Fukushima Daiichi Nuclear Power Station Unit 3 Status of Personnel Access Lock Room Investigation

< Reference document > September 8, 2025 Tokyo Electric Power Company Holdings, Inc. Fukushima Daiichi Decontamination & Decommissioning Engineering Company

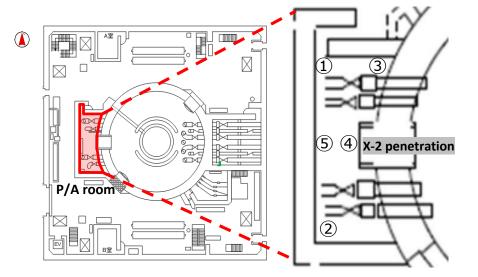
- In preparation for the full-scale fuel debris retrieval from the Fukushima Daiichi Nuclear Power Station Unit 3, on August 19, 2025, we plan to commence an investigation of the personnel access lock room (P/A room) ※ in order to examine the environment on the first floor of the reactor building.
- In this investigation, we will measure the air dose rates and obtain point cloud data, etc. inside the P/A room.
- High-dose rates were confirmed inside the P/A room during an investigation in 2016, therefore remotely operated robots will be used.
- We are considering accessing the fuel debris using the X-6 penetration and X-1B penetration, etc. Through this investigation, in order to deliberate whether any penetrations other than these penetrations can be used for fuel debris retrieval, we will also check the appearance of the X-2 penetration in the P/A room.
- The results acquired during this investigation will also be leveraged to the deliberation of full-scale fuel debris retrieval method and environmental preparations.

¾1 The P/A room was used by workers when entering the reactor to perform work and inspections, etc.

(Announced on August 18, 2025)

- Remotely operated robots have been used to measure air dose equivalent rates, and acquire point group data, and to take video footage inside the P/A room. Results show that the air dose equivalent rates are lower overall compared to the results of the 2016 investigation.
- Based on this information, it was decided that installing and removing investigation equipment to perform the gamma-ray imager investigation by hand will better reduce exposure than using remotely operated robots, and measurements will be taken at five locations starting on September 9, 2025.
- If the investigation proceeds smoothly, should be completed by the middle of September. We will continue to prioritize safety as we move forward with this task.

Gamma-ray imager


Device that can analyze gamma-ray distribution and generate an image from that data by combining hot spot identification function with point group data acquisition function

■ Air dose equivalent rate measurement results (Unit: mSv/h)

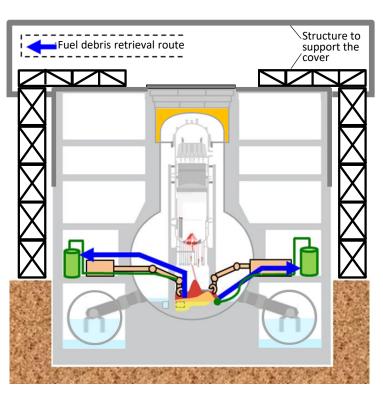
Measurement points	1	2	3	4	5
2016 measurements (height: approx. 100cm)	13	80	50	60	80
Measurements from this investigation (height: approx. 150cm)	7	36	34	29	32

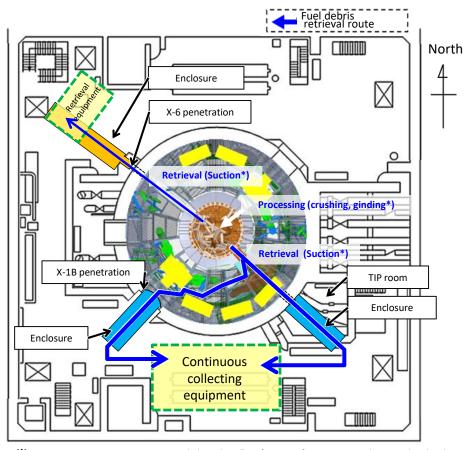
■ Bird's-eye view of the first floor of the Unit 3 reactor building

Remotely operated robots used to take measurements of air dose equivalent rate, etc.

SPOT
Equipped with
cameras,
dosimeter, and lidar
Move around inside
and investigate the
P/A room

Packbot Equipped with a dosimeter Move around inside and investigate the P/A room


[Reference 1] Appendix 4 Overview of Side Access Retrieval


■ Primary containment vessel penetrations, such as X-6 penetrations on the first floor of reactor building, will be leveraged during side access point retrieval.

I Therefore, it is assumed that doses inside primarily the reactor building will be reduced during side access point

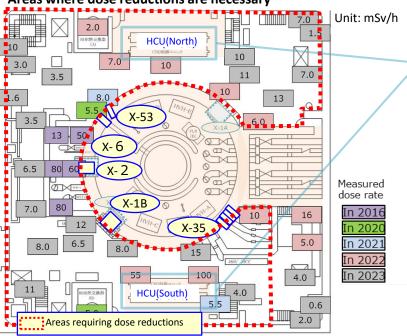
preparations.

Cross section of reactor building

*Current assumptions. Decision is made based on "verification of processing and retrieval technologies".

Bird's-eye view of the first floor of reactor building

Connected to PCV


[Reference②] 2. Overview of the fuel debris retrieval method design deliberation from Unit 3 and 2.2 Retrieval method selection deliberation plan (3/4)

Advancement of environmental improvement (cont.)

[Inside the reactor building]

[First floor of the reactor building]
Areas where dose reductions are necessary

HCU external

appearance

There are a total of 137 accumulators and nitrogen cylinders on the north and south sides.

Accumulator

Nitrogen cylinders

It is estimated that there is a hot spot at the bottom of the accumulators.

[Major issues expected]

- The radiation level on the first floor of the reactor building is generally high. (Decontamination efforts to date have not been able to sufficiently reduce dose levels.)
- ⇒ Going forward, hot spots will be identified and dose reduction measures, such as removal and shielding, etc., repeatedly implemented.

[Major issues expected]

- The HCU (CRD control unit) highly radioactive
- There are 137 units on the north and south sides of the HCU, each requiring individual handling.

HCU external

appearance

- Dose levels are high because the HCU system is connected to the PCV.
- ⇒ Identify contaminated areas in the HCU, and reflect this information in the construction plan in the form of shielding or removal, etc..

^{*:} Dose reduction measures will be implemented on the second floor as necessary.