Main decommissioning work and steps

Fuel removal from the Unit 4 SFP was completed on December 22, 2014 and removal from the Unit 3 SFP has been underway since April 15, 2019. Dust density in the surrounding environment is being monitored and work is being implemented with safety first. Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris (Note 1) retrieval from Units 1-3.

Fuel Debris Retrieval

- Fuel removal & dose reduction
- Rubble removal
- Installing Fuel removal machine
- Fuel removal
- Storage and handling
- Ascertaining the status inside the PCV
- Examining the fuel debris retrieval method, etc. (Note 2)
- Fuel debris retrieval
- Storage and handling

Dismantling Facilities

- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling

Three principles behind contaminated water countermeasures

Countermeasures for contaminated water are implemented in accordance with the following three principles:

1. **Remove** contamination sources
   - Purification using Multi-nuclide removal equipment and other measures
   - Removal of contaminated water from the trench (Note 3)
   - Underground tunnel containing pipes (Note 3)

2. **Redirect** groundwater from contamination sources
   - Pump up groundwater for bypass
   - Pump up groundwater near buildings
   - Land-side impermeable walls (frozen-soil walls)
   - Water proof pavement

3. **Prevent** leakage of contaminated water
   - Enhance soil by adding sodium silicate
   - Sea-side impermeable walls
   - Increase the number of (welded-joint) tanks

Fuel removal from the spent fuel pool

Toward fuel removal from the Unit 2 spent fuel pool, based on findings from internal operating floor investigations from November 2018 to February 2019, instead of fully dismantling the upper part of the building, the decision was made to install a small opening on the south side and use a boom crane. The changed method will be established and the fuel removal process refined.

Multi-nuclide removal equipment (ALPS), etc.

- This equipment removes radionuclides from the contaminated water in tanks and reduces risks.
- Treatment of contaminated water (RO concentrated salt water) was completed in May 2015 with multi-nuclide removal equipment, additional multi-nuclide removal equipment installed by TEPCO (operation commenced in September 2014) and a Japanese Government subsidy project (operation commenced in October 2014).
- Strontium-treated water from equipment other than ALPS is being re-treated in ALPS.

Reducing the generation of contaminated water through multi-layered measures

- Multi-layered measures are implemented to suppress the inflow of rainwater and groundwater into buildings.
- Multi-layered contaminated water management measures, including land-side impermeable walls and subdrains, have stabilized the groundwater at a low level. The increase in the amount of contaminated water generated during rainfall is being suppressed by repairing damaged portions of building roofs, facing onsite, etc.
- Through these measures, the generation of contaminated water was reduced from approx. 470 m$^3$/day (in FY2014) to approx. 170 m$^3$/day (in FY2018).
- The groundwater level around Unit 1-4 Reactor Buildings will remain limited by steadily operating land-side impermeable walls. In addition, measures to prevent the inflow of rainwater, including repairing damaged parts of building roofs and facing, continue to reduce the generation of contaminated water still further.

Replacing flanged tanks with welded-joint tanks

- Flanged tanks are being replaced with more reliable welded-joint tanks.
- Strontium-treated water stored in flanged tanks was purified and transferred to welded-joint tanks. The transfer was completed in November 2018. Transfer of ALPS-treated water was completed in March 2019.

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Investigation into the internal condition of Unit 1 SFP

Toward fuel removal from Unit 1, a prior investigation on September 27 confirmed the lack of any obstacle which may affect the plan to install the cover over the spent fuel pool (SFP). The investigation also confirmed the absence of any heavy object such as a concrete block, which was detected at Unit 3 and the fact that panel- and bar-shaped rubble pieces were scattered on the rack. Based on the findings and experience gained at Units 3 and 4, the work plan will be examined.

Selection of an access method from a small opening at Unit 2

Fuel removal methods for Unit 2, including access from the south side of the building were being examined based on the findings from internal operating floor investigations from November 2018 to February 2019.

Following the examination, a method to access from a small opening installed on the south side was selected with aspects such as dust management and lower work exposure in mind (the method previously examined had involved fully dismantling the upper part of the building). Details will be established and the fuel removal process refined within this fiscal year.

Examination including the review of the fuel removal method will also proceed for Unit 1 based on investigative results about the well plug and rubble on the south side.

Start of installation of a temporary dust monitor toward construction of an access route at Unit 1

For more enhanced dust-density monitoring during construction work of an access route at Unit 1, in addition to the existing dust monitors on the operating floor, installation of a dust monitor for the work near the PCV head started from October 25. Following the installation, more data on dust densities including that from the newly installed dust monitor will be collected and optimization of the management method during work will be examined, also taking with the influence on the surrounding environment into consideration. At the same time, dust reduction measures during the cutting work will be examined.

Test to suspend water injection to the Unit 1 reactor

To optimize the emergency response procedures and for other improvements, a test involving temporarily suspending water injection to the reactor was conducted at Unit 1 (suspenstion period: October 15-17 (approx. 49 hours), the test continues until October 31).

During the suspension period, the RPV bottom temperature and the PCV temperature varied almost within as assumed, increasing by around 0.2 and 0.6°C respectively. No abnormality was detected including other parameters. The difference between the results obtained and predictive and other aspects will be evaluated.

Completion of dismantling work for the 3rd block of the Unit 1/2 exhaust stack

Dismantling of the 3rd block of the Unit 1/2 exhaust stack started from October 7 and was completed on October 22. The cutting work was implemented almost as planned using a procedure in which insights obtained during the 2nd block work was reflected. Following the verification of the 3rd block work, dismantling of the 4th block started from October 27. In this work, the support tower will also be cut in addition to the stack. We proceed with the goal of completing the cutting of the 4th block by early November.

No significant damage by Typhoon No. 19 ( Hagibis )

In preparation for the approach of Typhoon No.19 (Hagibis), TEPCO expanded the water level difference between the subdrain water level and the stagnant water in advance, while installed sandbags, and laid down the boom of large cranes. Consequently, there was no leakage of contaminated water or damage that could affect the main facilities though a portion of a slide onsite fell. Due to the heavy rain from this typhoon (approx. 270 mm/week), approx. 590 m³/day of contaminated water was generated. However, it was far less than the volume (approx. 1,210 m³/day) generated in similar recent heavy rain (approx. 280 mm/week) by measures implemented.

During the heavy rain on October 25, the level of contaminated water rose in a portion of the exposed-floor area and there was a risk of unsatisfying the difference in water levels from the subdrain, which was required for operation. However, the water quality analysis of the subdrain confirmed no significant variation.

Progress status

- The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 25-35°C over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings into the air. It was concluded that the comprehensive cold shutdown condition had been maintained.
  - 1 The values varied somewhat, depending on the unit and location of the thermometer.
  - 2 In September 2019, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.0023 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

Selection of a dust control method for the 3rd block

Selection of a dust control method for the 3rd block of the Unit 1/2 exhaust stack was examined.

Completion of fuel rack dismantling

Completion of fuel rack dismantling for the 3rd block of the Unit 1/2 exhaust stack was confirmed.

Fuel rack in Unit 4

Fuel rack in Unit 4 was confirmed.

Condition on the fuel rack

Condition on the fuel rack was confirmed.

Progress status

- The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 25-35°C over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings into the air. It was concluded that the comprehensive cold shutdown condition had been maintained.
  - 1 The values varied somewhat, depending on the unit and location of the thermometer.
  - 2 In September 2019, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.0023 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

Selection of a dust control method for the 3rd block

Selection of a dust control method for the 3rd block of the Unit 1/2 exhaust stack was examined.

Completion of fuel rack dismantling

Completion of fuel rack dismantling for the 3rd block of the Unit 1/2 exhaust stack was confirmed.

Fuel rack in Unit 4

Fuel rack in Unit 4 was confirmed.

Condition on the fuel rack

Condition on the fuel rack was confirmed.

Progress status

- The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 25-35°C over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings into the air. It was concluded that the comprehensive cold shutdown condition had been maintained.
  - 1 The values varied somewhat, depending on the unit and location of the thermometer.
  - 2 In September 2019, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.0023 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).
Data of Monitoring Posts (MP1-MP8)

Data (10-minute values) of Monitoring Posts (MPs) measuring the airborne radiation rate around site boundaries showed 0.282 – 1.332 μSv/h (September 25 – October 29, 2019).

We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction work, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore, monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.

The data of monitoring posts (MP1-8) show a range of 0.282 – 1.332 μSv/h. The measurement conditions were improved for posts 2 to 8 to ensure precise air-dose rate measurements. Construction activities such as tree-clearing, surface soil removal, and shield wall setting were undertaken from February 10 to April 18, 2012.

No significant damage by Typhoon No. 19 (Hagibis)

We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction work, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore, monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.

No significant damage by Typhoon No. 19 (Hagibis)
I. Confirmation of the reactor conditions

1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 25 to 35°C for the past month, though they varied depending on the unit and location of the thermometer.

2. Release of radioactive materials from the Reactor Buildings

As of September 2019, the density of radioactive materials newly released from Reactor Building Units 1-4 into the air and measured at the site boundary was evaluated at approx. 2.2 x 10⁻¹² Bq/cm² for Cs-134 and Cs-137 respectively, while the radiation exposure dose due to the release of radioactive materials there was less than 0.00023 mSv/year.

2.2. Contaminated water generated

Rainfall in Fukushima Daiichi NPS
Contaminated water generated
Inflow of groundwater, rainwater, etc. into buildings

- Multi-layered measures, including pumping up by subdrains and land-side impermeable walls, which were implemented to control the continued generation of contaminated water, suppress the groundwater inflow into buildings.
- Following the steady implementation of “redirecting” measures (groundwater bypass, subdrains, land-side impermeable walls and other measures), the generation amount reduced from approx. 470 m³/day (the FY2014 average) when the measures were first launched to approx. 170 m³/day (the FY2018 average).
- Measures will continue to further reduce the volume of contaminated water generated.

II. Progress status by each plan

1. Contaminated water management

In accordance with the three principles “remove” contamination sources, “redirect” groundwater from contamination sources and “prevent leakage” of contaminated water, multi-layered contaminated water management measures have been implemented to stably control groundwater.

- Status of contaminated water generated

- Operation of the groundwater bypass
  - From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release then started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until October 29, 2019, 507,426 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and released after TEPCO and a third-party organization had confirmed that its quality met operational targets.
  - Pumps are inspected and cleaned as required based on their operational status.

- Operation of the Water Treatment Facility special for Subdrain & Groundwater drains
  - To reduce the level of groundwater flowing into the buildings, work began to pumping groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until October 29, 2019, a total of 786,194 m³ had been drained after TEPCO and a third-party organization had confirmed that its quality met operational targets.
  - Due to the rising level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until October 29, 2019, a total of approx. 218,408 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period September 19 – October 23, 2019).
  - As one of the multi-layered contaminated-water management measures, in addition to waterproof pavement (facing: as of the end of September 2019, approx. 94% of the planned area had been completed) to prevent rainwater infiltrating the ground, facilities to enhance the subdrain treatment system were installed and went into operation from April 2016, increasing the treatment capacity from 900 to 1,500 m³/day and improving reliability. Operational efficiency...
was also improved to treat up to 2,000 m³/day for almost one week during the peak period.

- To maintain the level of groundwater pumped up from the subdrains, work to install additional subdrain pits and recover those already in place is underway. The additional pits are scheduled to begin operation sequentially from a pit for which work was completed (12 of 14 pits went into operation). For recovered pits, work for all three pits scheduled was completed, all of which went into operation from December 26, 2018. Work to recover another pit will start within FY2019 (No. 49 pit).

- To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated. Installation of the pipe and ancillary facilities was completed.

- Since the subdrains went into operation, the inflow into buildings tended to decline to under 150 m³/day when the subdrain water level declined below T.P. 3.0 m but increased during rainfall.

### Figure 2: Correlation between inflow such as groundwater and rainwater into buildings and the water level of Unit 1-4 subdrains

![Graph](image)

**Construction status of the land-side impermeable walls and status of groundwater levels around the buildings**

- An operation to maintain the land-side impermeable walls and prevent the frozen soil from thickening further continued from May 2017 on the north and south sides and started from November 2017 on the east side, where sufficiently thick frozen soil was identified. The scope of the maintenance operation was expanded in March 2018.

- In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4-5 m. The 21st Committee on Countermeasures for Contaminated-Water Treatment, held on March 7, 2018, evaluated that together with the function of subdrains and other measures, a water-level management system to stably control groundwater and redirect groundwater from the buildings had been established and allowed the amount of contaminated water generated to be reduced significantly.

- A supplementary method was implemented for the unfinished depth and it was confirmed that the temperature of this portion had declined below 0°C by September 2018. From February 2019, a maintenance operation started throughout all sections.

- The groundwater level in the area inside the land-side impermeable walls has been declining every year. On the mountain side, the difference between the inside and outside increased to approx. 4-5 m. The water level in the bank area has remained low (T.P. 1.6-1.7 m) compared to the ground surface (T.P. 2.5 m).

### Figure 3: Closure parts of the land-side impermeable walls (on the mountain side)

- **Operation of multi-nuclide removal equipment**
  - Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water were underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide removal equipment went into full-scale operation from October 16, 2017.

- As of October 24, 2019, the volumes treated by existing, additional and high-performance multi-nuclide removal equipment were approx. 414,000, 595,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with highly concentrated radioactive materials at the System B outlet of the existing multi-nuclide removal equipment).

- To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2015; high-performance: from April 15, 2015). Up until October 24, 2019, approx. 638,000 m³ had been treated.

- **Toward reducing the risk of contaminated water stored in tanks**
  - Treatment measures comprising the removal of strontium by cesium-adsorption apparatus (KURION) (from January 6, 2015), the secondary cesium-adsorption apparatus (SARRY) (from December 26, 2014) and the third cesium-adsorption apparatus (SARRY II) (from July 12, 2019) have been underway. Up until October 24, 2019, approx. 546,000 m³ had been treated.

**Measures in the Tank Area**
- Rainwater, under the release standard and having accumulated within the fenced-in area of the contaminated-water tank area, was sprinkled on site after eliminating radioactive materials using rainwater-treatment equipment since May 21, 2014 (as of October 28, 2019, a total of 140,274 m³).
As of October 24, 2019

Inspection results on the inside of tanks storing treated water from the multi-nuclide removal equipment

- A portion of tanks storing treated water from the multi-nuclide removal equipment (36 tanks in G3 west area and J1 area) had stored RO concentrated salt water and Sr treated water in the past. The density of radioactive material in water of these tanks exceeded that of other tanks storing treated water from the multi-nuclide removal equipment.
- The inside of a representative tank (G3-D1) among these tanks was inspected by an underwater drone, which confirmed a sludge deposit at the bottom. It was considered to have been formed by the impact of remaining RO concentrated salt water and Sr treated water stored in the past.
- Removal of sludge will be planned for the 33 tanks from the perspective of preventing the generation of hydrogen sulfide and the inside of other tanks storing treated water from the multi-nuclide removal equipment will also be inspected.

Treatment status of contaminated water in buildings

- High densities of Cs and gross α radioactive materials were detected in contaminated water in buildings of Units 2 and 3. However, the density of gross α radioactive materials was almost below the detection limit at the inlet of the cesium-adsorption apparatus in the latter stage.
- At present, the radioactivity densities have remained the same as before and ongoing monitoring will continue.
- At Units 2 and 3, connections between the Reactor Building and other buildings are narrowing with the decline in the water level. Checking of the condition of connections will continue and contaminated water in the Reactor Buildings, within which high densities of radioactivity were detected, will be treated with the impact on the water treatment equipment in mind.

- Damage to a tank in the G6 area during in-service period
  - On October 8, 2019, while treated water from the multi-nuclide removal equipment was being transferred from the D9 tank to another tank in the G6 area for in-service, an abnormal noise was detected in the upper part of the D9 tank.
  - The in-service process was immediately suspended and inspection confirmed a distortion of the tank top plate and three holes (approx. 20mm). There was no leakage of stored water to the surrounding area due to this damage, nor any variation detected in nearby monitoring posts.
  - The cause investigation confirmed that the covering tape, which was installed at the manufacturing factory, had remained on the vent pipe flange of the tank. It was considered that this tape prevented the vent function from working during water transfer, resulting in excessive negative pressure within the tank and subsequently causing the damage.
  - The method to repair the damaged tank will be examined and after checking for any similar vent pipe, recurrence prevention measures will be considered.

2. Fuel removal from the spent fuel pools

Work to help remove spent fuel from the pool is progressing steadily while ensuring seismic capacity and safety. The removal of spent fuel from the Unit 4 pool commenced on November 18, 2013 and was completed by December 22, 2014

- Main work to help spent fuel removal at Unit 1
  - From January 22, 2018, toward fuel removal from the spent fuel pool (SFP), work began to remove rubble on the north side of the operating floor. Once removed, the rubble is stored in solid waste storage facilities or elsewhere depending on the dose level.
  - To create an access route for preparatory work to protect the SFP, work to remove four sections of X-branches (one each on the west and south sides and two on the east side, respectively) started from September 19, 2018 and all planned four sections had been removed by December 20.
  - From March 18, 2019, the removal of small rubble in the east-side area around the SFP started using pliers and suction equipment, while from July 9, small rubble removal on the south side of the SFP started.
  - The well plug, which was considered misaligned from its normal position due to the influence of the hydrogen explosion at the time of the accident, was investigated for the period July 17 – August 26, 2019, by taking photos using a camera, measuring the air dose rate and collecting 3D images.
  - A prior investigation on September 27 confirmed the lack of any obstacle which may affect the plan to install the cover over the SFP.
  - The investigation also confirmed the absence of any heavy object such as a concrete block, which was detected at Unit 3 and the fact that panel- and bar-shaped rubble pieces were scattered on the rack.
  - Based on the findings and experience gained at Units 3 and 4, the work plan will be examined.

- Main work to help spent fuel removal at Unit 2
  - On November 6, 2018, before the investigation toward formulating a work plan to dismantle the Reactor Building rooftop and other tasks, work to move and contain the remaining objects on the operating floor (1st round) was completed.
  - On February 1, 2019, an investigation to measure the radiation dose on the floor, walls and ceiling inside the operating floor and confirm the contamination status was completed. After analyzing the investigative results, the "contamination density distribution" throughout the entire operating floor was obtained, based on which the air dose rate inside the operating floor could be evaluated. A shielding design and measures to prevent radioactive material scattering will be examined.
  - From April 8, 2019, work to move and contain the remaining objects on the operating floor (2nd round) started, such as materials and equipment which may hinder installation of the fuel-handling facility and other work. The 2nd round mainly included moving the remaining small objects and placing them in the container. The work also included cleaning...
the floor to suppress dust scattering and was completed on August 21.

- From September 10, 2019, work to move and contain the remaining objects on the operating floor (3rd round) started, such as materials and equipment which may hinder the installation of the fuel-handling facility and other work. The 3rd round mainly includes moving and containing the remaining large objects as well as transporting containers and remaining objects temporarily stored inside the operating floor outside.
- Fuel removal methods, including access from the south side of the building, were being examined based on the findings from internal operating floor investigations from November 2018 to February 2019.
- Following the examination, a method to access from a small opening installed on the south side was selected with aspects such as dust management and lower work exposure in mind (the method previously examined had involved fully dismantling the upper part of the building). Details will be established and the fuel removal process refined within this fiscal year.
- Examination, including the review of the fuel removal method, will also proceed for Unit 1 based on investigative results about the well plug and rubble on the south side.

- We proceed with the goal of completing the cutting of the 4th block by early November.

### 3. Retrieval of fuel debris

- Construction of an access route for the internal investigation of the Unit 1 PCV
- For more enhanced dust-density monitoring during construction work of an access route at Unit 1, in addition to the existing dust monitors on the operating floor, installation of a dust monitor for the work near the PCV head started from October 25.
- Following the installation, more data on dust densities, including that from the newly installed dust monitor, will be collected and optimization the management method during work will be examined, also taking the influence on the surrounding environment into consideration. At the same time, dust reduction measures during the cutting work will be examined.

### 4. Plans to store, process and dispose of solid waste and decommission of reactor facilities

- Management status of the rubble and trimmed trees
  - As of the end of September 2019, the total storage volume of the concrete and metal rubble was approx. 276,200 m³ (+1,700 m³ compared to at the end of August with an area-occupation rate of 69%). The total storage volume of trimmed trees was approx. 134,100 m³ (slight decrease, with an area-occupation rate of 76%). The total storage volume of used protective clothing was approx. 54,900 m³ (-1,600 m³, with an area-occupation rate of 80%). The increase in rubble was mainly attributable to construction related to tanks and rubble removal around the Unit 1-4 Reactor Buildings general waste on site, while the decrease in used protective clothing was attributable to the incinerator operation.
- Management status of secondary waste from water treatment
  - As of October 3, 2019, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%), while that of concentrated waste fluid was 9,380 m³ (area-occupation rate: 91%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi- nuclide removal equipment and other vessels, was 4,493 (area-occupation rate: 71%).

### 5. Reactor cooling

- The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement the status monitoring will continue

- Test to check the cooling condition of the Unit 1 fuel debris
  - To optimize the emergency response procedures and for other improvements, a test involving temporarily suspending water injection to the reactor was conducted at Unit 1 (suspension period: October 15-17 (approx. 49 hours), the test continues until October 31).
  - During the suspension period, the RPV bottom temperature and the PCV temperature varied almost within as assumed, increasing by around 0.2 and 0.6°C respectively. No abnormality was detected, including other parameters.
  - The difference between the results obtained and predictive and other aspects will be evaluated.

### 6. Reduction in radiation dose and mitigation of contamination

- Status of groundwater and seawater on the east side of Turbine Buildings 1-4
  - At No. 1-6, the H-3 density had been increasing from around 1,000 Bq/L to 6,000 Bq/L since August 2019 and then declined. It currently stands at around 1,300 Bq/L.
  - At No. 1-9, the density of gross β radioactive materials has been repeatedly increasing and declining from around 20 Bq/L since April 2019 and currently stands at around 40 Bq/L.
- At No. 1-4, the H-3 density has been repeatedly increasing and declining from around 1,300 Bq/L since July 2019 and currently stands at around 3,000 Bq/L. Since August 15, 2013, pumping of groundwater continued (at the well point between the Unit 1 and 2 intakes: August 15, 2013 – October 13, 2015 and from October 24; at the repaired well: October 14-23, 2015).
- At No. 2-3, the H-3 density had been increasing from around 4,000 Bq/L since March 2019 and currently stands at around 4,600 Bq/L. The density of gross β radioactive materials at the same point had been increasing from around 8,000 Bq/L since April 2019 and currently stands at around 9,800 Bq/L.
- At No. 2-5, the H-3 density had been declining from around 2,300 Bq/L to less than 120 Bq/L since June 2019, then repeatedly increasing and declining and currently stands at around 110 Bq/L. The density of gross β radioactive materials at the same point had been declining from around 80,000 Bq/L to around 1,800 Bq/L since June 2019. It then increased to 64,000 Bq/L but declined and currently stands at around 650 Bq/L.
- At No. 2-6, the density of gross β radioactive materials had been increasing from around 100 Bq/L since May 2019 and currently stands at around 200 Bq/L. Since December 18, 2013, pumping of groundwater continued (at the well point between the Unit 2 and 3 intakes: December 18, 2013 - October 13, 2015; at the repaired well: from October 14, 2015).
- The density in groundwater on the east side of the Turbine Buildings temporarily varied during heavy rain at some observation points. However, the overall density has been declining or remained constant.
- The densities of radioactive materials in drainage channels have remained constant, despite increasing during rainfall.
  - In the Unit 1-4 intake open channel area, densities of radioactive materials in seawater have remained below the legal discharge limit, while increasing in Cs-137 and Sr-90 below the legal discharge limit during rainfall. They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 has varied since March 20, 2019, when the silt fence was transferred to the center of the open channel due to mega float-related construction.
  - In the area within the port, densities of radioactive materials in seawater have remained below the legal discharge limit, while increasing in Cs-137 and Sr-90 below the legal discharge limit during rainfall. They have also remained below the level of those in the Unit 1-4 intake open channel area and been declining following the completed installation and connection of steel pipe sheet piles for the sea-side impermeable walls.
  - In the area outside the port, regarding the densities of radioactive materials in seawater, those of Cs-137 and Sr-90 declined and remained lower after steel pipe sheet piles for the sea-side impermeable walls were installed and connected.

7. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control. Improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

- Staff management
  - The monthly average total of personnel registered for at least one day per month to work on site during the past quarter from June to August 2019 was approx. 8,800 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 6,600). Accordingly, sufficient personnel are registered to work on site.
  - It was confirmed with the prime contractors that the estimated manpower necessary for the work in November 2019 (approx. 3,570 per day; TEPCO and partner company workers) would be secured at present. The average numbers of workers per day per month (actual values) were maintained, with approx. 3,400 to 5,600 since FY2017 (see Figure 7).
  - The number of workers from within and outside Fukushima Prefecture remained constant. The local employment ratio (TEPCO and partner company workers) as of September 2019 has also remained constant at around 60%.
  - The monthly average exposure dose of workers remained at approx. approx. 0.39, 0.36 and 0.32 mSv/month during FY2016, FY2017 and FY2018 respectively. (Reference: Annual average exposure dose 20 mSv/year ≈ 1.7 mSv/month)
9. Others

- Efforts to enhance the quality control of Fukushima Daiichi D & D Engineering Company
  - Having prioritized speed since the accident, the decommissioning work of the Fukushima Daiichi Nuclear Power Station could not provide sufficient examination and consideration in terms of quality control. At the same time, exceptional consideration and efforts required for quality control were insufficient when responding to the intensively restricted onsite environment and introducing new facilities and technology.
  - To improve the quality, issues related to quality across the D & D Engineering Company were identified, enhancement measures were formulated in three fields (design and procurement, facility quality and working quality) and efforts have already begun.
  - For design and procurement, as well as learning from the defects of the FHM and other equipment at Unit 3, practices of other companies are being benchmarked and scope to improve processes examined to enhance quality control for equipment and facilities with high project risks.
  - Enhancement measures are also being implemented for facility quality, including those to improve design reliability of vulnerable facilities. For working quality, measures are being introduced to identify common factors in past defects for each working step to correct them.

- Typhoon measures and the status of damage
  - In preparation for the approach of Typhoon No.19 (Hagibis), TEPCO expanded the water level difference between the subdrain water level and the stagnant water in advance, while installed sandbags, and laid down the boom of large cranes.
  - Consequently, there was no leakage of contaminated water or damage that could affect the main facilities though a portion of a slide onsite fell.
  - Due to the heavy rain from this typhoon (approx. 270 mm/week), approx. 590 m³/day of contaminated water was generated. However, it was far less than the volume (approx. 1,210 m³/day) generated in similar recent heavy rain (approx. 280 mm/week) by the measures implemented.
  - During the heavy rain on October 25, the level of contaminated water rose in a portion of the exposed-floor area and there was a risk of unsatisfying the difference in water levels from the subdrain, which was required for operation. However, the water quality analysis of the subdrain confirmed no significant variation.

- Application of a Flexible Structure Arm (Muscular Robot)
  - An additional pump to transfer contaminated water in buildings is being installed toward completion of water treatment within FY2020. In this installation work, a "Flexible Structure Arm (Muscular Robot)," which was being developed by a manufacturer, was introduced experimentally from October 1, 2019.
  - The robot is capable of operating within an environment of excessive radiation, has high shock resistance and utilizes water as a working fluid, which means the quality of contaminated water would be unaffected, even if the water-pressure cylinder were broken.
  - Applying this equipment will enhance decommissioning technology insights.

Status of heat stroke cases
- In FY2019, measures to further prevent heat stroke commenced from April to cope with the hottest season.
- In FY2019, 13 workers suffered heat stroke due to work up until October 28 (in FY2018, eight workers up until the end of October). Continued measures will be taken to prevent heat stroke.

Health management of workers in the Fukushima Daiichi NPS
- As health management measures in line with the guidelines of the Ministry of Health, Labour and Welfare (issued in August 2015), a scheme was established and operated, whereby primary contractors confirmed reexamination at medical institutions and the subsequent status of workers who were diagnosed as requiring "detailed examination and treatment" in the health checkup, with TEPCO confirming the operation status by the primary contractors.
- The recent report on the management status of the health checkup during the first quarter (April – June) in FY2019 confirmed that the primary contractors had provided appropriate guidance and properly managed the operation under the scheme. The report on the follow-up status during the fourth quarter in FY2018 and before confirmed that responses to workers, which had not been completed by the time of the previous report, were being provided on an ongoing basis. Checking of operations will continue.
Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

“The highest value” → “the latest value (sampled during October 21-29)”;
unit (Bq/L); ND represents a value below the detection limit


### Summary of TEPCO data as of October 30, 2019

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013/10/17</th>
<th>2013/12/24</th>
<th>2013/10/11</th>
<th>2013/8/12</th>
<th>2013/6/26</th>
<th>2013/8/19</th>
<th>2013/8/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>3.3</td>
<td>ND(0.28)</td>
<td>ND(0.54)</td>
<td>ND(1.6)</td>
<td>ND(0.52)</td>
<td>ND(0.58)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>9.0</td>
<td>0.71</td>
<td>7.3</td>
<td>1.0</td>
<td>ND(13)</td>
<td>ND(0.51)</td>
<td>ND(1.6)</td>
</tr>
<tr>
<td>Gross β</td>
<td>74</td>
<td>ND(14)</td>
<td>ND(13)</td>
<td>ND(1.5)</td>
<td>ND(13)</td>
<td>ND(0.58)</td>
<td>ND(0.51)</td>
</tr>
<tr>
<td>Tritium</td>
<td>67</td>
<td>ND(1.6)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>4.4</td>
<td>ND(0.28)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>10</td>
<td>1.1</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Gross β</td>
<td>69</td>
<td>ND(14)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Tritium</td>
<td>59</td>
<td>ND(1.6)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>5.0</td>
<td>ND(0.26)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>8.4</td>
<td>0.57</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Gross β</td>
<td>69</td>
<td>ND(14)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Tritium</td>
<td>52</td>
<td>ND(1.6)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>2.8</td>
<td>ND(0.58)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>5.8</td>
<td>ND(0.58)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Gross β</td>
<td>46</td>
<td>ND(15)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Tritium</td>
<td>24</td>
<td>ND(1.9)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>3.3</td>
<td>ND(0.28)</td>
<td>ND(0.54)</td>
<td>ND(1.6)</td>
<td>ND(0.52)</td>
<td>ND(0.58)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>7.3</td>
<td>0.54</td>
<td>7.8</td>
<td>1.0</td>
<td>ND(13)</td>
<td>ND(0.51)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Gross β</td>
<td>69</td>
<td>ND(13)</td>
<td>ND(13)</td>
<td>ND(1.5)</td>
<td>ND(13)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Tritium</td>
<td>68</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>3.5</td>
<td>ND(0.28)</td>
<td>ND(0.51)</td>
<td>ND(1.6)</td>
<td>ND(0.51)</td>
<td>ND(0.58)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>7.8</td>
<td>0.89</td>
<td>7.3</td>
<td>1.0</td>
<td>ND(14)</td>
<td>ND(0.51)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Gross β</td>
<td>79</td>
<td>ND(14)</td>
<td>ND(14)</td>
<td>ND(1.5)</td>
<td>ND(14)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Tritium</td>
<td>60</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>32</td>
<td>ND(0.51)</td>
<td>ND(0.51)</td>
<td>ND(1.6)</td>
<td>ND(0.51)</td>
<td>ND(0.58)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>73</td>
<td>3.2</td>
<td>320</td>
<td>1.0</td>
<td>320</td>
<td>1.0</td>
<td>320</td>
</tr>
<tr>
<td>Gross β</td>
<td>320</td>
<td>ND(14)</td>
<td>ND(14)</td>
<td>ND(1.5)</td>
<td>ND(14)</td>
<td>ND(1.5)</td>
<td>ND(1.5)</td>
</tr>
<tr>
<td>Tritium</td>
<td>510</td>
<td>8.1</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
<td>ND(1.6)</td>
</tr>
</tbody>
</table>

From February 11, 2017, the location of the sampling point was shifted approx. 50 m south of the previous point due to the location shift of the silt fence.

*1: Monitoring commenced in or after March 2014. Monitoring inside the sea-side impermeable walls was finished because of the landfill.
*2: For the point, monitoring was finished from December 12, 2018 due to preparatory work for transfer of mega float.
*3: For the point, monitoring point was moved from February 6, 2019 due to preparatory work for transfer of mega float.
*4: For the point, monitoring was finished from April 3, 2019 due to preparatory work for transfer of mega float.

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.
### Status of seawater monitoring around outside of the port
(comparison between the highest values in 2013 and the latest values)

Unit (Bq/L); ND represents a value below the detection limit; values in ( ) represent the detection limit; ND (2013) represents ND throughout 2013

#### Northeast side of port entrance (offshore 1km)
- Cesium-134: ND (2013) → ND (0.53)
- Cesium-137: ND (2013) → ND (0.71)
- Gross β: ND (2013) → ND (15)
- Tritium: 4.7 (2013/8/18) → ND (0.88) Below 1/5

#### East side of port entrance (offshore 1km)
- Cesium-134: ND (2013) → ND (0.69)
- Cesium-137: ND (2013) → ND (0.67)
- Gross β: ND (2013) → ND (15)
- Tritium: 6.4 (2013/10/18) → ND (0.88) Below 1/7

#### North side of north breakwater (offshore 0.5km)
- Cesium-134: 1.8 (2013/6/21) → ND (0.57) Below 1/3
- Cesium-137: 4.5 (2013/3/17) → ND (0.56) Below 1/8
- Gross β: 12 (2013/12/23) → 11
- Tritium: 8.6 (2013/6/26) → ND (0.85) Below 1/10

#### North side of Unit 5 and 6 release outlet
- Cesium-134: 3.3 (2013/12/24) → ND (0.54) Below 1/6
- Cesium-137: 7.3 (2013/10/11) → 0.54 Below 1/10
- Gross β: 69 (2013/8/19) → ND (13) Below 1/5
- Tritium: 68 (2013/8/19) → ND (1.5) Below 1/40

#### South side of south breakwater (offshore 0.5km)
- Cesium-134: ND (2013) → ND (0.64)
- Cesium-137: ND (2013) → ND (0.64)
- Gross β: ND (2013) → ND (15)
- Tritium: ND (2013) → ND (0.88)

#### Southeast side of port entrance (offshore 1km)
- Cesium-134: ND (2013) → ND (0.67)
- Cesium-137: ND (2013) → ND (0.67)
- Gross β: ND (2013) → ND (15)
- Tritium: ND (2013) → ND (0.88)

#### South side of Unit 1 to 4
- Cesium-134: ND (2013) → ND (0.67)
- Cesium-137: 3.0 (2013/7/15) → ND (0.62) Below 1/4
- Gross β: 15 (2013/12/23) → 9.2
- Tritium: 1.9 (2013/11/25) → ND (0.85) Below 1/2

### Sea side impermeable wall
- Note: Because safety of the sampling points was unassured due to the influence of Typhoon No. 10 in 2016, samples were taken from approx. 330 m south of the Unit 1-4 release outlet. Samples were also taken from a point approx. 280m south from the same release outlet from January 27, 2017 and approx. 320m from March 23, 2018

### Summary of TEPCO data as of October 30, 2019


Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

(The latest values sampled during October 21-29)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Legal discharge limit</th>
<th>WHO Guidelines for Drinking Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Tritium</td>
<td>60,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Progress toward decommissioning: Fuel removal from the spent fuel pool (SFP)

**Unit 1**

Toward fuel removal from the spent fuel pool, there is a plan to install a dedicated cover for fuel removal over the top floor of the Reactor Building (operating floor). On November 10, 2016, removal of all roof panels and wall panels of the building cover was completed. On May 11, 2017, removal of pillars and beams of the building cover was completed. On December 19, 2017, modification of the pillars and beams of the building cover and installation windbreak fences were completed. From March 18, 2019, removal of small rubble in the east-side area around the SFP started as an initial step using pliers and suction equipment. From July 9, 2019, small rubble removal on the south side of the SFP started. Rumble removal and investigation prior to protecting the SFP, etc. are currently underway.

**Unit 2**

Toward fuel removal from the Unit 2 spent fuel pool, based on findings from internal operating floor investigations from November 2018 to February 2019, instead of fully dismantling the upper part of the building, the decision was made to install a small opening on the south side and use a boom crane. The changed method will be established and the fuel removal process refined.

**Unit 3**

Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February – December 2015). Measures to reduce dose on the Reactor Building top floor (decontamination, shields) were completed in December 2016. Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017. Installation of the fuel removal cover was completed on February 23, 2018. Toward fuel removal, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, 2019, and started fuel removal from April 15, 2019.

**Unit 4**

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started. On November 5, 2014, within a year of commencing work to fuel removal, all 1,331 spent fuel assemblies in the pool had been transferred. The transfer of the remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22, 2014. (2 of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks) This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

**Common pool**

- Storage area
  - An open space will be maintained in the common pool (Transfer to the temporary cask custody area)

**Progress to date**

- The common pool has been restored to a condition allowing it to re-accommodate fuel to be handled (November 2012)
- Loading of spent fuel stored in the common pool to dry casks commenced (June 2013)
- Fuel removal from the Unit 4 spent fuel pool began to be received (November 2013 - November 2014)
- Fuel removal from the Unit 3 spent fuel pool began to be received (from April 2018)

**Temporary cask (2) custody area**

- Spent fuel is accepted from the common pool

Reference

October 31, 2019
Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment
1/6

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Investigation into TIP Room of the Unit 1 Reactor Building

To improve the environment for future investigations inside the PCV, etc., an investigation was conducted from September 24 to October 2, 2015 at the TIP Room\(^{(1)}\). (Due to high dose around the entrance in to the TIP Room, the investigation of dose rate and contamination distribution was conducted through a hole drilled from the walkway of the Turbine Building, where the dose was low)

- The investigative results identified high dose at X-31 to 33 penetrations\(^{(2)}\) (instrumentation penetration) and low dose at other parts.
- As it was confirmed that work inside the TIP room would be available, the next step will include identification of obstacles which will interfere the work inside the TIP Room and formulation of a plan for dose reduction.

Unit 1

Air dose rate inside the Reactor Building:
Max. 5,150mSv/h (1F southeast area) (measured on July 4, 2012)

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

[Investigative outline]

- In April 2015, a device, which entered the inside of the PCV through a narrow access opening (bore: φ 100 mm), collected information such as images and airborne dose inside the PCV 1st floor.
- In March 2017, the investigation using a self-propelled investigation device, conducted to inspect the spreading of debris to the basement floor outside the pedestal, took images of the PCV bottom status for the first time. The status inside the PCV will continue to be examined based on the collected image and dose data.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb - May 2015</td>
<td>Confirmed that there was no large fuel in the reactor core.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) TIP (Traversing In-core Probe)
\(^{(2)}\) Penetration: Through-hole of the PCV
\(^{(3)}\) S/C (Suppression Chamber), Suppression pool, used as the source for the emergent core cooling system.
\(^{(4)}\) SFP (Spent Fuel Pool)
\(^{(5)}\) RPV (Reactor Pressure Vessel)
\(^{(6)}\) PCV (Primary Containment Vessel)
Status of investigation inside the PCV
Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

Investigative outline
- Investigative devices such as a robot will be injected from Unit 2 X-6 penetration (3) and access the inside of the pedestal using the CRD rail.
- The torus chamber walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
- At the east-side wall pipe penetrations (five points), "the status" and "existence of flow" were checked.
- A demonstration using the above two types of underwater wall investigative equipment showed how the equipment could check the status of penetration.
- Regarding Penetrations 1 - 5, the results of checking the sprayed tracer (5) by camera showed no flow around the penetrations. (investigation by the swimming robot)
- Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Status of investigation inside the reactor building
- Investigative devices such as a robot will be injected from Unit 2 X-6 penetration (3) and access the inside of the pedestal using the CRD rail.
- The torus chamber walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
- At the east-side wall pipe penetrations (five points), "the status" and "existence of flow" were checked.
- A demonstration using the above two types of underwater wall investigative equipment showed how the equipment could check the status of penetration.
- Regarding Penetrations 1 - 5, the results of checking the sprayed tracer (5) by camera showed no flow around the penetrations. (investigation by the swimming robot)
- Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Investigative status (image)
- Bottom of the pedestal (after being processed in panoramic image visualization)
- Image of the torus chamber east-side cross-sectional investigation
- Investigative result on torus chamber wall
- Swimming robot
- Floor traveling robot
- Investigative device
- Platform, hanging point
- Camera direction
- (Investigative equipment insert point)
- Sonar
- Tracer
- T/B
- S/C
- Pedestal bottom
- Cable tray
- Workers access opening
- R/B 1st floor
- R/B torus room
- SFP
- (Investigative equipment)
- Investigative unit
- Penetration
- Floating type
- Swimming robot
- Floor traveling robot
- R/B 1st floor
- T/B
- Penetration sensors
- Sonar
- Tracer
- Image of the torus chamber east-side cross-sectional investigation
- Investigative status (image)
Water flow was detected from the Main Steam Isolation Valve* room

On January 18, 2014, a flow of water from around the door of the Steam Isolation Valve room in the Reactor Building Unit 3 1st floor northeast area to the nearby floor drain tunnel (drain outlet) was detected. As the drain outlet connects with the underground part of the Reactor Building, there is no possibility of outflow from the building.

From April 23, 2014, image data has been acquired by camera and the radiation dose measured via pipes for measurement instrumentation, which connect the air-conditioning room on the Reactor Building 2nd floor with the Main Steam Isolation Valve Room on the 1st floor. On May 15, 2014, water flow from the expansion joint of one Main Steam Line was detected.

This is the first leak from PCV detected in the Unit 3. Based on the images collected in this investigation, the leak volume will be estimated and the need for additional investigations will be examined. The investigative results will also be utilized to examine water stoppage and PCV repair methods.

*Main Steam Isolation Valve: A valve to shut off the steam generated from the Reactor in an emergency situation.

Investigative results into the Unit 3 PCV equipment hatch using a small investigation device

- As part of the investigation into the PCV to facilitate fuel debris retrieval, the status around the Unit 3 PCV equipment hatch was investigated using a small self-traveling investigation device on November 26, 2015.
- Given blots such as rust identified below the water level inside the PCV, there may be a leakage from the seal to the extent of bleeding.

Methods to investigate and repair the parts, including other PCV penetrations with a similar structure, will be considered.

Investigation inside the PCV

Prior to fuel debris retrieval, the inside of the Primary Containment Vessel (PCV) was investigated to identify the status there including the location of the fuel debris.

[Investigative outline]
- The status of X-33 penetration*, which may be under the water and which is scheduled for use to investigate the inside of the PCV, was investigated using remote-controlled ultrasonic test equipment. The results showed that the penetration was not under the water (October 22-24, 2014).
- For the purpose of confirming the status inside the PCV, an investigation device was inserted into the PCV from X-53 penetration on October 20 and 22, 2015 to obtain images, data of dose and temperature and sample contaminated water. No damage was identified on the structure and walls inside the PCV and the water level was almost identical with the estimated value. In addition, the dose inside the PCV was confirmed to be lower than in other Units.
- In July 2017, the inside of the PCV was investigated using the underwater ROV (remotely operated underwater vehicle) to inspect the inside of the pedestal.
- Analysis of image data obtained in the investigation identified damage to multiple structures and the supposed core internals. Consideration about fuel removal based on the obtained information will continue.
- Videos obtained in the investigation were reproduced in 3D. Based on the reproduced images, the relative positions of the structures, such as the rotating platform slipping off the rail with a portion buried in deposits, were visually understood.

Investigations inside PCV

1st (Oct – Dec 2015)
- Acquiring images - Measuring air temperature and dose rate
- Measuring water level and temperature - Sampling contaminated water - Installing permanent monitoring instrumentation (December 2015)

2nd (Jul 2017)
- Acquiring images - Installing permanent monitoring instrumentation (August 2017)

Leakage points from PCV
- Main steam pipe bellows (identified in May 2014)
Work to improve the reliability of the circulation water injection cooling system and pipes to transfer contaminated water.

- Operation of the reactor water injection system using Unit 3 Condensate Storage Tank (CST) as a water source commenced (from July 5, 2013). Compared to the previous systems, the reliability of the reactor water injection system was enhanced, e.g. by increasing the amount of water-source storage and enhancing durability.
- To reduce the risk of contaminated-water leakage, the circulation loop was shortened by installing a reverse osmosis (RO) device in the Unit 4 Turbine Building within the circulation loop, comprising the transfer of contaminated water, water treatment and injection into the reactors. Operation of the installed RO device started from October 7 and 24-hour operation started from October 20. Installation of the new RO device inside the building shortened the circulation loop from approx. 3 to 0.8 km.
- To accelerate efforts to reduce the radiation density in contaminated water inside the buildings, circulating purification of contaminated water inside the buildings started on the Unit 3 and 4 side on February 22 and on the Unit 1 and 2 side on April 11.
- For circulating purification, a new pipe (contaminated water purification line) divided from the water treatment equipment outlet line was installed to transfer water purified at the water treatment equipment to the Unit 1 Reactor Building and the Unit 2-4 Turbine Buildings.
- The risks of contaminated water inside the buildings will continue to be reduced in addition to reduction of its storage.

* The entire length of contaminated water transfer pipes is approx. 2 km, including the transfer line of surplus water to the upper heights (approx. 1.3 km).

![Diagram of water treatment and purification system](image)

Progress status of dismantling of flange tanks

- To facilitate replacement of flanged tanks, dismantling of flanged tanks started in H1 east/H2 areas in May 2015. Dismantling of all flanged tanks was completed in H1 east area (12 tanks) in October 2015, in H2 area (28 tanks) in March 2016, in H4 area (56 tanks) in May 2017, in H3 B area (31 tanks) in September 2017, in H5 and H5 north areas (31 tanks) in June 2018, in G6 area (38 tanks) in July 2018, H6 and H6 north areas (24 tanks) in September 2018 and G4 south area (17 tanks) in March 2019.

![Image of dismantling process](image)

Completion of purification of contaminated water (RO concentrated salt water)

Contaminated water (RO concentrated salt water) is being treated using seven types of equipment including the multi-nuclide removal equipment (ALPS). Treatment of the RO concentrated salt water was completed on May 27, 2015, with the exception of the remaining water at the tank bottom. The remaining water will be treated sequentially toward dismantling the tanks. The strontium-treated water from other facilities than the multi-nuclide removal equipment will be re-purified in the multi-nuclide removal equipment to further reduce risks.

![Diagram of water purification process](image)

Preventing groundwater from flowing into the Reactor Buildings

Reducing groundwater inflow by pumping sub-drain water

To reduce groundwater flowing into the buildings, pumping-up of groundwater from wells (subdrains) around the buildings started on September 3, 2015. Pumped-up groundwater was purified at dedicated facilities and released after TEPCO and a third-party organization confirmed that its quality meets operational targets.

Via a groundwater bypass, reduce the groundwater level around the Building and groundwater inflow into the Building

Measures to pump up groundwater flowing from the mountain side upstream of the Building to reduce the groundwater inflow (groundwater bypass) have been implemented.

The pumped up groundwater is temporarily stored in tanks and released after TEPCO and a third-party organization have confirmed that its quality meets operational targets.

At the observation holes installed at a height equivalent to the buildings, the trend showing a decline in groundwater levels is checked. The analytical results on groundwater inflow into the buildings based on existing data showed a declining trend.

Installing land-side impermeable walls with frozen soil around Units 1-4 to prevent the inflow of groundwater into the building

To prevent the inflow of groundwater into the buildings, installation of impermeable walls on the land side is planned. Freezing started on the sea side and at a part of the mountain side from March 2016 and at 95% of the mountain side from June 2016. Freezing of the remaining unfrozen sections advanced with a phased approach and freezing of all sections started in August 2017.

In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4-5 m. The 21st Committee on Countermeasures for Contaminated Water Treatment, held on March 7, 2018, evaluated that together with the function of sub-drains, etc., a water-level management system to stably control groundwater and isolate the buildings from it had been established and had allowed a significant reduction in the amount of contaminated water generated.

For the unfrozen depth, a supplementary method was implemented and it was confirmed that temperature of the part declined below 0°C by September 2018. From February 2019, maintenance operation started at all sections.
Immediate targets

- Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1mSv/year at the site boundaries.
- Prevent contamination expansion in sea, decontamination within the site

Optimization of radioactive protective equipment

Based on the progress of measures to reduce environmental dosage on site, the site is categorized into two zones: highly contaminated area around Unit 1-4 buildings, etc. and other areas to optimize protective equipment according to each category aiming at improving safety and productivity by reducing load during work.

From March 2016, limited operation started. From March and September 2017, the G Zone was expanded.

Installation of dose-rate monitors

To help workers in the Fukushima Daiichi Nuclear Power Station precisely understand the conditions of their workplaces, a total of 86 dose-rate monitors were installed by January 4, 2016. These monitors allow workers to confirm real time on-site dose rates at their workplaces.

Workers are also able to check concentrated data through large-scale displays installed in the Main Anti-Earthquake Building and the access control facility.

Installation of sea-side impermeable walls

To prevent the outflow of contaminated water into the sea, sea-side impermeable walls have been installed.

Following the completed installation of steel pipe sheet piles on September 22, 2015, connection of these piles was conducted and connection of sea-side impermeable walls was completed on October 26, 2015. Through these works, closure of sea-side impermeable walls was finished and the contaminated water countermeasures have been greatly advanced.

Status of the large rest house

A large rest house for workers was established and its operation commenced on May 31, 2015.

Spaces in the large rest house are also installed for office work and collective worker safety checks as well as taking rest.

On March 1, 2016 a convenience store opened in the large rest house. On April 11, operation of the shower room started. Efforts will continue to improve convenience of workers.