Control Measures for Water Leaked from the H4 Area Tank

 Status of the Consideration of the Applicability of the Collecting Method for Strontium Present in the Soil

> March 27, 2014 Tokyo Electric Power Company

1. Overview of the Consideration

In considering the applicability, an laboratory test and a field test are to be carried out, and the effectiveness of related measures.
 <u>Laboratory test: Sr-collecting effect of the collecting material and soil conditioner^{%1}(apatite + crushed stones) is to be confirmed.
 Field test: Confirm the effect of collection^{%3} as a supplementary purpose in addition to the main purposes of confirming workability and quality^{%2}.
 ^{%1} The soil conditioner is a material made by mixing hydroxy-apatite [Ca₁₀(PO₄)₆(OH)₂] with crushed stones. ^{%2} The main purpose of the field test is to confirm the mixing method of soil conditioner and the workability

</u>

according to the specified compounding ratio etc.

3 The effect of collection is determined from the result of the laboratory test. The result of the field test is to be reflected in the construction/installation as needed.

The following tests are conducted in the laboratory:

- Batch test (Capability test of the collecting material)
 - Column test (Simulation test of the soil conditioner)

Reflect the result

(Polypropylene container)

(Tube rotator)

[Batch test]

[Field Test]

[Laboratory Test]

purposes)Confirmation of the effect of collecting Sr (Supplementary)

A full-scale verification test is conducted on site.Confirmation of workability and quality (Main

2. Laboratory Test (1) Batch Test ① Test Results

• The batch test is intended to confirm the distribution coefficient, removal ratio^{*1}, and Ca substitution ratio^{*2} of apatite in relation to Sr.

[Test Results]

Distribution coefficient : 0.2 to 0.25m³/kg (200 to 250ml/g)

Removal ratio: 60% to 70% (decontamination factor DF^{$\times3$}: 3 to 3.5)

Ca substitution ratio: 0.07%^{**4}

※1 Relative values in proportion to apatite (1g), with the solid-liquid ratio being 1/100
※2 On the assumption that all the amount of adsorbed Sr has been substituted
※3 DF=(Initial liquid-phase concentration of Sr)/(Liquid-phase concentration of Sr after adsorption)
※4 Final values of the amount of remaining adsorbed Sr after the desorption test

[Distribution coefficient]

- The distribution coefficient can be defined as the sum of electrical surface adsorption and adsorption by ion exchange between Ca and Sr.
- <u>The distribution coefficient obtained from the test results was in the range from 0.2 to 0.25m³/kg (200 to 250ml/g)</u>, and the removal ratio was between 60 to 70%.
- When compared in terms of the distribution coefficient, <u>the above values are smaller than those of</u> <u>zeolites^{%1} such as Zeolite A (790ml/g), Zeolite X (790ml/g) and clinoptilolite (560ml/g) etc.</u>

[Ca substitution ratio]

- It is the ratio of the adsorbed amount of Sr to the amount of Ca present in 1 gram of apatite (8.8mmol/g)(100% if all the Ca content of the apatite² substitutes Sr).
- The substitution ratio calculated from the final remaining amount of Sr after the desorption test shows the amount of Ca which contributed to the ion exchange.
- According to the test results, the final substitution ratio was 0.07%, showing the substitution ratio of Sr by Ca present in the apatite was very small. (This ratio was designed to be 10% at the Hanford Site)

%1 The Data Collection of the Atomic Energy Society of Japan, with seawater content of 1% %2 Chemical formula: $Ca_{10}(PO_4)_6(OH)_2$

• As the Ca-substitution ratio of the apatite used for this test was low, we used other materials and carried out additional tests.

[Additional Consideration]

- A study on (natural and synthetic apatite) powder-type apatite, confirmation of the effect and selection of adequate materials
- Confirmation of the effect of solution-type apatite (refer to the specification for the Hanford Site)
- A study on (natural and synthetic) zeolites, confirmation of the effect and selection of adequate materials

[The specification for the Hanford Site] Target of reduction in Sr concentration: By 90% of the maximum concentration (Solution-type) • Main works: Synthetic apatite → On-site collection effect: About 90% (Powder-type) • Field test: Natural apatite (calcination temperature^{*}: 350° C) → On-site collection effect: About 90% • Main works: Natural apatite (calcination temperature: 1000 – 1100° C) → On-site collection effect: Not yet conducted [The specification for this test] (Powder-type) • Field test: Natural apatite (calcination temperature: 1100° C)

and decreases the reactivity (substitution ratio) between Ca and Sr.

2. Laboratory Test (4) A List of Considered Materials

Types of materials		Calcination temperature	Remarks	Availability	Testing status	Analysis/Evaluation
Natural apatites	Apatite ①: Beef bone	1100°C	K _d =0.2m³/kg	Already used	Already used	Already used
	Bone char (coarse grain): Beef bone	1000 - 1100°C	Used at the Hanford Site	Available	Completed	Now being carried out
	APATITE II [®] (fine grain): Fish bone	350°C	Used at the Hanford Site	Available	Completed	Now being carried out
	Apatite @: Beef bone	850 - 900°C		Available	Now being carried out	Not yet conducted
	Steamed bone meal: Pork bone	Steamed at 180°C		Available	Completed	Now being carried out
Synthetic apatites	Hydroxy-apatite	Non-calcinated		Available	Completed	Now being carried out
	Tribasic calcium phosphate®	Non-calcinated		Available	Completed	Now being carried out
	Hydroxy-apatite slurry	Non-calcinated		Available	Completed	Now being carried out
	Tribasic calcium phosphate@	Non-calcinated		Available	Completed	Now being carried out
	Solution-type CaCl ₂ +(Na ² HPO ₄ +Na ₃ PO ₄ +NH ₄ NO ₃)	-	Refer to the specification for the Hanford Site	Available	Completed	Now being carried out
Natural zeolites	Clinoptilolite (produced in Shimane)	-		Available	Completed	Now being carried out
	Clinoptilolite (produced in Futatsui)	-		Available	Completed	Now being carried out
	Zeophyllite #1424 (Mordenite)	-		Available	Now being carried out	Not yet conducted
	Nitto Zeolite No.2 (Mordenite)	-		Available	Now being carried out	Not yet conducted
Synthetic zeolites	P-type zeolite (synthetic)	-		Available	Completed	Now being carried out
	X-type zeolite	-		Available	Completed	Now being carried out

- Implementation processes have been changed due to additional tests etc. (Black→Red)
- The implementation of the main works will be determined in a comprehensive manner on the basis of the results of additional laboratory test etc.

	2014.1	2	3	4	5	6
[Laboratory Test]				Determinatior ▼ on the main)	
[Field Test]				works		
Confirmation of workability		improvem	ent			
Confirmation of quality			Determinatio ▼ on the main works			
Confirmation of Sr- collection effect		obser	ation of vation les ×Discont	Monitoring/analı inue	/SIS	l in the main orks

