

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (1/4)

Sample Name	ALPS Treated Water in the Measurement/Confirmation Tanks			Group B	Summary	Nuclides to be measured and assessed (29 nuclides) : The sum of the ratios of the concentration of each radionuclide to the regulatory concentration		0.24 (Confirmed to be less than 1)				
Date and Time of Sampling	November 20, 2025 9:20											
Storage Volume (m ³)	8961											

Radioactivity Analysis: Nuclides to be measured and assessed (29 nuclides)

No.	Nuclide	Analysis Results						TEPCO	KAKEN Co.,Ltd.	Ratios to Regulatory Concentration Limit	Regulatory Concentration Limit *2 (Bq/L)	Analysis Method *4
		TEPCO			KAKEN Co.,Ltd.							
1	C-14	2.3E+01	± 2.4E+00	1.8E+00	2.3E+01	± 1.4E+00	9.7E-01	1.2E-02	1.1E-02	2000	2000	Measurement
2	Mn-54	ND	—	2.3E-02	ND	—	1.8E-02	less than 2.3E-05	less than 1.8E-05	1000	1000	Measurement
3	Fe-55	ND	—	1.4E+01	ND	—	1.1E+01	less than 7.2E-03	less than 5.7E-03	2000	2000	Measurement
4	Co-60	2.9E-01	± 5.6E-02	2.5E-02	2.9E-01	± 4.1E-02	2.0E-02	1.5E-03	1.4E-03	200	200	Measurement
5	Ni-63	ND	—	1.3E+01	ND	—	5.5E+00	less than 2.2E-03	less than 9.2E-04	6000	6000	Measurement
6	Se-79	ND	—	9.6E-01	ND	—	1.6E+00	less than 4.8E-03	less than 7.9E-03	200	200	Measurement
7	Sr-90	1.1E+00	± 4.8E-02	4.3E-02	1.0E+00	± 1.3E-01	3.0E-02	3.7E-02	3.3E-02	30	30	Measurement
8	Y-90	1.1E+00	—	4.3E-02	1.0E+00	—	3.0E-02	3.7E-03	3.3E-03	300	300	Sr-90/Y-90 Radioactive Equilibrium Assessment
9	Tc-99	3.5E+00	± 2.0E-01	1.4E-01	3.5E+00	± 5.7E-01	1.6E-01	3.5E-03	3.5E-03	1000	1000	Measurement
10	Ru-106	ND	—	2.2E-01	ND	—	1.8E-01	less than 2.2E-03	less than 1.8E-03	100	100	Measurement
11	Cd-113m	ND	—	1.0E-01	ND	—	5.7E-02	less than 2.6E-03	less than 1.4E-03	40	40	Measurement
12	Sb-125	1.5E-01	± 6.5E-02	8.5E-02	1.5E-01	± 5.5E-02	7.7E-02	1.8E-04	1.8E-04	800	800	Measurement
13	Te-125m	5.5E-02	—	3.2E-02	5.4E-02	—	2.8E-02	6.1E-05	6.0E-05	900	900	Te-125m Radioactive Equilibrium Assessment
14	I-129	1.4E+00	± 8.9E-02	4.8E-02	1.5E+00	± 2.4E-01	6.5E-02	1.5E-01	1.7E-01	9	9	Measurement
15	Cs-134	ND	—	2.9E-02	ND	—	2.2E-02	less than 4.9E-04	less than 3.7E-04	60	60	Measurement
16	Cs-137	2.8E-01	± 5.5E-02	3.3E-02	2.8E-01	± 3.8E-02	2.1E-02	3.1E-03	3.1E-03	90	90	Measurement
17	Pm-147	ND	—	3.2E-01	ND	—	2.2E-01	less than 1.1E-04	less than 7.5E-05	3000	3000	Eu-154 Relative Ratio Assessment
18	Sm-151	ND	—	1.2E-02	ND	—	8.6E-03	less than 1.5E-06	less than 1.1E-06	8000	8000	Eu-154 Relative Ratio Assessment
19	Eu-154	ND	—	7.2E-02	ND	—	5.0E-02	less than 1.8E-04	less than 1.3E-04	400	400	Measurement
20	Eu-155	ND	—	1.6E-01	ND	—	1.3E-01	less than 5.4E-05	less than 4.4E-05	3000	3000	Measurement
21	U-234	ND	—	2.7E-02	ND	—	2.4E-02	less than 6.7E-03	less than 6.0E-03	20	20	Gross Alpha
22	U-238									20	20	Gross Alpha
23	Np-237									9	9	Gross Alpha
24	Pu-238									4	4	Gross Alpha
25	Pu-239									4	4	Gross Alpha
26	Pu-240									4	4	Gross Alpha
27	Am-241									5	5	Gross Alpha
28	Cm-244									7	7	Gross Alpha
29	Pu-241	ND	—	7.3E-01	ND	—	6.6E-01	less than 3.7E-03	less than 3.3E-03	200	200	Pu-238 Relative Ratio Assessment

The sum of the ratios of the concentration of each radionuclide to the regulatory concentration (sum of the ratios to regulatory concentration limit)

• ND indicates that analysis result is less than the detection limit.

• Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1×10⁰" and equals 3.1, and "3.1E-01" means "3.1×10⁻¹" and equals 0.31.

*1 "Uncertainty" refers to the accuracy of analysis data.

"Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

*2 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated.

(Attached Chart 1, Row 6: Concentration limits in the water outside of the environmental monitoring area [in this chart Bq/cm³ has been converted into Bq/L])

*3 The ratio to regulatory concentration limit for alpha-radionuclides has been assessed using the lowest regulatory concentration limit for all the target nuclides.

*4 Analysis methods are as follows:

Measurement - The concentrations of each radionuclide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

Gross Alpha - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.

Radioactive Equilibrium Assessment - Calculated using a physical phenomenon in which the amount of radioactivity of one radionuclide and another radionuclide produced by the decay of that radionuclide exist in a certain ratio.

Relative Ratio Assessment - Calculated based on the assessment values of radionuclides that existed inside the reactor while considering radionuclide decay and migration into ALPS treated water.

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (2/4)

Summary	25 x 10 ⁴ Bq/L (confirmed to be less than 1 million Bq/L)
---------	--

Radioactivity Analysis: Tritium

No.	Nuclide	Analysis Results						Analysis Objective	Analysis Method *3		
		TEPCO			KAKEN Co.,Ltd.						
		Analysis Value (Bq/L)	Uncertainty *1 (Bq/L)	Detection Limit (Bq/L)	Analysis Value (Bq/L)	Uncertainty *1 (Bq/L)	Detection Limit (Bq/L)				
1	H-3	2.5E+05	± 1.5E+04	1.9E+01	2.5E+05	± 1.8E+04	2.0E+01	*2	Measurement		

* Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1×10⁰" and equals 3.1, and "3.1E-01" means "3.1×10⁻¹" and equals 0.31.

*1 "Uncertainty" refers to the accuracy of analysis data.

"Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

*2 To confirm that the tritium concentration is less than 1E+06Bq/liter (less than 1 million Bq/liter), the maximum concentration stipulated in the implementation plan, ensuring that the tritium concentration after dilution is less than 1,500 Bq/liter.

*3 Analysis method is as follows:

Measurement - The concentration of radionuclide has been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (3/4)

Summary	No significant concentrations found of any of the nuclides
---------	--

Radioactivity Analysis: Nuclides voluntarily checked to ensure that they are not significantly present (39 nuclides)

No.	Nuclide	TEPCO		KAKEN Co.,Ltd.		Confirmation Method *2
		Assessment *1	Detection Limit (Bq/L)	Assessment *1	Detection Limit (Bq/L)	
1	Fe-59	○	4.5E-02	○	4.8E-02	
2	Co-58	○	2.4E-02	○	1.8E-02	
3	Zn-65	○	5.2E-02	○	5.3E-02	
4	Rb-86	○	3.2E-01	○	2.7E-01	
5	Sr-89	○	6.5E-02	○	5.9E-02	
6	Y-91	○	2.7E+00	○	2.2E+00	
7	Nb-95	○	2.9E-02	○	2.3E-02	
8	Ru-103	○	2.7E-02	○	2.1E-02	
9	Aq-110m	○	2.5E-02	○	1.8E-02	
10	Cd-115m	○	1.2E+00	○	9.9E-01	
11	Sn-123	○	1.3E+00	○	9.6E-01	
12	Sn-126	○	1.3E-01	○	1.1E-01	
13	Sb-124	○	4.7E-02	○	4.4E-02	
14	Te-123m	○	4.0E-02	○	6.5E-02	Measurement
15	Te-127	○	8.0E-01	○	6.2E-01	
16	Te-129m	○	8.0E-01	○	6.3E-01	
17	Te-129	○	3.4E-01	○	3.2E-01	
18	Cs-136	○	2.2E-02	○	2.3E-02	
19	Ba-140	○	1.0E-01	○	1.2E-01	
20	Ce-141	○	9.9E-02	○	1.0E-01	
21	Ce-144	○	2.9E-01	○	2.7E-01	
22	Pm-146	○	5.9E-02	○	5.5E-02	
23	Pm-148m	○	2.5E-02	○	2.3E-02	
24	Pm-148	○	1.1E-01	○	9.1E-02	
25	Eu-152	○	1.1E-01	○	8.9E-02	
26	Gd-153	○	1.4E-01	○	1.2E-01	
27	Tb-160	○	9.3E-02	○	5.8E-02	
28	Am-243	○	2.7E-02	○	2.4E-02	Measurement (substituted with gross alpha)
29	Cm-242	○	2.7E-02	○	2.4E-02	
30	Cm-243	○	2.7E-02	○	2.4E-02	
31	Rh-103m	○	2.7E-02	○	2.1E-02	
32	Rh-106	○	2.2E-01	○	1.8E-01	
33	Sn-119m	○	4.9E-03	○	4.0E-03	
34	Te-127m	○	8.2E-01	○	6.3E-01	
35	Cs-135	○	2.2E-07	○	1.4E-07	
36	Ba-137m	○	3.1E-02	○	2.0E-02	
37	Pr-144m	○	4.4E-03	○	4.1E-03	
38	Pr-144	○	2.9E-01	○	2.7E-01	
39	Am-242m	○	1.8E-04	○	1.6E-04	

*1 "○" indicates that the absence of significant concentrations was confirmed by the following, and "x" indicates that significant concentrations of nuclide was confirmed.

- Concentration of nuclide measured was below detection limit
- For nuclide that has been assessed using radioactive equilibrium, etc., if its target nuclide is detected and the assessment value of the target nuclide is extremely small compared to the regulatory concentration limit, or in other words, if it is less than 1/100 of the regulatory concentration limit which is the value set as the detection limit, then it shall be deemed to be below the detection limit.

Nuclide	Assessment Values (Bq/L)		Regulatory Concentration Limit *3
	TEPCO	KAKEN Co.,Ltd.	
Rh-103m	—	—	2.0E+05
Rh-106	—	—	3.0E+05
Sn-119m	—	—	2.0E+03
Te-127m	—	—	3.0E+02
Cs-135	1.9E-06	1.8E-06	6.0E+02
Ba-137m	2.7E-01	2.6E-01	8.0E+05
Pr-144m	—	—	4.0E+04
Pr-144	—	—	2.0E+04
Am-242m	—	—	5.0E+00

* A hyphen "—" indicates that the concentration of the target nuclide was below the detection limit.

* Values are expressed in exponential notation.

For example, "3.1E+01" means 3.1×10^{11} and equals 31. Similarly, "3.1E+00" means 3.1×10^0 and equals 3.1, and "3.1E-01" means 3.1×10^{-1} and equals 0.31.

*2 Analysis Methods are as follows:

Measurement - The concentrations of each radionuclide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

Measurement (substituted with gross alpha) - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.

Radioactive Equilibrium Assessment - Calculated using a physical phenomenon in which the amount of radioactivity of one radionuclide and another radionuclide produced by the decay of that radionuclide exist in a certain ratio.

Relative Ratio Assessment - Calculated based on the assessment values of radionuclides that existed inside the reactor while considering radionuclide decay and migration into ALPS treated water.

*3 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated.

(Attached Chart 1, Row 6: Concentration limits in the water outside of the environmental monitoring area [in this chart Bq/cm³ has been converted into Bq/L])

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (4/4)

Summary	Criteria satisfied
---------	--------------------

General Water Quality Analysis: Voluntary check to confirm that there are no unusual water quality (44 criteria)

No.	Measurement Items	Unit	Analysis Result	Criteria *1
1	Hydrogen Ions (pH)	–	8.7	Sea Area 5.0~9.0
2	Suspended Solids (SS)	mg/L	<1	Maximum: 70 or less Average: 50 or less
3	Chemical Oxygen Demand (COD)	mg/L	0.8	Maximum: 40 or less Average: 30 or less
4	Boron	mg/L	0.6	Sea Area 230 or less
5	Soluble Iron	mg/L	<1	10 or less
6	Copper	mg/L	<0.1	2 or less
7	Nickel	mg/L	<0.1	2 or less
8	Chrome	mg/L	<0.1	2 or less
9	Zinc	mg/L	<0.1	2 or less
10	Biochemical Oxygen Demand (BOD)	mg/L	1	Maximum: 40 or less Average: 30 or less
11	Escherichia coli	CFU/mL	0	800 or less
12	Cadmium	mg/L	<0.01	0.03 or less
13	Cyanide	mg/L	<0.05	0.5 or less
14	Organic Phosphorus	mg/L	<0.1	1 or less
15	Lead	mg/L	<0.01	0.1 or less
16	Hexavalent Chromium	mg/L	<0.05	0.2 or less
17	Arsenic	mg/L	<0.01	0.1 or less
18	Mercury	mg/L	<0.0005	0.005 or less
19	Alkyl Mercury	mg/L	<0.0005	Not Detected *2
20	Polychlorinated Biphenyl	mg/L	<0.0005	0.003 or less
21	Trichlorethylene	mg/L	<0.03	0.1 or less
22	Tetrachloroethylene	mg/L	<0.01	0.1 or less
23	Dichloromethane	mg/L	<0.02	0.2 or less
24	Carbon Tetrachloride	mg/L	<0.002	0.02 or less
25	1,2-Dichloroethane	mg/L	<0.004	0.04 or less
26	1,1-Dichloroethylene	mg/L	<0.1	1 or less
27	Cis-1,2-Dichloroethylene	mg/L	<0.04	0.4 or less
28	1,1,1-Trichloroethane	mg/L	<0.3	3 or less
29	1,1,2-Trichloroethane	mg/L	<0.006	0.06 or less
30	1,3-Dichloropropene	mg/L	<0.002	0.02 or less
31	Thiuram	mg/L	<0.006	0.06 or less
32	Simazine	mg/L	<0.003	0.03 or less
33	Thiobencarb	mg/L	<0.02	0.2 or less
34	Benzene	mg/L	<0.01	0.1 or less
35	Selenium	mg/L	<0.01	0.1 or less
36	Fenitrothion	mg/L	<0.003	0.03 or less
37	Phenols	mg/L	<0.1	1 or less
38	Fluorine	mg/L	<0.5	Sea Area 10 or less
39	Soluble Manganese	mg/L	<1	10 or less
40	Ammonia, Ammonium Compounds	mg/L	<1	100 or less
41	Nitrite Compounds and Nitrate Compounds	mg/L	12	
42	1,4-Dioxane	mg/L	<0.05	0.5 or less
43	n-Hexane Extractables (Mineral Oils)	mg/L	<0.5	1 or less
44	n-Hexane Extractables (Animal and Vegetable Oils and Fats)	mg/L	<1	10 or less

• A "less than" symbol (<) indicates that the quantity is below quantitation limit.

*1 In accordance with Fukushima Prefecture's "Ordinance on Discharge Standards Based on the Air Pollution Control Act and Wastewater Standards based on the Water Pollution Prevention Act (attached Chart 2) [大気汚染防止法に基づく排出基準及び水質汚濁防止法に基づく排水基準を定める条例(別表第2)]", and "the Ordinance Enforcement Regulations Pertaining to the Preservation of the Living Environment in Fukushima (attached Chart 5) [福島県生活環境の保全等に関する条例施行規則(別表第5)]".

*2 "Not Detected" indicates that, as described in "Ministerial Ordinance on Effluent standards (attached Table 1) [排水基準を定める省令(別表第一)]", when the state of water pollution is assessed in discharged water using the methods established by the Minister of the Environment, the result is below the limit of quantification (Alkyl Mercury: 0.0005 mg/liter) of the assessment method.