Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (1/4)

Sample Name	ALPS Treated V	Group B		
Date and Time of Sampling	March 27, 2023	10:57		
Storage Volume (m ³)	8919			

Summary	Nuclides to be measured and assessed (29 nuclides) : The sum of the ratios of the concentration of each	0.28
	radionuclide to the regulatory concentration	(Confirmed to be less than 1)

Radioactivity Analysis: Nuclides to be measured and assessed (29 nuclides)

				Analysis F	Results		Ratios to Regulator	/ Concentration Limit	Regulatory		
No.	Nuclide		TEPCO			KAKEN Co.,Ltd.				Concentration Limit	Analysis Method *4
NO.	Nucliue	Analysis Value	Uncertainty *1	Detection Limit	Analysis Value	Uncertainty *1	Detection Limit	TEPCO	KAKEN Co.,Ltd.	*2	Analysis Method 4
		(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)			(Bq/L)	
1	C-14	1.4E+01	± 2.7E+00	2.6E+00	1.4E+01	± 9.3E-01	8.7E-01	7.1E-03	7.1E-03	2000	Measurement
2	Mn-54	ND	-	2.6E-02	ND	-	2.8E-02	less than 2.6E-05	less than 2.8E-05	1000	Measurement
3	Fe-55	ND	-	1.5E+01	ND	-	1.1E+01	less than 7.4E-03	less than 5.4E-03	2000	Measurement
4	Co-60	3.5E-01	± 6.4E-02	2.4E-02	3.2E-01	± 3.8E-02	2.7E-02	1.7E-03	1.6E-03	200	Measurement
5	Ni-63	ND	-	8.8E+00	ND	-	4.9E+00	less than 1.5E-03	less than 8.2E-04	6000	Measurement
6	Se-79	ND	-	9.3E-01	ND	-	1.8E+00	less than 4.7E-03	less than 9.2E-03	200	Measurement
7	Sr-90	4.1E-01	± 2.7E-02	3.6E-02	3.7E-01	± 6.2E-02	7.8E-02	1.4E-02	1.2E-02	30	Measurement
8	Y-90	4.1E-01	-	3.6E-02	3.7E-01	-	7.8E-02	1.4E-03	1.2E-03	300	Sr-90/Y-90 Radioactive Equilibrium Assessment
9	Tc-99	6.8E-01	± 4.5E-01	2.0E-01	6.1E-01	± 1.2E-01	6.4E-02	6.8E-04	6.1E-04	1000	Measurement
10	Ru-106	ND	-	2.5E-01	ND	-	2.5E-01	less than 2.5E-03	less than 2.5E-03	100	Measurement
11	Sb-125	1.8E-01	± 6.5E-02	8.6E-02	7.9E-02	± 5.2E-02	7.7E-02	2.3E-04	9.8E-05	800	Measurement
12	Te-125m	6.4E-02	-	3.0E-02	2.8E-02	-	2.7E-02	7.1E-05	3.1E-05	900	Sb-125/Te-125m Radioactive Equilibrium Assessment
13	I-129	2.0E+00	± 1.5E-01	2.3E-02	2.0E+00	± 3.0E-01	1.3E-01	2.2E-01	2.2E-01	9	Measurement
14	Cs-134	ND	-	3.3E-02	ND	-	4.7E-02	less than 5.4E-04	less than 7.9E-04	60	Measurement
15	Cs-137	4.7E-01	± 8.1E-02	2.8E-02	4.8E-01	± 5.2E-02	3.9E-02	5.2E-03	5.3E-03	90	Measurement
16	Ce-144	ND	-	3.6E-01	ND	-	2.6E-01	less than 1.8E-03	less than 1.3E-03	200	Measurement
17	Pm-147	ND	-	3.1E-01	ND	-	3.3E-01	less than 1.0E-04	less than 1.1E-04	3000	Eu-154 Relative Ratio Assessment
18	Sm-151	ND	-	1.2E-02	ND	-	1.2E-02	less than 1.5E-06	less than 1.6E-06	8000	Eu-154 Relative Ratio Assessment
19	Eu-154	ND	-	7.0E-02	ND	-	7.3E-02	less than 1.8E-04	less than 1.8E-04	400	Measurement
20	Eu-155	ND	-	1.9E-01	ND	-	1.4E-01	less than 6.3E-05	less than 4.8E-05	3000	Measurement
21	U-234									20	Gross Alpha
22	U-238									20	Gross Alpha
23	Np-237									9	Gross Alpha
24	Pu-238	ND	-	2.1E-02	ND	_	2.6E-02	less than 5.3E-03	less than 6.6E-03	4	Gross Alpha
25	Pu-239	ND		2.10 02	ND		2.02 02			4	Gross Alpha
26	Pu-240							*3	*3	4	Gross Alpha
27									5	Gross Alpha	
28										7	Gross Alpha
29	Pu-241	ND	-	5.8E-01	ND	-	7.2E-01	less than 2.9E-03	less than 3.6E-03	200	Pu-238 Relative Ratio Assessment
The su	m of the ratios	of the concentration of	f each radionuclide to	the regulatory conce	ntration (sum of th	e ratios to regulatory	concentration limit)	less than 2.8E-01	less than 2.8E-01		

• ND indicates that analysis result is less than the detection limit.

· Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1×10⁰" and equals 3.1, and "3.1E-01" means "3.1×10⁻¹" and equals 0.31.

*1 "Uncertainty" refers to the accuracy of analysis data.

"Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

*2 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated. (Attached Chart 1, Row 6: Concentration limits in the water outside of the environmental monitoring area [in this chart Bq/cm³ has been converted into Bq/L])

*3 The ratio to regulatory concentration limit for alpha-radionuclides has been assessed using the lowest regulatory concentration limit for all the target nuclides.

*4 Analysis methods are as follows:

Measurement - The concentrations of each radionuclide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

Gross Alpha - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.

Radioactive Equilibrium Assessment - Calculated using a physical phenomenon in which the amount of radioactivity of one radionuclide and another radionuclide produced by the decay of that radionuclide exist in a certain ratio. Relative Ratio Assessment - Calculated based on the assessment values of radionuclides that existed inside the reactor while considering radionuclide decay and migration into ALPS treated water.

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (2/4)

Summary 14 $(x10^{4}Bq/L)$ (confirmed to be less than 1 million Bq/L)

Analysis Results									
No.	Nuclide	Nuclide TEPCO KAKEN Co.,Ltd.						Analysis Objective	Analysis Method *3
NO.		Analysis Value (Bq/L)	Uncertainty *1 (Bq/L)	Detection Limit (Bq/L)	Analysis Value (Bq/L)	Uncertainty *1 (Bq/L)	Detection Limit (Bq/L)		Analysis nethod 5
1	H-3	1.4E+05	± 9.5E+03	1.9E+01	1.4E+05	± 7.8E+03	1.4E+02	*2	Measurement

Radioactivity Analysis: Tritium

 \cdot Values are expressed in exponential notation.

For example, "3.1E+01" means " 3.1×10^{1} " and equals 31. Similarly, "3.1E+00" means " 3.1×10^{0} " and equals 3.1, and "3.1E-01" means " 3.1×10^{-1} " and equals 0.31.

*1 "Uncertainty" refers to the accuracy of analysis data.

"Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

*2 To confirm that the tritium concentration is less than 1E+06Bq/liter (less than 1 million Bq/liter), the maximum concentration stipulated in the implementation plan, ensuring that the tritium concentration after dilution is less than 1,500 Bq/liter.

*3 Analysis method is as follows:

Measurement - The concentration of radionuclide has been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

Summary No significant concentrations found of any of the nuclides

Radio	activity Analys	is: Nuclides volur	<u>ntarily checked to er</u>	nsure that they a	re not significantly	present (39 nuclides)
		TEPCO		KAKEN Co.,Ltd.		
No.	No. Nuclide	Assessment *1	Detection Limit	Assessment *1	Detection Limit	Confirmation Method *2
		Assessment 1	(Bq/L)	Assessment 1	(Bq/L)	
1	Fe-59	0	5.5E-02	0	6.7E-02	
2	Co-58	0	2.5E-02	0	3.5E-02	
3	Zn-65	0	5.8E-02	0	9.7E-02	
4	Rb-86	0	4.1E-01	0	1.0E+00	
5	Sr-89	0	6.8E-02	0	2.5E-01	
6	Y-91	0	2.1E+00	0	1.2E+01	
7	Nb-95	Ō	3.2E-02	Ō	2.8E-02	
8	Ru-103	Ō	3.6E-02	Ō	8.5E-02	
9	Aq-110m	Ō	2.6E-02	Ō	3.8E-02	
10	Cd-113m	Ō	8.4E-02	0	5.1E-02	
11	Cd-115m	Ō	1.6E+00	Ō	2.0E+00	
12	Sn-123	Ō	7.4E-01	Ō	5.1E+00	
13	Sn-126	Ō	1.7E-01	0	1.2E-01	
14	Sb-124	Õ	6.3E-02	0	7.6E-02	Measurement
15	Te-123m	Ö	5.7E-02	0	3.3E-02	
16	Te-127	Õ	2.9E+00	Õ	2.8E+00	
17	Te-129m	0	9.3E-01	0	1.8E+00	
18	Te-129	0	4.3E-01	0	1.1E+00	-
19	Cs-136	Ö	3.8E-02	Õ	1.5E-01	
20	Ba-140	0	1.7E-01	0	6.2E-01	
21	Ce-141	0	1.2E-01	0	1.6E-01	
22	Pm-146	0	4.0E-02	0	3.5E-02	
23	Pm-148m	Ö	2.9E-02	0	4.4E-02	
24	Pm-148	0	3.7E-01	0	1.9E+01	
25	Eu-152	0	1.2E-01	0	1.3E-01	-
26	Gd-153	Ö	1.6E-01	0	1.3E-01	
27	Tb-160	0	7.8E-02	0	1.1E-01	
28	Am-243	0	2.1E-02	0	2.6E-02	
29	Cm-242	Ö	2.1E-02	0	2.6E-02	Measurement (substituted with gross alpha)
30	Cm-243	0	2.1E-02	0	2.6E-02	
31	Rh-103m	0	3.6E-02	0	8.5E-02	Ru-103/Rh-103m Radioactive Equilibrium Assessment
32	Rh-106	0	2.5E-01	0	2.5E-01	Ru-106/Rh-106 Radioactive Equilibrium Assessment
33	Sn-119m	0	6.4E-03	0	4.5E-03	Sn-126 Relative Ratio Assessment
34	Te-127m	0	2.9E+00	0	2.9E+00	Te-127 Relative Ratio Assessment
35	Cs-135	0	1.9E-07	0	2.6E-07	Cs-137 Relative Ratio Assessment
36	Ba-137m	0	2.7E-02	0	3.7E-02	Cs-137/Ba-137m Radioactive Equilibrium Assessment
37	Pr-144m	0	5.5E-03	0	3.9E-03	Ce-144/Pr-144m Radioactive Equilibrium Assessment
38	Pr-144	0	3.6E-01	0	2.6E-01	Ce-144/Pr-144 Radioactive Equilibrium Assessment
39	Am-242m	0	1.4E-04	0	1.8E-04	Am-241 Relative Ratio Assessment
		Ŭ		ÿ		concentrations of nuclide was confirmed

Padioactivity Analysis: Nuclides voluntarily checked to ensure that they are not significantly present (39 nuclides)

*1 "O" indicates that the absence of significant concentrations was confirmed by the following, and "×" indicates that significant concentrations of nuclide was confirmed. - Concentration of nuclide measured was below detection limit

- For nuclide that has been assessed using radioactive equilibrium, etc., if its target nuclide is detected and the assessment value of the target nuclide is

extremely small compared to the regulatory concentration limit, or in other words, if it is less than 1/100 of the regulatory concentration limit

which is the value set as the detection limit, then it shall be deemed to be below the detection limit.

Nuclide	Assessmen	Int values (Bq/L)			
Nuclide	TEPCO KAKEN Co.,Ltd.		Concentration Limit *3		
Rh-103m	-	-	2.0E+05		
Rh-106	-	-	3.0E+05		
Sn-119m	-	-	2.0E+03		
Te-127m	-	-	3.0E+02		
Cs-135	3.1E-06	3.1E-06	6.0E+02		
Ba-137m	4.4E-01	4.5E-01	8.0E+05		
Pr-144m	-	-	4.0E+04		
Pr-144	-	-	2.0E+04		
Am-242m	_	_	5.0E+00		
A humbon " " ind	iestos that the concept	ration of the target puelide .	use helew the detection		

• A hyphen "-" indicates that the concentration of the target nuclide was below the detection limit.

Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1×10⁰" and equals 3.1, and "3.1E-01" means "3.1×10⁻¹" and equals 0.31. *2 Analysis Methods are as follows:

Measurement - The concentrations of each radionuclide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element. Measurement (substituted with gross alpha) - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.

Radioactive Equilibrium Assessment - Calculated using a physical phenomenon in which the amount of radioactivity of one radionuclide and another radionuclide produced by the decay of that radionuclide exist in a certain ratio. Relative Ratio Assessment - Calculated based on the assessment values of radionuclides that existed inside the reactor while considering radionuclide decay and migration into ALPS treated water. *3 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material

at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated. (Attached Chart 1, Row 6: Concentration limits in the water outside of the environmental monitoring area [in this chart Bq/cm³ has been converted into Bq/L]) Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (4/4)

Summary Criteria satisfied

General Water Quality Analysis: Volunta	y check to confirm that there are n	o unusual water quality (44 criteria)
---	-------------------------------------	---------------------------------------

Gene	and water Quality Analysis. Voluntary			no unusual water quality (44 criteria)
No.	Measurement Items	Unit	Analysis Result	Criteria *1
1	Hydrogen Ions (pH)	_	8.7	Sea Area 5.0~9.0
2	Suspended Solids (SS)	mg/L	<1	Maximum: 70 or less Average: 50 or less
3	Chemical Oxygen Demand (COD)	mg/L	1.1	Maximum: 40 or less Average: 30 or less
4	Boron	mg/L	0.5	Sea Area 230 or less
5	Soluble Iron	mg/L	<0.1	10 or less
6	Copper	mg/L	<0.1	2 or less
7	Nickel	mg/L	<0.1	2 or less
8	Chrome	mg/L	<0.1	2 or less
9	Zinc	mg/L	0.1	2 or less
10	Biochemical Oxygen Demand (BOD)	mg/L	1	Maximum: 40 or less Average: 30 or less
11	Coliform Count	pcs/cm ³	0	3000 or less
12	Cadmium	mg/L	<0.01	0.03 or less
13	Cyanide	mg/L	<0.05	0.5 or less
14	Organic Phosphorus	mg/L	<0.1	1 or less
15	Lead	mg/L	<0.01	0.1 or less
16	Hexavalent Chromium	mg/L	<0.05	0.2 or less
17	Arsenic	mg/L	< 0.01	0.1 or less
18	Mercury	mg/L	<0.0005	0.005 or less
19	Alkyl Mercury	mg/L	<0.0005	Not Detected
20	Polychlorinated Biphenyl	mg/L	<0.0005	0.003 or less
21	Trichlorethylene	mg/L	<0.03	0.1 or less
22	Tetrachloroethylene	mg/L	< 0.01	0.1 or less
23	Dichloromethane	mg/L	<0.02	0.2 or less
24	Carbon Tetrachloride	mg/L	<0.002	0.02 or less
25	1,2-Dichloroethane	mg/L	<0.004	0.04 or less
26	1,1-Dichloroethylene	mg/L	<0.1	1 or less
27	Cis-1,2-Dichloroethylene	mg/L	<0.04	0.4 or less
28	1,1,1-Trichloroethane	mg/L	<0.3	3 or less
29	1,1,2-Trichloroethane	mg/L	<0.006	0.06 or less
30	1,3-Dichloropropene	mg/L	<0.002	0.02 or less
31	Thiuram	mg/L	<0.006	0.06 or less
32	Simazine	mg/L	< 0.003	0.03 or less
33	Thiobencarb	mg/L	<0.02	0.2 or less
34	Benzene	mg/L	< 0.01	0.1 or less
35	Selenium	mg/L	< 0.01	0.1 or less
36	Fenitrothion	mg/L	<0.003	0.03 or less
37	Phenols	mg/L	<0.1	1 or less
38	Fluorine	mg/L	<0.5	Sea Area 10 or less
39	Soluble Manganese	mg/L	<1	10 or less
40	Ammonia, Ammonium Compounds	mg/L	<1	100 cm/cm
41	Nitrite Compounds and Nitrate Compounds	mg/L	<1	100 or less
42	1,4-Dioxane	mg/L	<0.05	0.5 or less
43	n-Hexane Extractables (Mineral Oils)	mg/L	<0.5	1 or less
44	n-Hexane Extractables (Animal and Vegetable Oils and Fats)	mg/L	<1	10 or less

 \cdot A "less than" symbol (<) indicates that the quantity is below quantitation limit.

*1 In accordance with Fukushima Prefecture's "Ordinance on Discharge Standards Based on the Air Pollution Control Act and Wastewater Standard based on the Water Pollution Prevention Act (attached Chart 2)", and "the Ordinance Enforcement Regulations Pertaining to the Preservation of the Living Environment in Fukushima (attached Chart 5)".