Fukushima Daiichi Nuclear Power Station Plant Parameters
As of 11:00 on January 292013
[Note]
Some indicators might not be functioning properly beyond the normal
condition condition for usage affected by the earthquake and subsequent events.
We comprehensively evaluate situ We comprehensively evaluate situation in plants using all the available
information from indicators and also focusing on trends, taking uncertain information from indicators and also focusing on trends, taking uncertainty
of indicators into consideration.

	Unit 1	Unit 2	Unit 3		Unit 4	
Status of water injection to the reactor	FDW line $2.5 \mathrm{~m}^{3} / \mathrm{h}$ CS line $1.9 \mathrm{~m}^{3} / \mathrm{h}$ (as of 11:00, 1/29)	FDW line $2.0 \mathrm{~m}^{3} / \mathrm{h}$ CS line $3.6 \mathrm{~m}^{3} / \mathrm{h}$ (as of 11:00, 1/29)	FDW line $1.9 \mathrm{~m}^{3} / \mathrm{h}$ CS line $3.4 \mathrm{~m}^{3} / \mathrm{h}$ (as of 11:00, 1/29)			
Temperature at the bottom of RPV	VESSEL BOTTOM HEAD (TE-263-69L1): $18.2^{\circ} \mathrm{C}$ VESSEL ABOVE SKIRT JOINT (TE-263-69H1) :18.5 VESSEL DOWNCOMMER (TE-263-69G2) : $18.5^{\circ} \mathrm{C}$ (as of $11: 00,1 / 29$)	```VESSEL WALL ABOVE BOTTOM HEAD (TE-2-3-69H3) : 30.6C RPV TEMPERATURE (TE-2-3-69R) : 30.8}\mp@subsup{8}{}{\circ}\textrm{C (as of 11:00, 1/29)```	$\begin{aligned} & \text { VESSEL BOTTOM HEAD } \\ & \text { (TE-2-3-69L1): } 31.4^{\circ} \mathrm{C} \\ & \text { VESSEL BOTTOM ABOVE SKIRT JOT } \\ & \text { (TE-2-3-69F1) :31.7 } \\ & \text { VESSEL WALL ABOVE BOTTOM HEAD } \\ & (T E-2-3-69 H 1): 22.4^{\circ} \mathrm{C} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$			
Temperature in PCV	HVH-12A RETURN AIR (TE-1625A) : $19.6^{\circ} \mathrm{C}$ HVH-12A SUPPLY AIR (TE-1625F) : $18.2^{\circ} \mathrm{C}$ (as of 11:00, 1/29)	RETURN AIR DRYWELL COOLER (TE-16-114B) : 31.6º SUPPLY AIR D/W COOLER HVH2-16B (TE-16-114G\#1) : 30.99 (as of 11:00, 1/29)	RETURN AIR DRYWELL COOLER (TE-16-114A) : $30.3^{\circ} \mathrm{C}$ SUPPLY AIR D/W COOLER (TE-16-114F\#1) : $27.8^{\circ} \mathrm{C}$ (as of 11:00, 1/29)			
Pressure in PCV	106.9kPa abs (as of 11:00, 1/29)	$\begin{aligned} & 5.62 \mathrm{kPa} \mathrm{~g} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & \text { O.26kPa g } \\ & \text { (as of 11:00 , 1/29) } \end{aligned}$			
Flow rate of nitrogen gas injection to Reactors $※ 5$	$\begin{aligned} & \mathrm{RPV}: 13.32 \mathrm{Nm}^{3} / \mathrm{h} \\ & \mathrm{PCV}: 20.94 \mathrm{Nm}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & R P V: 16.18 \mathrm{Nm}^{3} / \mathrm{h} \\ & \mathrm{PCV}:-\mathrm{Nm}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{array}{\|l} \mathrm{RPV}: 17.14 \mathrm{Nm}^{3} / \mathrm{h} \\ \mathrm{PCV}:-\mathrm{Nm}^{3} / \mathrm{h} \\ \text { (as of } 11: 00,1 / 29 \text {) } \end{array}$	$※ 7$		
Outlet flow from PCV gas control system	$\begin{aligned} & 27.62 \mathrm{~m}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & 18.56 \mathrm{Nm}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$-\mathrm{Nm}^{3} / \mathrm{h}$ (as of 11:00, 1/29)	※8		
Hydrogen concentration in PCV ※3	System A : O.01vol\% System B : O.OOvol\% (as of 11:00, 1/29)	System A: O.06vol\% System B : 0.05vol\% (as of 11:00, 1/29	System A: -vol\% System B : -vol\% (as of 11:00, 1/29)	$\begin{aligned} & ※ 8 \\ & ※ 8 \end{aligned}$		
Radioactive concentration in PCV (Xe 135) ※4	System A: $\begin{array}{lll}\text { indicated value } & 2.07 \mathrm{E}-03 & \mathrm{Ba} / \mathrm{cm}^{3} \\ \text { detection limit } & 7.14 \mathrm{E}-04\end{array}$ System B : $\begin{array}{lll}\text { indicated value } & 2.18 \mathrm{E}-03 & \mathrm{Ba} / \mathrm{cm}^{3} \\ \text { detection limit } & 8.51 \mathrm{E}-04\end{array}$ (as of 11:00, 1/29)	System A: indicated value detection limit 2.3E-01 $\mathrm{Bq} / \mathrm{cm}^{3}$ System B : indicated value detection limit $2.2 E-01$ $\mathrm{Ba} / \mathrm{cm}^{3}$ (as of 11:00, 1/29)	```System A : indicated value detection limit \(\mathrm{Ba} / \mathrm{cm}^{3}\) System B : indicated value detection limit \(\mathrm{Ba} / \mathrm{cm}^{3}\) (as of 11:00, 1/29)```	$\begin{aligned} & ※ 8 \\ & ※ 8 \end{aligned}$		
Temperature in the spent fuel pool	$\begin{aligned} & 10.0^{\circ} \mathrm{C} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & 11.6^{\circ} \mathrm{C} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & 10.1^{\circ} \mathrm{C} \\ & (\text { as of } 5: 00,1 / 29 \text {) } \end{aligned}$	※9	$\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { (as of 11:00, 1/29) } \end{aligned}$	
FPC skimmer surge tank level	$\begin{aligned} & 2.29 \mathrm{~m} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & 2.84 m \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	$\begin{aligned} & 3.33 m \\ & \text { (as of 5:00, 1/29) } \end{aligned}$	※9	$\begin{aligned} & 45.97 \times 100 \mathrm{~mm} \\ & \text { (as of } 11: 00,1 / 29 \text {) } \end{aligned}$	※6

[Information about measurements】
※ 1 : Instrument failure
$\because 3$. Continuously monitoring the status (Meters which showed some fluctuation in the records but were not concluded as malfunction and of which the transition of the records are under observation.)
.4 In case that the instrument indicates minus hydrogen density, "O\%" is recorded. (Because there's the possibility of minus indication due to the instrumental precision when hydrogen density is very low.
≈ 5 : Flow rate value instrumentreading is below measurable IT, ND is recorded
$※ 5$: Flow rate values are adjusted according to the temperature and the pressure under usage conditions.
※7: Norresponding value of temporary instrum
※8 : Data missing due to work interrupting the measurement.
$※ 9$: Alternative cooling equipment of the Fuel Pool of Unit 3 is stopped. Therefore, Temperature in the spent fuel pool and FPC skimmer surge tank level of Unit 3 show close data. The expected temperature increase at the SFP water is $※ 9$: Alternative co
around $0.157^{\circ} \mathrm{C} / \mathrm{h}$

