Plant Status of Fukushima Daiichi Nuclear Power Station

May 22 2012 Tokyo Electric Power Company

<1. Status of the Nuclear Reactor and the Primary Containment Vessel> (As of May 22 at 11:00 am)

Unit	Status of Water Injection		Bottom Temperature of Reactor Pressure Vessel	Pressure of Primary Containment Vessel*1	Hydrogen Density of Primary Containment Vessel
Unit 1	Injecting Fresh Water	Core Spray System: Approx. 1.8 m ³ /h Feed Water System: Approx. 4.1 m ³ /h	31.6 °C	107.6 kPa abs	A system:0.00 vol% B system:0.00 vol%
Unit 2	Injecting	Core Spray System: Approx. 6.0 m ³ /h	47.8 °C	13.64 kPa g	A system:0.30 vol% B system:0.29 vol%
OTHE Z		Feed Water System: Approx. 2.8 m ³ /h			
Unit 3	Injecting Fresh Water	Core Spray System: Approx. 4.8 m ³ /h	58.9 °C	0.28 kPa g	A system:0.16 vol% B system:0.15 vol%
		Feed Water System: Approx. 1.4 m ³ /h			

^{*1:} absolute pressure (kPa abs) = gauge pressure (kPa g) + atmosphere pressure (normal atmosphere pressure 101.3 kPa).

[Unit 3] ·4:57 on May 22: Fluctuation in the volume of water injection to the reactor was confirmed. Therefore, the volume of water injection from feed water system was adjusted from approx. 1.4 m³/h to approx. 2.0 m³/h, and 4.8 m³/h to approx. 5.0 m³/h from core spray system.

<2. Status of the Spent Fuel Pool > (As of May 22 at 11:00 am)

Unit	Cooling Type	Status of Cooling	Temperature of Water in Spent Fuel Pool
Unit 1	Circulating Cooling System	Under operation	21.5 °C
Unit 2	Circulating Cooling System	Under operation	22.3 °C
Unit 3	Circulating Cooling System	Under operation	21.7 °C
Unit 4	Circulating Cooling System	Under operation	32 °C

<3. Status of Water Transfer from the Basement Floor of the Turbine Building etc.>

Unit	Draining Water Source	Place Transferred	Status	
Unit 2	Unit 2 T/B Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]		5/15 8:35 AM – Being transferred	
Unit 3	Unit 3 Unit 3 T/B Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]		5/19 9:15 AM – Being transferred	

[Unit 3] May 11- Transfer of the accumulated water in the pit to Unit 2 Turbine Building basement is done as appropriate in order to fill concrete in the pit of Unit 3 circulating water pump discharge valve.

< . Status of the Treatment Facility and the Storage Facility > (As of May 22 at 7:00 am)

	Facility	Cesium Adsorption Apparatus	Secondary Cesium Adsorption Apparatus (SARRY)	Decontamination Instruments	Water Desalinations (Reverse Osmosis Membrane)	Water Desalinations (Evaporative Concentration)
	Operating status	Shutdown	Operation*	Shutdown	Operating intermittently according to the water balance	Operating intermittently according to the water balance

^{*} Cleaning of filter is in progress.

[[]Unit 1] ·4:57 on May 22: Fluctuation in the volume of water injection to the reactor was confirmed. Therefore, the volume of water injection from feed water system was adjusted from approx. 4.0 m³/h to approx. 4.5 m³/h, and 1.7 m³/h to approx. 2.0m³/h from core spray system.

June 8, 2011 -: Large tanks to store contaminated and decontaminated water are transported and installed.

<5. Others>

- October 7, 2011 : Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- February 23, 2012 : Test of drawing water in the Unit 6 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 6, 2012 : Test of drawing water in the Unit 5 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 14, 2012 : In order to prevent the diffusion of ocean soil, we started the full-scale covering work of seafloor by solidification soil (covering material).
- April 25, 2012 : For the purpose of preventing further contamination to the ocean through grounder water, we started a
 full-scale construction of water shielding wall.

END