November 26, 2011 Tokyo Electric Power Company

<Draining Water on Underground Floor of Turbine Building (T/B) >

Status of highly concentrated accumulated radioactive water treatment facility and storage tank facility [Treatment Facility]

- •6/17 20:00 Full operation of radioactive material removal instruments started.
- ·6/24 12:00 Start of desalination facilities operation
- ·6/27 16:20 Circulating injection cooling started.
- 8/7 16:11 Evaporative Concentration Facility has started full operation.
- •8/19 19:33 We activated second cesium adsorption facility (System B) and started the treatment of accumulated water by the parallel operation of cesium adsorption instrument and decontamination instrument. At 19:41, the flow rate achieved steady state.

[Storage Facility]

• 6/8 ~ Big tanks to store and keep treated or contaminated water have been transferred and installed sequentially.

Accumulated water in vertical shafts of trenches and at basement level of building

Unit	Draining water source Place transferred	Status
Unit 1	·Unit 1T/B Unit 2T/B	·14:54 on November 25 -Transferring
Unit 2	 Unit 2T/B Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)] 	
Unit 3	· Unit 3T/B Central Radioactive Waste Treatment Facility [Process Main Building]	9:25 on November 15 - Transferring
Unit 6	·Unit 6T/B Temporary tanks	·11/26 No plan of transfer

Place transferred	Status of Water Level (As of November 26 at 7:00)			
Process Main Ruilding	Water level: O.P.+ 2,053 mm(Accumulated total increase:3,270 mm)	91mm		
Process Main Building	increase since 7:00 on November 25			
Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)	Water level: O.P.+ 2,107 mm(Accumulated total increase:2,833 mm) 146mm increase since 7:00 on November 25			

Water level of the vertical shaft of the trench, T/B and R/B (As of November 25 at 7:00)

	Vertical Shaft of Trench	T/B	R/B
Unit 1	O.P. <+ 850 mm	O.P.+ 3,654 mm	O.P.+ 4,151 mm
	(No change since 7:00 on	(220mm decrease since 7:00 on	(46mm decrease since 7:00 on
	November 25)	November 25)	November 25)
Unit 2	O.P.+ 3,019 mm	O.P.+ 3,031 mm	O.P.+ 3,139 mm
	(16mm increase since 7:00 on	(13mm increase since 7:00 on	(10mm increase since 7:00 on
	November 25)	November 25)	November 25)
Unit 3	O.P.+ 3,272 mm	O.P.+ 3,029 mm	O.P.+ 3,242 mm
	(11mm decrease since 7:00 on	(18mm decrease since 7:00 on	(17mm decrease since 7:00 on
	November 25)	November 25)	November 25)

Unit 4	-	O.P.+ 3,043 mm (15mm decrease since 7:00 on	O.P.+ 3,069 mm (6mm increase since 7:00 on	
		November 25)	November 25)	

<Monitoring of Radioactive Materials>

Nuclide Analysis of Seawater(Reference) Since Oct 24, an approach to decrease the detection limits of radioactivity density was started.

Place of sampling	Date of	Time of	Ratio of density limit (times)		
Flace of sampling	sampling	sampling	I-131	Cs-134	Cs-137
Approx. 30m North of Discharge Channel of 5-6U, 1F	11/25	8:50	ND	0.11	0.10
Approx. 7km South of Discharge Channel	11/25	7:50	ND	0.01	ND
of 1-2U, 2F					

•The major three nuclides (lodine-131, cesium-134, 137) were not detected in the samples taken at 1 seashore point on Nov 25.

<Cooling of Spent Fuel Pools >(As of November 26 at 11:00)

	Unit	Cooling type	Status of cooling	Temperature of water in Pool	
	Unit 1	Circulating Cooling System	Under operation(11:22 on August 10 -)	16.0	
	Unit 2	Circulating Cooling System	Under operation(17:21 on May 31 -)	18.1	
I	Unit 3	Circulating Cooling System	Under operation(18:33 on June 30 -)	18.0	
I	Unit 4	Circulating Cooling System	Under operation(10:08 on July 31 -)	24	

[Unit 2] 11/6 ~ We started operation of radioactive material decontamination instrument of spent fuel pool.

[Unit 4] ·11/25 11:04 pm an alarm of spent fuel pool cooling system went off and the device was automatically shut down. After that, we confirmed that no leak had actually occurred. At 11:39 pm we restarted the device. During this period there was no significant temperature rise in the spent fuel pool. The flow rate detector is in normal operation and we concluded that it was a false alarm for a temporary abnormal condition. Since a similar incident has occurred on November 17 we will further inspect the devices.

<<u>Water Injection to Pressure Containment Vessels >(</u>As of November 26 at 11:00)

Unit	Status of injecting water	Feed-water nozzle Temp.	Reactor pressure vessel Bottom temp.	Pressure of primary containment vessel
Unit 1	Injecting freshwater (Feed Water System: Approx.4.5 m ³ /h)	39.4	40.3	118.0 kPaabs
Unit 2	Injecting freshwater (Feed Water System: Approx.3.0 m ³ /h,Core Spray System: Approx.4.5 m ³ /h)	67.0	73.2	110 kPaabs
Unit 3	Injecting freshwater (Feed Water System: Approx.2.0 m ³ /h,Core Spray System: Approx.6.0 m ³ /h)	57.7	67.0	101.6 kPaabs

Unit 1 PCV pressure under investigation due to error figure.

[Unit 1] [Unit 2] [Unit 3]

•10/28 After regular operation of the gas control system for PCV, Unit 2, since a relatively high density hydrogen was detected on October 29, we are intending to control the hydrogen density below the inflammable limit (4%) even if there is no steam, by directly including nitrogen into the RPV for Units 1 to 3.

·11/24 As it will take time until we finish including nitrogen into RPV, in order to tentatively increase the steam

ratio by raising the temperature in RPV, we lowered the amount of water injection into the reactors. After that, since the change of the temperature at the respective Units was small and there was a possibility of significant change of the temperature by further reduce of the water injection, we further lowered it from 10:18 am to 11:02 am on November 26.

- Unit 1: The water injection was adjusted from approx. 5.0 m3/h to approx. 4.5 m3/h through reactor feed water system.
- Unit 2: The water injection was adjusted from approx. 5.5 m3/h to approx. 4.5 m3/h through core spray system (through reactor feed water system it remains unchanged, approx. 3.0 m3/h).
- Unit 3: The water injection was adjusted from approx. 7.0 m3/h to approx. 6.0 m3/h through core spray system (through reactor feed water system it remains unchanged, approx. 2.0 m3/h).

[Unit 4] [Unit 5] [Unit 6] No particular changes in parameters.

<Others>

10/7 ~ Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit
 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.