4.	5. 19	19.6	15.8	8. 1	18. 1
第	_	(発)	南	放	水	口	R4.	8. 19	29.6	19.6	8. 1	18.4
777		(76	,	177	/JX	/1/	Н						
									R4.	5. 19	20.5	16.7	8. 1	17. 9
第	_	(発)	41-	*//	水	口	R4.	8. 19	27. 0	21.6	8. 1	18.4
NJ.		(<i>7</i> □	,	10	放	/1/	Н						

令和4年度月別降水データ表

福島第一原子力発電所	降水量 (mm)	116.5	131.5	212.5	141.0	103.0	139.0				843.5
福島多	時間 (h)	92	78	19	86	<u> </u>	54				431
	日数 (d)	12	11	12	14	14	6				72
	月	R4. 4	2	9	2	8	6				

244Cm

241Am

239+240Pu

238Pu

 90 Sr

 3 H

>

採取年月日

採取地点名

9. 9.

R4. R4. 9 7

6 9. 6

R4. R4.

8.18 8.19

R4. R4. R4. R4. R4. R4.

长

9. 1 2

6 R4.

R4.

8.19

П

П П

> ¥ 长 长 长

R4. 8.30 R4. 8.29 R4. 7.27

8.19 8.19

П П 7.13

K

鶭

測定年月日

Ш 定 魺 菜 揺 埊 熈

	探取地		*	放	放	放	放	拠	対象外。						
			取	讍	\	讍	꾸	拠	測定						
	試料名			新		Ŧ	4 成工	ほんだわら	(注) 「/」は測定対象外。						
	I				ì		1				1		1		1
測定年月日	;	>	0 6	N4. 0. 29	c	N4. 9. 0	0.1	N4. 10. 15	0 70	N4. 0. 24	0 70		DA 10 13	N4. 10. 10	
測定4	$\hat{\Xi} \alpha \cdot \beta$	放 射 能	平》年、	压剂	平》 年、	压剂	平》年、	压剂	7年公平	HW.	二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	HW.	二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		
	採取年月日		R4. 7. 1	\sim R4. 7.31	R4. 8. 1	\sim R4. 8.31	R4. 9. 1	\sim R4. 9.30	R4. 7. 1	\sim R4. 7.31	R4. 8. 1	\sim R4. 8.31	R4. 9. 1	\sim R4. 9.30	
	採取地点名				c	Μ η Ι					۵ ا	٦.			4
	試料名							十一 選挙 選挙 デント	人気存取した						L

(注) 「/」は測定対象外。

福島第二原子力発電所

放射性廃棄物管理状況(令和4年度,第2四半期)

放射性気体廃棄物の放出量

(単位:Bd)	備			放射性気体廃棄物の放出放射能量(Bd)は, 排気中の放射性物質の濃度(Bq/cm³)に排気量(m3)を乗じて求め	ている。なお、放射性物質が検出されない場合は、放出放射能量	(Bq)の算出は実施せず"検出されず"と表示した。 検出されずとは,以下の濃度未満の場合をいう。	全希ガス: $2 \times 10^{-2} (Bq/cm^3)$ 131 : $7 \times 10^{-9} (Bq/cm^3)$ 133 : $7 \times 10^{-8} (Bq/cm^3)$	全粒子状物質: $4\times10^{-9}(\mathrm{Bq/cm^3})$ ($60\mathrm{Co}$ で代表した) $^3\mathrm{H}:4\times10^{-5}(\mathrm{Bq/cm^3})$		
	$\mathrm{H_{c}}$	$1.3\! imes\!10^{10}$	検出されず	検出されず	$5.0 \! imes \! 10^9$	$8.1\!\times\!10^9$	検出されず		検出されず	
	全粒子状物質	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	
	$ m I_{EE1}$	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず		検出されず	
	$ m I_{181}$	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず		検出されず	
	全希ガス	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず			
		原子炉施設合計	1号機排気筒	2号機排気筒	3号機排気筒	4号機排気筒	廃棄物処理建屋 換気系排気筒	サイト・シカ建屋排気口	焼却設備排気筒	年間放出管理目標値
		ſ				排気筒 別内訳				年

(単位:Bq)

2. 放射性液体廃棄物の放出量(第2四半期)

										<i>A</i> — , , ,
		全核種				核	種別			
		(3Hを除く)	$^{51}\mathrm{Cr}$	54Mn	^ө Н ₆₉	₅₈ Co	°209	I_{181}	134 Cs	$^{137}\mathrm{Cs}$
原子	原子炉施設合計	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず
	1号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
排水口	2号機排水口	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず	検出されず
別内訳	3号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
	4号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし
年間放	年間放出管理目標値 ※1	$1.2{ imes}10^9$								

(続き)

				種別		${ m H_c}$	無
		$^{89}\mathrm{Sr}$	$^{ m JS}_{06}$	アルファ線を放出する 放射性物質	ベータ線を放出する放射性物質		
原-	原子炉施設合計	検出されず	検出されず	検出されず	検出されず	検出されず	放射性液体廃棄物の放出放射能量(Bq)は,排水中の放射性物質の濃度(Bq/cm³)に排水量(m3)を乗じて求めている。
	1号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	なお,放射性物質が検出されない場合は,放出放射能量(Bq)の算出は実施せず"検出
排水口	2号機排水口	検出されず	検出されず	検出されず	検出されず	検出されず	されず"と表示した。
別内訳	3号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	検出されずとは,以下の濃度未満の場合をいう。 全核種(3Hを除く):2×10 ⁻² (Bq/cm³) (⁶⁰ Coで代表した)
	4号機排水口	放出実績なし	放出実績なし	放出実績なし	放出実績なし	放出実績なし	saSr, aoSr:7×10-4(Bq/cm3) (aoSrで代表した) アルファ線を放出する放射性物質:4×10-3(Bq/cm3) ** *********************************
年間放	年間放出管理目標値 ※1					$1.4 \times 10^{11} *2$	へ一々棘を灰田する灰料生物質: $4 \times 10^{-2} (ext{Eq/cm}^2)$ $^3 H: 2 \times 10^{-1} (ext{Bq/cm}^3)$

※1 放出管理目標値は「発電用軽水型原子炉施設周辺の線量目標値に関する指針(原子力委員会決定)」に定められた公衆の線量目標値(50 µ Sv/年)を下回るように設定した年間の放出放射能量である。※2 トリチウムについては,放出管理の年間基準値を記載。

試料採取時の付帯データ

(ア) 海 水

	採	取 地	点	名	採取年月日	気温(℃)	水温(℃)	рН	Cl ⁻ (‰)
					R4. 5.19	17. 3	15. 0	8. 1	18. 1
第	<u> </u>	(発)	Η̈́	水口	R4. 8. 5	23. 5	23. 8	8. 0	17. 7
777	_	(光)	цх	Л П					
					R4. 5.19	21. 4	17. 4	8. 1	18. 1
第	_	(発)南	†./,	水口	R4. 8. 5	24. 6	23. 7	8. 1	17. 9
矛	_	(光)用	ЛX	八 口					
					R4. 5.19	17. 7	15. 0	8. 2	18. 1
第	_	(発)北	†./,	→ k □	R4. 8. 5	23. 5	24. 6	8. 0	17. 7
<i>/</i>	_	(光/化	ЛX	Л П					

令和4年度月別降水データ表

降水量(mm)	146.0	151.5	183.5	163.5	115.0	131.0							890.5
時間(h)	80	87	09	98	09	54							427
日数(d)	13	12	10	13	14	6							71
A	R4. 4	2	9	<i>L</i>	8	6	10	11	12	R5.1	2	3	슈計

環 境 黙 粋 測 定 日

_		.					
	²⁴⁴ Cm						
	²⁴¹ Am						
ш	²³⁹⁺²⁴⁰ Pu						
定年月	$^{238}\mathrm{Pu}$						
)	$^{1}\mathrm{S}_{06}$						
	H_{c}	R4. 8.20	R4. 8.21	R4. 8.20			
	γ	R4. 9.20	R4. 9.13	R4. 9. 1	R4. 8.17	R4. 8.22	R4. 7.26
	採取年月日	R4. 8. 5	R4. 8. 5	R4. 8. 5	R4. 8. 5	R4. 8. 5	R4. 7. 4
		П	П	П	П	П	K
	点名	.,	¥	¥	长	长	海
	採取地点名	¥	放	放	放	放	地
		取	长	꾸	櫮	뀨	敷
	漢 李 名	集			第一一点		ほんだわら
ш		16	15	18	18	15	18
Э	٨	R4. 8.16	R4. 9.15	R4. 10. 18	R4. 8.18	R4. 9.15	R4. 10. 18
测定年	全 α · β 放 射 能	連続	連続	連続	連続	連続	連続
		R4. 7. 1 ~R4. 7.31	R4. 8. 1 ~R4. 8.31	R4. 9. 1 \sim R4. 9. 30	R4. 7. 1 ~R4. 7.31	R4. 8. 1 ~R4. 8.31	R4. 9. 1 \sim R4. 9. 30
探取地点名 探取年月日			M P - 1		M P - 7		
				十	イメネト		

(注) 「/」は測定対象外。

令和4年度 第2四半期 空間線量率等の変動グラフ

東京電力ホールディングス株式会社

福島第一廃炉推進カンパニー福島第一原子力発電所

福島第二原子力発電所

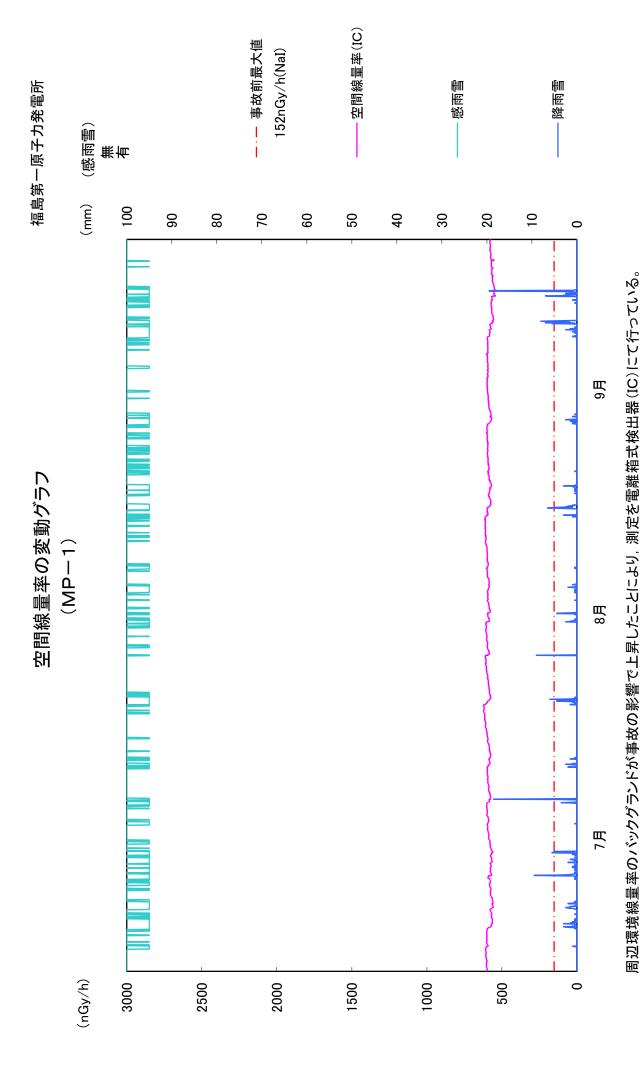
田淡

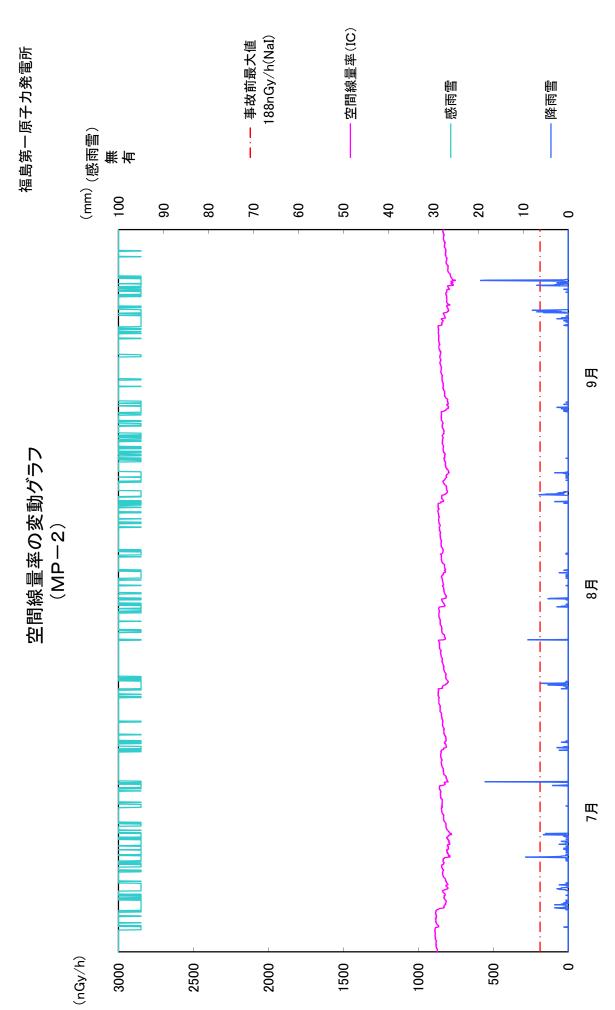
63

65

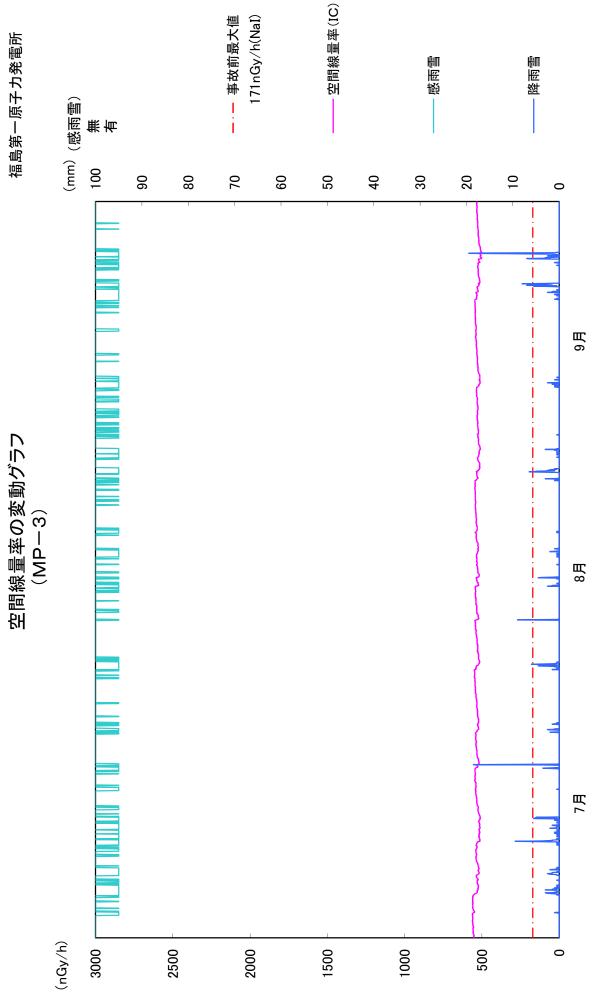
64

99

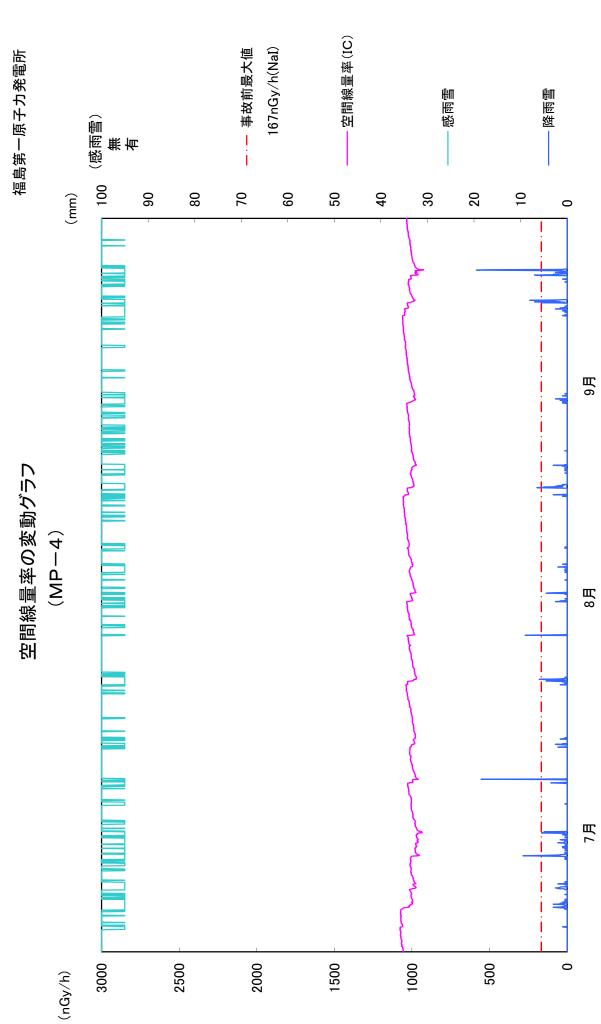

∞ \mathfrak{S} \mathfrak{S} ∞ MPMP福島第一原子力発電所 MP 福島第一原子力発電所 MP 福島第二原子力発電所 MP MPMP福島第一原子力発電所 MP 福島第一原子力発電所 二原子力発電所 福島第二原子力発電所 二原子力発電所 大気浮遊じん(相関図) 大気浮遊じん(推移) 福島第-福島第- α \mathfrak{C} 4 α \mathfrak{C} 4 49 50 51 52 53 54 55 99 22 28 5909 62 48 61 \mathcal{O} \mathfrak{C} 4 \Box 9 ∞ \mathcal{O} \mathfrak{C} 4 Γ 9 MP -MP MPMP. MP MP MP MPMPMP MP MP MPMPMP 福島第一原子力発電所 福島第一原子力発電所 福島第一原子力発電所 福島第二原子力発電所 福島第一原子力発電所 福島第一原子力発電所 福島第二原子力発電所 福島第二原子力発電所 福島第一原子力発電所 福島第一原子力発電所 福島第一原子力発電所 福島第二原子力発電所 福島第二原子力発電所 福島第二原子力発電所 福島第二原子力発電所 空間線量率 15 10 13 14 12 \mathcal{O} 4 Ŋ 11 \mathfrak{C} 9 ∞ 6


29

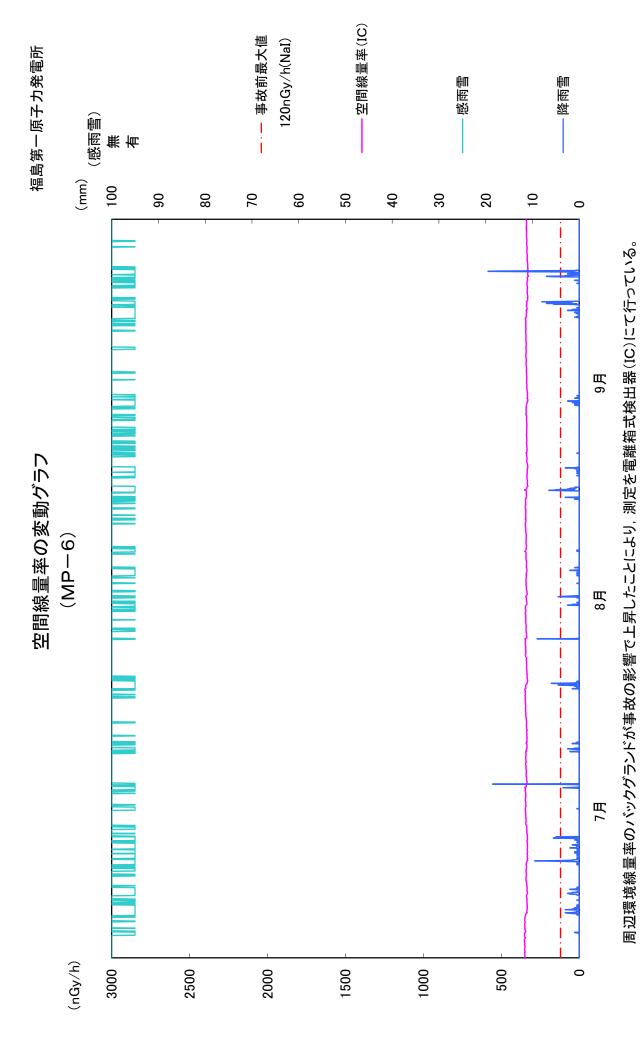
67

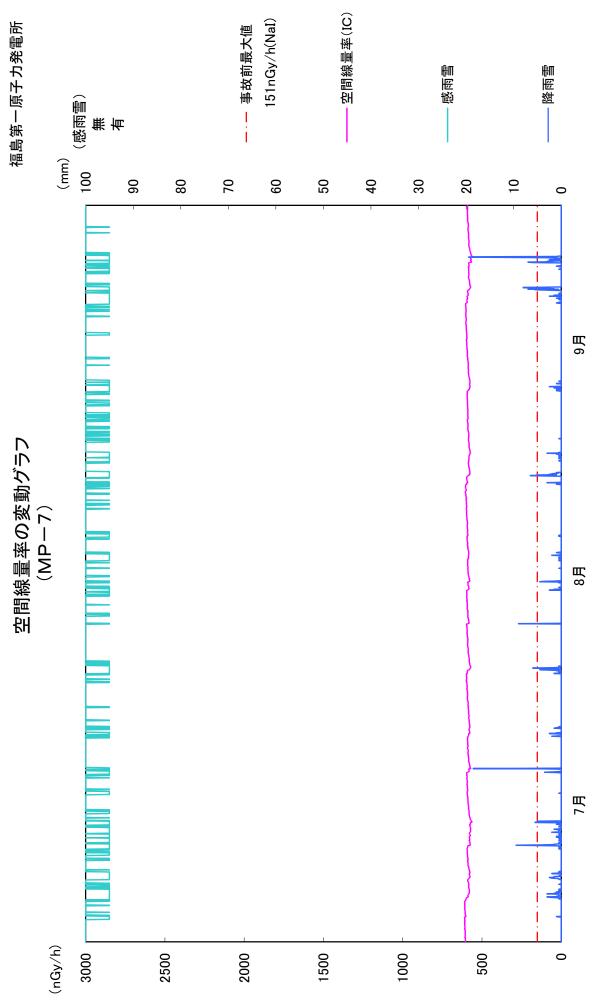

89

89

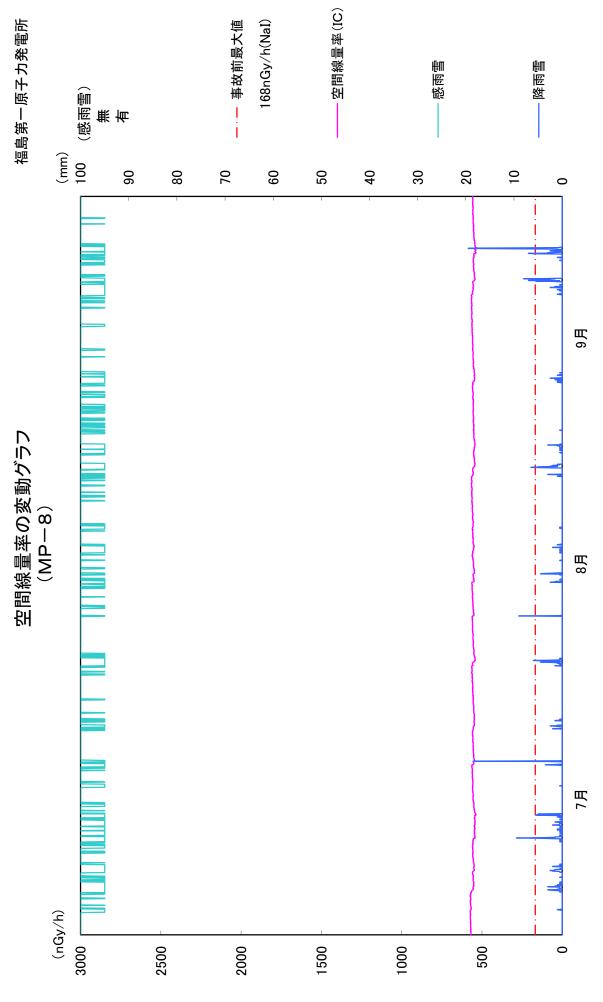



周辺環境線量率のバックグランドが事故の影響で上昇したことにより,測定を電離箱式検出器(IC)にて行っている。

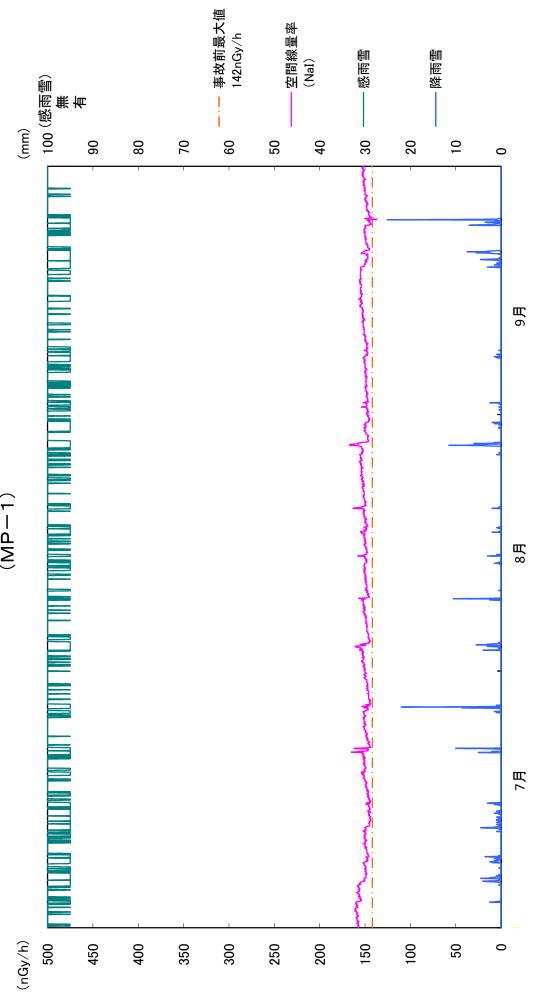

周辺環境線量率のバックグランドが事故の影響で上昇したことにより, 測定を電離箱式検出器(IC)にて行っている。

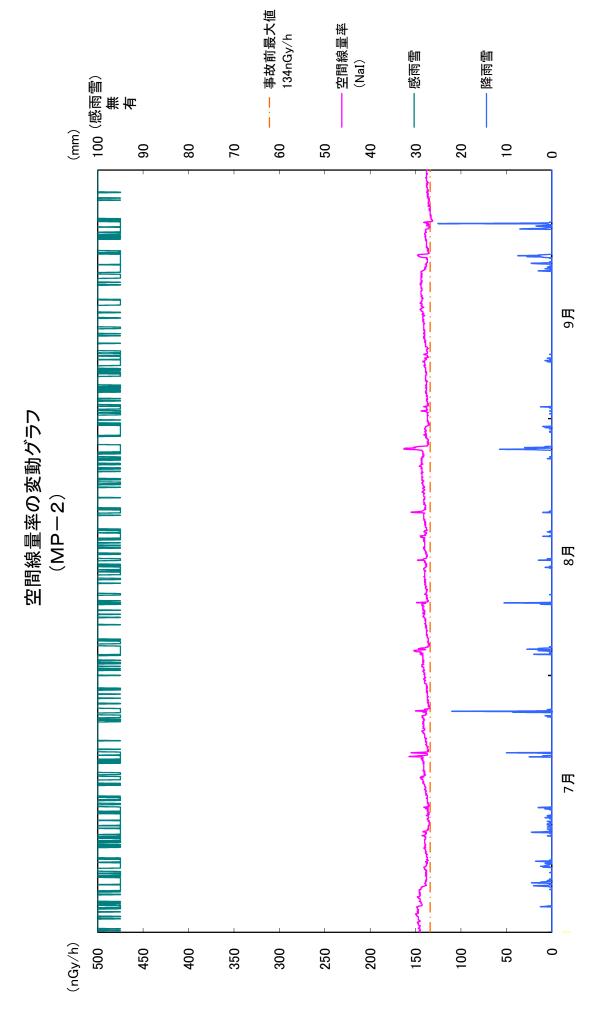


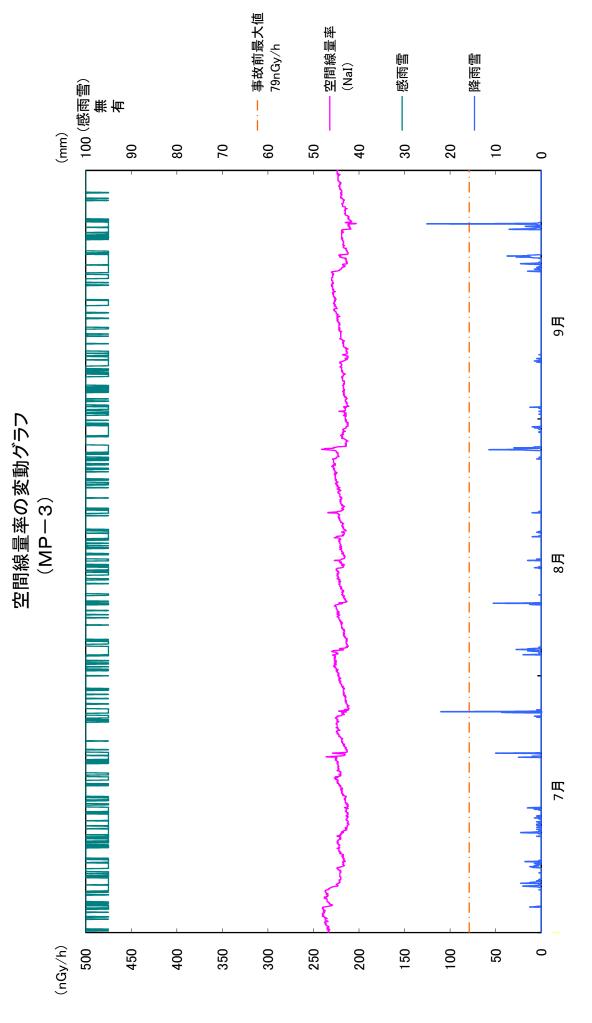
周辺環境線量率のバックグランドが事故の影響で上昇したことにより,測定を電離箱式検出器(IC)にて行っている。

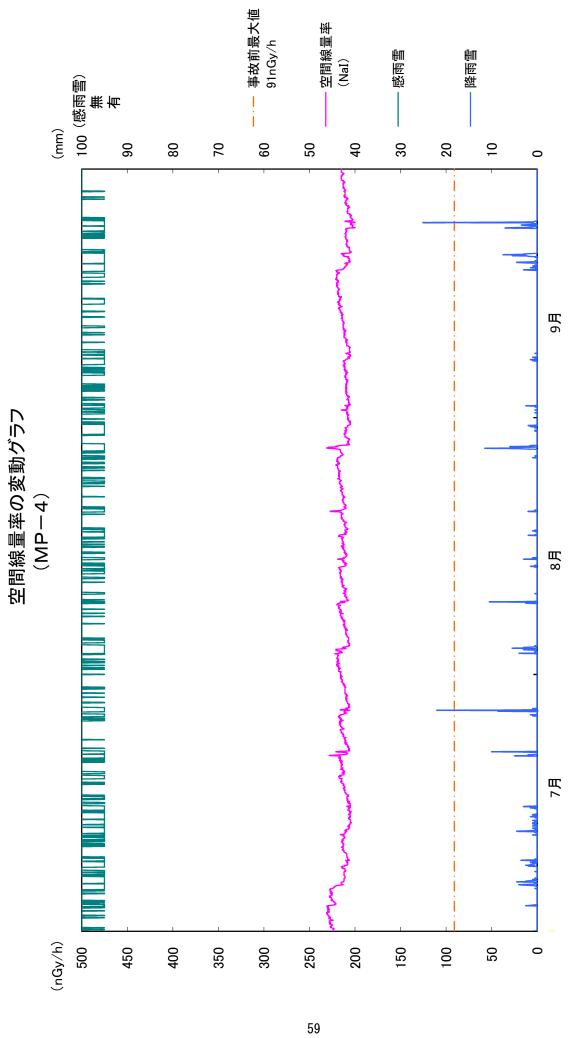


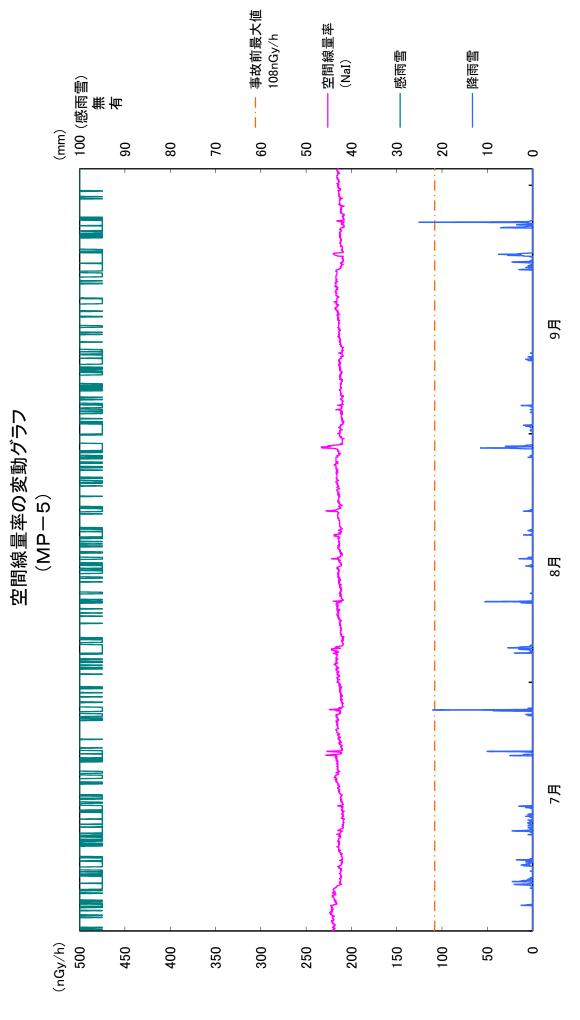
周辺環境線量率のバックグランドが事故の影響で上昇したことにより,測定を電離箱式検出器(IC)にて行っている。

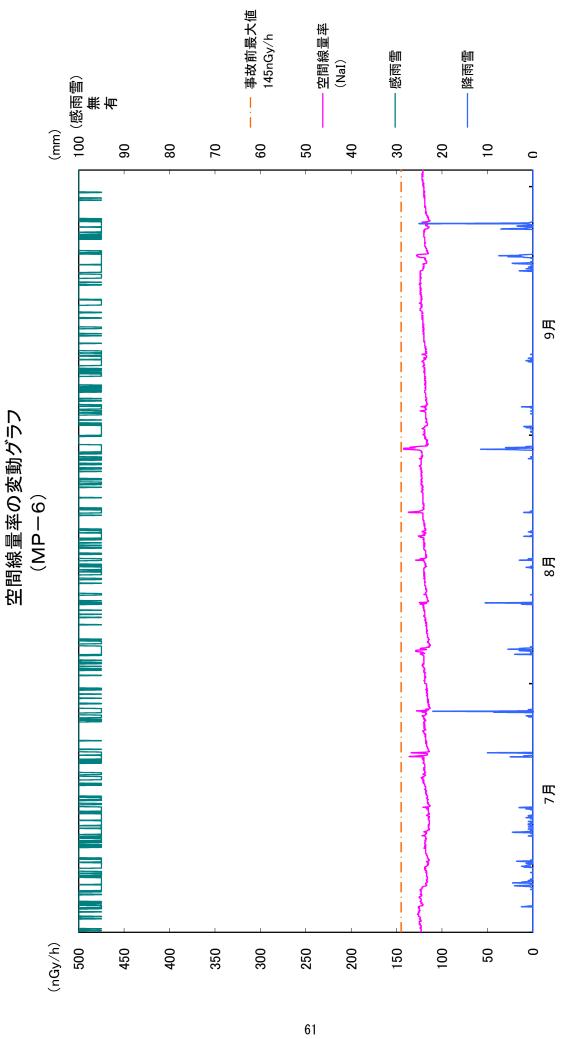


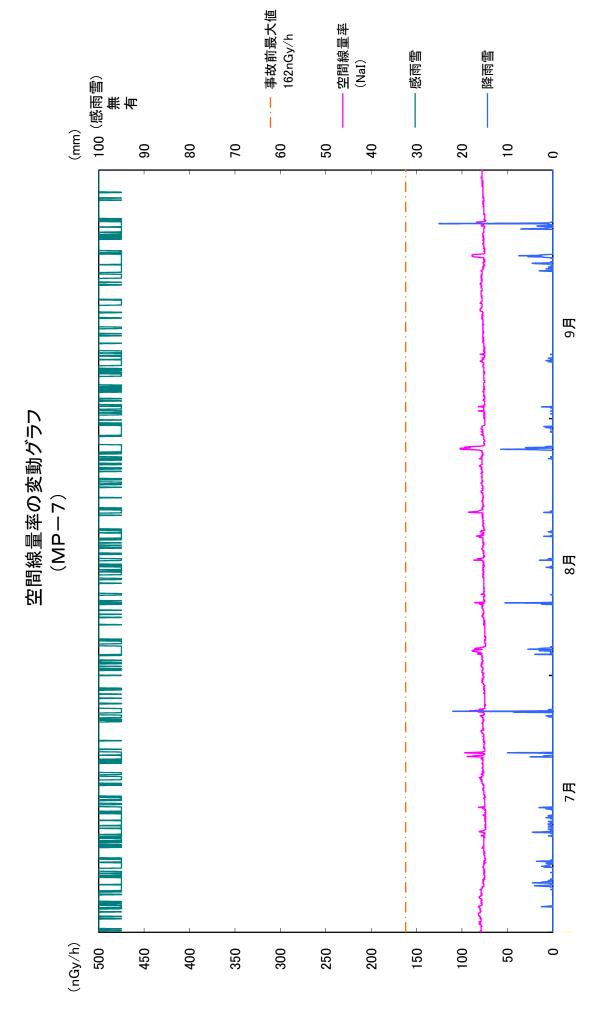

な放出によって上空を通過する放射性物質を検知しやすくするため、 nえている。 より, 測定を電離箱式検出器(IC)にて行っている。 MP-7,8については検出器廻りに遮へいを 周辺環境線量率のバッ

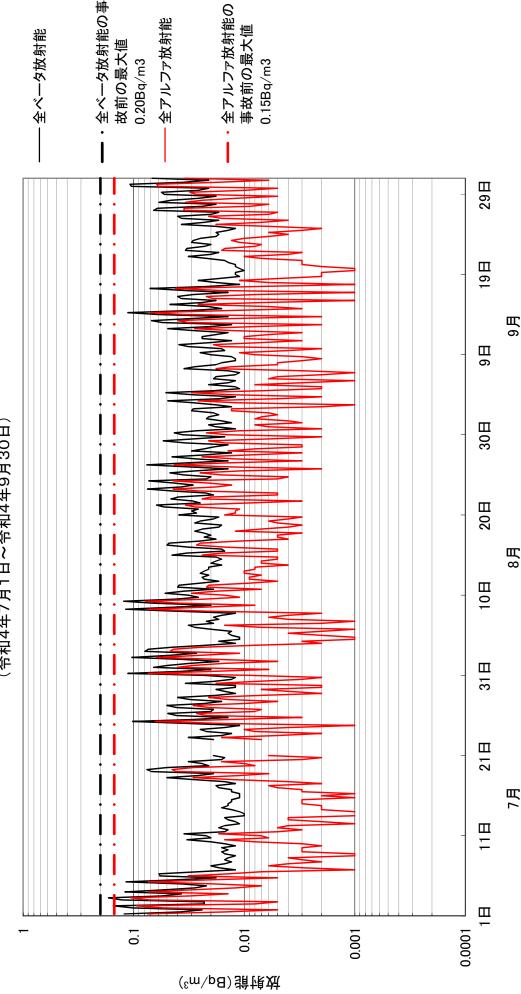



こな放出によって上空を通過する放射性物質を検知しやすくするため、 さ抑えている。 こより,測定を電離箱式検出器(IC)にて行っている。 MPー7, 8については, 高線量率の環境下にある. 検出器廻りに遮へいを設置し, 地表面等からの放り 周辺環境線量率のバックランドが事故の影響で.









大気浮遊じんの全アルファ及び全ベータ放射能の推移

(令和4年7月1日~令和4年9月30日)

MP-3

々測時は,敷地境界付近(MP1~MP8)に設置した連続ダストモニタにて指示値に異常がないことを確認している。 注)全アルファ放射能は 0.001Bg/m³ より小さい場合には OBg/m³ となるため対数グラフに表示されない。 7月21日, 22日については, 定期点検に伴う欠測。

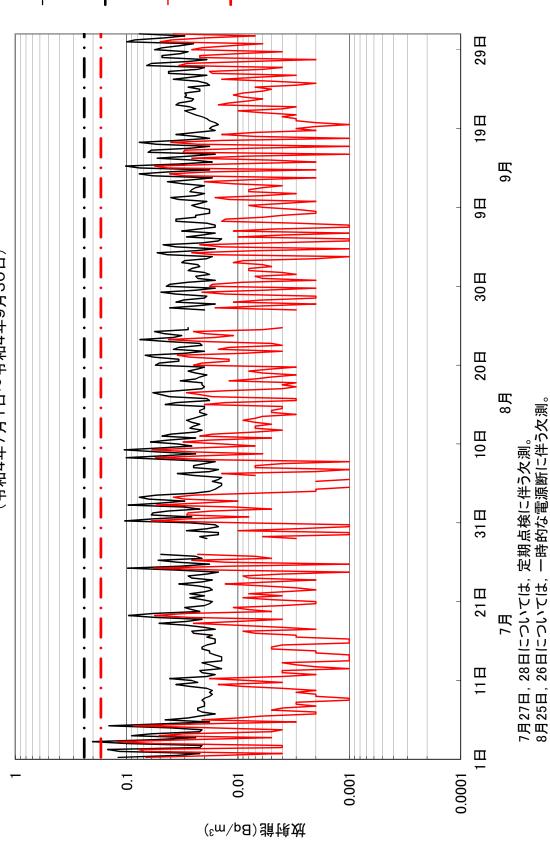
・全ベータ放射能の事

故前の最大値 0.24Bg/m3

全ベータ放射能

・全アルファ放射能の

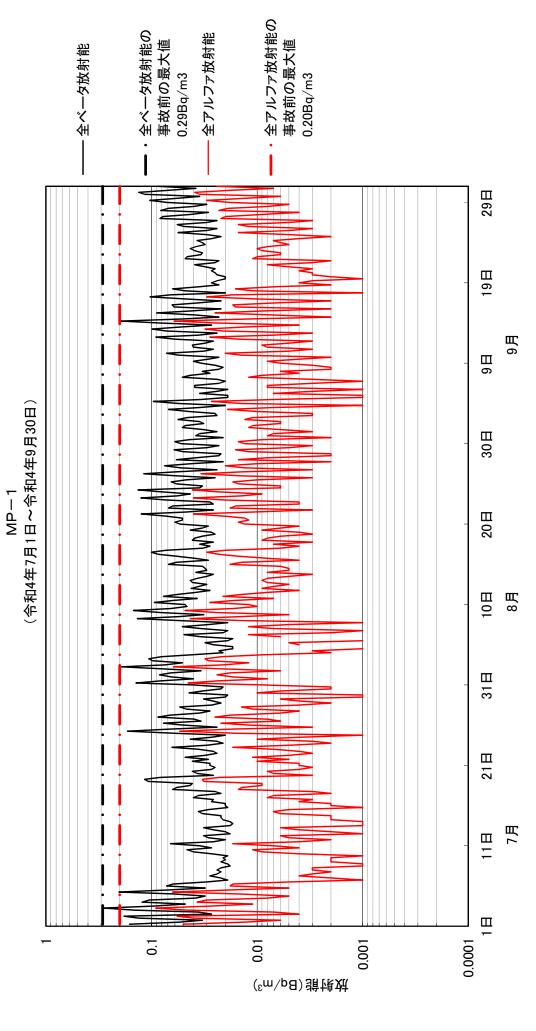
事故前の最大値


0.17Bq/m3

全アルファ放射能

大気浮遊じんの全アルファ及び全ベータ放射能の推移

MP-8

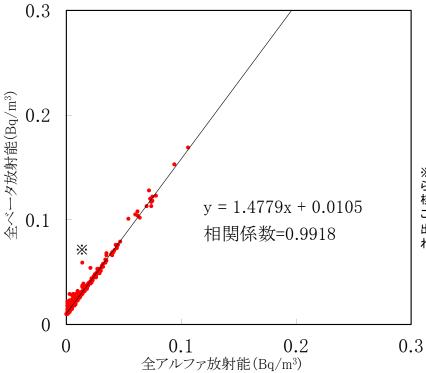

(令和4年7月1日~令和4年9月30日)

久測時は,敷地境界付近(MP1~MP8)に設置した連続ダストモニタにて指示値に異常がないことを確認している。 注)全アルファ放射能は 0.001Bg/m3 より小さい場合には 0Bg/m3 となるため対数グラフに表示されない。

64

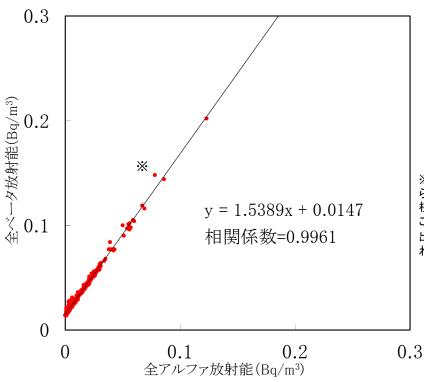
大気浮遊じんの全アルファ及び全ベータ放射能の推移

注)全アルファ放射能は0.001Bq/m³より小さい場合には0Bq/m³となるため対数グラフに表示されない。


大気浮遊じんの全アルファ及び全ベータ放射能の推移

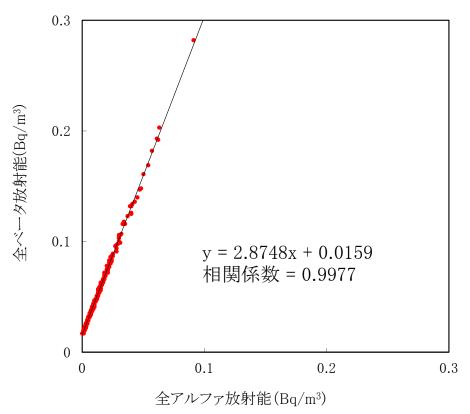
注)全アルファ放射能は0.001Bq/m³より小さい場合には0Bq/m³となるため対数グラフに表示されない。

大気浮遊じんの全アルファ・全ベータ放射能の相関図

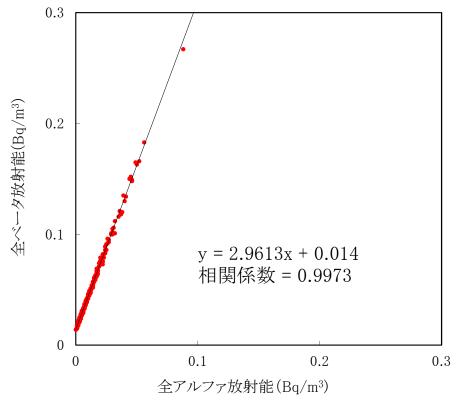

(MP-3) (令和4年7月~令和4年9月)

※全アルファ・全ベータの相関から外れた試料については個別に核種濃度を測定している。この結果、Cs-134とCs-137が検出され、その他の核種は検出されていないことを確認している。

大気浮遊じんの全アルファ・全ベータ放射能の相関図


(MP-8) (令和4年7月~令和4年9月)

※全アルファ・全ベータの相関から外れた試料については個別に核種濃度を測定している。この結果、Cs-134とCs-137が検出され、その他の核種は検出されていないことを確認している。


大気浮遊じんの全アルファ・全ベータ放射能の相関図

(MP−1) (令和4年7月~令和4年9月)

大気浮遊じんの全アルファ・全ベータ放射能の相関図 (MP-7)

(令和4年7月~令和4年9月)

く参考>地下水バイパスの評価

(第2四半期: 令和4年7月1日~令和4年9月30日)

(庫位:Ba)	備者		排水放射能量(Bq)は、排水中の放射性物質 濃度(Bq/L)[排水前のタンクの分析結果]に 排水量(L)を乗じて求めている。 ⁹⁰ Srは全βでの評価値である。 なお、排水中の放射性物質濃度が検出限界 未満の場合はNDと表示した。 ¹³¹ Csの検出限界値は1Bq/L未満,全 βの検出限界値は5Bq/L未満,全 高(10日に1回程度)である。 排水量は24,011m³である。
			排濃排 g、な未 g ゟ 流 排
		$H_{\!arepsilon}$	1.5 × 10 ⁹
		JS ₀₆	QN
		13 ⁷ Cs	QN
		¹³⁴ Cs	ND
			地下水バイパス

く参考>サブドレン他浄化設備の処理済水の評価

(第2四半期:令和4年7月1日~令和4年9月30日)

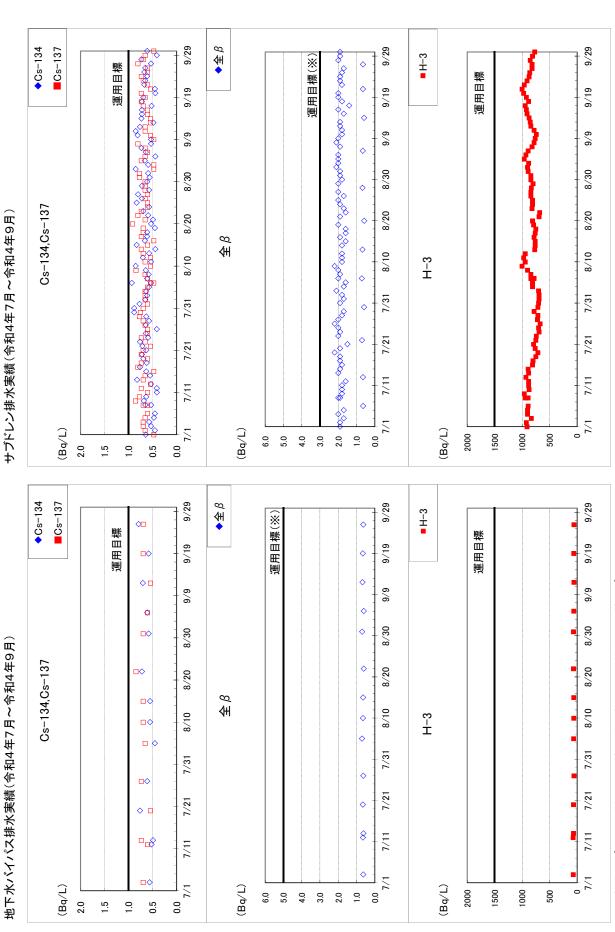
(単位:Ba)	備考		排水放射能量(Bq)は、排水中の放射性物質 濃度(Bq/L)[排水前のタンクの分析結果]に 排水量(L)を乗じて求めている。 ⁹⁰ Srは全βでの評価値である。 なお、排水中の放射性物質濃度が検出限界 未満の場合はNDと表示した。 ¹³⁴ Cs, ¹³⁷ Csの検出限界値は1Bq/L未満,全 8の検出限界値は3Bq/L未満または1Bq/L未 満(10日に1回程度)である。 排水量は66,331m³である。
	核種別	$H_{\!arepsilon}$	5.5 × 10 ¹⁰
		60 Sr	ND
		¹³⁷ Cs	ND
		134Cs	QN
			サブドレン他 浄化設備の処理済水

<u> </u>	備考			
く参考>地下水バイパス及びサブドレン他浄化設備の処理済水の排水毎の運用目標値	解 類 解	$H_{\scriptscriptstyle{\mathcal{E}}}$	1500Bq/L未満	1500Bq/L未満
			5Bg/L未満 (10日に1回程度の 頻度で1Bg/L未満 であること)	3Bq/L未満 (10日に1回程度の 頻度で1Bq/L未満 エナフー!
		¹³⁷ Cs	1Bq/L未滿	1Bq/L未満
		¹³⁴ Cs	1Bq/L未滿	18q/L未滿
く参考>地下水バイパ			地下水バイパス	サブドレン他 浄化設備の処理済水

<参考>地下水バイパス排水実績

排水日	排水量【m³】	セシウム134【Bq/L】	セシウム137【Bq/L】	全ベータ【Bq/L】	トリチウム【Bq/L】
7月3日	1830	<0.56	<0.69	<0.63	68
7月12日	1560	<0.52	<0.60	<0.65	69
7月13日	1209	<0.49	<0.73	<0.62	63
7月20日	1799	<0.76	<0.54	<0.66	63
7月27日	1828	<0.61	<0.73	<0.63	56
8月5日	1828	<0.45	<0.65	<0.70	62
8月10日	1852	<0.55	<0.69	<0.65	59
8月15日	1300	<0.55	<0.69	<0.64	59
8月22日	1789	<0.72	<0.84	<0.61	63
8月31日	1837	<0.58	<0.69	<0.69	63
9月5日	1783	<0.61	<0.60	<0.61	57
9月12日	1835	<0.70	<0.54	<0.68	56
9月19日	1823	<0.58	<0.69	<0.66	57
9月26日	1738	<0.79	<0.69	<0.63	55

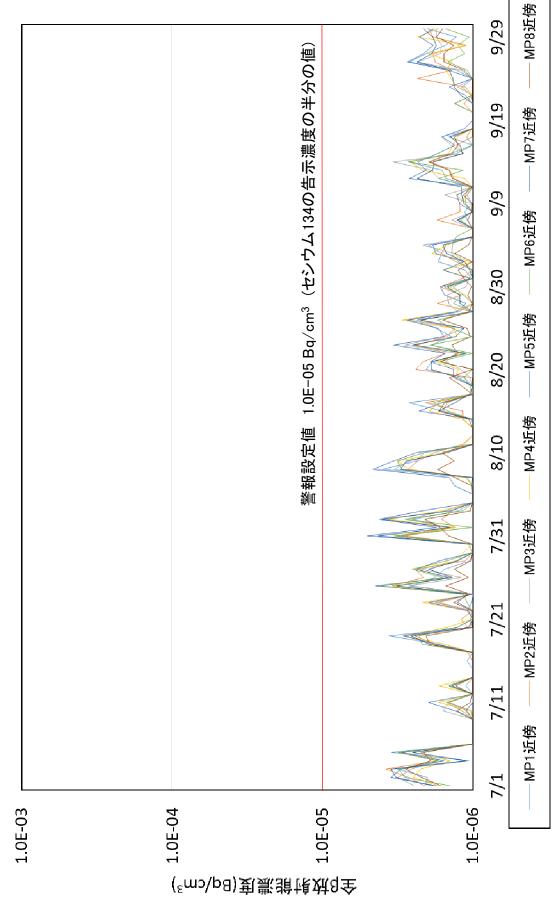
<参考>サブドレン排水実績


(13 JH 1 - 1 / 2)	· · · · · · · · · · · · · · · · · · ·	э , ,,оод,			
排水日	排水量【m³】	セシウム134【Bq/L】	セシウム137【Bq/L】	全ベータ【Bq/L】	トリチウム【Bq/L】
7月1日	999	<0.64	<0.47	<1.9	910
7月2日	927	<0.45	<0.65	<1.9	920
7月3日	829	<0.53	<0.69	<1.7	830
7月4日	792	<0.57	<0.69	<2.0	900
7月5日	805	<0.47	<0.65	<1.7	900
7月6日	832	<0.45	<0.60	<0.64	890
7月8日	792	<0.65	<0.60	<1.9	940
7月8日	758	<0.53	<0.69	<2.0	890
7月9日	695	<0.68	<0.85	<1.8	960
7月10日	654	<0.63	<0.77	<1.8	870
7月11日	654	<0.41	<0.60	<1.8	880
7月12日	742	<0.41	<0.73	<1.6	880
7月13日	605	<0.53	<0.54	<0.65	930
7月14日	644	<0.82	<0.69	<2.0	880
7月15日	669	<0.55	<0.65	<1.9	890
7月16日	725	< 0.63	<0.47	<1.8	810
7月17日	737	<0.76	<0.80	<1.9	800
7月18日	754	<0.62	<0.73	<1.9	750
7月19日	701	<0.69	<0.60	<2.2	710
7月20日	677	<0.72	<0.73	<1.9	760
7月21日	702	<0.63	<0.69	<1.5	790
7月22日	802	<0.71	<0.54	<0.70	750
7月23日	928	<0.76	<0.65	<2.0	740
7月24日	1005	<0.59	<0.73	<1.9	690
7月25日	783	<0.64	<0.60	<2.0	700
7月26日	1001	<0.41	<0.60	<2.2	670
7月27日	723	<0.64	<0.65	<2.0	720
7月28日	995	<0.57	<0.69	<1.8	710
7月29日	995	<0.63	<0.77	<1.7	780
7月30日	999	<0.88	<0.75	<0.59	710
7月31日	971	<0.88	<0.69	<1.9	700
8月1日	797	<0.77	<0.60	<1.7	690
8月2日	1015	<0.65	<0.65	<1.8	690
8月3日	962	<0.61	<0.65	<2.1	700
8月4日	478	<0.63	<0.65	<1.7	810
8月5日	831	<0.57	<0.60	<1.6	810
8月6日	992	<0.93	<0.54	<2.0	780
8月6日	870	<0.53	<0.47	<0.71	840
8月7日	843	<0.61	<0.60	<1.9	840
1		1	i L		1

<参考>サブドレン排水実績

(13 4H 1 - 1 / 2)	· i i i i i i	э,,,оод,			
排水日	排水量【m³】	セシウム134【Bq/L】	セシウム137【Bq/L】	全ベータ【Bq/L】	トリチウム【Bq/L】
8月8日	821	<0.58	<0.65	<2.0	900
8月9日	652	<0.64	<0.84	<2.2	1000
8月10日	627	<0.85	<0.54	<1.8	940
8月11日	599	<0.53	<0.65	<1.8	970
8月12日	611	<0.70	<0.54	<1.8	940
8月13日	833	<0.57	<0.69	<0.68	770
8月14日	892	<0.44	<0.73	<1.8	760
8月15日	858	<0.83	<0.60	<1.6	760
8月16日	736	<0.66	<0.47	<1.9	780
8月17日	830	<0.61	<0.73	<1.6	760
8月18日	782	<0.61	<0.69	<1.6	750
8月19日	771	<0.45	<0.69	<2.0	790
8月20日	709	<0.53	<0.91	<0.58	810
8月21日	649	<0.49	<0.65	<1.9	690
8月22日	668	<0.59	<0.80	<1.6	680
8月23日	696	<0.69	<0.73	<1.7	820
8月24日	704	<0.57	<0.60	<1.9	810
8月25日	688	<0.83	<0.60	<2.0	810
8月26日	670	<0.72	<0.65	<1.7	840
8月27日	652	<0.80	<0.60	<2.0	840
8月28日	648	<0.57	<0.65	<0.68	830
8月29日	631	<0.72	<0.65	<2.0	800
8月30日	634	<0.61	<0.65	<1.8	840
8月31日	478	<0.56	<0.77	<1.9	840
9月1日	594	<0.59	<0.77	<1.9	890
9月2日	575	<0.85	<0.47	<2.1	900
9月3日	690	<0.59	<0.47	<2.0	880
9月4日	572	<0.66	<0.73	<2.0	960
9月5日	569	<0.44	<0.65	<2.0	930
9月6日	605	<0.64	<0.60	<0.66	890
9月7日	626	<0.73	<0.65	<1.9	820
9月8日	643	<0.53	<0.80	<2.1	780
9月9日	684	<0.53	<0.47	<2.0	760
9月10日	687	<0.81	<0.54	<1.8	740
9月11日	688	<0.85	<0.65	<1.8	780
9月12日	662	<0.76	<0.65	<1.9	840
9月13日	633	<0.48	<0.54	<1.9	850
9月14日	628	<0.73	<0.54	<0.59	870
9月15日	597	<0.72	<0.60	<1.7	910
	I	1			<u> </u>

<参考>サブドレン排水実績


排水日	排水量【m³】	セシウム134【Bq/L】	セシウム137【Bq/L】	全ベータ【Bq/L】	トリチウム【Bq/L】
9月16日	622	<0.72	<0.60	<2.0	920
9月17日	635	<0.52	<0.69	<1.4	940
9月18日	608	<0.72	<0.73	<1.8	880
9月19日	618	<0.69	<0.65	<2.0	920
9月20日	511	<0.44	<0.73	<2.0	970
9月21日	443	<0.45	<0.54	<0.65	1000
9月22日	404	<0.67	<0.60	<1.8	960
9月23日	455	<0.65	<0.69	<1.9	910
9月24日	545	<0.61	<0.73	<1.9	870
9月25日	532	<0.67	<0.60	<1.8	860
9月26日	586	<0.65	<0.60	<1.7	820
9月27日	564	<0.53	<0.80	<0.65	820
9月28日	581	<0.73	<0.69	<2.0	850
9月29日	635	<0.41	<0.65	<1.9	810
9月30日	617	<0.61	<0.47	<1.9	770

*:白抜きのプロットは検出下限値未満であるため、検出下限値をプロットしている。 ※:10日に1回程度の分析では、検出限界値を18g/Lに下げて実施

く参考〉福島第一原子力発電所 敷地境界近傍ダストモニタ指示値

グラフ値は日最大値を記載(5分正時の値)