ALPS Treated Water Discharge Status Update

September 25, 2025

Tokyo Electric Power Company Holdings, Inc.

- 1. Performance of the discharge of ALPS treated water (Management number* : 25-4-15)
- 2. Status of the dismantling of the J8/J9 area tanks
- 3. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

^{*} The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "25-4-15" indicates that the data is for the fourth discharge of 2025, which is the fifteenth discharge to date.

- 1. Performance of the discharge of ALPS treated water (Management number* : 25-4-15)
- 2. Status of the dismantling of the J8/J9 area tanks
- 3. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge

^{*} The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "25-4-15" indicates that the data is for the fourth discharge of 2025, which is the fifteenth discharge to date.

Overview

- We are planning to conduct the discharge of ALPS treated water (management number: 25-4-15) as follows.
- On the next page, we will explain that there was no abnormality in parameters and sea area monitoring as of September 21, 2025.

FY2025

Management number	Tank group	Tritium Concentration	Commenced	Completed	Amount of discharge	Amount of tritium radioactivity
25-1-12	Group A	37x 10 ⁴ Bq/liter	April 10, 2025	April 28, 2025	7,853m³	Approx. 2.9 trillion Bq
25-2-13	Group C	25x 10 ⁴ Bq/liter	July 14, 2025	August 3, 2025	7,873m³	Approx. 2.0 trillion Bq
25-3-14	Group A	38x 10 ⁴ Bq/liter	August 7, 2025	August 25, 2025	7,908m³	Approx. 3.0 trillion Bq
25-4-15	Group B	21x 10 ⁴ Bq/liter	September 11, 2025	September 29, 2025	7,800m³	Approx. 1.6 trillion Bq

1-1. Outline of the Fifteenth discharge of ALPS treated water into the sea (Management number: 25-4-15)

	Outline of discharge for group K4-A								
Attrib	Concentration of the 29 types of radionuclides (excluding tritium) in scope of measurement/evaluation	Within regulatory requirements (the sum of the ratios of legally required concentrations of radioactive substances is less than 1) (sum of the ratios of concentration: 0.12) (details on p1 of the link)							
utes c	Tritium concentration	21 x 10 ⁴ Bq/L	(details on p2 of the link)						
Attributes of the treated water	Concentration of the 39 significant types of radionuclides measured voluntarily	No significant radionuclides identified	(details on p3 of the link)	直接機器競					
ited w	Status of water quality assessment	Within government and prefectural requirements	(details on p4 of the link)						
ater	Water temperature	Same as outdoor temperature. After diluted to 740 times (design dilution factor), same as sea water temperature (not the same as plant's thermal discharge)							
Actual vol	ume of treated water discharge	7,800m ³							
Treated w	rater flow rate	Approximately 460m³/day (set not to exceed designed maximum on 500m³/day)							
Dilution sea water flow rate		Approximately 340,000m³/day (same speed as walking in the tunnel [approximated 1m/second])							
Actual amount of tritium radioactivity		Approximately 1.6 trillion Bq							
Actual cor	ncentration of tritium after dilution	284 Bq/L							
Actual ter	m of discharge	September 11, 2025 – September 29, 2025							

1-2. Analysis results of ALPS treated water in the measurement/confirmation tanks (Management number: 25-4-15)

- Pre-discharge analysis results for the samples taken from the measurement/confirmation tank (Group B) on July 17, 2025, were obtained. <u>It was confirmed that the water satisfies discharge</u> requirements (Table 1. Disclosed on September 9, 2025).
 - Item 1: For 29 nuclides to be measured and assessed, the sum of the ratios of the concentration of each radionuclide to the regulatory concentration is 0.12, and it is confirmed to be less than 1.
 - Item 2: Analysis results of tritium concentration is 21 x 10⁴ Bq/L, and it is confirmed to be less than 1 million Bq/L.
 - Item 1/2: The external agency consigned by TEPCO (Kaken) and the third-party consigned by the Japanese Government (JAEA)*1 obtained the same results from their analyses.
 - Item 3/4: It was confirmed that operational targets have been satisfied.

*1 ALPS treated water third-party analysis (https://fukushima.jaea.go.jp/okuma/alps/index_e.html)

Table 1. Pre-discharge analysis results of water in the measurement/confirmation tank (Management number: 25-4-15)

Items		Requirement basis	Operational Target	Analysis Results
1	Nuclide to be measured and assessed (29 nuclides)	Implementation	The sum of the ratios of the concentration of each radionuclide to the regulatory concentration, except for tritium, is less than 1	0.12 (< 1)
2	Tritium	plan	Tritium concentration is less than 1 million Bq/L	21 x 10 ⁴ Bq/liter (less than 1 million Bq/L)
3	Nuclides voluntarily checked to ensure that they are not significantly present (39 nuclides)	Voluntary	No significant concentrations were found of any of the nuclides	None of the nuclides are present in significant consternation
4	General water quality: 44 criteria		Pre-check of water quality standards*2	All criteria satisfied

^{*2} Water sampled from the discharge vertical shaft (upper-stream storage) once a year to confirm that legal requirements are being satisfied.

[Reference] Pre-discharge analysis results of ALPS treated water in the measurement/confirmation (Management number: 25-4-15) (1/4)

For 29 nuclides to be measured and assessed, the sum of the ratios of the concentration of each radionuclide to the regulatory concentration is 0.12, and it is confirmed to be less than 1.

Nuclides to be measured and assessed (29 nuclides)

Analysis results of radioactivity (Bq/L)

Ratios to Regulatory Concentration Limit

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (1/4)							
r in the Measurement/Confirmation Tanks	Group B] Γ		Nuclides to be measured and assessed (29 nuclides) :			
9:36		5	Summary	The sum of the ratios of the concentration of each	0.12		
				radionuclide to the regulatory concentration	(Confirmed to be less than 1)		

Radioactivity Analysis: Nuclides to be measured and assessed (29 nuclides)

ALPS Treated Water

July 17, 2025

_	Radioa	ctivity Ana	lysis: Nuclides to b	e measured and	assessed (29 nu	clides)						
					Analysis I	Results			Ratios to Regulator	Concentration Limit	Regulatory	
	No.	Nuclide		TEPCO			KAKEN Co.,Ltd.				Concentration Limit	Analysis Method *4
		Nucliuc	Analysis Value	Uncertainty *1	Detection Limit		Uncertainty *1	Detection Limit	TEPCO	KAKEN Co.,Ltd.	*2	Analysis Ficulod 4
			(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)			(Bq/L)	
	1	C-14	3.7E+01	± 3.0E+00	1.9E+00	3.8E+01	± 2.2E+00	9.9E-01	1.9E-02	1.9E-02	2000	Measurement
	2	Mn-54	ND	_	2.7E-02	ND	_	1.8E-02	less than 2.7E-05	less than 1.8E-05	1000	Measurement
	3	Fe-55	ND	_	1.7E+01	ND	_	1.3E+01	less than 8.5E-03	less than 6.4E-03	2000	Measurement
	4	Co-60	4.6E-01	± 8.3E-02	2.4E-02	4.1E-01	± 5.5E-02	2.0E-02	2.3E-03	2.0E-03	200	Measurement
	5	Ni-63	ND	_	8.1E+00	ND	_	4.9E+00	less than 1.3E-03	less than 8.2E-04	6000	Measurement
	6	Se-79	ND		9.6E-01	ND	_	1.5E+00	less than 4.8E-03	less than 7.5E-03	200	Measurement
	7	Sr-90	1.9E-01	± 1.5E-02	2.7E-02	1.8E-01	± 2.5E-02	2.2E-02	6.4E-03	6.2E-03	30	Measurement
	R	Y-90	1.9E-01		2.7E-02	1.8E-01	_	2.2E-02	6.4E-04	6.2E-04	300	Sr-90/Y-90 Radioactive Equilibrium Assessment
	9	Tc-99	ND		3.0E-01	ND	_	1.6E-01	less than 3.0E-04	less than 1.6E-04	1000	Measurement
	10	Ru-106	ND	_	2.3E-01	ND	_	1.8E-01	less than 2.3E-03	less than 1.8E-03	100	Measurement
	11	Cd-113m	ND	_	6.7E-02	ND	_	5.2E-02	less than 1.7E-03	less than 1.3E-03	40	Measurement
	12	Sb-125	1.8E-01	± 6.8E-02	8.8E-02	2.4E-01	± 6.0E-02	7.5E-02	2.2E-04	3.0E-04	800	Measurement
	13	Te-125m	6.5E-02	_	3.3E-02	9.0E-02	_	7.02.02	7.3E-05	1.0E-04	900	Sb-125/Te-125m Radioactive Equilibrium Assessment
	14	I-129	5.0E-01	± 3.6E-02	3.1E-02	5.7E-01	= 0.0E-02	2.0E-02	5.5E-02	6.3E-02	9	Measurement
	15	Cs-134	ND	_	3.3F-02	ND	_	2.3E-02	less than 5.5E-04	less than 3.8E-04	60	Measurement
	16	Cs-137	2.5E-01	+ 4 05 32	2.5E-02	2.3E-01	± 3.3E-02	2.2E-02	2.8E-03	2.5E-03	90	Measurement
	17	Pm-147	NID	_	3.2E-01	ND	_	2.4E-01	less than 1.1E-04	less than 8.1E-05	3000	Eu-154 Relative Ratio Assessment
	10	əm-151	ND	_	1.2E-02	ND	_	9.3E-03	less than 1.5E-06	less than 1.2E-06	8000	Eu-154 Relative Ratio Assessment
	19	Eu-154	ND	_	7.2E-02	ND	_	5.4E-02	less than 1.8E-04	less than 1.4E-04	400	Measurement
	20	Eu-155	ND	_	1.7E-01	ND	_	1.7E-01	less than 5.6E-05	less than 5.6E-05	3000	Measurement
	21	U-234									20	Gross Alpha
	22	U-238									20	Gross Alpha
	23	Np-237									9	Gross Alpha
	24	Pu-238	ND	_	3.7E-02	ND	_	2.4E-02	less than 9.3F-03	less than 6.0E-03	4	Gross Alpha
	25	Pu-239			3.72 02			2.1.2 02	*3	*3	4	Gross Alpha
	26	Pu-240							*3	*3	4	Gross Alpha
	27	Am-241									5	Gross Alpha
	28	Cm-244									7	Gross Alpha
	29	Pu-241	ND	_	1.0E+00	ND	_	6.6E-01		less than 3.3E-03	200	Pu-238 Relative Ratio Assessment
	The sun	or the ratios	or the concentration of	each radionuclide to	the regulatory conce	entration (sum of th	e ratios to regulatory	concentration limit)	less than 1.2E-01	less than 1.2E-01		

[·] ND indicates that analysis result is less than the detection limit.

Sample Name

ate and Time of Sampling

Storage Volume (m3)

[·] Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×101" and equals 31. Similarly, "3.1E+00" means "3.1x100" and equals 3.1, and "3.1E-01" means "3.1x101" and equals 0.31

^{*1 &}quot;Uncertainty" refers to the accuracy of analysis data.

[&]quot;Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

^{*2} Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated.

(Attached Chart 1, Row 6: Concentration limits in the water outside of the environmental monitoring area [in this chart Bq/cm³ has been converted into Bq/L])

^{*3} The ratio to regulatory concentration limit for alpha-radionuclides has been assessed using the lowest regulatory concentration limit for all the target nuclides.

^{*4} Analysis methods are as follows

Measurement - The concentrations of each radionuclide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

Gross Alpha - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.

Radioactive Equilibrium Assessment - Calculated using a physical phenomenon in which the amount of radioactivity of one radionuclide and another radionuclide produced by the decay of that radionuclide exist in a certain ratio.

Relative Ratio Assessment - Calculated based on the assessment values of radionuclides that existed inside the reactor while considering radionuclide decay and migration into ALPS treated water.

[Reference] Pre-discharge analysis results of ALPS treated water in the measurement/confirmation (Management number: 25-4-15) (2/4)

■ Analysis results of <u>tritium concentration is 21 x 10⁴ Bq/liter</u>.

Tritium Concentration (Bq/L)

Pre-discharge Analysis Results of ALPS Treated Water in the Measurement/Confirmation Tanks (2/4)

Summary 21 x 10⁴ Bq/L (confirmed to be less than 1 million Bq/L)

F	Radioa	activity Ana	lysis: Tri	ium:							
						Analysis	Results				
	No.	Nuclide			TEPCO			KAKEN Co., Ltd.		Analysis Objective	Analysis Method *3
	140.	Nuclide	Analysis	s Value	Uncertainty *1	Detection Limit	Analysis Value	Uncertainty *1	Detection Limit	Andrysis Objective	Analysis Metriod 5
			(Bo	1/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)	(Bq/L)		
	1	H-3	2.1E	+05	± 2.1E+04	1.8E+01	2.1E+05	± 1.5E+04	2.0E+01	*2	Measurement

[·] Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1×10⁰" and equals 3.1, and "3.1E-01" means "3.1×10⁻¹" and equals 0.31.

Measurement - The concentration of radionuclide has been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element.

<Excerpt from Treated Water Portal Site>

^{*1 &}quot;Uncertainty" refers to the accuracy of analysis data.

[&]quot;Uncertainty" is calculated using "Expanded Uncertainty: Coverage Factor k=2".

^{*2} To confirm that the tritium concentration is less than 1E+06Bq/liter (less than 1 million Bq/liter), the maximum concentration stipulated in the implementation plan, ensuring that the tritium concentration after dilution is less than 1,500 Bq/liter.

^{*3} Analysis method is as follows:

[Reference] Pre-discharge analysis results of ALPS treated water in the measurement/confirmation (Management number: 25-4-15) (3/4)

We voluntarily checked that the nuclides (39 nuclides) are not significantly present.
We confirmed that all the 39 nuclides are not significantly present.

				[Summary	No significant concentrations found of any of the nuclide
adio	activity Analys			nsure that they ar	e not significantly	present (39 nuclides)
		Т	EPCO	KAKEN	l Co.,Ltd.	
No.	Nuclide	Assessment *1	Detection Limit	Assessment *1	Detection Limit	Confirmation Method *2
_			(Bq/L)		(Bq/L)	
1	Fe-59	0	5.8E-02	0	4.9E-02	1
2	Co-58	0	2.4E-02	0	2.0E-02	
3	Zn-65	0	5.4E-02	0	3.9E-02	
4	Rb-86	0	2.9E-01	0	2.9E-01	1
5	Sr-89	0	3.5E-02	0	3.1E-02	
6	Y-91	0	2.7E+00	0	2.3E+00	
7	Nb-95	0	2.8E-02	0	2.3E-02	
8	Ru-103		3.1E-02	0	4.5E-02	
9	Ag-110m	0	2.2E-02	0	1.8E-02	
10	Cd-115m	0	1.3E+00	0	1.1E+00	
11	Sn-123	0	1.5-00	0	1.0E+00	
12	Sn-126	0	1.5E-01	0	1.3E-01	
13	Sb-124	0	5.2E-02	0	4.9E-02	
14	Te-123m	0	5.3E-02		4.1E-02	Measurement
15	Te-127	0	6.8E-01	0	6.2E-01	T
16	Te-129m	0	7.1E-01	0	6.7E-01	
17	Te-129	0	3.3E-01	0	3.5001	1
18	Cs-136	Ö	2.4E-02	Ö	2.9E-02	
19	Ba-140	Ö	9.3E-02	Ö	1.3E-01	
20	Ce-141	ŏ	1.0E-01	ŏ	8.6E-02	1
21	Ce-144	Ŏ	3.6E-01	ŏ	3.2E-01	†
22	Pm-146	0	3.0E-01	0	5.5E-02	+
23	Pm-148m	0	2.3E-02	0	2.4E-02	+
	Pm-148	0	2.5E-01	Ö	9.4E-02	+
24 25		0		-		+
	Eu-152	0	1.1E-01	Ö	9.1E-02	+
26	Gd-153		1.3E-01		1.2E-01 2F-02	+
27	Tb-160	0	8.4E-02	0		
28	Am-243	0	3.7E-02	0	2.4E-02	easurement (substituted with gross alpha
29	Cm-242	0	3.7E-02	0	2.4E-02	asurement (substituted with gross alpha
30	Cm-243	0	3.7E-02	0	2.4E-02	D 400/01 40
31	Rh-103m	0	3.1E-02	0	4.5E-02	Ru-103/Rh-103ii. dinactive Equilibrium Assessmen
32	Rh-106	0	2.3E-01	0	1.8E-01	Ru-106/Rh-106 Radioactive milibrium Assessmen
33	Sn-119m	0	5.3E-03	0	4.6E-03	Sn-126 Relative Ratio Assessment
34	Te-127m	0	7.0E-01	0	6.4E-01	Te-127 Relative Ratio Assessment
35	Cs-135	0	1.6E-07	0	1.5E-07	Cs-137 Relative Ratio Assessment
36	Ba-137m	0	2.4E-02	0	2.1E-02	Cs-137/Ba-137m Radioactive Equilibrium Assessme
37	Pr-144m	0	5.5E-03	0	4.9E-03	Ce-144/Pr-144m Radioactive Equilibrium Assessmen
38	Pr-144	0	3.6E-01	0	3.2E-01	Ce-144/Pr-144 Radioactive Equilibrium Assessmen
39	Am-242m	0	2.5E-04	0	1.6E-04	Am-241 Relative Ratio Assessment

*1	"O" indicates that the absence of significant concentrations was confirmed by the following, and "x" indicates that significant concentrations of nuclide was confirmed.

⁻ Concentration of nuclide measured was below detection limit

For mudicis that has been assessed using radioachie equilibrium, etc., if its target mudicis is detected and the assessment value of the target mudicis is extremely small compared to the regulatory concentration limit, or in other words, if it is less than 1/100 of the regulatory concentration limit which is the value set as the detection limit, then it shall be deemed to be below the detection limit.

Nuclide	70000011101	ic values (bq/L)	Concentration Limit
Nuclide	TEPCO	KAKEN Co.,Ltd.	*3
Rh-103m	_	_	2.0E+05
Rh-106	-	_	3.0E+05
Sn-119m	-	_	2.0E+03
Te-127m	_	_	3.0E+02
Cs-135	1.7E-06	1.5E-06	6.0E+02
Ba-137m	2.4E-01	2.1E-01	8.0E+05
Pr-144m	-	_	4.0E+04
Pr-144	_	_	2.0E+04
Am-242m	-	_	5.0E+00

[·] A hyphen "-" indicates that the concentration of the target nuclide was below the detection limit.

<Excerpt from Treated Water Portal Site>

Nuclides voluntarily checked to ensure that they are not significantly present (39 nuclides)

Assessment results

O: absence of significant concentration was confirmed

×: significant concentration was confirmed

Values are expressed in exponential notation.

For example, "3.1E+01" means "3.1×10¹" and equals 31. Similarly, "3.1E+00" means "3.1×10⁰" and equals 3.1, and "3.1E-01" means "3.1×10¹" and equals 0.31.

^{*2} Analysis Methods are as follows:

Measurement - The concentrations of each radionuclide have been calculated by directly measuring/analyzing radioactivity intensity and the quantity of the element Measurement (substituted with gross alpha) - The total amount of alpha-radionuclides in the specimen are calculated by directly measuring alpha rays.

Relative Ratio Assessment - Calculated based on the assessment values of radiouclides that existed inside the reactor while considering radiouclide decay and migration into ALPS treated water.

*3 Regulatory concentration limits stipulated in the Regulations of the Safety and Physical Protection of Specific Nuclear Fuel Material

at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Incorporated.

(Attached Chart 1, Row 6: Concentration limits in the water outside of the environmental monitoring area [in this chart Bq/cm³ has been converted into Bq/L])

[Reference] Pre-discharge analysis results of ALPS treated water in the measurement/confirmation (Management number: 25-4-15) (4/4)

- For 44 general water quality measurement items (voluntary check to confirm that there are no unusual water quality), it is confirmed that all criteria satisfied.
- X In accordance with Fukushima Prefecture's "Ordinance on Discharge Standards Based on the Air Pollution Control Act and Wastewater Standard based on the Water Pollution Prevention Act (attached Chart 2)", and "the Ordinance Enforcement Regulations Pertaining to the Preservation of the Living Environment in Fukushima (attached Chart 5)".

General water quality measurement items (44 criteria)

Analysis results

Pre-discharge Analysis Results of Al S Treated Water in the Measurement/Confirmation 1 anks (4/4)

Summary Criteria satisfied

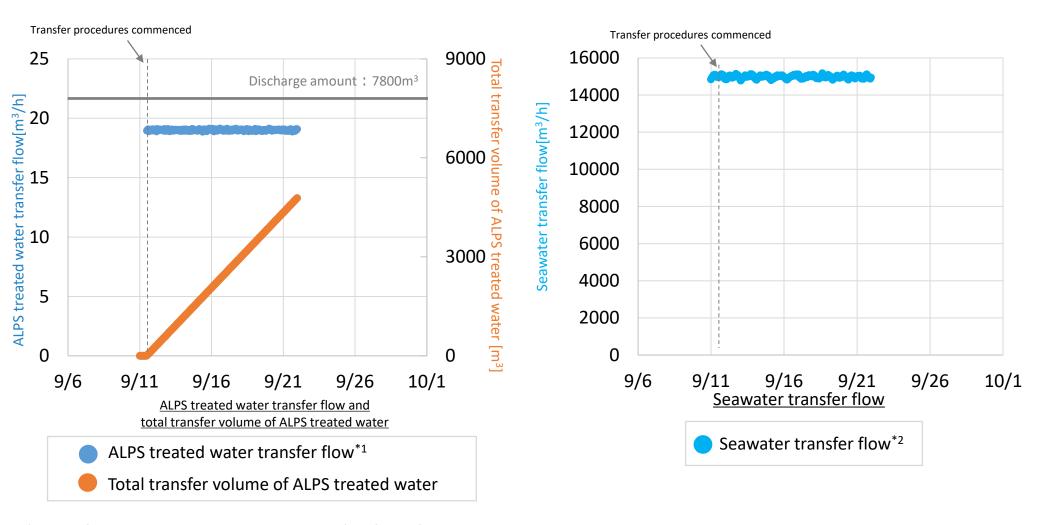
General Water Quality Anysis: Voluntary check to confirm that the are no unusual water quality (44 criteria)

No.	Measurement Items	Unit	Analysis Result	Criteria *1
1	Hydrogen Ions (pH)	_	8.4	Sea Area 5.0∼9.0
2	Suspended Solids (SS)	mg/L	<1	Maximum: 70 or less Average: 50 or less
3	Chemical Oxygen Demand (COD)	mg/L	1.3	Maximum: 40 or less Average: 30 or less
4	Boron	mg/L	0.6	Sea Area 230 or less
5	Soluble Iron	mg/L	<1	10 or less
6	Copper	mg/L	<0.1	2 or less
7	Nickel	mg/L	<0.1	2 or less
8	Chrome	mg/L	<0.1	2 or less
9	Zinc	mg/L	<0.1	2 or less
10	Biochemical Oxygen Demand (BOD)	mg/L	<1	Maximum: 40 or less Average: 30 or less
11	Escherichia coli	CFU/mL	0	800 or less
12	Cadmium	mg/L	< 0.01	0.03 or less
13	Cyanide	mg/L	< 0.05	0.5 or less
14	Organic Phosphorus	mg/L	<0.1	1 or less
15	Lead	mg/L	< 0.01	0.1 or less
16	Hexavalent Chromium	mg/L	< 0.05	0.2 or less
17	Arsenic	mg/L	< 0.01	0.1 or less
18	Mercury	mg/L	<0.0005	0.005 or less
19	Alkyl Mercury	mg/L	< 0.0005	Not Detected *2
20	Polychlorinated Biphenyl	mg/L	< 0.0005	0.003 or less
21	Trichlorethylene	mg/L	< 0.03	0.1 or less
22	Tetrachloroethylene	mg/L	< 0.01	0.1 or less
23	Dichloromethane	mg/L	< 0.02	0.2 or less
24	Carbon Tetrachloride	mg/L	<0.002	0.02 or less

25	1,2-Dicnloroethane	mg/L	< 0.004	0.04 or less
26	1,1-Dichloroethylene	mg/L	<0.1	1 or less
27	Cis-1,2-Dichloroethylene	mg/L	<0.04	0.4 or less
28	1,1,1-Trichloroethane	mg/L	<0.3	3 or less
29	1,1,2-Trichloroethane	mg/L	< 0.006	0.06 or less
30	1,3-Dichloropropene	mg/L	<0.002	0.02 or less
31	Thiuram	mg/L	< 0.006	0.06 or less
32	Simazine	mg/L	< 0.003	0.03 or less
33	Thiobencarb	mg/L	<0.02	0.2 or less
34	Benzene	mg/L	< 0.01	0.1 or less
35	Selenium	mg/L	< 0.01	0.1 or less
36	Fenitrothion	mg/L	< 0.003	0.03 or less
37	Phenols	mg/L	<0.1	1 or less
38	Fluorine	mg/L	<0.5	Sea Area 10 or less
39	Soluble Manganese	mg/L	<1	10 or less
40	Ammonia, Ammonium Compounds	mg/L	<1	100 or less
41	Nitrite Compounds and Nitrate Compounds	mg/L	3	100 of less
42	1,4-Dioxane	mg/L	<0.05	0.5 or less
43	n-Hexane Extractables (Mineral Oils)	mg/L	<0.5	1 or less
44	n-Hexane Extractables (Animal and Vegetable Oils and Fats)	mg/L	<1	10 or less

[·] A "less than" symbol (<) indicates that the quantity is below quantitation limit.

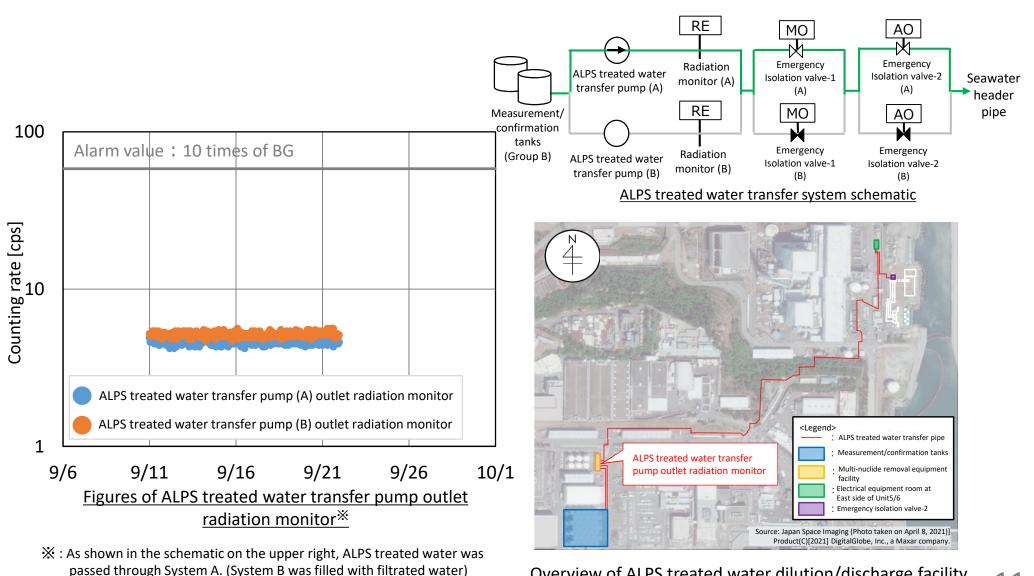
<Excerpt from Treated Water Portal Site>


^{*1} In accordance with Fukushima Prefecture's "Ordinance on Discharge Standards Based on the Air Pollution Control Act and Wastewater Standards based on the Water Pollution Prevention Act (attached Chart 2) [大気汚染的止法に基づ排出基準及び水質汚濁的止法に基づ排水基準定める条例(例表報2)]*, and "the Ordinance Enforcement Regulations Pertaining to the Preservation of the Living Environment in Fukushima (attached Chart 5) [福島県生活環境の保全金に関する条例総合行程則(別書第5)]*

^{*2 &}quot;Not Detected" indicates that, as described in "Ministerial Ordinance on Effluent standards (attached Table 1) [排水基準を定める省令 (别表第一)]", when the state of water pollution is assessed in discharged water using the methods established by the Minister of the Environment, the result is below the limit of quantification (Alkyl Mercury: 0.0005 mg/liter) of the assessment method.

1-3. Operating parameter records during the discharge (1/3)

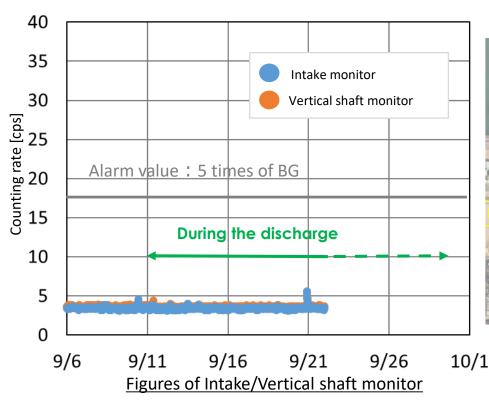
We were able to operate ALPS treated water transfer systems and seawater systems without issue.

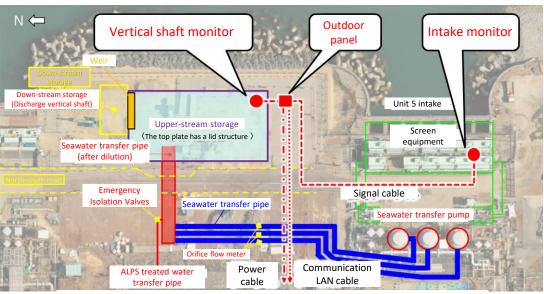

^{*1:} The flowmeters are reduplicate, so the higher of the figures from both meters was used.

^{*2:} Total for systems A and B

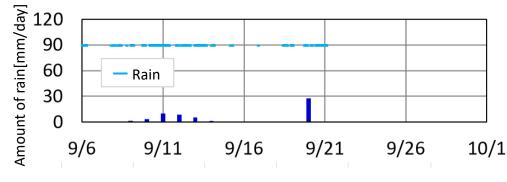
1-3. Operating parameter records during the discharge (2/3)

No abnormalities were seen in the figures from the ALPS treated water transfer pump outlet radiation monitor.



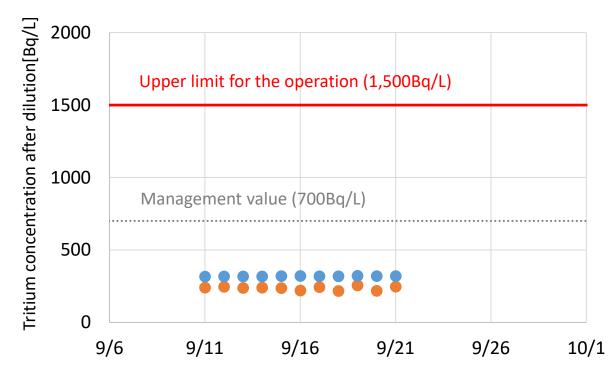

Overview of ALPS treated water dilution/discharge facility

1-3. Operating parameter records during the discharge (3/3)



Temporary increase in values, possibly due to rain is observed, but no abnormalities are seen in the readings.

Overview of Intake/Vertical shaft monitor



It is assumed that the temporary increases during rainfall were caused by the runoff of fallout from onshore areas and precipitation of natural radionuclides (such as daughter nuclide of radon, etc.).

1-4. Tritium concentrations after dilution during the discharge

- During the discharge period, water was sampled daily from the seawater pipe to analyze tritium concentrations.
 - ⇒Confirmed to be less than the upper limit for the operation: 1,500Bq/liter

Calculated values^{※1}
 Analysis values (Detected values)
 Analysis values (Below detectable levels)
 ※1: Calculated using the following formula (Uncertainty has been considered for each parameter)
 Tritium concentrations after dilution (Calculated values)
 Tritium concentrations in ALPS treated water

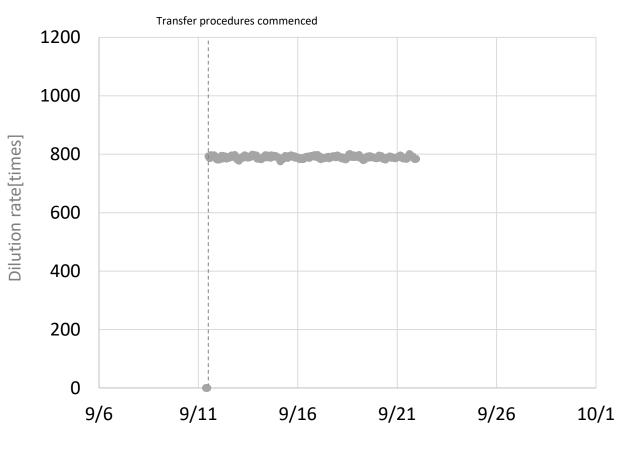
X

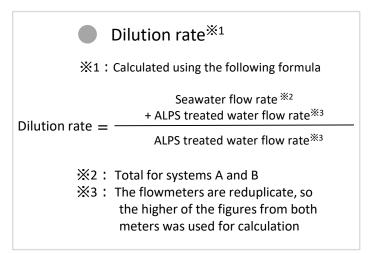
X2 : Analysis values at measurement/confirmation tanks

Seawater transfer flow + ALPS treated water transfer flow

transfer flow

ALPS treated water **2


Tritium concentrations after dilution (calculated values and analysis values)


	9/11	9/12~9/21
Calculated value: Time of data acquisition	18:00	7:00
Analysis value: Time of specimen sampling	18:32	6:00~9:00

[Reference] Dilution rate of ALPS treated water

■ The dilution rate had always been kept at over 100 times during the discharge.

Dilution rate of ALPS treated water

1-5. Sea area monitoring history (1/2)

O Measurement results of tritium concentrations in water sampled in the vicinity of the discharge outlet (within 3km of the power station) and outside of the vicinity of the discharge outlet (within a 10km square in front of the power station) are all below indices (discharge suspension level and investigation level).

(Unit: Bq/L)

	Sampling	Fraguena	August 2025						September 2025			
	location*3	Frequency	26	27	28	29	30	31	1	8	11	12
	T-1	Twice a week*1	_	_	<6.9	_	_	_	<6.3	_	<5.9* ⁴	-
	T-2	Twice a week*1	_	_	<6.9	_	_	_	<6.3	-	<5.9*4	_
	T-0-1	Once a day*2	<6.2	<6.3	<6.9	<6.2	<5.5	<5.4	<8.6	<5.9	<7.4*4	<7.1
	T-0-1A	Once a day*2	<6.2	<6.2	<7.9	<6.2	<5.5	<5.4	<8.5	<5.9	<5.9*4	<5.6
In the vicinity of the	T-0-2	Once a day*2	<6.3	<6.2	<6.9	<6.2	<5.4	<5.4	<8.5	<5.9	<7.4*4	<7.1
discharge outlet	T-0-3A	Twice a week*1	_	_	<7.8	_	_	_	<9.0	_	_	<5.7
Outlet	T-0-3	Twice a week*1	_	_	<7.9	_	_	_	<8.6	_	_	<5.7
	T-A1	Twice a week*1	_	_	<7.2	_	_	_	<8.9	_	_	<7.3
	T-A2	Once a day*2	<6.2	<6.3	<7.1	<6.2	<5.5	<5.4	<9.0	<6.3	<7.4*4	<7.3
	T-A3	Twice a week*1	_	_	<7.1	_	_	_	<8.9	_	_	<7.3
	T-D5	Once a week	_	_	_	_	_	_	<6.3	<6.3	_	-
Outside the vicinity of the	T-S3	Once a month	_	_	_	_	_	_	_	_	_	_
discharge outlet	T-S4	Once a month	_	_	_	_	_	_	_	_	_	
Outlet	T-S8	Once a month	_	_		_	_	_	_	_	_	_

*: A "less than" symbol (<) indicates that the analysis result was less than the detection limit

indicates that the detected value

: Term of discharge of ALPS treated water

15

^{*1:} Conduct twice a week during the discharge period and for one week following the completion of discharge. Conduct once a month outside the discharge period, excluding the one week following the completion of discharge
*2: Conduct once a day during the discharge period and for one week following the completion of discharge. Conduct once a week outside the discharge period, excluding the one week following the completion of discharge

^{*3:} For sampling locations, refer to "[Reference] Measurement monitoring plan"

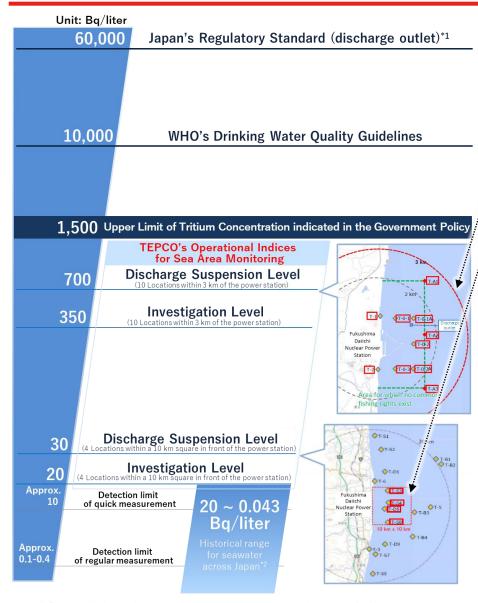
^{*4:} Sampled after the commencement of discharge at 1PM

1-5. Sea area monitoring history (2/2)

(Unit: Bq/L)

	C ! !	F		September 2025							
	Sampling location*3	Frequency	13	14	15	16	17	18	19	20	21
	T-1	Twice a week*1	_	_	<6.5	_	_	<5.8	_	_	_
	T-2	Twice a week*1	ı	-	<6.6	_	ı	<5.8	-	ı	ı
	T-0-1	Once a day*2	<5.5	<6.9	<8.4	<6.4	<7.7	<7.7	<8.2	<5.1	<8.5
	T-0-1A	Once a day*2	<6.7	<7.1	<8.4	<6.5	<7.7	9.0	<7.2	<6.3	<7.0
In the vicinity of the	T-0-2	Once a day*2	<5.5	<6.9	<8.3	<6.4	<7.7	<6.1	<8.2	12	<8.5
discharge outlet	T-0-3A	Twice a week*1	ı	ı	<8.3	ı	ı	<8.5	1	ı	1
duice	T-0-3	Twice a week*1	_	_	<8.3	_	_	<7.7	_	-	-
	T-A1	Twice a week*1	1	ı	<8.3	ı	ı	<8.5	ı	1	1
	T-A2	Once a day*2	<6.7	<7.1	<8.2	<6.5	<7.1	<8.5	<7.2	<6.3	<7.0
	T-A3	Twice a week*1	_	_	<8.2	_	_	<8.5	_	_	_
	T-D5	Once a week	_	_	<6.6	_	1	1	_	_	1
Outside the vicinity of the	T-S3	Once a month	_	_	_	_	<8.7	1	_		
discharge outlet	T-S4	Once a month	_	_	_	_	<8.7	ı	-	_	_
Juliet	T-S8	Once a month	_	_	_	_	<8.7	_	_	_	_

^{**:} A "less than" symbol (<) indicates that the analysis result was less than the detection limit indicates that the detected value


[:] Term of discharge of ALPS treated water (Management number: 25-4-15)

^{*1:} Conduct twice a week during the discharge period and for one week following the completion of discharge. Conduct once a month outside the discharge period, excluding the one week following the completion of discharge *2: Conduct once a day during the discharge period and for one week following the completion of discharge. Conduct once a week outside the discharge period, excluding the one week following the completion of discharge

^{*3:} For sampling locations, refer to "[Reference] Measurement monitoring plan"

[Reference] Comparison of tritium concentration in seawater

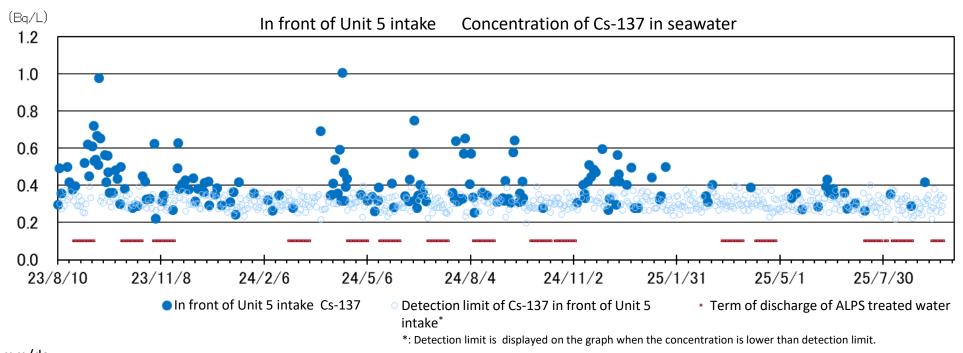
^{*1:} This standard has been stipulated based on the calculation that if a person were to drink approximately 2L of the water coming out of the discharge outlet of a nuclear facility every day for one year, his/her exposure would be 1mSv.

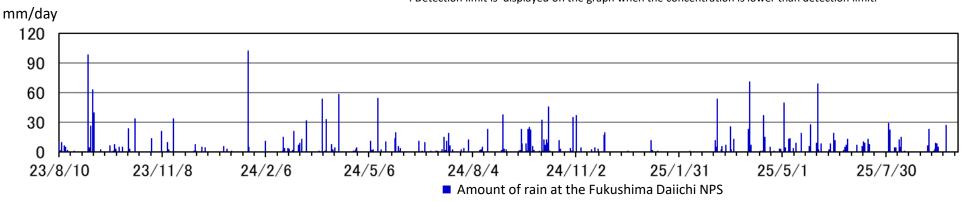
We have set a discharge suspension level and an investigation level as TEPCO's operational indices.

	Discharge suspension level	Investigation level
Within 3km of the power station	700 Bq/L	350 Bq/L
Within a 10km square in front of the power station	30 Bq/L	20 Bq/L

If the discharge suspension level is exceeded, the sea discharge will be immediately suspended.

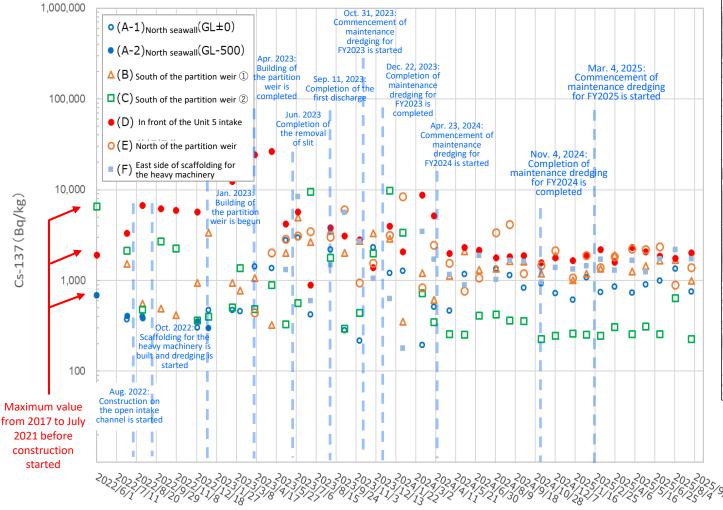
If the investigation level is exceeded, facilities/operation status will be inspected and the frequency of monitoring will be increased as necessary.

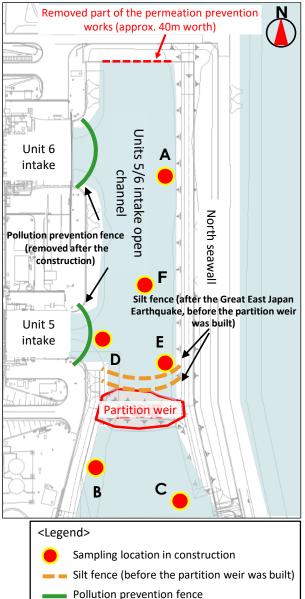

- Even if the tritium concentration exceeds indices (Discharge suspension level and Investigation level), the levels are well below the Japan's regulatory standard of 60,000 Bq/L and the WHO's drinking water quality guidelines of 10,000 Bq/L, and we assess that the surrounding sea areas are still safe.
- It is expected that the concentration of tritium in seawater will be affected depending on the concentration of tritium in the treated water to be released in the future, and higher values than before will be detected. Even in such cases, it is evaluated that the concentration will remain below the investigation level and other indices.


^{*2:} Source: Environmental Radioactivity and Radiation in Japan (Period: April 2019 to March 2022)

1-6. Unit 5 intake channel monitoring

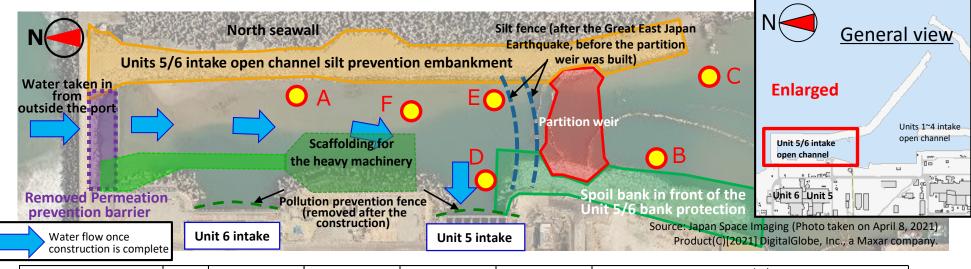
Sea water monitoring results at near the intake for seawater to be used for dilution during the discharge of ALPS treated water have confirmed that values are similar to those outside of the term of the discharge.




1-7. Monitoring results for seabed soil inside the Unit 5/6 intake open channel (1)

Monitoring results for seabed soil in front of Unit 5 intake did not show significant fluctuations from the beginning of construction at the intake open channel until December 2022. While they showed higher readings after January 2023, we have confirmed that these readings decreased after the completion of silt removal.

We will continue to monitor the seabed soil.



1-7. Monitoring results for seabed soil inside the Unit 5/6 intake open channel (2)

The following shows monitoring results for seabed soil inside the unit 5/6 intake open channel from August 2022 to September 2025.

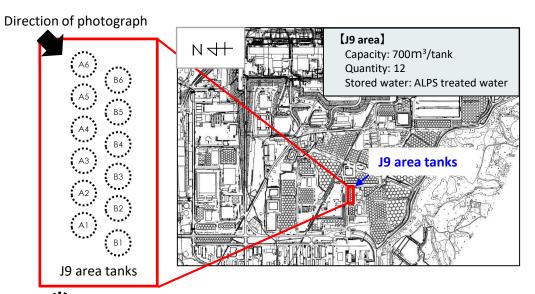
Sampling points		Before construction	FY2022	2023	2024			2025	年度		2025
Sampling points		2017 to July 2021	Aug. ~ Mar.	Apr. ~ Mar.	Apr. ~ Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.
A-1 North side of the Unit 5/6 open channel	Cs-134	4.4~52.3	31.5~39.8	32.0~69.5	34.4~64.5	45.0	51.3	47.3	46.7	92.3	42.5
(North side of the silt fence (GL ± 0m)	Cs-137	163.6~678.6	303.2~468.1	216.7~2975.0	461.7~2107.0	850.5	727.6	902.6	999.4	1,352.0	747.7
A-2 North side of the Unit 5/6 open channel	Cs-134	14.4~58.5	32.5~38.3	**Only sampled from the surface (GL ± 0m) since sand was removed during dredging							
(North side of the silt fence (GL-0.5m)	Cs-137	310.0~689.8	299.1~404.0								
B South side of the partition weir	Cs-134	723.0	34.5~65.6	48.8~97.1	35.1~64.5	55.0	35.7	40.0	50.1	55.7	37.1
(① (South side of the silt fence)	Cs-137	6,475.0	412.8~3,331.0	323.8~4943.0	613.8~1889.0	1,889.0	1,251.0	1,447.0	1,654.0	1,669.0	987.7
C South side of the partition weir	Cs-134	183.0	30.9~68.7	37.1~234.8	26.5~48.6	36.7	33.7	50.7	35.4	38.1	31.0
(② (South side of the silt fence)	Cs-137	1,893.0	360.8~2,671.0	295.9~9519.0	227.4~419.6	306.9	257.5	311.6	255.8	633.3	224.9
D Unit 5 intake	Cs-134	_	101.6~3,546.0	50.2~690.7	35.9~114.8	44.4	47.1	53.1	80.5	40.6	59.2
D oile s intake	Cs-137	_	3,301.0~144,000.0	951.7~26400.0	1563.0~2306.0	1,587.0	2,306.0	2,064.0	1,852.0	1,757.0	2,014.0
North side of	Cs-134	_		35.6~147.0	30.0~59.7	44.4	47.4	82.8	38.9	47.3	42.7
the partition weir	Cs-137	<u>—</u>		437.1~5795.0	746.6~4154.0	1,834.0	2,202.0	2,196.0	2,344.0	882.6	1,377.0
 East side of scaffolding 	Cs-134	_		40.2~166.1	34.1~87.1	50.0	56.4	40.7	39.6	63.8	37.5
for the heavy machinery	Cs-137	_		592.4~8303.0	891.0~1884.0	1,295.0	1,664.0	1,235.0	1,715.0	2,187.0	1,729.0

Report contents

1. Performance of the discharge of ALPS treated water (Management number* : 25-4-15)

2. Status of the dismantling of the J8/J9 area tanks

3. Transfer of ALPS treated water in preparation for the future discharges


(Reference) Sea area monitoring history after the commencement of discharge

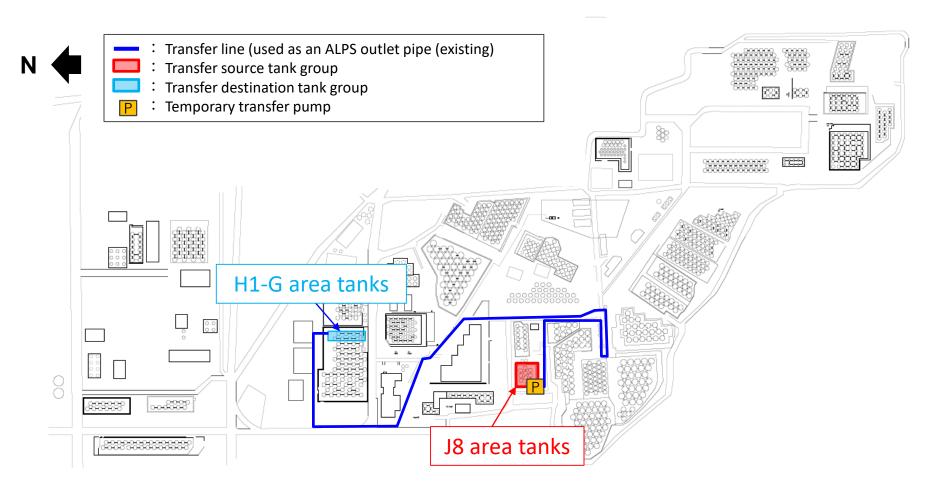
^{*} The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "25-4-15" indicates that the data is for the fourth discharge of 2025, which is the fifteenth discharge to date.

2. Status of the dismantling of the J9 area tanks

- On February 13, 2025 the J9 area tanks were taken out of service and dismantling began on February 14, 2025.
- Dismantling of the 12th tank was completed on September 3, 2025, and dismantling of all tanks in the J9 area has been completed.

: Dismantling completed

< Tank Dismantling Results > **Tank Dismantling Tank Dismantling** completed date completed date number number A6 Mar 4, 2025 B6 Jun 10, 2025 Mar 14, 2025 Jun 19, 2025 **A5 B5** Mar 31, 2025 Jul 1, 2025 **A4** В4 Α3 Apr 10, 2025 В3 Jul 11, 2025 Jul 30, 2025 A2 Apr 21, 2025 **B2** Α1 May 14, 2025 Sep 3, 2025 B1

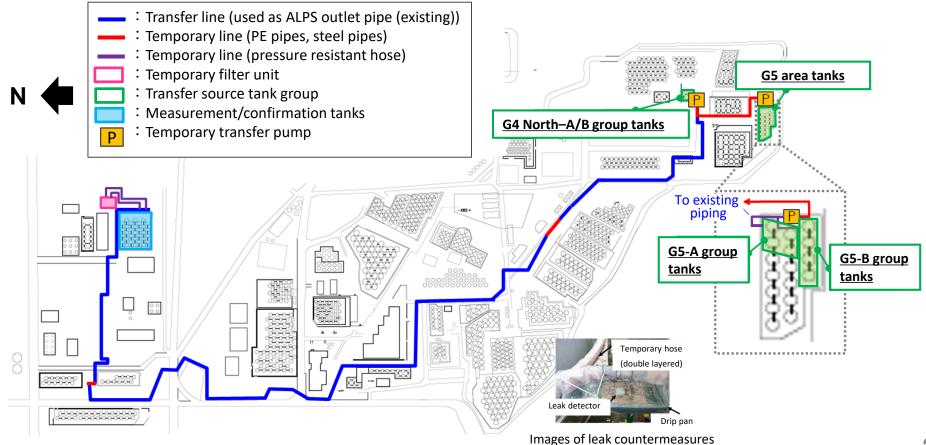


[Reference] Transferring water in preparation for the dismantling of the J8 area tanks T = CO

- In preparation to dismantle the J8 area tanks we began transferring water to be re-purified to be re-purified currently stored in the J8 area tanks to the H1-G area on July 3, 2025. The transfer should be completed around late September 2025.
- After the transfer has been completed, we will commence with the dismantling of the tanks in J8 area as soon as preparations have been completed.

Report contents

- 1. Performance of the discharge of ALPS treated water (Management number* : 25-4-15)
- 2. Status of the dismantling of the J8/J9 area tanks
- 3. Transfer of ALPS treated water in preparation for the future discharges


(Reference) Sea area monitoring history after the commencement of discharge

^{*} The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "25-4-15" indicates that the data is for the fourth discharge of 2025, which is the fifteenth discharge to date.

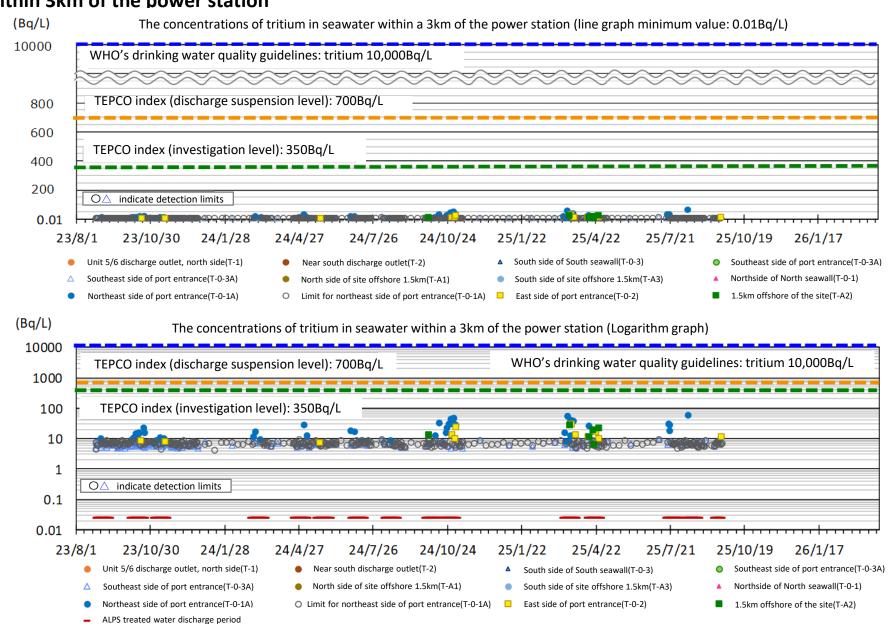
3. Transfer of ALPS treated water in preparation for the future discharges

- Transfer of ALPS treated water from G5 area Group A/B to measurement/confirmation facility tank group C in preparation for the discharge of Management number: 25-5-16 commenced on August 5, 2025 to August 30, 2025.
 Circulation/agitation of the tanks commenced on September 5, 2025 and samples were taken on September 12, 2025.
 Samples are currently being analyzed.
- Transfer of ALPS treated water from G5 area Group A/D and G4 North area Group A/B to measurement/confirmation facility tank group A in preparation for the discharge of Management number: 25-6-17 commenced on September 4, 2025 and will be completed in early October 2025.

Report contents

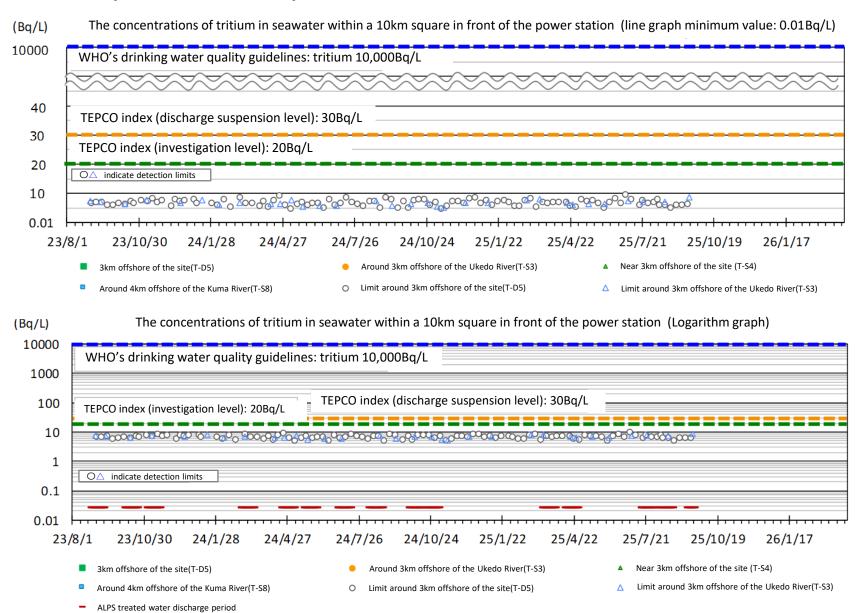
- 1. Performance of the discharge of ALPS treated water (Management number* : 25-4-15)
- 2. Status of the dismantling of the J8/J9 area tanks
- 3. Transfer of ALPS treated water in preparation for the future discharges

(Reference) Sea area monitoring history after the commencement of discharge


^{*} The management number is made up of the fiscal year, followed by the discharge number for that fiscal year, and the total number of discharges to date. For example, "25-4-15" indicates that the data is for the fourth discharge of 2025, which is the fifteenth discharge to date.

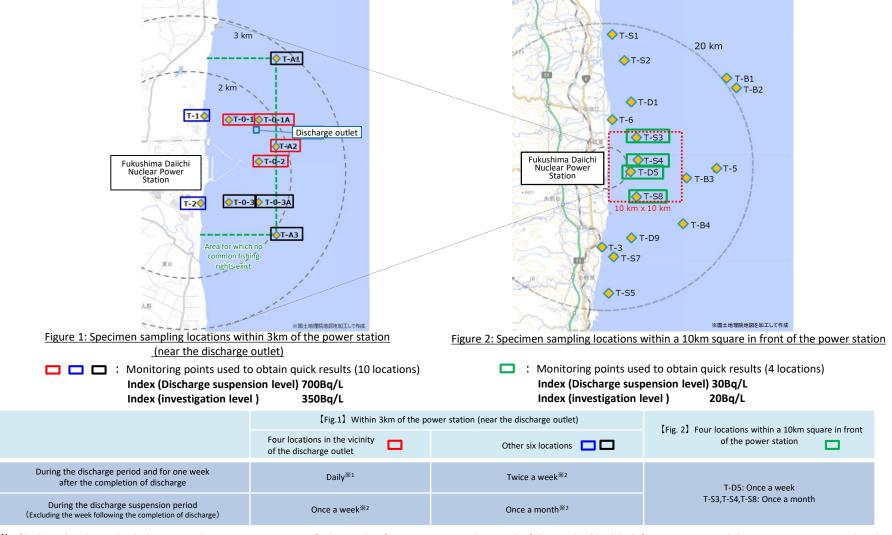
[Reference] Sea area monitoring results (1/2)

quick monitoring



within 3km of the power station

within a 10km square in front of the power station



[Reference] Sea area monitoring plan

for obtaining quick measurements of the concentration of tritium in seawater

• We have engaged in monitoring to obtain quick measurements of the concentration of tritium in seawater with targeting the upper detection limit for 10Bq/liter, and index to determine discharge suspension (the discharge suspension level) was set.

^{*1} If bad weather during the discharge period prevents measurements for being taken for two consecutive days, on the following day (third day) if it is again expected that measurements cannot be taken, measured results will be quickly obtained from T-1 and T-2.

^{*2} We have engaged in monitoring daily since the commencement of discharge in August 2023, but the monitoring plan was changed on December 26, 2023 in light of actual measurements taken during discharge (Announced on December 25, 2023)