April 25th, 2011 Tokyo Electric Power Company

<Draining Water from Underground Floor in Turbine Building (T/B)>

 \bigcirc For Units 1 to 3, we are planning to drain water to condensers. The application of the similar procedure to the Unit 4 is under consideration .

	T/B Underground	Condenser			
Unit 1	Planning to transfer to the condenser	4/10 Completed transfer to CST			
Unit 2	Started to transferring water from	4/9 Completed transfer to			
	the vertical shaft of the trench to	CST			
	Process Main Building				
Unit 3	Waiting for drainage of water in	Planning to transfer to CST			
	condenser				

From 10:08 am, April 19th, transferring water from the vertical shaft of the trench of Unit 2 to the Centralized Radiation Waste Treatment Facility was started. (Increase in the water level at the Process Main Building: 730mm(as of 7:00am on April 25th))

 \diamondsuit Water level at the vertical shaft of the trench and T/B (As of 11:00 am on April 25th)

	Vertical Shaft of Trench (from top of grating to surface)	T/B
Unit 1	1 530mm	OP + 5050mm(150mm from the hottom)
	1,00011111	0.1. + 9,050 mm (150 mm from the bottom)
	(O.P. +2,470 mm)	
Unit 2	880mm	O.P. +3,100mm (1,200mm from the bottom)
	(O.P. +3,120mm)	
Unit 3	1,000mm	O.P. $+3,000$ mm (1,100 mm from the bottom)
	(O.P. +3, 000mm)	
Unit 4		O.P. $+3,050$ mm (1,150 mm from the bottom)

<u>Contaminated Water Leakage from Unit 2></u>

- On April 6th, the stoppage of water leakage from beneath the supply cable pit was confirmed. We stopped water by rubber plates and jigs.

 \diamondsuit Other measures

- From April 11th to April 14th, we installed the silt fences at north of breakwaters (the water intake canal), south of the station and in front of the screen of each Units.
- From April 12th to April 15th, we installed iron plates in front of the screen of

Unit 2.

 From April 15th to April 17th, we finished throwing in sandbags with radioactive-material adsorbent (zeolite) in front of the bar screens of Units 1 to 4.

* From now, we will also consider to install steel sheet piles and absorbents of radioactive materials, etc. to around the south breakwaters.

<u><Injection of Nitrogen Gas to the Primary Containment Vessel of Unit 1</u> (PCV)>

 \diamondsuit Injection of nitrogen gas

- From 1:31am, April 7th, we started to inject nitrogen gas to PCV by temporary nitrogen generators.

- At 1:20am, April 7th, before we injected nitrogen gas, the D/W pressure was 156.3kPaabs and the pressure was changed to 159.2kPaabs, at 11:00am, April 25th. The amount of nitrogen gas injected was approx. 12,000m³.
- From 14:10 April 25th, injection of nitrogen gas has been temporary ceased, together with power cut, in order to install additional flow measure (approx. 4 hours planned).

<<u>Monitoring of Radioactive Materials></u>

♦ Density of Iodine 131 in the seawater (Reference purpose) Density limit by the announcement of Reactor Regulation: 0.04Bq/cm³

Sampling: Everyday

						1 0	0 0
Sampling Location (seacoast)	Date	Time		Density (Bq/cm ³)		Ratio to Criteria (times)	
Approx. 30m north to Discharge Canal of Units 5 & 6 of Fukushima Daiichi	4/24	8:50	14:30	0.15	0.23	Approx.3.8	Approx.5.8
Approx. 330m south to Discharge Canal of Units 1 to 4 of Fukushima Daiichi.	4/24	8:35	14:15	0.029	0.028	Approx.0.73	Approx.0.70
Around the north discharge canal of Fukushima Daini (10km from Fukushima Daiichi)	4/24	9:00		0.029		Approx.0.73	
Around Iwasawa Seashore (approx. 16km from Fukushima Daiichi)	4/24	8:15		0.023		Approx.0.58	

The offshore sampling was not conducted due to bad weather condition on April 23^{rd} and 24^{th} .

<u>Water Injection and Spraying to Spent Fuel Pools></u>

 \diamondsuit Actual Results on April 24th

[Unit 4] $12{}^{:}25\,{\sim}\,17{}^{:}07$ Sprayed fresh water by concrete pumping vehicle (approx. 165t).

 \diamondsuit Actual Results and schedule on April 25th

[Unit 2]10-12 \sim 11:18 Fresh water injection by spent fuel pool cooling and filtering system (approx, 38t).

[Unit 4]17:30 \sim 23:30 Spraying of fresh water by concrete pumping vehicle planned(approx. 210t).

\diamondsuit Others

- We are conducting detailed nuclide analysis on the water collected on April 12th from the spent fuel pool of Unit 4.

- We are conducting detailed nuclide analysis on the water collected on April 16th from the skimmer surge tank of Unit 2.

- On April 22nd, we started to examine the level of water and the dose of radiation, etc. of the spent fuel pool of Unit 4.

<u><Water Injection to Reactor Pressure Vessels></u>

[Unit 1] Injecting fresh water:

Reactor pressure vessel temperature:

At 11:00, April 25th, <Water feed nozzle> 137.8°C

<Bottom of reactor pressure vessel> $111.6^{\circ}C$

[Unit 2] Injecting fresh water

Reactor pressure vessel temperature:

At 11:00, April 25th, <Water feed nozzle> 122.3°C

[Unit 3] Injecting fresh water

Reactor pressure vessel temperature:

At 11:00, April 25th, <Bottom of reactor pressure vessel> 110.0° C

[Unit 4] [Common spent fuel pool]No particular changes on parameters.

[Units 5/6] Reactor cold shutdown. No particular changes on parameters.

-On April 15th, as a countermeasure against tsunami, we finished transferring temporary diesel generators and control panels of pumps to the upland.

-On April 18th, we replaced hoses, which were used to inject cooling water into the reactors of Units 1 to 3, with new ones to prevent their deterioration.

<0thers>

- Since April 1st, we have sprayed the dust inhibitor in order to prevent diffusion of radioactive materials on a trial basis. (From 10:30 to 12:30 on April 25th, we sprayed approx. 3,800m2 of the dust inhibitor to the mountain side of the nuclear reactor building of Unit 5)
- Since April 10th, we have been clearing outdoor rubbles by a remote control. (On April 25th, the work was conducted)
- By April 19th, we completed the construction work to strengthen the offsite power supply security between Unit 1 & 2 and Unit 3 & 4 (by setting up multiple power sources).
- From April 22nd, we commenced the construction work to strengthen the offsite power supply security between Unit 1 & 2 and Unit 5 & 6 (by setting up multiple power sources).

4/25 10:57 Cool water injection to Unit 1 to 3 reactor is being continued by switching to a temporary diesel generator.

4/25 12:22 For preparation of Unit 1/2 shutdown of system power supply, Unit 5 residual heat removal system (RHR) pump was stopped.

4/25 14:44 \sim For the connection work for layout cables, Unit 1/2 system power supply was stopped.

End