Underground Reservoir Nuclide Analysis Results (As of May 11, 2013)

			Underground Reservoir (Drain hole water)												
		i			ii	i	ii		iv	,	/		vi	٧	/ii
		Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side
Sampled time		10:16 AM	10:49 AM	10:07 AM	10:07 AM	9:55 AM	9:58 AM	9:47 AM	9:44 AM	9:25 AM	9:15 AM	9:55 AM	9:35 AM	10:05 AM	10:15 AM
Chloride cor	Chloride concentration (ppm)		7	9	8	8	5	10	9	8	8	9	9	7	7
	I-131	<2.7E-2	<3.1E-2	<2.8E-2	<3.1E-2	<2.9E-2	<2.8E-2	<2.7E-2	<2.8E-2	<2.7E-2	<2.8E-2	<2.7E-2	<2.7E-2	<2.4E-2	<3.3E-2
Radioactive	Cs-134	<4.8E-2	<4.9E-2	<4.7E-2	<5.4E-2	<5.1E-2	<5.4E-2	<4.9E-2	<5.5E-2	<5.1E-2	<5.1E-2	<5.2E-2	<5.2E-2	<4.9E-2	<5.0E-2
concentration	Cs-137	<6.7E-2	<6.8E-2	<6.8E-2	<6.8E-2	<6.5E-2	<7.0E-2	<6.7E-2	<6.9E-2	<6.8E-2	<6.7E-2	<6.5E-2	<6.7E-2	<6.8E-2	<6.8E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	2.1E+1	4.5E-2	1.7E+0	5.8E-2	3.9E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	1.6E-1	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underg	Underground Reservoir (Leakage detector hole water)											
		i		ii		iii		iv		v /		vi		vii	
											/ / /		Southwest		/
Sampled time		side 9:02 AM	side 9:00 AM	side 9:18 AM	side 9:14 AM	side 9:28 AM	side 9:29 AM	side	side Not sampled	side	side	side	side Not sampled	side	sid/e
Jan	ipied time	9.02 AIVI	9.00 AIVI	9. 10 AIVI	3. 14 AIVI	9.20 AIVI	9.29 AIVI	9.30 AIVI	Not sampled		/	9.43 AIVI	Not sampled		
Chloride cor	Chloride concentration (ppm)		6	10	12	10	12	9				6			
	I-131	<4.8E-2	<2.6E-2	<2.7E-2	<2.8E-2	<2.9E-2	<2.8E-2	<2.8E-2		/	Y	<2.6E-2		/	
Radioactive	Cs-134	<6.4E-2	<5.2E-2	<4.9E-2	<4.8E-2	<5.0E-2	<5.6E-2	<4.6E-2				<5.4E-2			
concentration	Cs-137	<6.8E-2	<6.6E-2	<6.8E-2	<6.9E-2	<6.6E-2	<6.8E-2	<6.6E-2				<6.8E-2			
	γ nuclides other than the major 3 nuclides	6.4E-1*	ND	ND	ND	ND	ND	ND				ND			
(Bq/cm ³)	All β	1.6E+3	<3.0E-2	4.6E+1	1.3E-1	5.2E-2	8.1E+1	4.1E-2				7.1E-2			

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of γ nuclides other than the major 3 nuclides are below the detection limit.

^{*} Sb-125: 6.4E-1

Underground Reservoir Observation Holes Nuclide Analysis Results (As of May 11, 2013)

		Underground reservoir observation holes (i - iii)												
	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:35 AM	8:51 AM	8:38 AM	8:51 AM	9:08 AM	9:18 AM	9:30 AM	9:40 AM	9:52 AM	9:45 AM	9:29 AM	9:10 AM	9:03 AM	8:55 AM
Chloride concentration (ppm)	9	10	11	8	6	7	7	8	8	8	34	8	9	9
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

	Under	ground rese	ervoir obser		servoir es (vi)			
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	8:40 AM	8:55 AM	9:11 AM	9:44 AM	9:30 AM	9:15 AM	9:32 AM	9:50 AM
Chloride concentration (ppm)	7	12	7	8	9	24	10	8
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.